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Rigorous expressions for thermodynamic properties in the NpH ensemble
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Molecular expressions for thermodynamic properties of fluids and derivatives of the entropy up to third
order in the isoenthalpic-isobaric ensemble are derived by using the methodology developed by Lustig for the
microcanonical and canonical ensembles [J. Chem. Phys. 100, 3048 (1994); Mol. Phys. 110, 3041 (2012)]. They
are expressed in a systematic way by phase-space functions, which represent derivatives of the phase-space
volume with respect to enthalpy and pressure. The expressions for thermodynamic properties contain only
ensemble averages of combinations of the kinetic energy and volume of the system. Thus, the calculation of
thermodynamic properties in the isoenthalpic-isobaric ensemble does not require volume derivatives of the
potential energy. This is particularly advantageous in Monte Carlo simulations when the interactions between
molecules are described by very accurate ab initio pair and nonadditive three-body potentials. The derived
expressions are validated by Monte Carlo simulations for the simple Lennard-Jones model fluid as a test case.
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I. INTRODUCTION

The isoenthalpic-isobaric (NpH) ensemble, in which the
entropy is the thermodynamic potential and the number of
particles, N , the pressure p, and the enthalpy H are the in-
dependent variables, was first proposed by Byers Brown in
1958 [1]. As the microcanonical (NVE ) ensemble, it is a
so-called shell ensemble, because the system is bound to a
hypersurface of constant enthalpy in phase space. Within the
Laplace-Legendre transformation scheme of the eight basic
ensembles of statistical mechanics described by Graben and
Ray [2], it is related to the isothermal-isobaric (NpT ) ensem-
ble in the same way as the microcanonical ensemble is related
to the canonical (NV T ) ensemble. The NpH ensemble has
received less attention than the more familiar microcanonical,
canonical, grand canonical, or NpT ensembles, but, as it is the
elementary ensemble among the constant pressure ensembles,
it should be given proper consideration. It is the aim of this
work to provide rigorous molecular expressions for the cal-
culation of common thermodynamic properties of fluids by
Monte Carlo simulations in the NpH ensemble.

In 1980, Andersen developed an algorithm for molecular-
dynamics simulations of fluids in the NpH ensemble [3].
Motivated by Andersen’s work, Haile and Graben [4] applied
the fluctuation theory for transforming ensemble averages be-
tween different ensembles devised by Lebowitz et al. [5] to
derive expressions for the isobaric heat capacity and isentropic
compressibility in terms of fluctuations in the kinetic energy
and volume in the NpH ensemble from known expressions for
the NpT and microcanonical ensembles. Subsequently, Ray
et al. [6] formulated the fundamental statistical-mechanical
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relations for the NpH ensemble and devised a method for the
direct derivation of expressions for thermodynamic proper-
ties from the probability density of the NpH ensemble. They
obtained the same expressions as Haile and Graben [4] for
the isobaric heat capacity and isentropic compressibility, and
additionally provided an expression for the isobaric expansion
coefficient. After Pearson et al. [7] had developed a Laplace
transform technique in 1985 to evaluate the integrals over
the momenta in the partition function of the microcanonical
ensemble, Ray and Graben [8] applied this method to the NpH
ensemble and derived rigorous expressions for the isobaric
heat capacity, isentropic compressibility, and isobaric expan-
sion coefficient. They showed that, in the thermodynamic
limit N → ∞, these expressions asymptotically converge to
those previously derived by Haile and Graben [4] and Ray
et al. [6].

The NpH ensemble has for instance been applied in molec-
ular simulations to calculate properties of the hard sphere
gas [9,10] or the Joule-Thomson inversion curve of hydrogen
sulfide [11]. The Joule-Thomson inversion curve is a charac-
teristic curve in a pressure-temperature diagram of a fluid,
along which the Joule-Thomson coefficient is zero. Since
the Joule-Thomson coefficient is the derivative of temper-
ature with respect to pressure at constant enthalpy, that is,
it is a function of the independent variables pressure and
enthalpy, it can readily be calculated in the NpH ensem-
ble. Implementations of the Gibbs ensemble Monte Carlo
method in the NpH ensemble to study vapor-liquid equilibria
of pure fluids [12] and mixtures [13] have also been pro-
posed. Escobedo [14] developed a general framework with
which advanced Monte Carlo methods such as multihistogram
reweighting and replica-exchange methods can be applied to
different shell ensembles including the NpH ensemble. Solca
et al. [15] determined the melting pressure curve of argon by
nonequilibrium molecular-dynamics simulations in the NpH
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ensemble. Molecular-dynamics or Monte Carlo algorithms
for simulations in the NpH ensemble are implemented in the
open-source molecular simulation tools LAMMPS [16], GRO-
MACS [17], and MS2 [18].

The NpH ensemble also served as origin for the devel-
opment of ensembles for the simulation of properties of
crystalline solids. Parrinello and Rahman [19] extended the
molecular-dynamics algorithm of Andersen to anisotropic
solid media under uniform hydrostatic pressure by allowing
not only for changes in size, but also in shape of the simu-
lation cell. They also generalized the NpH ensemble to the
NσH ensemble [20], in which the components of the stress
tensor σ instead of the pressure are independent variables, and
provided equations for the calculation of the adiabatic elastic
compliances in terms of fluctuations of the elastic strains [21].
Subsequently, Ray [22] derived fluctuation formulas for the
heat capacity and thermal expansion tensor at constant stress
as well as the third-order elastic compliance tensor. Ray [23]
also suggested a modification of the Hamiltonian proposed by
Parrinello and Rahman [20] for the NσH ensemble so that it
agrees with Anderson’s Hamiltonian for the NpH ensemble
in the case of an isotropic solid under uniform hydrostatic
pressure. Ray and Rahman [24] modified the theory of the
NσH ensemble to bring it into agreement with the theory of
finite elasticity. They replaced the stress tensor by the tensor
of thermodynamic tension t and introduced the undeformed
state as reference state, which led to the NtH ensemble. The
development of ensembles for the simulation of solid media
from the NpH ensemble was summarized by Ray [25].

Based on the works of Pearson et al. [7] and Caǧin and
Ray [26], Lustig [27–31] developed a rigorous methodol-
ogy to derive expressions for thermodynamic properties in
the molecular-dynamics and microcanonical ensembles. By
introducing so-called phase-space functions, which repre-
sent derivatives of the partition functions with respect to the
independent variables, Lustig obtained expressions for ther-
modynamic properties in terms of the kinetic energy, potential
energy, and volume derivatives of the potential energy of the
system in a systematic way. With this methodology, essen-
tially exact expressions for all thermodynamic properties and
derivatives of arbitrary order of the thermodynamic potential
in an ensemble can be derived. Recently, it has also been
applied to derive rigorous expressions for thermodynamic
properties in the canonical ensemble by Lustig [32,33], in the
isothermal-isobaric (N pT ) ensemble by Ströker et al. [34],
and in the grand canonical (μV T ) ensemble by Ströker and
Meier [35]. The formalism for the microcanonical molecular-
dynamics ensemble was for example applied by Mausbach
and May [36] and the one for the canonical ensemble by
Thol et al. [37], Vlasiuk et al. [38], and Deiters and Sadus
[39]. In this article, we continue our previous work and apply
the Lustig methodology to derive rigorous expressions for
thermodynamic properties and derivatives of the entropy up
to third order in the NpH ensemble.

