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In this paper, a general immersed boundary force density is introduced for the Boltzmann equation and finally
expressed as the desired particle distribution function discontinuity across the immersed boundary. Because
of its independence of any specific boundary conditions and any specific solvers for the Boltzmann equation, it
actually establishes a unified framework to incorporate various types of boundary conditions and several different
kinds of solvers for the Boltzmann equation. Hence, a particle distribution function discontinuity-based kinetic
immersed boundary method (KIBM) for the Boltzmann equation is proposed based on this general immersed
boundary force density. Subsequently, this paper primarily focuses on the isothermal incompressible fluid-solid
flows, and uses the discrete unified gas kinetic scheme to solve the Boltzmann Bhatnagar-Gross-Krook model
equation. Meanwhile, the regularized delta function and the bounce-back rule combined with an iterative IBM
correction procedure are employed in obtaining the general immersed boundary force density to enforce the no-
penetration and no-slip boundary conditions on the solid wall. Finally, some numerical experiments for typical
incompressible fluid-solid flows show that the present KIBM could provide good agreement with other numerical
and experimental results.
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I. INTRODUCTION

The ability to simulate fluid flows with complex and
moving boundaries accurately and efficiently has been an
important issue in the computational fluid dynamics (CFD)
community. Some conventional approaches based on a body-
conforming grid algorithm generally are involved in a tedious
grid generation procedure to tackle these fluid flows. In
contrast, the immersed boundary method (IBM) can handle
complex geometry with the use of the Cartesian grid, which
can avoid many difficulties of grid generation encountered
in conventional body-conforming discretizations. The idea of
the original IBM was proposed by Peskin in the 1970s [1]
to simulate blood flows in the heart. The novel feature of
the IBM is that the physical boundary of the solid is treated
as an infinitely thin shell with a set of Lagrangian points
distributed on it, and the Navier-Stokes (NS) equations with
a body force density are solved over the whole fluid domain
represented by the surrounding Eulerian background points
including both inside and outside of the solid body. The key
issue in the IBM is how to effectively and efficiently deter-
mine the appropriate body force density for enforcing the
no-slip and no-penetration boundary conditions on the body
surface. According to the method of the body force density
determination, the IBM is categorized into two approaches
[2]. The first implementation, termed as the discrete forcing
approach in the review article [2], introduces the forcing after
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the governing equations are discretized, so it depends on the
specific discretization method. The numerical accuracy, sta-
bility, and other properties of the solver can be well controlled
in this approach. Some important advantages of this approach
are that the boundary can be retained as a sharp interface with
no spreading and higher order local accuracy near the IB can
be accomplished conveniently by adjusting the computational
stencil near the IB [3–7]. However, for the moving boundary
flows, the Lagrangian points usually are closely linked to
the surrounding Eulerian background points and should be
adjusted accordingly. Hence the algorithm is very complex,
and the efficiency is reduced in this approach [8]. The second
implementation, denoted as the continuous forcing approach
in the review article [2], usually uses a weighting function
to spread the force acting on the body surface, represented
by a set of Lagrangian points, to the surrounding Eulerian
background points. Because the Lagrangian points are defined
independently of the Eulerian points in this approach, it is
simple to implement and very attractive for complex flows
with a moving boundary, such as many biological flows. The
best-known way to compute restoring force is the penalty
method [1], where a user-defined spring parameter is intro-
duced. Recently, several extended and improved penalty IBM
variations have been proposed for simulation of fluid–flexible
body interaction problems in [9–11]. Another way is the direct
forcing method first brought forward in [12]. Uhlmann [13]
further proposed a new kind of direct forcing method where
the forcing term is not obtained by any kind of feedback
mechanism. Luo et al. [14] presented a multi-direct-forcing
technique to enforce the no-slip and no-penetration boundary
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conditions on body surface efficiently and accurately. Wu
and Shu proposed a boundary-condition-enforced IBM based
on the implicit velocity correction technique [15,16]. The
relationships between the multi-direct-forcing IBM and the
implicit velocity correction IBM were discussed in [17,18].
Recently, a general implicit direct forcing IBM was proposed
for rigid particles of arbitrary shape and density [19]. Several
different techniques for IBMs to enforce the no-slip boundary
condition on body surface and accelerate iteration conver-
gence were presented in [18,20,21]. Some excellent reviews
about IBM may provide detailed information on this recent
trend and applications [2,8,22–25].

On the other hand, we notice that the gas kinetic theory has
received great attention in recent years to simulate fluid flows.
The gas kinetic theory is a fluid flow description coming from
a microscopic consideration, and the fundamental quantity in
this microscopic description is the particle distribution func-
tion (PDF). The underlying flow dynamics described by the
PDF is more fundamental and abundant than the macroscopic
counterpart. The Boltzmann equation describing the evolution
of the PDF is a well-established mathematical model of a fluid
at microscopic level, and a variety of gas kinetic methods
have been developed based on the Boltzmann equation, such
as the lattice Boltzmann method (LBM) [26–28], gas kinetic
scheme (GKS) [29,30], unified gas kinetic scheme (UGKS)
[31,32], and discrete unified gas kinetic scheme (DUGKS)
[33,34]. Indeed, these Boltzmann-based kinetic methods have
demonstrated great potential as CFD tools offering some key
advantages over the classical Navier-Stokes-based methods,
and a variety of successful applications have been reported
in Refs. [35–41]. Because both the IBM and LBM usually
use the Cartesian grid, many researchers have combined them
into a convenient and efficient method, denoted as IB-LBM.
Feng and Michaelides [42] first adopted IB-LBM to numer-
ically simulate the particulate flows. Other IB-LBMs based
on different techniques, such as implicit velocity correction,
momentum exchange, boundary thickening, and multi-direct-
forcing, have been reported and widely applied to particulate
flows, biological flows, and other fluid-solid interaction flows
[15–18,37,43–46]. Peskin and Printz [47] and Lai and Li
[48] pointed out that the governing equations of the IBM
are mathematically equivalent to the conventional equations
involving the jump condition for the fluid stress across the
boundary. Recently, Suzuki et al. [49,50] proposed a stress
tensor discontinuity-based IB-LBM. Yuan et al. attempted
to combine IBM and GKS to simulate both incompressible
and compressible viscous flows around stationary and moving
rigid bodies [51,52]. Based on the Strang splitting algorithm,
IB-DUGKS was reported in [53–55] to simulate particle-
fluid flows and thermal convection flows. With the aid of the
nonequilibrium extrapolation technique, Tao et al. proposed
a novel PDF correction-based IB-DUGKS for fluid-particle
flows [56].

