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Supervised and unsupervised machine learning of structural phases of polymers
adsorbed to nanowires

Quinn Parker ,1,* Dilina Perera ,2 Ying Wai Li ,3 and Thomas Vogel 1

1Department of Physics and Astronomy, University of North Georgia, Dahlonega, Georgia 30597, USA
2Department of Physics, University of Colombo, Colombo 03, Sri Lanka

3Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 15 October 2021; accepted 28 February 2022; published 24 March 2022)

We identify configurational phases and structural transitions in a polymer nanotube composite by means
of machine learning. We employ various unsupervised dimensionality reduction methods, conventional neural
networks, as well as the confusion method, an unsupervised neural-network-based approach. We find neural
networks are able to reliably recognize all configurational phases that have been found previously in experiment
and simulation. Furthermore, we locate the boundaries between configurational phases in a way that removes
human intuition or bias. This could be done before only by relying on preconceived, ad hoc order parameters.
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I. INTRODUCTION

We previously studied soft-solid matter nanocomposites,
in particular systems composed of flexible polymers adsorbed
at thin nanostrings or tubes [1–3]. Such systems are believed
to play an important role in current and future development
of high-performance nanomaterials. Carbon nanotubes, for
example, have been functionalized by wrapping them with
certain types of polymers to serve as biosensors for the detec-
tion of glucose [4,5]. However, the successful fabrication of
such materials depends on a variety of parameters. In particu-
lar, the wetting behavior of carbon nanotubes has been shown
to be one critical parameter for the development of nanocom-
posites [6]. We have previously developed and employed a
coarse-grained model to investigate nanoscale wetting and
adhesion phenomena using Monte Carlo methods; we iden-
tified various, structurally different low-temperature phases
including globular polymers simply attached to the nanos-
tring and polymers completely wrapping, or coating, the
substrate [1]. One particular problem that we recognized was
the classification of structural phases at low temperatures
depending on various model parameters. We have addressed
the problem in the past by the ad hoc introduction of order
parameters to identify boundaries between such structural
phases. In this paper we show how a less biased approach,
based on machine learning, can be deployed. We revisit
the earlier introduced configurational phase diagram, aim-
ing at identifying classes of the polymer-wire system and
the boundaries between them without any assumptions or
other input based on a human perception of structure. In a
more general context, such automated structure identification
can also provide a means to recognize system configurations
during Monte Carlo sampling. This could prove beneficial
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in order to run generalized-ensemble simulations where dif-
ferent structural phases are assigned individual weights [7],
or simply to collect statistics for individual phases during
a simulation.

Recent years have witnessed significant advances in the use
of machine learning (ML) methods for phase classification. In
this regard, supervised learning approaches [8–14], for which
the prior labeling of configurations is required, as well as un-
supervised learning approaches [15–20], which work without
such prior labeling, have been attempted. It has been demon-
strated, for example, that neural networks (NNs) trained with
labeled configurations can encode information about the or-
dered and disordered phases in model systems by learning the
relevant order parameters [8]. In particular, approaches based
on purposefully mislabeling configurations and evaluating the
network performance have been developed to detect phase
transitions [21]. Such a method does not require true labels to
be known in advance and therefore no prior knowledge about
the existence (or lack thereof) of a transition is needed. It has
also been demonstrated to work in the presence of multiple
transitions [22].

In the context of unsupervised learning approaches, di-
mensionality reduction techniques, for example, principal
component analysis (PCA), multidimensional scaling (MDS),
t-distributed stochastic neighbor embedding (t-SNE), autoen-
coders, etc., have been found useful in distinguishing ordered
and disordered phases [15–19,23]. For systems with clear
order parameters, such as the Ising model or the XY model,
the latent parameters or the dominant principal components
have been shown to directly correlate with the respective order
parameters [17,19]. Besides structure recognition, NNs can
be trained to predict macroscopic physics quantities such as
the total energy, and microscopic quantities such as charge
density and magnetization locally for each atom [24]. NNs are
also used to learn interatomic potentials, for example. They
have been trained to generate effective many-body potentials
from ab initio data [25] and were successfully applied to
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construct precise phase diagrams of water in molecular-
dynamics (MD) simulations over a large range of temper-
atures and pressures [26]. Another ML potential, ANI-Al,
was trained to obtain quantum-level accuracy and has been
successfully combined with MD simulations to study shock
physics in metals [27]. Training ML surrogate models is also
becoming a useful technique to bridge different length and
time scales in computer simulations (see [28], for example).