The outline of this article is as follows. Section II
provides the theoretical background for the calculation of
thermodynamic properties in the NpH ensemble and presents
expressions for thermodynamic properties in terms of phase-
space functions, explicit expressions for the most important
phase-space functions in terms of ensemble averages of

combinations of kinetic energy and volume, and a general
expression for phase-space functions of arbitrary order. The
derived equations are validated by Monte Carlo simulations at
three state points of the Lennard-Jones model fluid in Sec. III.
Conclusions are presented in Sec. IV.

II. EXPRESSIONS FOR THERMODYNAMIC PROPERTIES

In analogy to the microcanonical ensemble, the phase-
space volume for a system of spherical particles in the NpH
ensemble is defined by

� = 1

N!h3N

∫ ∞

0

∫∫
N

V
�(H − H − pV )drN dpN dV, (1)

where h is the Planck constant, V is the volume, H = K + U
is the Hamiltonian of the corresponding microcanonical sys-
tem with kinetic energy K and potential energy U , N/V is the
volume scale, and drN and dpN represent integrations over
the 3N coordinates and momenta of the particles. The symbol
�(x) denotes the Heaviside step function, which is unity for
x � 0 or zero for x < 0. The phase-space density ω = ∂�/∂H
is the partial derivative of the phase-space volume with respect
to enthalpy. It is given by

ω = 1

N!h3N

∫ ∞

0

∫∫
N

V
δ(H − H − pV )drN dpN dV, (2)

in which δ(x) denotes the Dirac delta function. Since the
volume is not constant but fluctuates in the NpH ensemble,
the number of dimensions of the phase space of the NpH
ensemble is larger by one compared to the microcanonical
ensemble, in which the volume is constant. Hence, the phase-
space volume and phase-space density include an integration
over all volumes that are accessible to the system, i.e., from
zero to infinity. This integration introduces the unit of vol-
ume into the phase-space volume and phase-space density,
which must be compensated for by an appropriately chosen
volume scale, so that both quantities are dimensionless. The
volume scale for the closely related isothermal-isobaric en-
semble was controversially discussed in the literature [40–43].
This controversy was finally resolved by Han and Son [42],
who showed that N/V is the correct volume scale for homo-
geneous systems simulated in periodic boundary conditions.
Therefore, we adopt N/V as the volume scale also for the NpH
ensemble as in our previous work on the isothermal-isobaric
ensemble [34].

Becker [44] and Münster [45] pointed out that the entropy
in the microcanonical ensemble can either be defined by the
phase-space volume or by the phase-space density. It has been
controversially discussed in the literature which entropy defi-
nition is correct, e.g., in Refs. [28,46–50]. Some authors prefer
the phase-space volume [7,26,47,48,51], whereas others use
the phase-space density [28,45,49,50,52]. Lustig [30,31,46]
examined the question of which entropy definition is best
by molecular-dynamics and Monte Carlo simulations for the
Lennard-Jones model fluid, but his studies did not yield a
conclusive solution.

As the NpH ensemble is also an adiabatic ensemble, the
entropy can analogously be defined in two ways, either with
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the phase-space volume by

S
�= kB ln �(N, p, H ), (3)

or with the phase-space density by

S
ω= kB ln ω(N, p, H ), (4)

where kB denotes the Boltzmann constant. Becker [44] argued
that, in the microcanonical ensemble, both entropy definitions
become equivalent in the thermodynamic limit because

lim
N→∞

ln �

N
= lim

N→∞
ln ω

N
, (5)

that is, in the thermodynamic limit the phase-space volume
becomes equivalent to a very thin shell near the hypersurface
of constant energy. This argument also applies to the NpH en-
semble, in which the phase-space volume becomes equivalent
to a very thin shell near the hypersurface of constant enthalpy
in the thermodynamic limit. Since we are interested in cal-
culating properties of macroscopic systems, either entropy
definition can be used as a starting point for the derivation
of expressions for thermodynamic properties. Therefore, we
develop the formalism for both entropy definitions. Both
formalisms yield different equations for thermodynamic prop-
erties, which we distinguish in the remainder of this work by

the notations
�= and

ω=. Their numerical equivalence in the
thermodynamic limit will be shown in Sec. III.

The derivation of expressions for thermodynamic proper-
ties in the remainder of this section proceeds in two steps.
First, derivatives of the entropy with respect to the inde-
pendent variables enthalpy and pressure and equations for
thermodynamic properties are expressed by phase-space func-
tions. Second, expressions for the phase-space functions in
terms of ensemble averages of combinations of instantaneous
values of the kinetic energy and volume of the system are
obtained by comparing the corresponding derivatives of the
phase-space volume to a general equation for an ensemble
average in the NpH ensemble.

In the first step, derivatives of the entropy with respect
to enthalpy and pressure are expressed in a systematic way
by derivatives of the phase-space volume � or phase-space
density ω by introducing the abbreviations

Smn
�= ∂m+n ln �

∂Hm∂ pn
, m, n = 0, 1, 2, . . . , (6)

Smn
ω= ∂m+n ln ω

∂Hm∂ pn
, m, n = 0, 1, 2, . . . . (7)

Moreover, derivatives of the phase-space volume are rep-
resented by the phase-space functions �mn of the NpH
ensemble, which are defined by

�mn = 1

ω

∂m+n�

∂Hm∂ pn
, m, n = 0, 1, 2, . . . , (8)

with the special cases �00 = �/ω and �10 = 1. The inverse
phase-space density is used in this definition because it also
appears below in the general equation for an ensemble average
in the NpH ensemble. Applying the product rule to Eq. (8)
yields the two recursion relations

∂�mn

∂H
= �m+1,n − �20�mn, m + n � 1, (9)

∂�mn

∂ p
= �m,n+1 − �11�mn, m + n � 1, (10)

which are useful for calculating higher-order derivatives Smn.
Using the definition of the entropy by the phase-space volume,
Eq. (3), the first derivative of the entropy with respect to
enthalpy is given by

S10
�= ∂ ln �

∂H
= 1

�

∂�

∂H
= ω

�

1

ω

∂�

∂H
= ω

�
= �−1

00 , (11)

where the relation ω = ∂�/∂H has been applied. Accord-
ingly, differentiating the entropy with respect to pressure
yields

S01
�= ∂ ln �

∂ p
= 1

�

∂�

∂ p
= ω

�

1

ω

∂�

∂ p
= �−1

00 �01. (12)

Applying the definition of the entropy in terms of the phase-
space density, Eq. (4), the first derivatives are obtained as

S10
ω= ∂ ln ω

∂H
= 1

ω

∂ω

∂H
= 1

ω

∂2�

∂H2
= �20 (13)

and

S01
ω= ∂ ln ω

∂ p
= 1

ω

∂ω

∂ p
= 1

ω

∂2�

∂ p∂H
= �11. (14)

Using these results as starting points, the recursion relations,
Eqs. (9) and (10), can be applied to successively obtain
derivatives of higher order for both definitions of the entropy.
Expressions for derivatives up to third order are presented
in Table I. Some expressions simplify since �10 = 1. The
relations have the same mathematical structure as the cor-
responding relations for derivatives of the entropy in the
microcanonical ensemble [33] with the volume and energy in
the microcanonical ensemble being replaced by the pressure
and enthalpy in the NpH ensemble.