In the IBM, the IB force density is a key factor introduced
on the Lagrangian marker points to represent the fluid-solid
interaction on the boundary. A lot of IBM variations have been
proposed in the past decades to decide the IB force density for
enforcing various types of boundary conditions on the surface
of a body. However, these above studies usually adopted the
constraint on macroscopic variables to determine the IB force

FIG. 1. A stationary or moving body immersed in fluid.

density. Then different types of boundary conditions should be
enforced for different macroscopic flow variables in different
kinds of flows. This is a major drawback of the traditional
IBMs.

To the best of our knowledge, few studies have been
published on the determination of IB force density based
on the Boltzmann equation directly. Hence, this series of
works will aim to propose a general IB force density based
on the Boltzmann equation directly, and develop a unique
kinetic immersed boundary method (KIBM). Some features
and benefits of the present KIBM are summarized as follows.
First, the general IB force density is expressed as the desired
PDF discontinuity across the immersed boundary. Second,
the general IB force density is independent of any specific
boundary conditions and any specific solvers for the Boltz-
mann equation. Finally, the KIBM can incorporate various
types of boundary conditions for different kinds of flows into
a unified framework. In the current paper, we primarily focus
on the isothermal incompressible fluid-solid flows, and use
the discrete unified gas kinetic scheme (DUGKS) to solve the
Boltzmann-BGK (Bhatnagar-Gross-Krook) model equation.
Meanwhile, the bounce-back rule is employed in obtaining
the desired PDF on both sides of the IB to enforce the no-
penetration and no-slip boundary conditions on the solid wall.
Further development of KIBM for thermal compressible flows
will be presented in our subsequent work.

The organization of the rest of this paper is as follows. In
Sec. II, we derive the general IB force density as the PDF
discontinuity across the IB and discuss the property of the
general IB force density. In Sec. III, we propose the KIBM
based on the general IB force density and outline its im-
plementation. In Sec. IV, we validate the present KIBM by
several benchmark problems. Finally, conclusions and work
in progress are reported in Sec. V.

II. GENERAL IMMERSED BOUNDARY FORCE DENSITY

A. Governing equations

A stationary or moving body immersed in a fluid is il-
lustrated in Fig. 1. Let S be the body surface, and V be the
domain including inside and outside of the body surface S. In
the present kinetic immersed boundary method (KIBM), two
sets of grids are used to represent the immersed boundary (IB)
of the body and the background flow field, respectively. In ac-
cordance with practice, the IB is described by the Lagrangian
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coordinate, and the background flow field is denoted by the
Eulerian coordinate.

Here, the starting point is the Boltzmann’s gas kinetic
equation, including a general body force density, which can
be expressed as

∂ f

∂t
+ u · ∇ f = � + GE , (1)

GE (x, t ) =
∫

S
GL(X, t )δ(x − X)dS, (2)

dX
dt

= U(X, t ) =
∫

V
U(x, t )δ(x − X)dx, (3)

where f = f (x, t, u) is the particle distribution function
(PDF). x, t , u, and GE (x, t ) are the Eulerian coordinate, time,
particle velocity, and general body force density acting on the
fluid, respectively. X and GL(X, t ) stand for the Lagrangian
coordinate and general IB force density. δ(x) = δ(x)δ(y)δ(z)
is a three-dimensional Dirac delta function. Due to the mass
and momentum conservation in particle collisions, the colli-
sion term � on the right side of Eq. (1) should satisfy the
compatibility condition at any point in time and space,∫

�ψd� ≡ 0, (4)

where ψ = (1, u, v,w)T is the collision invariant, and d� =
dudvdw is the volume element in the phase space. Let f eq

denote the Maxwellian equilibrium distribution function,

f eq = ρ

(2πRT )D/2
exp

(
−|u − U|2

2RT

)
, (5)

where ρ is the fluid density, U is the macroscopic fluid veloc-
ity, T is the temperature, R is the gas constant, and D is the
spatial dimension. The macroscopic conservative variables Q
can be expressed as the moments of the distribution function,

Q = (ρ, ρu, ρv, ρw)T =
∫

f eqψd� =
∫

f ψd�. (6)

Equations (2) and (3) clearly represent the interaction be-
tween the body and fluid. Actually, the physical meaning of
Eq. (3) is the no-slip and no-penetration boundary conditions
satisfied on the body surface.

B. Formula of general immersed boundary
force density GL(X, t )

As is well known, the way to determine the IB force
density is a key point in the IBM. In this paper, the general
IB force density GL(X, t ) is introduced in Eq. (2) and finally
determined based on the Boltzmann equation directly.

In Fig. 1, the IB is treated as a shell Vε with an infinites-
imal thickness ε and enclosed by the surface S. A set of
the Lagrangian marker points, independent of the background
Eulerian grids for fluid flow, are distributed on the IB, and
Eq. (1) is solved over the whole domain represented by the
surrounding Eulerian background points including both inside
and outside of the body.

When Eq. (1) is integrated over this shell Vε, we obtain∫
Vε

∂ f

∂t
dx +

∫
S

f u · ndS =
∫

Vε

�dx +
∫

S
GL(X, t )dS, (7)

where n is the unit normal vector of the IB, pointing to the out-
side of the immersed body. Here, for the sake of simplicity, the
fluid variables inside the body are marked with subscript “–”
and outside the body are labeled “+”. Let the shell thickness
ε → 0, so GL(X, t ) can be obtained from Eq. (7),

GL(X, t ) = ( f+ − f−)u · n = [[ f ]]u · n. (8)

Here, the square bracket [[ ]] denotes a jump across the
IB, and Eq. (8) clearly shows the relationship between the
general IB force density GL(X, t ) and the PDF discontinuity
[[ f ]] across the IB.

It is noted that Eq. (8) is directly deduced from the Boltz-
mann’s gas kinetic equation, so Eq. (8) is independent of
any specific boundary conditions. In other words, Eq. (8)
establishes a unified framework to handle various types of
boundary conditions for different kinds of flows, which is a
remarkable advantage compared to the traditional IBMs. In
the meantime, Eq. (8) is independent of any specific solvers
of the Boltzmann equation, so it can be flexibly combined
with any solvers of the Boltzmann equation, such as LBM,
DUGKS, and other discrete ordinate methods.

C. Moment of general IB force density GL(X, t )

Here, let us further clarify the underlying physical meaning
of the general IB force density GL(X, t ) in Eq. (8).