Finally, NNs have been applied in the field of poly-
mer model simulations to study the transition between coil
and globule structures and recognize Mackay–anti-Mackay
structures, for example [29,30]. Transitions between such
crystalline structures in the solid phase are notoriously hard
to simulate [31] and advanced generalized ensemble methods
have been developed to do so in the past [7,32]. These studies
emphasize the benefit of knowing the conformational state of
a system during the simulation and ML could contribute valu-
able information if structures can be reliably recognized. In
this paper we will provide more evidence that this can indeed
be achieved by employing NNs in the supervised recogni-
tion of low-energy configurations of polymers absorbed to
a substrate (Sec. III A). Furthermore, we will show how an
unsupervised ML method can be employed if no previous
knowledge of structural phases of a model is available be-
forehand (Sec. III B). Finally, we will determine boundaries
between phases in the model parameter space by training NNs
in a conventional way, but also by applying the more recently
developed confusion method (Sec. IV).

II. MODEL AND OBSERVED STRUCTURAL PHASES

To model the nanotube-polymer composite we use a
coarse-grained bead-spring description for the polymer [33]
and an attractive interaction between the monomers and the
one-dimensional, continuous string that is derived from a
Lennard-Jones potential [1–3]. The latter contains two param-
eters: the effective thickness of the string, σ f , and its attraction
strength, ε f :
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where r⊥ is the perpendicular distance between a monomer
and the string. The interaction between nonbonded monomers
is described by a standard Lennard-Jones potential and there is
a weak bending stiffness for consecutive monomer-monomer
bonds, as often employed in bead-spring polymer models
[33–35]. For a more detailed discussion of different ap-
proaches to model a thin, cylindrical substrate, see [36].

Depending on the parameter set {σ f , ε f } in Eq. (1) low-
energy structures take qualitatively different shapes that can
be grouped into structural classes or phases. In our previous
work we distinguished between four such phases and labeled
them Ge, Gi, C, and B (see Fig. 1 for visualizations). Struc-
tures like the ones we find in the Gi, Ge, and C regions have
been found and imaged in experimental studies before, in
particular “clam-shell” (C) polymer nanodroplets have been
emphasized [6, Fig. 4]. Globular configurations in phase Ge
are similar to structures seen during dewetting of polymers
on the surface of carbon nanotubes (CNTs) [6, Fig. 2] while

FIG. 1. Examples of low-temperature configurations in phases B,
Gi, Ge, and C (from left to right). Different monomer colors indicate
their distance from the string.

Gi configurations for large values of ε f show similarities
with “barrel-type” nanodroplets [6]. Note that pure monolayer
barrel structures (B) can be mapped onto different types of
CNTs [37,38]. In fact, we found that region B contains sub-
phases with different chiralities corresponding to those found
in CNTs [2].1

III. MACHINE LEARNING OF STRUCTURAL PHASES

In the following we investigate different supervised and
unsupervised machine learning (ML) methods for structure
recognition. In ML one typically desires large datasets to reli-
ably train a robust model. However, in the research presented
here the data is intrinsically hard to generate since we are
analyzing states that dominate canonical ensembles at very
low temperatures. We use Wang-Landau (WL) sampling [39]
to produce these low-energy configurations. Even though WL
reliably finds these states, we face the challenge to have to col-
lect many, very different and ideally uncorrelated, low-energy
configurations for all parameter values {σ f , ε f } [see Eq. (1)].
In an extreme approach and as a proof of concept, we here
only record one configuration every time the WL walker ex-
plores a low-energy valley and then wait for the walker to
move to regions in the phase space corresponding to high
temperatures before collecting data again at low energies.
Admittedly, such a strategy is computationally expensive and
even though applied to generate the dataset analyzed in this
section, it might not be necessary in that extreme way (see a
discussion below in Sec. IV).

In all our simulations, a polymer configuration is repre-
sented by the three spatial coordinates of 100 monomers. We
use these 300 coordinates (either in raw format or prepro-
cessed; see below) as the feature set for the machine learning
algorithms. Although it is possible to utilize an engineered
feature set based on our physical intuition of the system (e.g.,
by including macroscopic physical observables such as the
radius of gyration, end-to-end distance, energy, etc.), avoiding
such engineered features leaves the machine learning algo-
rithm unbiased and free of any preconceived notions.