The expressions for Smn for both entropy definitions are
interrelated to each other since the same definition for the
phase-space functions is used in both formalisms. In order
to transform expressions for Smn for the definition with the
phase-space volume � into those for the definition with the
phase-space density ω, the correspondence

�mn → �m+1,n�
−1
20 (15)

must be applied to all phase-space functions in the ex-
pressions for the definition with �. This correspondence
can be established by the following consideration. The en-
tropy derivatives have the same mathematical structure when
Smn for the definition with � is expressed by derivatives
of � and Smn for the definition with ω by derivatives of
ω. In the Smn for the definition with the phase-space vol-
ume, each term �−1(∂m+n�/∂Hm∂ pn) must be extended by
ω before phase-space functions can be introduced, which
yields (ω/�)ω−1(∂m+n�/∂Hm∂ pn) = �−1

00 �mn. In the corre-
sponding Smn for the definition with the phase-space density,
the derivative of the phase-space density in each term
ω−1(∂m+nω/∂Hm∂ pn) must be replaced by a derivative of
�, which increases the order of the derivative with respect
to enthalpy by one since ω = ∂�/∂H . Hence, the terms
become ω−1(∂m+1+n�/∂Hm+1∂ pn) = �m+1,n. If all phase-
space functions �10 were retained in the expression for Smn,
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TABLE I. Expressions for derivatives Smn up to third order in terms of phase-space functions �mn for both entropy definitions.

S
�= kB ln � S

ω= kB ln ω

S10
�= �−1

00 S10
ω= �20

S20
�= −�−2

00 + �−1
00 �20 S20

ω= −�2
20 + �30

S30
�= 2�−3

00 − 3�−2
00 �20 + �−1

00 �30 S30
ω= 2�3

20 − 3�20�30 + �40

S01
�= �−1

00 �01 S01
ω= �11

S02
�= −�−2

00 �2
01 + �−1

00 �02 S02
ω= �12 − �2

11

S03
�= 2�−3

00 �3
01 − 3�−2

00 �01�02 + �−1
00 �03 S03

ω= 2�3
11 − 3�12�11 + �13

S11
�= −�−2

00 �01 + �−1
00 �11 S11

ω= −�20�11 + �21

S12
�= 2�−3

00 �2
01 − 2�−2

00 �11�01 − �−2
00 �02 + �−1

00 �12 S12
ω= 2�20�

2
11 − 2�21�11 − �20�12 + �22

S21
�= 2�−3

00 �01 − �−2
00 �20�01 − 2�−2

00 �11 + �−1
00 �21 S21

ω= 2�2
20�11 − �30�11 − 2�20�21 + �31

the correspondence would simply read �mn → �m+1,n be-
cause �00 transforms into �10 = 1. However, since �10 is
replaced by unity, �−1

20 must be introduced into Eq. (15) to
account for the correspondence �10 → �20. For the inverse
transformation of an expression for Smn for the definition with
the phase-space density ω into one for the definition with the
phase-space volume �, the correspondence is

�mn → �m−1,n�
−1
00 , (16)

with the special case �20 → �−1
00 since �10 = 1. Equa-

tion (16) can readily be obtained by replacing m by m − 1
in the correspondence �−1

00 �mn ↔ �m+1,n described above.
The total differential of the entropy S = S(N, p, H ) reads

[2]

dS = 1

T
dH − V

T
dp − μ

T
dN. (17)

Since the NpH ensemble describes closed systems, dN = 0.
The total differential provides the starting point for the deriva-
tion of expressions for thermodynamic properties in terms of
phase-space functions. The inverse temperature is the deriva-
tive of the entropy with respect to enthalpy:

1

T
=

(
∂S

∂H

)
p

= kBS10
�= kB�−1

00 . (18)

Thus, the expression for the temperature reads

T
�= k−1

B �00. (19)

Similarly, the expression for the volume,

V = −T

(
∂S

∂ p

)
H

�= −�00

kB
kBS01 = −�01, (20)

is found. The corresponding expressions for the entropy def-
inition in terms of the phase-space density, Eq. (4), are
obtained as

T
ω= k−1

B �−1
20 , (21)

V
ω= −�11�

−1
20 , (22)

using the correspondence given by Eq. (15). At this point,
it is instructive to derive expressions for the derivatives of
temperature and volume with respect to enthalpy and pressure

for both entropy definitions as they are required in the deriva-
tion of expressions for thermodynamic properties, which are
related to second-order derivatives of the entropy. They are
found by applying the recursion relations, Eqs. (9) and (10),
on Eqs. (19)–(22). The results are reported in Table II.

With these preparations, expressions for further thermo-
dynamic properties can be established. In the following, this
procedure is elaborated for the definition of the entropy in
terms of the phase-space volume, Eq. (3). The expression
for the isobaric heat capacity, Cp = (∂H/∂T )p, is obtained
by using the expression for the derivative (∂T/∂H )p from
Table II as

Cp =
(

∂H

∂T

)
p

=
(

∂T

∂H

)−1

p

�= kB(1 − �00�20)−1. (23)

Analogously, the expression for the thermal expansion coef-
ficient αp = V −1(∂V/∂T )p can be found. A thermodynamic
transformation of the defining equation yields

αp = 1

V

(
∂V

∂T

)
p

= 1

V

(
∂V

∂H

)
p

(
∂H

∂T

)
p

= Cp

V

(
∂V

∂H

)
p

. (24)

Inserting Eq. (23) for the isobaric heat capacity, Eq. (20) for
the volume, and the expression for the derivative (∂V/∂H )p

from Table II leads to

αp
�= kB(�11 − �20�01)

�01(1 − �00�20)
. (25)

The expression for the Joule-Thomson coefficient μJT can
straightforwardly be found in the NpH ensemble. It is given

TABLE II. Expressions for derivatives of the temperature and
volume in terms of phase-space functions �mn for both entropy
definitions.