Firstly, when Eq. (8) is integrated over the entire velocity
space, one obtains the moment of GL(X, t ),∫

GLd� =
∫

[[ f ]]u · nd� = [[U]] · n = 0. (9)

The deduction of Eq. (9) above utilizes the no-penetration
boundary condition on the body surface. In the IBM, Eq. (9)
also means that there is no mass exchange between the flows
inside and outside of the body. Actually, besides the no-
penetration boundary condition, the flows also satisfy the
no-slip boundary condition on the body surface, so the ve-
locity field is continuous across the IB,

[[U]] = 0. (10)

Furthermore, when both sides of Eq. (8) are multiplied
by particle velocity u and integrated over the entire velocity
space, the first-order moment of GL(X, t ) is obtained,

R =
∫

uGLd� =
∫

[[ f ]]uu · nd�

= −[[∑]] · n +
(

n + UU · n
RT

)
[[p]]

≈ −[[∑]] · n + [[p]]n for incompressible flows. (11)

The deduction of Eq. (11) utilizes the following fundamen-
tal formula describing the relationship between the PDF and
stress tensor in the gas kinetic theory,

−pI + ∑ = −
∫

(u − U)(u − U) f d�. (12)

Here
∑

is the viscous stress tensor, p is gas pressure, and
|U|2 � RT for incompressible flows. The first-order moment
of GL(X, t ), denoted as R here, is the boundary force den-
sity in the Navier-Stokes equation. The physical meaning of
Eq. (11) is just the force balance equation of the Lagrangian
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point X on the IB. With the consideration of the constitutive
equation for incompressible Newtonian fluid flows,

∑ = 2μS, (13)

and the Caswell formula [57] for the strain-rate tensor S on a
solid wall

2S = n[(ω − 2ωb) × n] + [(ω − 2ωb) × n]n, (14)

Equation (11) can be further simplified as follows for incom-
pressible flows,

R =
∫

uGLd�

≈ −μ[[ω]] × n + [[p]]n

= −[[τ]] + [[p]]n for incompressible flows, (15)

where ωb is the angular velocity of the body, ω = ∇ × V is the
vorticity, and τ =μ(ω−2ωb) × n is the skin-friction stress on
the solid wall.

Subsequently, by taking the dot product of Eq. (15) with n,
one obtains

[[p]] = R · n, (16)

which denotes the jump condition for pressure across the IB.
Finally, the jump condition for the skin-friction stress τ

across the IB is determined;

[[τ]] = (R · n)n − R. (17)

III. PARTICLE DISTRIBUTION FUNCTION
DISCONTINUITY-BASED KINETIC IMMERSED

BOUNDARY METHOD

A. Methodology

In Sec. II, the formula for the general IB force density
GL(X, t ) has been obtained in Eq. (8). Now the general body
force density GE (x, t ) in governing equation (1) could be
accessed by spreading GL(X, t ) to the surrounding Eulerian
grids according to Eq. (2):

GE (x, t )=
∫

S
GL(X, t )δ(x−X)dS =

∫
S

[[ f ]](u · n)δ(x−X)dS.

(18)
Here δ(x) = δ(x)δ(y)δ(z) is a three-dimensional Dirac

delta function. Since GL(X, t ) is integrated with a three-
dimensional Dirac delta function over a two-dimensional
surface S of the body, the resulting GE (x, t ) should be a
one-dimensional singular Dirac delta function.

Afterward, the governing equation (1) will be handled by
the operator splitting technique:

∂ f

∂t
+ u · ∇ f = � + GE (x, t )

operator
splitting

−−−−−−−−−−−−→

{
DUGKS : f (0)− f n

	t + u · ∇ f = �

IBM correction : f n+1− f (0)

	t = GE (x, t )

(19)

In this paper, we primarily focus on the isothermal in-
compressible fluid-solid flows, so the collision term � on the
right side of Eq. (1) is replaced by the Bhatnagar-Gross-Krook

(BGK) collision model. Due to the flexibility and stability of
the DUGKS [33,58], the first step is numerically integrated by
the DUGKS to obtain the intermediate PDF f (0)(x) without
considering the effect of GE (x, t ). Subsequently, the IBM
correction step will determine the desired PDF f n+1(x) which
would satisfy the boundary conditions on the body surface:

f n+1(x) = f (0)(x) + 	tGE (x, t )

= f (0)(x) + 	t
∫

S
[[ f ]](u · n)δ(x − X)dS. (20)

Here, the desired PDF f n+1(x) defined in the Eulerian grids
is closely connected with the PDF discontinuity [[ f ]] across
the IB, so the present IBM is named as the particle distribu-
tion function discontinuity-based kinetic immersed boundary
method, which is abbreviated as KIBM for convenience in the
following section.

B. Numerical implementation

In the actual numerical implementation, the singular Dirac
delta function is approximately replaced by a smoothed reg-
ularized delta function Dn, which was proposed by Peskin
[1,22],

Dn(x − X)

=
{ 1

	VE2
φ
(

x−X
	x

)
φ
( y−Y

	y

)
, n = 2 : for 2D flows

1
	VE3

φ
(

x−X
	x

)
φ
( y−Y

	y

)
φ
(

z−Z
	z

)
, n = 3 : for 3D flows

,

(21)

φ(r) =
{

1
4

[
1 + cos

(
π |r|

2

)]
, |r| � 2

0, |r| > 2
, (22)

where 	VE2 = 	x	y = 	x2 and 	VE3 = 	x	y	z = 	x3

are the corresponding volume of the Eulerian grid for
two-dimensional (2D) and three-dimensional (3D) flows, re-
spectively. The Eulerian grids near the IB should be uniform
	x = 	y = 	z. With the aid of Eq. (21), now Eq. (20) can
be rewritten as follows,

f n+1(x) = f (0)(x) + 	t
∑
X∈L

[[ f ]](u · n)Dn(x − X)	SL,

(23)
where 	SL is the arc length of the IB element for 2D flows, or
the area of the IB element for 3D flows, respectively.

Because the singular Dirac delta function δ(x − X) is
approximately replaced by the smoothed regularized delta
function Dn(x − X), the no-slip and no-penetration bound-
ary conditions would be satisfied approximately on the body
surface. As a result, the unphysical streamline penetration
phenomenon would emerge on the IB, which would destroy
the mass conservation. Just as in the multi-direct-forcing
method proposed by Luo et al. [14], here an iterative IBM
correction procedure is adopted to avoid the above defi-
ciency. Then the governing equation (1) is handled by the
operator splitting technique with multiple IBM correction
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steps,

∂ f

∂t
+ u · ∇ f = � + GE (x, t ) = � +

∑
m

G(m)
E = � + G(1)

E + G(2)
E + · · · + G(m)

E + · · ·

operator
splitting

−−−−−−−−−−−−→

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

DUGKS : f (0)− f n

	t + u · ∇ f = �

first IBM correction : f (1)− f (0)

	t = G(1)
E

second IBM correction : f (2)− f (1)

	t = G(2)
E

· · ·
mth IBM correction : f (m)− f (m−1)

	t = G(m)
E

. (24)