A. Supervised learning: Structure recognition
with neural networks

The neural network (NN) is set up with an input layer of
300 neurons, two hidden layers of 50 neurons each and one
output layer of four neurons (see Fig. 2). The dataset consists

1While those subphases should be able to be recognized by appro-
priately trained neural networks, we will not emphasize those any
further in this paper.
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FIG. 2. Schematic of the neural network with 300 input neurons,
two hidden layers, and four output neurons.

of about 3000 configurations or samples for each polymer
type. Two-thirds of the dataset are allocated for training, while
the remaining data is used for testing. The rectified linear unit
(ReLU) activation function is used for the hidden layers and
the softmax function for the output layer. We use the Nadam
optimization algorithm over 90 epochs for training. Finally, to
mitigate overfitting we employ L2 kernel regularization. The

results of the NN classification are shown in Fig. 3 where we
plot the confusion matrices and the learning curves.

We start by running an analysis with the adsorbed polymer
configuration types B, C, Ge, and Gi (see Fig. 1) as part of
the dataset. We preprocess the data by spatially shifting the
monomers in the z direction such that the center of mass
of each polymer lies on the xy plane. Figure 3(a) shows
the training and validation accuracy measured at each epoch
during the NN training. Both the training accuracy and the
validation accuracy rapidly converge to a steady value within
20 epochs. In addition, the training and validation curves are
quite close to each other and therefore show no noticeable
sign of overfitting. Figure 3(b) shows the confusion matrix
obtained for the validation set, normalized by the number
of elements in each class. We see that the off-diagonal el-
ements are zero, except for a very few misclassifications of
C-type polymers, yielding an almost 100% overall validation
accuracy.

Since the neural network was able to reliably iden-
tify all adsorbed polymer structures, we also included
high-temperature, random-coil polymer structures (“R”) not
adsorbed to the string as another type and added an output
neuron accordingly. Figures 3(c) and 3(d) show the cor-
responding accuracy curves and the confusion matrix. The
training and validation accuracies again converge to 1.0,

FIG. 3. Training and validation accuracy (left) and normalized confusion matrices (right) during supervised structure recognition training
on the the neural network. Top row: Only the four low-energy phases (B, C, Ge, and Gi; where polymers are adsorbed on string) are used
for training and recognition. Bottom row: Data includes high-temperature, random-coil configurations (R; where polymers are desorbed from
string).
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although the convergence rate is slower compared to the
previous case. Again, the curves do not show evidence of
noticeable overfitting. The slightly increased presence of off-
diagonal entries in the “R” row of the confusion matrix
indicates a somewhat higher tendency for random-coil config-
urations to be misclassified as other polymer types. However,
this is expected as those polymers are random configurations
that could, in fact, loosely resemble any of the other classes
by chance.

B. Unsupervised learning: Dimensionality reduction methods

Dimensionality reduction methods refer to a class of un-
supervised machine-learning techniques that map data from
an original, high-dimensional space to a lower-dimensional
space while ideally preserving some of the salient properties
of the data. In the context of thermodynamic phase classifi-
cation, for example, such low-dimensional representations of
the configuration space have been used to facilitate the visual
identification of distinct phases [15,16,19] and to provide
insight into the relationship between important features and
order parameters of complex systems [17,19,30].

Principal component analysis (PCA) [40] is a linear di-
mensionality reduction technique which identifies a set of
mutually orthogonal unit vectors in a given feature space.
These vectors are ordered according to the variance of the
data in the corresponding directions, such that the first unit
vector indicates the direction of greatest variance in the
data. This direction is then called the first principal compo-
nent, the one with the second-highest variance the second
principal component, and so on. The principal components
are the eigenvectors of the covariance matrix of the data,
and hence can be determined by the eigendecomposition
of that matrix or the singular value decomposition of the
data matrix. The original configurations are then projected
into a space spanned by the first m principal components
to obtain the desired lower m-dimensional representations.
For some spin systems, the principal components have been
shown to recover the physical order parameters for phase
transitions [17,19].