S
�= kB ln � S

ω= kB ln ω(
∂T
∂H

)
p

k−1
B (1 − �20�00) k−1

B

(
1 − �30�

−2
20

)(
∂T
∂ p

)
H

k−1
B (�01 − �11�00 ) k−1

B �−1
20

(
�11 − �21�

−1
20

)(
∂V
∂H

)
p

�20�01 − �11 �−1
20

(
�30�11�

−1
20 − �21

)(
∂V
∂ p

)
H

�11�01 − �02 �−1
20

(
�21�11�

−1
20 − �12

)
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by

μJT =
(

∂T

∂ p

)
H

�= k−1
B (�01 − �00�11). (26)

Next, the expression for the isothermal compressibility,

βT = − 1

V

(
∂V

∂ p

)
T

, (27)

is derived. Since the temperature is not an independent vari-
able in the NpH ensemble, the derivative (∂V/∂ p)T must
be transformed into derivatives with respect to enthalpy and
pressure. This is achieved by the method using Jacobian
determinants as described by Münster [53], which was also
applied to transform derivatives in the development of the
theory for other ensembles [33–35]. Applying this method to
the derivative (∂V/∂ p)T leads to

(
∂V

∂ p

)
T

≡ ∂ (V, T )

∂ (p, T )
=

∂ (V,T )
∂ (H,p)
∂ (p,T )
∂ (H,p)

≡

∣∣∣∣∣
(

∂V
∂H

)
p

(
∂V
∂ p

)
H(

∂T
∂H

)
p

(
∂T
∂ p

)
H

∣∣∣∣∣∣∣∣∣∣
(

∂ p
∂H

)
p

(
∂ p
∂ p

)
H(

∂T
∂H

)
p

(
∂T
∂ p

)
H

∣∣∣∣∣
=

(
∂V

∂ p

)
H

−
(

∂V

∂H

)
p

(
∂T
∂ p

)
H(

∂T
∂H

)
p

, (28)

where the determinant in the denominator simplifies because
(∂ p/∂H )p = 0 and (∂ p/∂ p)H = 1. Finally, the partial deriva-
tives in Eq. (28) are replaced by the expressions in Table II,
which yields

βT
�= �11 − �02

�01
−

(
�20 − �11

�01

)
�01 − �00�11

1 − �00�20
. (29)

In the same way, the expression for the thermal pressure co-
efficient γV = (∂ p/∂T )V is derived. The derivative (∂ p/∂T )V

is transformed by the method using Jacobian determinants,
which results in

(
∂ p

∂T

)
V

≡ ∂ (p,V )

∂ (T,V )
=

∂ (p,V )
∂ (H,p)
∂ (T,V )
∂ (H,p)

≡

∣∣∣∣∣
(

∂ p
∂H

)
p

(
∂ p
∂ p

)
H(

∂V
∂H

)
p

(
∂V
∂ p

)
H

∣∣∣∣∣∣∣∣∣∣
(

∂T
∂H

)
p

(
∂T
∂ p

)
H(

∂V
∂H

)
p

(
∂V
∂ p

)
H

∣∣∣∣∣
= −

(
∂V
∂H

)
p(

∂T
∂H

)
p

(
∂V
∂ p

)
H

− (
∂V
∂H

)
p

(
∂T
∂ p

)
H

. (30)

The expression for the thermal pressure coefficient follows as

γV
�= kB(�11 − �20�01)

(1 − �00�20)(�11�01 − �02) + (�01 − �00�11)(�11 − �20�01)
. (31)

Further thermodynamic properties, such as the isochoric
heat capacity or speed of sound, can be calculated from the
isobaric heat capacity, the thermal expansion coefficient, the
Joule-Thomson coefficient, the isothermal compressibility,
and the thermal pressure coefficient by well-known ther-
modynamic relations [53]. The expressions for the entropy
definition in terms of the phase-space density are obtained
from those for the entropy definition in terms of the phase-
space volume using the correspondence given by Eq. (15).
Table III summarizes the expressions for all considered ther-
modynamic properties in terms of phase-space functions for
both entropy definitions.

In the second step, the phase-space functions are related
to ensemble averages, which in the NpH ensemble comprise
combinations of instantaneous values of the kinetic energy
K = H − U − pV and volume V . Here, we consider only sys-
tems of pure fluids, which consist of spherical particles with
three translational degrees of freedom. The corresponding
results for the thermodynamic properties of systems of parti-
cles with additional rotational degrees of freedom are readily
obtained by replacing 3N in all equations in the remainder
of this article by the total number of degrees of freedom, f N ,
where f is the number of degrees of freedom of one molecule.

Provided that the potential energy is only a function
of the particle coordinates, the internal energy E = K + U
can be separated into the kinetic energy K = ∑

p2
i /2m and

the potential energy U . The integrals over the momenta
of the particles in the phase-space volume are evaluated us-
ing the Laplace-transform technique by Pearson et al. [7].

Applying the Laplace transform with respect to enthalpy on
the phase-space volume, Eq. (1), yields

LH (�) = 1

N!h3N

∫ ∞

0

∫∫
N

V

1

s
exp

[
−s

(
N∑

i=1

p2
i /2m

+U + pV

)]
drN dpN dV, (32)

where s is the Laplace variable and the 3N integrals over the
momenta are integrals over Gaussian exponential functions,
which can readily be evaluated. This yields

LH (�) = (2πm)3N/2

N!h3N

∫ ∞

0

∫
N

V

(
1

s

)3N/2+1

× exp[−s(U + pV )]drN dV. (33)

Applying the inverse Laplace transform results in

� = C

(
3N

2

)−1 ∫ ∞

0

∫
V −1(H − U − pV )3N/2

× �(H − U − pV )drN dV, (34)

in which the abbreviation

C = N

N! h3N

(2πm)3N/2

�(3N/2)
(35)

has been introduced. �(x) denotes the gamma function,
for which the recurrence relation �(x + 1) = x�(x) holds
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TABLE III. Relations for important thermodynamic properties in terms of phase-space functions �mn derived from both entropy definitions

S
�= kB ln � and S

ω= kB ln ω. In the expressions for the speed of sound, M denotes the molar mass.