Hence f (m)(x) can be obtained as follows,

f (m)(x) = f (m−1)(x) + 	tG(m)
E (x)

= f (m−1)(x) + 	t
∑
X∈L

[[ f (m−1)(X)]](u · n)Dn(x − X)	SL, (25)

where f (m−1)(x) is the intermediate PDF, and f (m−1)(X) can be interpolated from f (m−1)(x) by the smoothed regularized delta
function Dn:

f (m−1)(X) =
∑
x∈E

f (m−1)(x)Dn(x − X)	VE . (26)

In this paper, the isothermal incompressible fluid flows are primarily focused on, and the no-penetration and no-slip boundary
conditions should be satisfied on the wall for the macroscopic fluid velocity. Hence, the bounce-back (BB) rule [59] is used to
determine the desired f+ and f− on both sides of the IB as follows:

f (m−1)
+ (X, u) =

{
f (m−1)(X,−u) + 2ρ+Wi

u·Uw

RT , u · n > 0
f (m−1)(X, u), u · n � 0

, (27)

f (m−1)
− (X, u) =

{
f (m−1)(X,−u) + 2ρ−Wi

u·Uw

RT , u · n < 0
f (m−1)(X, u), u · n � 0

. (28)

Here n is the unit normal vector of the IB, pointing to the outside of the immersed body. u is the discrete particle velocity
and Wi is the associated weight. Uw is the wall velocity. ρ+ and ρ− are the densities on both sides of the IB determined by the
definition of the wall density as follows:

ρ+ =
[ ∑

u·n=0

f (m−1)(X, u) + 2
∑

u·n<0

f (m−1)(X, u)

]/(
1 − 2

RT

∑
u·n>0

Wiu · Uw

)
, (29)

ρ− =
[ ∑

u·n=0

f (m−1)(X, u) + 2
∑

u·n>0

f (m−1)(X, u)

]/(
1 − 2

RT

∑
u·n<0

Wiu · Uw

)
. (30)

Finally, within NIBM times of IBM correction, the desired
PDF f n+1(x) satisfying the boundary conditions can be well
approached by f (NIBM )(x):

f n+1(x) = f (NIBM )(x). (31)

In summary, the update of the distribution function f from
tn to tn+1 in the present KIBM can be outlined as follows:

(1) Compute the intermediate PDF f (0)(x) from f n(x) by
DUGKS.

(2) for (m = 1; m � NIBM; m + +).
(a) Obtain f (m−1)(X) from f (m−1)(x) by Eq. (26).
(b) Calculate f (m−1)

+ (X, u) and f (m−1)
− (X, u) using

Eqs. (27) and (28).
(c) Obtain the general IB force density G(m)

L (X, t ) =
[[ f (m−1)]]u · n as in Eq. (8).

(d) Spread G(m)
L (X, t ) to G(m)

E (x, t ) by Eq. (18).

(e) Update f (m)(x) by Eq. (25).
(3) According to Eq. (31), obtain the desired PDF

f n+1(x, t ) satisfying the boundary conditions.
(4) Set n = n + 1, repeat steps (1)–(3) until convergence

is reached.
It is noted that the Peskin’s isotropic regularized delta func-

tion is used in this paper, such as in Eq. (26), so the present
KIBM should be categorized into the diffusive interface IBM,
although the PDF discontinuity [[ f ]] across the IB is sharply
determined by the multi-direct-forcing method.

C. Other technical details for the completeness of the algorithm

1. Determination of the Lagrangian element thickness ε

The quantities ϕ in the transformation step between the
Lagrangian and Eulerian locations can be written as follows

035306-5



DING XU, YISU HUANG, AND JINGLEI XU PHYSICAL REVIEW E 105, 035306 (2022)

[13],

E → L : ϕ(X) =
∑
x∈E

ϕ(x)Dn(x − X)	VE , (32)

L → E : ϕ(x) =
∑
X∈L

ϕ(X)Dn(x − X)	VL, (33)

where 	VE = 	x	y	z and 	VL = ε · 	SL are the volume
of the Eulerian and Lagrangian grids, respectively. 	SL is
the arc length of the IB element for 2D flows, or the area of
the IB element for 3D flows, respectively. Theoretically, the
IB thickness ε would approach zero. However, in the actual
implementation, due to the finite scale of both the Lagrangian
and Eulerian grids, ε cannot be infinitesimal. The value of ε

is really significant for the spreading procedure L → E in the
IBM as in Eq. (33). Thus one question is how to decide the
value of ε.

At the beginning of the present work, ε was empirically
estimated as follows,

ε1 ≈ 	x, (34)

where 	x is the size of the corresponding Eulerian grid
around the IB. This approach has been widely utilized in the
IBMs [13,45,60].

In the next moment, we evaluated the IB thickness ε based
on some physical considerations. Firstly, it is found that both
GE (x, t ) and the collision term � are on the right side of
Eq. (1), so GE (x, t ) would represent some collision mech-
anism to enforce the no-slip and no-penetration boundary
conditions. Furthermore, recalling the formula GL(X, t ) =
[[ f ]]u · n from Eq. (8), we hypothesized that the particles on
both sides of the IB move toward the IB, travel for a time
step, and then collide on the IB. On the macroscopic scale,
the accumulation effect of these particle collisions is just to
enforce the no-slip and no-penetration boundary conditions
on the body surface. Hence the IB thickness ε is evaluated as
follows:

ε2 ≈ (ūrms − Uw,n)	t + (ūrms + Uw,n)	t = 2ūrms	t, (35)

where ūrms = √
3RT is the root mean square (rms) thermal

speed and Uw,n is the wall velocity along the body surface
normal direction.

Combing Eq. (34) with Eq. (35), one obtains

ε2/ε1 ∼ ūrms	t/	x ∼ CFL ∼ O(1). (36)

The CFL number in the DUGKS [33,34] usually is less
than 1.0 for numerical stability, so these two approaches
would give similar results. In the actual implementation, both
of the above two approaches work well in the following
studies.

2. Evaluation of force and torque acting on the body

As shown in Fig. 1, the mass of the IB shell can be ignored
when the shell thickness ε → 0, so all forces acting on the IB
shell would be in balance, which has been shown in Eq. (11).
Now, the force F(t ) and torque T(t ) acting on the body can be

evaluated as follows:

F(t ) =
∫

S
(∑+ · n − p+n)dS

= Fin(t ) −
∫

S
RdS

= Fin(t ) −
NIBM∑
m=1

∑
X∈L

(
	SL

∫
uG(m)

L d�

)
, (37)

T(t ) =
∫

S
(X − Xc) × (∑+ · n − p+n)dS

= Tin(t )−
∫

S
(X−Xc) × RdS

= Tin(t ) −
NIBM∑
m=1

∑
X∈L

(
	SL(X − Xc) ×

∫
uG(m)

L d�

)
.