In addition to PCA, we apply a number of other nonlin-
ear dimensionality reduction methods, namely, MDS [41],
t-SNE [42], isomap [43], and diffusion map [44]. Note that
isomap becomes equivalent to PCA as the neighborhood
size approaches the sample size. Therefore, we limited the
neighborhood size to 20 for this demonstration, but also
confirmed that changing this number will not change the
qualitative results. In general, such nonlinear methods identify
lower-dimensional manifolds embedded within the higher-
dimensional feature space, in which similar data points are
clustered together. Typically, manifold learning methods can
capture nonlinear relationships within the data that cannot be
captured through principal component analysis.

1. Data preprocessing

When employing unsupervised learning methods, the data
typically has to be prepared in some way to obtain meaningful
results. In the raw data the polymer is adsorbed at the string
at an arbitrary position, while the string is always located at
the z axis in Cartesian coordinates. We here utilize different

scaling and coordinate transformation methods to potentially
make the features of the polymers more comparable for the
machine. A common method in machine learning, referred
to as “standard scaling” [45], aims at bringing all features
(in our case, monomer coordinates) onto the same length
scale by subtracting the mean of all data from each feature
and individually scaling each feature to unit variance. Two
other ways that do not alter the overall shape of the polymer
are translations along the string such that the z component
of the center of mass is zero for all polymers, eliminating
arbitrary shifts in spatial position, and translations of the
overall center of mass to the coordinate origin, normalizing
the position of the polymers across the simulated examples.
While the first aims at recognizing the general position of
the polymer with respect to the string, the latter is aimed at
identifying the internal structure of globular polymers. Ge-
and Gi-type configurations, for example, have a similar sur-
face shape, but differ in relative position to the string and
their internal crystalline structure. Finally, to help the machine
recognize structural rather than size differences across all
polymer types, we scaled all polymers with respect to their
radius of gyration, Rg.

2. Results of unsupervised learning

In Fig. 4 we present the two-dimensional representations
of the configuration space obtained from the dimensionality
reduction methods mentioned above. Different columns show
results after different data preprocessing steps employed (raw
data without preprocesssing, standard scaling, subtracting the
z component of the center of mass, subtracting all three com-
ponents of the center of mass, and data scaled by Rg after
subtracting the center of mass). Even without any prepro-
cessing (leftmost column), for example, we observe that PCA
can reasonably well distinguish barrel-like (B) conformations
from all others. However, none of the methods can distinguish
Gi, Ge, and C conformations without preprocessing. This is
presumably because the z coordinates of the configurations
have much higher variance than the x and y coordinates, as
the system shows translational invariance in the z direction.
The poor performance of ML algorithms due to different fea-
tures having different scales is a common problem in machine
learning. This issue can be alleviated with appropriate feature
scaling techniques. Here we first test standard scaling. As the
second column of Fig. 4 shows, this approach does improve
the performance of the algorithms (particularly that of MDS),
as a clearer separation of Gi, Ge, and C conformations can be
observed. However, it is important to note that since the scal-
ing is performed independently on individual features, these
coordinate transformations lead to nonphysical deformations
in the polymer configurations.

A more physically intuitive scaling approach is to subtract
the center of mass, which would reduce the variance of the
coordinates due to the drifting of polymers in arbitrary direc-
tions. In particular, polymers have the freedom to drift along
the substrate in the z direction. Therefore one would expect
noticeable improvements in the results just by subtracting the
z component of the center of mass alone. As the third column
of Fig. 4 shows, we indeed observe improved performance in
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FIG. 4. Two-dimensional projections of the configuration space obtained using various dimensionality reduction techniques, namely,
principal component analysis (PCA), multidimensional scaling (MDS), t-distributed stochastic neighbor embedding (t-SNE), isomap, and
diffusion map. Different columns represent different data preprocessing techniques applied (from left to right): raw data without preprocesssing,
data standardized by subtracting the mean and scaling to unit variance, data processed by subtracting the z component of the center of mass,
data processed by subtracting all three Cartesian components of the center of mass, and data scaled by the radius of gyration after subtracting
the center of mass.

most algorithms in terms of separating previously overlapping
phases observed in the analysis using raw data.

The fourth column shows the results obtained by sub-
tracting the whole center of mass. For some algorithms
(particularly MDS), subtracting all three components of the
center of mass further improves phase separation. The right-
most column in Fig. 4 shows the results obtained with all
coordinates furthermore normalized by scaling with the radius
of gyration, Rg. However, we observe that Gi, Ge, and C
phases are no longer distinguishable. This indicates that the

length scale of polymers is a particularly important feature for
distinguishing different polymer states.