S
�= kB ln �

Isobaric heat capacity Cp =
(

∂H

∂T

)
p

�= kB(1 − �00�20)−1

Isochoric heat capacity CV =
(

∂E

∂T

)
V

�= kB(1 − �00�20 )−1

×
[

1 + �00(�11 − �20�01)2

(1 − �00�20 )(�11�01 − �02) − (�01 − �00�11)(�20�01 − �11)

]

Thermal expansion coefficient αp = 1

V

(
∂V

∂T

)
p

�= kB(�11 − �20�01)

�01(1 − �00�20 )

Isothermal compressibility βT = − 1

V

(
∂V

∂ p

)
T

�= �11 − �02

�01
−

(
�20 − �11

�01

)
�01 − �00�11

1 − �00�20

Thermal pressure coefficient γV =
(

∂ p

∂T

)
V

�= kB(�11 − �20�01)

(1 − �00�20)(�11�01 − �02) − (�01 − �00�11)(�20�01 − �11)

Isentropic compressibility βS = − 1

V

(
∂V

∂ p

)
S

= βT
CV

Cp

�= 2�11 − �20�01 − �02

�01

Speed of sound w2 = − V 2

NM

(
∂ p

∂V

)
S

= V

NMβS

�= 1

NM

�2
01

�02 + �20�
2
01 − 2�11�01

Joule-Thomson coefficient μJT =
(

∂T

∂ p

)
H

�= k−1
B (�01 − �00�11)

S
ω= kB ln ω

Isobaric heat capacity Cp =
(

∂H

∂T

)
p

ω= kB

(
1 − �30�

−2
20

)−1

Isochoric heat capacity CV =
(

∂E

∂T

)
V

ω= kB

(
1 − �30�

−2
20

)−1

×
[

1 + (�21�20 − �30�11)2(
�3

20 − �30�20

)
(�21�11 − �12�20 ) − (�11�20 − �21)(�30�11�20 − �21�

2
20 )

]

Thermal expansion coefficient αp = 1

V

(
∂V

∂T

)
p

ω= kB(�21 − �30�11�
−1
20 )

�11(1 − �30�
−2
20 )

Isothermal compressibility βT = − 1

V

(
∂V

∂ p

)
T

ω= �21

�20
− �12

�11
−

(
�30

�20
− �21

�11

)
�11�20 − �21

�2
20 − �30

Thermal pressure coefficient γV =
(

∂ p

∂T

)
V

ω= kB(�21�20 − �30�11)

(1 − �30�
−2
20 )(�21�11 − �12�20) − (�11�20 − �21)(�30�11�

−2
20 − �21�

−1
20 )

Isentropic compressibility βS = − 1

V

(
∂V

∂ p

)
S

= βT
CV

Cp

ω= 2�21

�20
− �30�11

�2
20

− �12

�11

Speed of sound w2 = − V 2

NM

(
∂ p

∂V

)
S

= V

NMβS

ω= �2
11�20

NM(�12�
2
20 + �30�

2
11 − 2�21�11�20 )

Joule-Thomson coefficient μJT =
(

∂T

∂ p

)
H

ω= k−1
B

(
�11�

−1
20 − �21�

−2
20

)

[54]. Analogously, the integrals over the momenta in the
phase-space density can be evaluated to obtain

ω = C
∫ ∞

0

∫
V −1(H − U − pV )3N/2−1

× �(H − U − pV )drN dV, (36)

and the ensemble average of an arbitrary property A is defined
by

〈A〉 = C

ω

∫ ∞

0

∫
AV −1(H − U − pV )3N/2−1

× �(H − U − pV )drN dV. (37)
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TABLE IV. Explicit expressions for phase-space functions �mn

up to third order in the NpH ensemble.

�00 = (
3N
2

)−1〈H − U − pV 〉
�10 = 1
�20 = (

3N
2 − 1

)〈(H − U − pV )−1〉
�30 = (

3N
2 − 1

)(
3N
2 − 2

)〈(H − U − pV )−2〉
�01 = −〈V 〉
�02 = (

3N
2 − 1

)〈(H − U − pV )−1V 2〉
�03 = (

1 − 3N
2

)(
3N
2 − 2

)〈(H − U − pV )−2V 3〉
�11 = (

1 − 3N
2

)〈(H − U − pV )−1V 〉
�12 = (

3N
2 − 1

)(
3N
2 − 2

)〈(H − U − pV )−2V 2〉
�21 = (

1 − 3N
2

)(
3N
2 − 2

)〈(H − U − pV )−2V 〉

A comparison of Eqs. (36) and (37) shows that the con-
stant C cancels and, thus, is not required to calculate
ensemble averages. With these preparations, the expressions
for the phase-space functions in terms of ensemble aver-
ages can be established. A phase-space function �mn =
ω−1∂m+n�/∂mH∂n p is defined as the product of the inverse
phase-space density and a derivative of the phase-space vol-
ume. Thus, an expression in terms of ensemble averages can
be found by calculating the derivative of the phase-space
volume, Eq. (34), dividing it by the phase-space density,
and comparing the result with the general equation for an
ensemble average, Eq. (37). For instance, the expression for
�00 = �/ω is obtained by using Eq. (34) as

�00 = C

ω

(
3N

2

)−1 ∫ ∞

0

∫
V −1(H − U − pV )3N/2

× �(H − U − pV )drN dV

=
(

3N

2

)−1

〈H − U − pV 〉, (38)

and the expression for the phase-space function �01 =
ω−1∂�/∂ p is found as

�01 = C

ω

(
3N

2

)−1 ∫ ∞

0

∫
V −1 3N

2

× (H − U − pV )3N/2−1(−V )

× �(H − U − pV )drN dV = −〈V 〉. (39)

Continuing this procedure, expressions for phase-space func-
tions of higher order can be obtained. The results for all
phase-space functions up to third order are listed in Table IV.

By mathematical induction, the general expression

�mn = P−3N/2
m+n

〈(
H − U − pV

3N/2

)1−m−n

(−V )n

〉
(40)

for phase-space functions of arbitrary order can be estab-
lished, in which the symbol PX

x denotes the Pochhammer
polynomials [54]:

PX
x =

⎧⎨
⎩

1 for x = 0 or x = 1(
1 + 1

X

)
· · ·

(
1 + x − 1

X

)
otherwise.

(41)

They account for the factors that arise from the exponent of
the kinetic energy in the phase-space volume with each order
of derivative. Note that, since K = H − U − pV > 0, the first
factor in the angular brackets in Eq. (40) always remains finite.

As in the isothermal-isobaric ensemble, the expressions
for the phase-space functions do not contain volume deriva-
tives of the potential energy, but only combinations of the
kinetic energy and volume. Since these terms can readily be
calculated in a simulation, this is a computational advantage
compared to ensembles in which the volume is an independent
variable, such as the microcanonical and canonical ensembles,
where additionally volume derivatives of the potential energy
appear in the expressions for the phase-space functions.