(38)

Here Xc is the coordinate of the center of
mass. Fin(t ) = ∫

S (
∑

− · n − p−n)dS and Tin(t ) =∫
S (X − Xc) × (

∑
− · n − p−n)dS are the force and torque

acting on the virtual fluid inside of the body; they usually
are called the internal mass effect and can be approximately
evaluated by several approaches [19,45,61]. In the present
work, the rigid body approximation of Feng and Michaelides
[61] is used to evaluate the internal mass effect Fin(t ) and
Tin(t ),

Fin(t ) ≈ ρ f

ρb
M

Uc(t )−Uc(t − 	t )

	t
, (39)

Tin(t ) ≈ ρ f

ρb
Ib

ωb(t )−ωb(t − 	t )

	t
, (40)

where ρ f , ρb, M, Uc, Ib, and ωb are fluid density, body density,
the mass of the body, the velocity of the mass center of the
body, the momentum of inertia, and the angular velocity of
the body, respectively.

IV. NUMERICAL RESULTS

In this section, the present KIBM is validated by several
benchmark problems including the stationary body, prescribed
moving body, and freely moving body flows. For all cases
in this work, the local Ma number is always less than 0.3,
so the flows could be considered as incompressible. For the
boundary conditions, the bounce-back rule [59] is used for
the straight wall boundary, while the nonequilibrium extrapo-
lation method [62] is used for the open boundary. The number
of IBM corrections NIBM, unless otherwise stated, is set as
NIBM = 20. In the actual implementation, the size of the La-
grangian grid 	SL has the same order as the Eulerian grid
size 	x in order to avoid the unphysical leakage [22]. Similar
to the original DUGKS [33], the Gauss-Hermite quadrature
is employed to discretize the particle velocity space in the
present KIBM. For one-dimensional flows (D = 1), the dis-
crete velocities and associated weights are

u±1 = ±
√

3RT , u0 = 0, W±1 = 1/6, W0 = 2/3. (41)
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�

FIG. 2. Spatial convergence of the present KIBM in the cylindri-
cal Couette flow.

For higher-dimensional flows (D > 1), the tensor product
method is used to generate the discrete velocities and associ-
ated weights.

A. Accuracy verification of the present kinetic IBM

The original DUGKS method has been numerically proved
to be a fully second-order scheme in some recent studies
[33,63]. After combining with the present KIBM, it is neces-
sary to discuss the accuracy of the whole flow solver. Hence,
the accuracy of the present KIBM will be verified by the cylin-
drical Couette flow, which is widely chosen as a benchmark
problem for the IBM accuracy test [53,64].

In this cylindrical Couette flow problem, the fluid flow
is confined by two coaxial rotating cylinders. Usually, the
governing equation for this flow is written in the cylindrical
polar coordinate as

d2Uθ

dr2
+ d

dr

(
Uθ

r

)
= 0, (42)

with the corresponding boundary conditions

Uθ |r=R1
= U1 = ω1R1, Uθ |r=R2

= U2 = ω2R2, (43)

where R1, R2 and ω1, ω2 are the radius and angular speed
of the inner and outer rotating cylinders, respectively. Uθ is
the circumferential velocity component. The steady solution

FIG. 3. Velocity profile for the cylindrical Couette flow.

FIG. 4. Nonuniform grid (221 × 149) for 2D flow around a sta-
tionary circular cylinder.

of this flow can be obtained as follows:

Uθ = C1r + C2

r
, C1 = ω2R2

2 − ω1R2
1

R2
2 − R2

1

,

C2 = (ω1 − ω2)R2
1R2

2

R2
2 − R2

1

. (44)

In the simulation, the outer cylinder is fixed (ω2 = 0).
CFL = 0.5, the Mach number Ma = U1/

√
γ RT = 0.1, the

Reynolds number Re = U1(R2 − R1)/ν = 20, and two differ-
ent values of radius ratio β = R2/R1 are set as β = 5, 8. Here
ν is the kinematic viscosity of fluid.

�

FIG. 5. Time history of the L2-norm error of velocity with dif-
ferent values of NIBM.
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TABLE I. The performance overhead of KIBM on numerically simulating the flow around a stationary circular cylinder at Re = 20.

Time cost for 1000 steps (s)

Grid Minimum Eulerian Lagrangian Present Tao’s IBM [56]

No. grid size Grids Grids NIBM DUGKS IBM Ratio DUGKS IBM Ratio

Grid 1 	x = D/25 221 × 149 80 1 189.6 11.1 0.06 196.5 11.0 0.06
10 191.1 111.4 0.58 196.6 109.3 0.56
20 196.9 227.5 1.16 198.0 218.1 1.10

Grid 2 	x = D/40 281 × 209 200 1 353.8 20.5 0.06 364.8 20.2 0.06
10 365.5 212.1 0.58 364.5 202.0 0.55
20 355.9 410.0 1.15 365.3 405.0 1.11

Usually, the numerical error L2−norm is used to evaluate
the accuracy of the scheme, and L2−norm is defined as

L2−norm =
√√√√ 1

N

N∑
i=1

[|Ui − Ue|2], (45)

where Ui is the numerical solution, and Ue is the analyti-
cal solution in Eq. (44). N is the total number of Eulerian
grids locating between the inner and outer cylinders. Four
grids with different spacing 	x are chosen to obtain the
corresponding numerical error L2−norm; they are shown in
Fig. 2. It is observed that the slopes of these lines are about
1.4–1.6. As a result, it can be concluded that the present KIBM
has first-order accuracy in space, which is comparable with
other diffusive interface IBMs [53,65]. In the meantime, the
comparison between the analytical solution and the numerical
solution by the present KIBM is shown in Fig. 3 for the case
β = 8, which clearly shows that the present results have good
agreements with the analytical solution.

B. Flow around a stationary circular cylinder

The flow around a stationary circular cylinder is a clas-
sical fluid dynamics problem. There are abundant numerical
and experimental results for this flow in the literature. More-
over, this problem has been widely chosen to investigate
whether the no-slip and no-penetration boundary conditions
are satisfied in the IBM variations [13–15,43,53]. This flow is
controlled by the Reynolds number Re = U∞D/ν. Here, U∞,
D, and ν are the free stream velocity, the cylinder diameter,
and the kinematic viscosity, respectively.