In summary, we find that identifying barrel-type (B) con-
figurations can be accomplished by all methods with suitable
preprocessing steps. Telling all other structures apart is more
challenging and no single scheme is able to do so alone.2

2We note that it might be possible to do so with a reduction to a
three-dimensional space though.
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That said, we note that the MDS method trained with data
preprocessed by subtracting all three components of the center
of mass seems to give the best, single overall performance,
particularly since both B and C conformations are grouped
into isolated clusters spatially separated from other states.
Still, an overlap between Gi and Ge phases can be observed in
this case since both phases differ mostly by the relative loca-
tion with respect to the substrate and not in overall shape. To
observe a separation between Gi and Ge structures one would
need to use another procedure, such as MDS or PCA with
a translational normalization along the z direction only. The
general finding that no one scaling approach and reduction-
method combination can clearly separate all phases present
in our system is probably true for other complex polymer
systems as well. Depending on symmetry and specific struc-
tures, different data preprocessing and scaling methods might
always have to be chosen to match all physical properties.

IV. IDENTIFYING STRUCTURAL TRANSITIONS
WITH NEURAL NETWORKS

In this section we study the applicability of NNs to not only
recognize different structures but to detect transition points
between them. While we have discussed above the desire to
use large datasets for NN training in general, much more
training data is potentially needed for such an endeavor since
structural differences could be much more subtle between
polymers close to each other in parameter space, compared
to above (Sec. III) where structures are more fundamentally
different from each other. To enrich our datasets we therefore
apply a strategy in the spirit of oversampling augmentation
[46] where we allow one to record up to 100 slightly mod-
ified configurations every time the WL walker explores a
low-energy region. After reaching that number, the walker
has to completely “warm up” again, that is, move to energies
encountered well inside the random-coil phase. To ensure the
data in each such batch is not effectively identical but to
some degree still uncorrelated, we enforce a minimum energy
difference �E between two consecutive configurations that
are added to the dataset.

A. Conventional, supervised approach

In previous research we had to rely on human intuition
to define structural classes and suitable observables or order
parameters to find the boundaries in parameter space between
them. The structural phase diagram for low-energy states [1]
(see Fig. 5 for a reduced version) was hence developed upon
the ad hoc introduction of an asymmetry parameter, for exam-
ple, to locate the crossing from phase Gi to B. Such practice
inevitably introduces a bias based on the human perception of
structure. It is therefore, in principle, hard to judge whether
or not we identified the most relevant structural features. A
less biased approach that currently gets increasing attention is
the use of machine learning methods to identify crossing or
phase transition points between structural or thermodynamic
phases [8,29,47–50]. We here use neural networks that we
train with data which can be clearly assigned to different struc-
tural classes and have them analyze polymer configurations in

FIG. 5. Configurational phase diagram in model-parameter
space of low-temperature polymer configurations adsorbed to a thin
string. Previously determined transition regions are shaded in gray.
We analyze structures at all points indicated along the diagonal line
from λ = {σ f , ε f } = {1.0, 1.0} to λ = {2.1, 3.2}.

regions of the parameter space where such a classification is
less defined.