When the expressions for the phase-space functions in
Table IV are inserted into the equations for the thermody-
namic properties presented in Table III, expressions for the
properties in terms of ensemble averages are obtained. The
equations for the isobaric heat capacity,

Cp
�= kB

[
1 −

(
1 − 2

3N

)
〈K〉〈K−1〉

]−1

, (42)

thermal pressure coefficient,

αp
�= kB

(3N/2 − 1)(〈K−1V 〉 − 〈K−1〉〈V 〉)

〈V 〉[1 − (1 − 2/3N )〈K〉〈K−1〉] , (43)

and isentropic compressibility,

βS
�=

(
3N

2
− 1

)(
〈K−1〉〈V 〉 − 2〈K−1V 〉 + 〈K−1V 2〉

〈V 〉
)

,

(44)

for the entropy definition with the phase-space volume,
Eq. (3), agree with those derived by Ray and Graben [8].
The equations for the isochoric heat capacity, isothermal com-
pressibility, speed of sound, and Joule-Thomson coefficient
for the entropy definition with the phase-space volume in
Table III, the equations for all properties for the entropy
definition with the phase-space density in Table III, and for
the third-order derivatives of the entropy in Table I have not
yet been reported in the literature. Beyond that, the Lustig
methodology enables to derive equations for derivatives of
the entropy of arbitrary order by using the recursion formulas,
Eqs. (9) and (10), and the general equation for the phase-space
functions, Eq. (40).

The implementation of the derived expressions in a
Monte Carlo code is straightforward. During the production
phase of a simulation, the instantaneous values for the ensem-
ble averages, which appear in the phase-space functions, must
be accumulated. After the production phase has been finished,
ensemble averages are formed, and the phase-space functions
using the equations in Table IV and with them the deriva-
tives of the entropy and thermodynamic properties using the
equations in Tables I and III are calculated. Alternatively, the
phase-space functions can also be calculated by the general
equation, Eq. (40).
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III. VALIDATION BY MONTE CARLO SIMULATIONS
OF A MODEL FLUID

The expressions derived in Sec. II were validated by Monte
Carlo simulations of the simple Lennard-Jones model fluid as
a test case. In general, the probability Pmn to accept a Monte
Carlo move from the old state m to the new state n of a
Markov chain generated by the Metropolis algorithm [55] is
determined by

Pmn = min

(
1,

Wn

Wm

)
, (45)

where W is the weight factor of the ensemble. In the NpH
ensemble, the Markov chain consists of two different types
of trials, particle displacements and volume changes. An ac-
ceptance criterion for particle displacements in Monte Carlo
simulations of the microcanonical ensemble was described by
Ray [56] and Lustig [31]. The weight factor can be inferred
from the phase-space density of the microcanonical ensemble,

ωNVE = CNVE

∫
(E − U )3N/2−1�(E − U )drN , (46)

with

CNVE = 1

N!h3N

(2πm)3N/2

�(3N/2)
(47)

and is given by

WNVE = (E − U )3N/2−1�(E − U ). (48)

Since the NpH ensemble is also an adiabatic ensemble, the
weight factor can be derived from the phase-space density,
Eq. (36), in the same way. In order to show the volume depen-
dence of the integrand in Eq. (36) explicitly, dimensionless
coordinates r′

i = riV −1/3 are introduced, which results in

ω = C
∫ ∞

0

∫
(H − U − pV )3N/2−1V N−1

× �(H − U − pV )dr′N dV. (49)

Thus, the weight factor of the NpH ensemble is given by

WNpH = (H − U − pV )3N/2−1�(H − U − pV )V N−1, (50)

and the acceptance criterion for a particle displacement or
volume change in the NpH ensemble is obtained as

Pmn = min

[
1,

(
H − Un − pVn

H − Um − pVm

)3N/2−1

× �(H − Un − pVn)

�(H − Um − pVm)

(
Vn

Vm

)N−1]
, (51)

where the factor (Vn/Vm)N−1 arises from the volume depen-
dence of the particle coordinates and the volume scale, which
was introduced in Eq. (2).

The Metropolis algorithm for the NpH ensemble was im-
plemented into the FORTRAN 90 software developed in our
previous work on the NpT and grand canonical ensembles
[34,35]. This software is based on FORTRAN 77 code segments
published as attachments to the book of Allen and Tildesley
[57].

The Markov chain was divided into cycles, where each
cycle consisted of N trials. In order to ensure that detailed
balance is fulfilled, the type of trial at each step of the Markov
chain was selected randomly by the following procedure.
Whether a particle displacement or volume change was at-
tempted was determined by a random number ξ1 uniformly
distributed in the interval [0,1]. If ξ1 < 1/N , a volume change,
otherwise a particle displacement was attempted. If a particle
displacement was chosen, a second random number ξ2 from a
uniform distribution in [0,1] was generated. The number of the
particle to be displaced was then determined by int(Nξ2) + 1.
Throughout the simulation, the random number generator
ran2 published by Press et al. [58] was used.

In this work, the usual Lennard-Jones dimensionless quan-
tity system is used. All properties are reduced by the length
parameter σ and well depth ε of the Lennard-Jones potential

u(r) = 4 ε

[(
σ

r

)12

−
(

σ

r

)6]
. (52)

The reduced quantities are defined by T ∗ = T kB/ε, p∗ =
pσ 3/ε, ρ∗ = ρσ 3, E∗ = E/ε, H∗ = H/ε, C∗

V = CV /kB, C∗
p =

Cp/kB, γ ∗
V = γVσ 3/kB, α∗

p = αpkB/ε, β∗
T = βT σ 3/ε, β∗

S =
βSσ

3/ε, w∗ = w(NM/ε)1/2, and μ∗
JT = μJTkB/σ 3, where M

denotes the molar mass. Since only reduced quantities will be
discussed in the remainder of this section, the asterisks are
omitted for brevity in the following.

The state points (p = 0.05, h = 2.5) in the gas region, (p =
1.0, h = −2.5) in the liquid region, and (p = 3.0, h = 10.0)
in the supercritical region were chosen for the validation,
where h = H/N denotes the enthalpy per particle. With this
choice, three characteristic states in the fluid region are sim-
ulated. Since we are interested in thermodynamic properties
of macroscopic systems in the thermodynamic limit, at each
state point eight simulations were carried out with 64, 108,
128, 216, 256, 500, 864, and 1372 particles, and the results of
these simulations were extrapolated into the thermodynamic
limit N → ∞. By this means, systematic errors in the results
for thermodynamic properties due to the use of finite numbers
of particles are eliminated.

Depending on the number of particles, the simulations
were started from different lattice configurations. For 108,
256, 500, 864, and 1372 particles, a face-centered cubic lattice
was chosen. The simulations with 128 particles were started
from a body-centered cubic lattice, while those with 64 and
216 particles used a simple cubic lattice as the start configura-
tion. Each simulation was preceded by an equilibration phase
over 105 cycles. After that, the production phase comprised
107 cycles. In all simulations, the cutoff radius was set to half
of the box length. To account for interactions between pairs
of particles whose distance is larger than the cutoff radius, the
long-range correction for the potential energy was calculated
as described by Allen and Tildesley [57]. When the volume
was changed, both cutoff radius and long-range correction
were adapted.