It is well known that the long history of the flow field
is a steady flow when Re is less than about 47. Hence, the

influence of IBM correction times NIBM on the satisfaction
of the no-slip and no-penetration boundary conditions is in-
vestigated at Re = 20. In the simulation, CFL = 0.5 and the
computational domain is set by a square domain (L × W =
50D × 40D) with a nonuniform grid (221 × 149), which is
shown in Fig. 4. The region near the cylinder adopted a refined
uniform grid with size 	x = D/25. Eighty Lagrangian points
are uniformly distributed along the cylinder surface, so the
ratio of the Lagrangian grid size to Eulerian grid size is about
	SL/	x = 0.982. The free-stream Mach number is set to be
0.1. A nonequilibrium extrapolation method is used for all the
boundary conditions, while the velocity at the inlet boundary
is fixed and the pressure at the outlet boundary is fixed. Here
the L2−norm error of velocity on the cylinder boundary is
presented in Fig. 5 with different values of NIBM. It is clear
that L2−norm declines as NIBM increases, so the no-slip and
no-penetration boundary conditions can be enforced in the
present KIBM with multiple IBM corrections. Moreover, the
L2−norm error will be reduced significantly as NIBM = 20
and shows no obvious difference with larger values of NIBM.
Hence NIBM = 20 can provide a balance between accuracy
and efficiency, and we will set NIBM = 20 in the following
simulations.

Subsequently, two different resolution grids are used to
discuss the performance overhead of the present KIBM, and
the results are tabulated in Table I. The solver is run in serial
mode on our Dell T7910 workstation, and the wall-clock time
of DUGKS and IBM for 1000 steps is recorded after the
flow attains steady state. The ratio of IBM to DUGKS is also
provided in Table I. The performance is mainly influenced
by the number of Eulerian grids, the number of Lagrangian
grids, and IBM corrections times NIBM. For the same grid,
the time cost of every IBM correction is nearly identical,

TABLE II. Grid-independent study for flow over a stationary cylinder at Re = 20.

Present Cai et al. [21] Tao et al. [53] Linnick and Fasel [66]

No. Minimum Cd Lw/D Cd Lw/D Cd Lw/D Cd Lw/D

grid sizes
Grid 1 	x = D/25 2.176 1.03 2.101 0.995 2.13 0.95 2.16 0.93
Grid 2 	x = D/40 2.161 1.02
Grid 3 	x = D/50 2.154 0.986
Grid 4 	x = D/80 2.147 0.971
Grid 5 	x = D/160 2.143 0.968
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FIG. 6. Streamlines for 2D flow around a stationary circular
cylinder at Re = 20.

so the time cost of IBM is directly proportional to NIBM.
Based on the idea of nonequilibrium extrapolation, Tao et al.
[56] developed another IBM combined with DUGKS, and we
implemented Tao’s IBM in our code to simulate the same flow
for comparison. It is found that the performance overhead of
the present KIBM is equivalent to Tao’s IBM, so the present
KIBM has an acceptable performance.

Finally, a grid-independent study has been performed at
Re = 20 with multiple different spatial resolutions. The quan-
titative results of this flow are the ratio of recirculation length
to the cylinder diameter Lw/D, and the drag coefficient Cd =
2Fd/(ρU 2

∞D), where Fd is the drag force acting on the im-
mersed body. The obtained results by the present KIBM
with five different resolution grids are tabulated in Table II,
including the data available in the literature [21,53,66] for
comparison, which shows that a minimum grid size 	x =
D/80 seems to be good enough for this flow simulation, and
the present KIBM has good agreement with the reference
results.

In Fig. 6, the streamlines of the steady flow at Re = 20
(Grid 5: 	x = D/160) are presented, and a pair of symmet-
ric recirculation bubbles appears behind the cylinder. In the

FIG. 7. Streamlines for 2D flow around a stationary circular
cylinder at Re = 40.

zoomed-in view of the streamlines [Fig. 6(b)], there are no
unphysical streamlines across the boundary of the cylinder,
and the internal virtual fluid is visible without pulling out of
the cylinder boundary. Hence, the no-slip and no-penetration
boundary conditions can be exactly satisfied on the cylinder
wall by the present KIBM. Similar results for the steady
flow at Re = 40 are illustrated in Fig. 7. It is found that the
streamlines inside and outside of the cylinder perfectly fit the
boundary.

C. Horizontally oscillating circular cylinder in a stationary fluid

In order to validate the ability of the present KIBM to
handle the fluid flows with a prescribed moving boundary,
the flow induced by a horizontally oscillating circular cylin-
der in a stationary fluid is numerically simulated by the
present KIBM. The numerical and experimental results of
this problem have been reported in many studies [45,53,67].
In this problem, the governing dimensionless parameters are
the Reynolds number Re = UmaxD/ν and Keulegan-Carpenter
number KC = UmaxT/D. Here U max is the amplitude of the
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FIG. 8. Nonuniform grid for horizontally oscillating circular
cylinder in a stationary fluid.

oscillation velocity, D is the cylinder diameter, ν is the kine-
matic viscosity, and T is the period of oscillation. The cylinder
is initialized at the center of the computational domain and
oscillates with the following prescribed velocity:

Uc(t ) =
[
−Umax cos

(
2πt

T

)
, 0

]
. (46)

In the simulation, we set Re = 100, KC = 5, and CFL =
0.5. The computational domain is set by a square do-
main (L × W = 40D × 30D) with a nonuniform grid size of
169 200, which is shown in Fig. 8. There is a uniform region
of size (8D × 6D) around the cylinder, and the minimum grid
spacing is 	x = D/40. Two hundred Lagrangian points are
uniformly distributed along the cylinder surface, so the ratio
of the Lagrangian grid size to the Eulerian grid size 	SL/	x
is about 0.63. Because the computational domain is large
enough, the nonequilibrium extrapolation method is used for
all boundaries.

The time variation of the drag coefficient Cd =
2Fx/(ρU 2

maxD) is shown in Fig. 9, and the present results have
good agreement with other diffusive interface IB-LBM [45]
and experimental results [67]. It is noted that the experimental
data provided by Dütsch et al. [67] are for periods after
initial transient flows, so the first periods (0 < t < T ) of the
present results are cut off for comparison with Dütsch’s data.
In Fig. 10, the present velocity profiles of the horizontally

FIG. 9. Time variation of the drag coefficient Cd =
2Fx/(ρU 2

maxD) of a horizontally oscillating circular cylinder in
a stationary fluid for Re = 100 and KC = 5.

oscillating circular cylinder for Re = 100 and KC = 5 at
four different locations x = −0.6D, 0.0, 0.6D, and 1.2D for
three different phase angles φ = (a) 180◦, (b) 210◦, (c) 330◦
are compared with the experimental results of Dütsch et al.
[67], where the phase angle φ is defined as φ = t/T × 360◦.
It is found that the present results are in agreement with
Dütsch’s results. In order to validate the satisfaction of no-slip
and no-penetration boundary conditions, Fig. 11 shows the
instantaneous streamlines of the flow in a relative reference
frame fixed to the oscillating cylinder at four different times
(a) t = kT , (b) t = (k + 0.25)T , (c) t = (k + 0.5)T , and (d)
t = (k + 0.75)T , where k is a natural number. This flow with
Re = 100 and KC = 5 is symmetric with respect to the x axis.
At time t = kT or t = (k + 0.5)T , the center of the cylinder
locates at x = 0, and a pair of symmetric vortices develops
before or behind the cylinder. The streamlines in Figs. 11(a)
and 11(c) are similar to the flow around the stationary
cylinder at low Re number. At time t = (k + 0.25)T or
t = (k + 0.75)T , the center of the cylinder arrives at the
maximum displacement from equilibrium, and the vortices
detach from the cylinder surface in Figs. 11(b) and 11(d). It
is found that the streamlines obtained by the present KIBM
do not penetrate the cylinder wall. It means that the no-slip
and no-penetration boundary conditions on the oscillating
cylinder wall are satisfied well by the present KIBM.