Specifically, we investigate the transition between globular
polymers absorbed to the string (Ge) and clam-shell structures
surrounding the string (C), two of the phases that were par-
ticularly hard to distinguish with the unsupervised methods
discussed above. The NN is set up with the same parame-
ters as above (cf. Fig. 2) with the difference that only two
nodes are specified for the output layer. The network is then
trained with configurations at λ = {σ f , ε f } = {1.0, 1.0} and
λ = {2.1, 3.2}, which clearly belong to the Ge and C classes,
respectively. We use such trained network to analyze configu-
rations at ten other parameter values in between those points
(see black, diagonal line in Fig. 5) and predict their belonging
to either class. When plotting the corresponding probabilities,
as shown in Fig. 6 (left), we see a “crossing” of the probability
curves. As one would expect, the corresponding error bars are
largest around the phase intersection and decrease towards the
outermost points [see Fig. 6 (right)]. That is, the uncertainty of
the network in classifying polymer configuration is maximal
around the transition from one phase to another. We assess
uncertainties of the trained NN models via different methods
including cross validation [51] and query by committee [52].
In cross validation, a subset of the whole dataset is held
out for testing while the remaining data would be used for
training. The process repeats with different held-out testing
sets, resulting in a group of NN models that can be used for
the estimation of statistical errors. We performed tenfold cross
validation but it seemed to underestimate the real error of
the model. It could be because the ten resulting models are
not statistically independent: each of them is trained using
training datasets that overlap with each other by 80%. When
these highly correlated models are applied to make predictions
on out-of-sample data (structures between λ = {1.0, 1.0} and
λ = {2.1, 3.2}), they result in a small distribution (variance)
around the mean, but the mean prediction might have a high
discrepancy (bias) compared to the reference. Hence we report
errors from query by committee: the whole dataset is divided
into ten subsets; within each subset 70% of the data were used
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FIG. 6. Left: probabilities of predicting C and Ge polymers at different points in parameter space after training the NN with data at
λ = {σ f , ε f } = {1.0, 1.0} and λ = {2.1, 3.2} (outermost points on each side). Right: The corresponding statistical error from different,
independent predictions. The error is largest around the transition region.

for training and 30% of the data were used for testing. This
results in ten individually trained NN models that are truly in-
dependent and not correlated. The error bars we show in Fig. 6
therefore indicate the statistical error from multiple runs with
NNs which were individually trained with independent data
and also analyzing different datasets. That way we capture
both epistemic and aleatoric uncertainties.

B. Unsupervised: The confusion method

A neural network is inherently a supervised learning
method and requires a dataset with preassigned labels for
the adjustment of weights in the training phase. However,
in certain cases it may be difficult, or even impossible, to
know the correct assignment of labels beforehand. For the
case of phase classification, one can circumvent this issue by
identifying a window within which a given transition occurs
and labeling the configurations outside this window based on
the corresponding phase labels, as we did above in Sec. IV A.
In particular, for finite systems that do not naturally scale up
to the thermodynamic limit, though, it can be challenging to
reliably locate the exact point of transition this way.

The confusion method [21] provides an alternative. It not
only eliminates the need for prior assignment of labels, but
also results in a clearer and more precise estimate of the tran-
sition point. This method as well is a neural-network-based,
but semisupervised approach for detecting phase transitions
and relies on purposeful mislabeling of the data. Let λ denote
a model parameter or a thermodynamic observable such as the
temperature or the average energy. Assume that there exists
a critical point λc at which a transition from a phase X to a
phase Y occurs. When applying the confusion scheme, one
first identifies a window [λa, λb] within which the transition is
likely to occur. Then a potential transition point λ′

c ∈ [λa, λb]
is proposed, and the label “0” (denoting phase X) is assigned
to all configurations below λ′

c, and the label “1” (denoting
phase Y) to all configurations above λ′

c. A neural network is
then trained with this label assignment and the classification
accuracy P(λ′

c) obtained for a test set is recorded. This process
is repeated by systematically varying λ′

c from λa to λb. The

resulting curve P(λ′
c) then yields a characteristic “W” shape,

with the middle peak occurring at λ′
c = λc [21].

This W-shaped profile of P(λ′
c) can be understood as fol-

lows. For λ′
c = λa, all configurations are labeled “1,” and the

neural network correctly predicts the assigned label for all
samples, achieving 100% accuracy. Similarly, the network
performs with 100% accuracy for λ′

c = λb as all the configu-
rations are labeled “0.” For λ′

c = λc, the assigned labels for all
samples exactly match the true phase labels and, in principle,
the NN can again achieve perfect accuracy. For other values of
λ′

c, the NN sees a discrepancy between the assigned labels and
the true phase labels as identified by the patterns in data. Due
to this confusion, the NN learns to predict the majority label.
Ultimately this yields the characteristic W shape of P(λ′

c).
Note that in practice this shape will likely be distorted due
to finite-size effects and imperfections in the training process.