During the production phase of the simulation, instanta-
neous values for all ensemble averages required to calculate
the phase-space functions in Table IV were accumulated at the
end of each cycle. After the production phase had been com-
pleted, ensemble averages and phase-space functions were
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TABLE V. Monte Carlo simulation results, their expanded uncertainty (at the 0.95 confidence level), and values calculated with the
equation of state of Thol et al. [37] for several thermodynamic properties at three state points of the Lennard-Jones model fluid using both

definition S
�= kBln � and S

ω= kB ln ω. Each simulation comprised 107 cycles. The simulations were carried out with 64, 108, 128, 216, 256,
500, 864, and 1372 particles. The values reported are extrapolated values in the thermodynamic limit N → ∞. The values of the equation of
state were calculated with the prescribed pressure and the extrapolated value of the temperature. Expanded uncertainties are given by the
numbers in parentheses; i.e., 3.664(8) means that the value 3.664 has an expanded uncertainty of 0.008.

Gas Liquid Supercritical
p = 0.05, h = 2.5 p = 1.0, h = −2.5 p = 3.0, h = 10.0

Property Simulation EOS Simulation EOS Simulation EOS

S
�= kBln �

T 1.242767(49) 1.242804 1.05781(7) 1.05781 3.97516(14) 3.97520
ρ 0.0483424(23) 0.0483438 0.780391(13) 0.779970 0.463152(11) 0.463121
E/N 1.46572(5) 1.46599 −3.781416(21) −3.777798 3.52265(16) 3.52165
CV /N 1.68018(45) 1.6763 2.3213(15) 2.3139 1.72209(21) 1.72382
Cp/N 3.664(8) 3.647 4.820(21) 4.787 3.247(6) 3.249
γV 0.055701(13) 0.05564 4.450(7) 4.445 1.01101(48) 1.0107
αp 1.386(5) 1.378 0.4139(27) 0.410 0.1758(7) 0.1758
βT 24.88(9) 24.76 0.09301(49) 0.0923 0.1739(6) 0.1740
βS 11.407(19) 11.382 0.04480(8) 0.044623 0.09220(15) 0.09230
w 1.3466(11) 1.3481 5.3480(46) 5.360 4.8391(40) 4.837
μJT 4.076(29) 4.041 −0.1493(14) −0.1516 −0.2003(21) −0.2001

S
ω= kBln ω

T 1.242763(49) 1.24280 1.05784(7) 1.05784 3.97516(14) 3.97520
ρ 0.0483430(23) 0.0483441 0.780390(13) 0.779960 0.463152(11) 0.463121
E/N 1.46572(5) 1.46598 −3.781423(21) −3.777664 3.52265(15) 3.52163
CV /N 1.68017(45) 1.6763 2.3216(15) 2.3139 1.72209(21) 1.72382
Cp/N 3.664(8) 3.647 4.822(21) 4.787 3.247(6) 3.249
γV 0.055700(31) 0.05564 4.451(7) 4.444 1.01101(48) 1.0107
αp 1.386(5) 1.378 0.4141(27) 0.410 0.1758(7) 0.1758
βT 24.88(9) 24.76 0.0930(5) 0.0923 0.1739(6) 0.1740
βS 11.407(19) 11.382 0.04480(8) 0.04462 0.09220(15) 0.09230
w 1.3467(23) 1.3481 5.3479(46) 5.360 4.8391(40) 4.837
μJT 4.077(29) 4.041 −0.1492(14) −0.1516 −0.2003(21) −0.2001

calculated. Values for the thermodynamic properties for both
entropy definitions were obtained by using the relations re-
ported in Table III. The uncertainty of the simulation results
was estimated by the method of statistical inefficiency as
recommended by Allen and Tildesley [57], which is originally
due to Friedberg and Cameron [59]. This method requires in-
stantaneous values for all thermodynamic properties. Since it
is not possible to calculate instantaneous values of properties
related to second-order derivatives of the entropy, such as the
heat capacities or compressibilities, the method proposed by
Lustig [27] was applied to estimate instantaneous values for
these properties.

The extrapolation of the results into the thermodynamic
limit was carried out by a weighted linear least-squares fit
to the results for each property as a function of the inverse
number of particles. The inverse variance of each property
was used as weight. The uncertainty of the extrapolated values
was estimated by the Monte Carlo method described in the
“Guide to the Expression of Uncertainty in Measurement”
(GUM) [60]. In this method, a Monte Carlo trial consists
of a weighted linear least-squares fit to randomly disturbed
simulation results as a function of the inverse number of
particles. The random disturbances are determined from a
Gaussian distribution with the standard deviation equal to the

standard uncertainty of the simulation result. The number of
trials was set to M = 106 as proposed in the GUM [60]. The
average of the extrapolated values of all trials was then taken
as the result for the property in the thermodynamic limit and
the standard deviation as its standard uncertainty. At the liquid
state (p = 1.0, h = −2.5), the values for 64 particles for most
properties deviate significantly from the linear behavior as a
function of the inverse number of particles. This is probably
due to the high density of the state point, where a small cutoff
radius has to be chosen. Therefore, the results for 64 particles
were not used in the extrapolation at this state.

The results for the properties in the thermodynamic limit
and their uncertainties (at the 0.95 confidence level) for both
entropy definitions are reported in Table V. With the extrap-
olated values for the temperature and the prescribed pressure,
values for each property were calculated with the reference
equation of state (EOS) by Thol et al. [37], which has been
shown by Stephan et al. [61] to be among the most accurate
representations of the properties of the Lennard-Jones model
fluid. These values are also reported in Table V. According to
Thol et al. [37], the uncertainty of densities calculated with
the EOS amounts to 0.1% in the liquid region, 1.0% in the
gas region, and 0.15% to 0.3% in the supercritical region. For
other properties, it is 0.5% in the isochoric heat capacity, 1.0%
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FIG. 1. (a–f) Results of the Monte Carlo simulations for the temperature and density at three state points of the Lennard-Jones model fluid
as a function of the inverse number of particles. The solid green and dash-dotted red lines represent weighted linear least-squares fits to the
data, the error bars show the uncertainty in the simulation results, and the dashed black lines represent values calculated with the EOS of Thol
et al. [37].

in the isobaric heat capacity, speed of sound, and thermal
pressure coefficient, 3.0% in the isothermal compressibility,
2.5–10 % in the Joule-Thomson coefficient, and 15% in the
thermal expansion coefficient.

The results for the temperature and density, which corre-
spond to first-order derivatives of the entropy, are shown in
Fig. 1 as a function of the inverse number of particles. Also
included as green and red lines are the results of the weighted
linear least-squares fits to the simulation results. In most cases,
both properties exhibit a strong dependence on the number of
particles. Thus, in order to obtain results that correspond to
properties of macroscopic systems, very large systems must
be simulated or results obtained from simulations of small
systems must be extrapolated to the thermodynamic limit. At
the gas and supercritical state, the results for different system
sizes agree mostly with the linear fit within their uncertainty.
In the liquid region, the results show larger deviations from
the fit function than their uncertainty and scatter more than
at the gas and supercritical states. This scatter resembles the
different cutoff radii used in the simulations with different
particle numbers, especially for the smallest systems.