D. Sedimentation of a single elliptical particle under gravity
in a closed narrow domain filled with fluid

Different from the prescribed movement of the body in
Sec. IV C, in this case the sedimentation process of a free
elliptical particle under gravity in a closed narrow domain
filled with fluid is considered to further validate the reliability
of the present KIBM to numerically simulate the flow inter-
acting with a freely moving body. Moreover, compared with
the cylindrical particle, the elliptical particle is anisotropic in
shape and the flow mechanism is more complex, so it can
more rigorously verify the present KIBM. This problem has
been extensively studied by many researchers [45,53,68,69].
A schematic diagram of this problem is shown in Fig. 12. Two
coordinate systems are introduced for this problem. One is the
laboratory coordinate system, which is denoted as o−X − Y .
Another is the body-fixed coordinate system o′ − X ′ − Y ′,
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(a)

(b)

(c)

Ref. [67]
Ref. [67]
Ref. [67]
Ref. [67]

FIG. 10. Velocity profiles of the flow around an oscillating cylinder at four different locations for three different phase angles.

035306-11



DING XU, YISU HUANG, AND JINGLEI XU PHYSICAL REVIEW E 105, 035306 (2022)

FIG. 11. Instantaneous streamlines of the flow in a relative reference frame fixed to the oscillating cylinder for Re = 100 and KC = 5 at
four different times: (a) t = kT , (b) t = (k + 0.25)T , (c) t = (k + 0.5)T , and (d) t = (k + 0.75)T (red circle is the cylinder wall).

FIG. 12. Sedimentation of a single elliptical particle driven by
a constant gravity acceleration in a closed narrow domain filled
with fluid. The laboratory coordinate system is denoted as o−X − Y ,
and the body-fixed coordinate system as o′ − X ′ − Y ′. The rotational
angle θ represents the angle between the axis X ′ and the axis X .

where the axes X ′ and Y ′ always coincide with the major and
minor axes of the elliptical particle, respectively.

The major and minor axes of the elliptical particle are
denoted as a and b, respectively, and the shape of the particle
can be determined by the aspect ratio α = a/b. The channel
is placed vertically and the width of channel L is chosen as a
length scale. The height of the computational domain is 15L.
The densities of fluid and particle are ρ f and ρb, respectively.
The acceleration of gravity is g along the negative Y direction.
The governing dimensionless parameters of this problem are
set as follows:

Aspect ratio α = a/b = 2,

Blockage ratio β = L/a = 4,

Density ratio ρb/ρ f = 1.1,

Reynolds number Re = Ut L/ν = 12.6, (47)

where ν is the kinematic viscosity and Ut is the terminal
velocity of the particle. It is noted that Ut is determined by
the density ratio ρb/ρ f and the gravity acceleration g.

In this simulation, CFL = 0.5 and the computational do-
main is L × 15L with a uniform grid (200 × 3000), that is,
L = 200	x, where 	x is the grid spacing. One hundred fifty-
one Lagrangian points are uniformly distributed along the
elliptical particle surface. The elliptical particle is initialized at
the origin of the laboratory coordinate system (X,Y ) = (0, 0)
with the initial rotational angle θ = π/4. Here, θ represents
the angle between the axis X ′ of the body-fixed coordinate
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Ref. [53]

Ref. [53]

Ref. [68]

Ref. [68]

FIG. 13. Trajectory and orientation of an elliptical particle
falling under gravity in a closed narrow domain filled with fluid.

system and the axis X of the laboratory coordinate system. It
should be noted that the force acting on the elliptical particle
has two parts, namely, F(t ) in Eq. (37), and the buoyancy
G = (ρb − ρ f )Vbg, where Vb is the volume of particle. The
space motion of a rigid particle can be divided into two parts:
a translation of the center of mass and a rotation around the
center of mass, which are described by the Newton-Euler
equations [53]. The bounce-back rule is imposed for the chan-
nel walls, and the nonequilibrium extrapolation method is
applied for the top and bottom boundaries.

Figure 13 compares the trajectory of the particle mass
center and the rotational angle with those in the literature. The
results obtained by the present KIBM are in good agreement
with the results by Xia et al. [68] and the diffusive interface
IBM reported by Tao et al. [53]. For this case, the ellipti-
cal particle moves toward the centerline of the channel and
approaches a steady sedimentation with the rotational angle
θ → 0, which is consistent with the phenomenon reported in
the literature [68].

Instantaneous streamlines at different time are plotted in
Figs. 14(a)–14(c) under the laboratory coordinate system
o−X − Y . It is clear that the elliptical particle pushes the
surrounding fluid aside as it is falling under the gravity.
The corresponding streamlines under the body-fixed coor-
dinate system o′ − X ′ − Y ′ are drawn in Figs. 14(d)–14(f),
which vividly illustrates the process of growth of the attached
vortices behind the particle. Moreover, Fig. 15 displays the
streamlines under the body-fixed coordinate system as the

particle moves to (Xc/L,Y c/L) = (6.2 × 10–4,−7.0). As
expected, two attached vortices almost with the same size
appear behind the particle. It is found that the streamlines
obtained by the present KIBM do not penetrate the particle
wall. It means that there is no mass exchange between the fluid
outside the particle and the virtual fluid inside the particle.

V. DISCUSSION

All the above results have shown that the present KIBM
has good agreement with other numerical and experimental
results. The most remarkable feature of the present KIBM is
that the general IB force density GL(X, t ) is expressed by the
PDF discontinuity across the IB in Eq. (8), which is inde-
pendent of any specific boundary conditions and any specific
solvers of the Boltzmann equation. Hence, it can establish a
unified framework for various types of boundary conditions
to be incorporated into it. Meanwhile, it can be conveniently
combined with any solvers of the Boltzmann equation, such
as LBM, DUGKS, and other discrete ordinate methods.