We apply the confusion method to investigate the transition
from the Ge phase to the C phase along the same straight path
through the phase diagram as above and indicated in Fig. 5.
For the neural network we adopt a feed-forward architecture
with a single hidden layer of 40 neurons. We use the same
data as above and 70% of the configurations were randomly
selected for training while the remaining samples were used
for testing. For error estimation, the confusion scheme is
repeated ten times, each time with a different random selec-
tion of training and testing samples. Figure 7 shows the test
accuracy P(λ′

c) as a function of the proposed transition point
λ′

c. The curve follows the characteristic W shape discussed
above, confirming the expected transition from the Ge phase
to the C phase. The middle peak indicates the location of the
transition point λ′

c = λc.
We emphasize that the evidence for a transition provided

by the confusion method is more compelling than that pro-
vided by the conventional neural-network-based approach
discussed above in Sec. IV A. The conventional approach may
falsely indicate the presence of a transition within the window
[λa, λb] even when all samples belong to the same phase,
because also in the absence of a transition, configurations
may undergo slight structural changes as the parameter λ is
varied between [λa, λb]. More specifically, one assumes that
the transition occurs within a subwindow [λ1, λ2], and assigns
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FIG. 7. The test accuracy P(λ′
c ) as a function of the proposed

transition point λ′
c.

the label “0” to all configurations in the interval [λa, λ1],
and the label “1” to all configurations in [λ2, λb]. The neural
network may then detect the gradual structural changes in the
configurations as a function of λ, and establish a decision
boundary between λ1 and λ2 such that the predictions are con-
sistent with the assigned labels. Consequently, the curves for
the averaged output neuron values may still cross each other,
giving the false indication of a transition. In the confusion
method, however, the W-shape profile is only possible if there
are abrupt, drastic changes in structure at a certain value of λ,
reminiscent of a true transition. In the absence of a transition,
the middle peak in the P(λ′

c) curve disappears, resulting in a
“V” shape [21].

V. SUMMARY

In this paper we explore the applicability of various ma-
chine learning methods to recognize structures and structural
transitions in a model for polymer-nanotube composites. In
particular, we investigate structures that have been observed
experimentally where the polymer is adsorbed at the nan-
otube. The two main questions we address are whether and
how we can identify those structures with machine learning
and how to locate the transition regions between them.

For structure recognition we test various unsupervised
dimensionality reduction methods such as principal compo-
nent analysis or multidimensional scaling that we combine
with different ways to preprocess the data. The advantage
of unsupervised methods is that no prelabeling of structures
is required, removing all potential human bias in structure
classification. We find that while structure identification in
principle is possible, no single method alone is capable of
doing so. We found it particularly challenging to have the
machine differentiate between globular structures where the

polymer is fully wrapped around the substrate or just connects
to the tube. Aside from the unsupervised methods, we also
employed neural network methods that do require prelabeled
input. The network was able to reliably recognize all polymer
structures after suitable training.

While it is probably uncontroversial to introduce different
structural phases for polymer-nanotube composites, finding
the exact boundary between those phases remains a challenge
since it is in general not obvious what good order parame-
ters are. We previously introduced such parameters ad hoc,
but test here if a neural network could identify transitions
between configurational phases, with and without training
using configurations from the respective phases and without
further human guidance or knowledge of predefined order
parameters. This will be particularly useful since there is not
a sharp, thermodynamic phase transition. We find that neural-
network methods still indicate a transition, most notably the
confusion method. However, since such structural transitions
of finite systems potentially happen in different steps and
over a broader region in parameter space, different machine
learning methods or neural networks might pick up different
steps in this transition at slightly different parameter values. In
that sense, results for the crossing point shown in Figs. 6 and 7
are not necessarily contradicting, when keeping also in mind
that data has to be binned for the confusion method, leav-
ing a corresponding uncertainty in the exact position of the
crossing. That said, we also note that the traditional method
of training the network with labeled configurations from both
phases has to be used with care since it can potentially detect
a crossing even if there was no phase transition. The main
advantage of the confusion method here is that it provides
evidence for a transition between Ge and C. Otherwise, the
shape of the detection accuracy graph would be a V shape
rather than a W shape.

Overall, we confirm that defining structural transitions in
our system is reasonable, in principle. We also conclude,
though, that we might not have been successful initially [1]
in finding the best order parameter for all transitions, in
particular for the crossing between Ge and C structures, as
evidenced by the results shown in Figs. 5–7. In that sense,
the machine learning methods applied here can be a valuable
complement to more conventional methods of detecting struc-
tural transitions used earlier, as they remove the necessity of
identifying or defining explicit order parameters beforehand
and therefore provide a potentially less biased approach to
structure recognition and classification.
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