Furthermore, the results for the two entropy definitions
exhibit a different dependence on the number of particles.
At the gas state, the dependence of the results for the tem-
perature on the number of particles for the second definition,

S
ω= kB ln ω, is larger than for the first definition, S

�= kB ln �.
For the density, the effect is reversed; i.e., the slope of
the linear fit for the results obtained with the first defi-
nition is much larger than for the results calculated with

the second definition. The opposite behavior is observed
for the liquid and supercritical states. Nevertheless, in all
cases both linear fit functions intercept in the thermodynamic
limit and yield the same values for the temperature within
much less than their uncertainty. Hence, the results obtained
with both definitions for the entropy become numerically
equivalent in the thermodynamic limit N → ∞ as predicted
by theory.

The relative expanded uncertainty (at the 0.95 confidence
level) in temperature is 7 parts per million (ppm) at the gas,
120 ppm at the liquid, and 53 ppm at the supercritical state,
while in density it amounts to 8 ppm at the gas, 30 ppm at the
liquid, and 37 ppm at the supercritical state. The density at the
gas and supercritical states agrees with the EOS within −14
ppm and +78 ppm, while the deviation of +540 ppm at the
liquid state is much larger. At all three states, the agreement is
well within the uncertainty of the EOS.

Figure 2 depicts the simulation results for selected fur-
ther properties, the isochoric and isobaric heat capacities,
the isothermal compressibility, and the speed of sound, as
a function of the inverse particle number. These properties
are related to second-order derivatives of the entropy. The
uncertainties of the simulation results are larger than for the
temperature and density, and the data scatter more. Again,
the extrapolated values for both definitions of the entropy
agree with each other well within their uncertainty and be-
come numerically equivalent in the thermodynamic limit. The
results for the isochoric heat capacity and speed of sound
agree best with the EOS and show deviations below 0.25%.
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FIG. 2. (a–l) Results of the Monte Carlo simulations for selected thermodynamic properties at three state points of the Lennard-Jones
model fluid as a function of the inverse number of particles. The solid green and dash-dotted red lines represent weighted linear least-squares
fits to the data, the error bars show the uncertainty in the simulation results, and the dashed black lines represent values calculated with the
EOS of Thol et al. [37].

For the isobaric heat capacity and isothermal compressibility,
the deviations from the EOS are 0.46% and 0.44% at the gas
state and 0.7% and 0.8% at the liquid state, respectively. At
the supercritical state, these properties agree with the EOS
within 0.1%. Among the properties not shown in Fig. 2, the
results for thermal pressure coefficients agree best with the

EOS, within 0.15%. The largest deviations from the EOS are
observed for the Joule-Thomson coefficient with up to +1.5%
at the liquid state. In all cases, the agreement is within the
uncertainty of the EOS. In summary, the very good agreement
between the simulation results and the EOS confirms that the
equations derived in Sec. II are correct.
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IV. CONCLUSIONS

We applied the methodology developed by Lustig to de-
rive rigorous expressions for all common thermodynamic
properties and derivatives of the entropy up to third order
in the NpH ensemble. In this formalism, derivatives of the
thermodynamic potential and thermodynamic properties are
represented in a systematic way by phase-space functions.
The phase-space functions are ensemble averages of combi-
nations of the kinetic energy and volume of the system. The
formalism is elaborated for two definitions of the entropy, with
the phase-space volume and with the phase-space density.
Both entropy definitions yield different equations for ther-
modynamic properties in terms of phase-space functions, but
values for thermodynamic properties obtained with both defi-
nitions become numerically equivalent in the thermodynamic
limit. Thus, both definitions are equally useful for calculating
macroscopic thermodynamic properties. Moreover, a general
expression for phase-space functions was derived, which al-
lows the calculation of derivatives of the entropy of arbitrary
order. All derived expressions are applicable to pure fluids
consisting of spherical particles, rigid linear molecules, and
rigid nonlinear molecules. The generalization to mixtures is
also straightforward, but not pursued in this work.

Compared to the canonical and microcanonical ensembles,
the expressions for thermodynamic properties in the NpH
ensemble do not require the calculation of volume derivatives
of the intermolecular potential, but contain only ensemble
averages of combinations of the kinetic energy and volume of
the system. This is advantageous in simulations with empirical
force fields or ab initio potential energy surfaces for real
molecules, which are much more complex than the simple
Lennard-Jones potential, because the effort for the calculation
of properties related to second or higher-order derivatives of
the thermodynamic potential is much smaller than in iso-
choric ensembles, in which the volume is an independent
variable.

Furthermore, the implementation of temperature-
dependent potentials that are applied in molecular simulations
for real fluids to account for quantum effects semiclassically,
e.g., the Feynman-Hibbs quantum corrections [62], is
also straightforward in the NpH ensemble. Since no
derivatives with respect to temperature are formed, the
temperature-dependent potential can directly be inserted

in the expressions for phase-space functions in Table I.
An estimate for the temperature of the simulated state
point must be determined beforehand by a short separate
simulation, in which the temperature-dependent part of the
potential is neglected. Since the contribution of quantum
effects to the thermodynamic properties is often small,
especially at high temperature, this introduces only a small
additional contribution to the uncertainty of the results in most
cases.

The derived equations were validated by Monte Carlo sim-
ulations of the simple Lennard-Jones model fluid as a test
case at three characteristic state points. The simulation results
obtained with the formalisms for both entropy definitions con-
verge in the thermodynamic limit. Thus, the expressions for
both entropy definitions yield numerically equivalent results
and can be applied to calculate properties of macroscopic
systems. The results for all properties agree well with a recent
equation of state for the Lennard-Jones model fluid, which
validates the derived equations.

The formalism developed here can also be applied in
molecular-dynamics simulations in the NpH ensemble. How-
ever, in molecular-dynamics simulations the numbers of
degrees of freedom of the particles, 3N , is reduced by
the number of independent constants of motion of the
molecular-dynamics algorithm, e.g., the components of the
total momentum vector of the system or the components of
the vector G, which is related to the initial position of the
center of mass of the system. In an exact treatment, this effect
must be taken into account in the derivation of the expres-
sions for thermodynamic properties. It results in modified
expressions for thermodynamic properties, in which 3N is
reduced by the number of independent constants of motion.
Since the number of constants of motion is small compared
to the number of degrees of freedom of the particles, neglect-
ing this effect introduces only small systematic errors in the
results for thermodynamic properties if systems with large
particle numbers are simulated. If the results of a series of
simulations with different particle numbers are extrapolated
into the thermodynamic limit, the error vanishes, and results
for macroscopic systems are obtained. An extension of the
formalism to include the reduction of the numbers of freedom
requires a thorough analysis of the equations of motion of
the applied molecular-dynamics algorithm and is outside the
scope of this work.
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