As every coin has two sides, because the PDF is directly
exchanged between the Lagrangian and Eulerian grids, the
present KIBM is more expensive than the traditional IBMs
based on the macroscopic flow variables. However, according
to the performance overhead test shown in Sec. IV B, the
present KIBM has an acceptable performance.

Just as mentioned in Sec. III B, the present KIBM is
categorized into the diffusive interface IBM, because Peskin’s
isotropic regularized delta function is used in this paper. Then
the boundary has an effective thickness, which is similar to
other traditional diffusive interface IBMs [45,70]. Here the
laminar flow past a flat plate is numerically simulated by
the present KIBM to investigate the influence of the effective
thickness of the boundary on the velocity profile. In this prob-
lem, a uniform flow with horizontal velocity U0 = 0.1 flows
past a flat plate with the length L = 100. The computational
domain, shown in Fig. 16, is set to be –L < x < 3L and
–L < y < L with the coordinate origin at the leading edge of
the plate. The flow is characterized by the Reynolds number
defined as ReL = U0L/ν, where ν is the kinematic viscosity.
In order to verify the stability of the present KIBM to sim-
ulate the boundary layer flow at higher Re numbers, we set
ReL = 2 × 104, which is 10 times as large as that in the article
by Suzuki et al. [70]. Meanwhile, three different resolution
nonuniform grids (301 × 111, 529 × 145, and 977 × 209) are
chosen to obtain a grid-independent solution. The region near
the flat plate adopts a refined uniform grid with different
spacings 	x = L/160, 	x = L/320, and 	x = L/640; these
are consistent with those of Suzuki et al. [70]. Single-layer
Lagrangian elements with 160, 320, and 640 Lagrangian
points, respectively, are uniformly distributed along the flat
plate surface for the above three grids, so the ratio of the
Lagrangian grid size to the Eulerian grid size is 	S/	x = 1.
Figure 17 shows the horizontal and vertical velocity profiles
at the middle point of the plate, where the local Reynolds
number is Rex = U0x/ν = 104. Because the present KIBM
is a diffusive interface IBM, so the immersed boundary has
an effective thickness although the plate has no thickness in
itself. It is similar to other diffusive interface IBMs [70]. When
we set the effective thickness of boundary h ≈ 2	x and shift
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FIG. 14. Instantaneous streamlines of an elliptical particle falling under gravity in a closed narrow domain filled with fluid. (a)–(c) are
plotted under the laboratory coordinate system o−X − Y , and (d)–(f) are drawn under the body-fixed coordinate system o′ − X ′ − Y ′.

the velocity profiles by 0.5h in the y direction, the results of
the KIBM agree well with Howarth’s [71] numerical solution
of the Blasius equation, which is clearly shown in Figs. 17(b)
and 17(c). In the article by Suzuki et al. [70], the boundary
layer is well resolved by about 50 grids at ReL = 2 × 103.
This grid requirement for boundary layer capture at higher Re
numbers will become unbearable. However, as displayed in
Fig. 17(b), the present KIBM uses about eight to ten grids
to well resolve the boundary layer at ReL = 2 × 104, which
is 10 times as large as that one in the article by Suzuki
et al. Moreover, the present KIBM can provide stable and
reasonable velocity profiles even with only five to six grids
to resolve the boundary layer, which is shown in Fig. 17(a).

Finally, the present KIBM is categorized into the diffusive
interface IBM, but the deduction of the general IB force
density GL(X, t ) = [[ f ]]u · n is independent of any specific
manner for obtaining the desired f+ and f− on both sides
of the IB. Hence, the sharp interface IBM can also be devel-
oped under this framework if a one-sided kernel function is
used instead of Peskin’s isotropic regularized delta function.
Just recently, Bale et al. [72] proposed a one-sided direct
forcing IBM using moving least squares, so we will attempt
to combine GL(X, t ) = [[ f ]]u · n with their one-sided kernel
function to develop a sharp interface KIBM in the following
work.
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×10-4

FIG. 15. Instantaneous streamlines drawn under the body-fixed
coordinate system o′ − X ′ − Y ′. Two attached vortices with almost
the same size appear behind the particle now.

VI. CONCLUSION

In this paper, the fluid-solid interface is denoted as a set
of the Lagrangian marker points which are independent of the
background Eulerian grids for fluid flow. The general IB force
density GL(X, t ) is introduced on these Lagrangian marker
points to represent the fluid-solid interaction on the boundary,
and the formula of GL(X, t ) is directly deduced from the
Boltzmann equation and finally expressed as the desired PDF
discontinuity across the IB. Due to its independence of any
specific boundary conditions and any specific solvers of the
Boltzmann equation, it provides a possibility for incorporating
various types of boundary conditions and several different
kinds of solvers for the Boltzmann equation into a unified
framework.

Subsequently, we propose the particle distribution func-
tion discontinuity-based kinetic immersed boundary method
(KIBM) based on the general IB force density, and nu-
merically implement it for the isothermal incompressible

FIG. 16. Computational domain and nonuniform grid for the
laminar flow over a flat plate (ReL = 2 × 104).

FIG. 17. Horizontal and vertical velocity profiles of the flat plate
boundary layer at the middle point of the plate where local Rex =
104. Three different resolution grids (a) 	x = L/160, (b) 	x =
L/320, and (c) 	x = L/640 are used by the present KIBM to obtain
a grid-independent solution, which is compared with Howarth’s [71]
numerical solution of the Blasius equation.

fluid-solid flows. The discrete unified gas kinetic scheme
(DUGKS) is used to solve the Boltzmann-BGK model
equation because of its flexibility and stability, and Pe-
skin’s isotropic regularized delta function is adopted for
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exchanging information between the Lagrangian and Eulerian
grids. Meanwhile, the bounce-back rule combined with the it-
erative IBM correction procedure is employed in enforcing the
no-penetration and no-slip boundary conditions on the solid
wall. Several typical benchmark problems including station-
ary body, prescribed moving body, and freely moving body
flows have been carried out to investigate the accuracy, perfor-
mance, and reliability of the present KIBM. The comparison
of our results with references showed the good capability
of the present KIBM to simulate isothermal incompressible
fluid-solid flows in complex geometries.

Although only two-dimensional flows are numerically sim-
ulated by the present KIBM in this paper, this KIBM can
actually be applied to three-dimensional flows without any

theoretical restrictions. For future work, the application of
the present KIBM to three-dimensional problems will be
performed. Meanwhile, the present KIBM in this paper is
targeted toward isothermal incompressible fluid-solid flows in
complex geometries, and further development of KIBM for
the thermal compressible flows remains a goal for our future
work.
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