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Shear softening and hardening of a two-dimensional Yukawa solid
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Langevin dynamical simulations are performed to study the elastic behaviors of two-dimensional (2D) solid
dusty plasmas under the periodic shear deformation. The frequency- and strain-dependent shear moduli G(ω, γ )
of our simulated 2D Yukawa solid are calculated from the ratio of the shear stress to strain in different
orientations. The shear-softening and -hardening properties in different lattice orientations are discovered from
the obtained G(ω, γ ). The component of the elastic constant tensor corresponding to the shear deformation is
also calculated, whose variation trend exactly agrees with the discovered shear-softening and -hardening features
in different shear directions. It is also found that the shear modulus of the 2D Yukawa solid always increases
monotonically with the frequency.

DOI: 10.1103/PhysRevE.105.035203

I. INTRODUCTION

The mechanical properties of solid materials under the
shear deformation are widely investigated, including many ap-
plications in materials science and engineering [1,2], such as
enhancing the strength of materials [3–5]. The stress-strain re-
sponse is widely used to investigate the mechanical properties
for various materials or physical systems [6–17]. Typically,
while undergoing a small shear deformation, the response of
a solid is elastic, i.e., the stress-strain response is linear, as a
result, the shear modulus can be obtained directly from the
ratio of stress to strain [17]. While the applied shear deforma-
tion is large enough, i.e., in the plastic deformation regime,
different mechanical behaviors can also be observed, such as
shear hardening [6–10], shear softening [11–13], and shear
jamming [14–16]. Here, instead of the studies above with
the larger shear deformation in the plastic range [6–16], we
mainly focus on the mechanical properties within the elastic
range.

Dusty plasma, or complex plasma, refers to the four-
component collection of highly charged micron-sized dust
particles, electrons, ions, and neutral gas [18–29]. In the
typical laboratory plasma conditions, the dust particles can
be charged to ∼ − 104e, so that tens of thousands of dust
particles can be suspended in the plasma sheath, forming
a single layer, i.e., the two-dimensional (2D) dusty plasma
[30,31]. Inside this 2D plane, the interaction between these
dust particles can be modeled as the Yukawa repulsion of
φ(r) = Q2exp(−r/λD)/4πε0r. Here, r is the distance be-
tween two particles, Q is the particle charge, and λD is the
screening length. Due to their high charges, these dust parti-
cles are strongly coupled, so that their collection exhibits the
collective properties of liquids [28,32–36] or solids [37–42].
While in the solid state, the 2D dusty plasma exhibits the
typical elastic properties [43], and then its elastic mechanical
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behaviors can be investigated at the individual particle level,
as we will study here.

The elastic moduli of dusty plasmas, such as the shear
modulus and the infinite frequency shear modulus [44], have
been determined using different methods. In Ref. [17], the
shear modulus is obtained in the elastic limit of the stress-
strain relationship for 2D Yukawa solids. The approximate
formula is proposed to evaluate the instantaneous shear mod-
ulus of 2D Yukawa systems in Ref. [45]. In Ref. [44], the
shear modulus is determined from the potential portion of
the infinite frequency shear modulus in 2D Yukawa liquids.
However, from our literature search, we have not found any in-
vestigations of the elastic mechanical behaviors of solid dusty
plasmas or Yukawa solids under the periodic shear defor-
mation or their frequency-dependent shear moduli. Here, we
would like to determine the frequency and strain-dependent
shear moduli of solid dusty plasmas under the periodic shear
deformation using computer simulations, and then investigate
the elastic properties of 2D Yukawa solids.

This paper is organized as follows. In Sec. II, we intro-
duce our Langevin dynamical simulation method to mimic
the 2D solid dusty plasma under the periodic shear de-
formation. In Sec. III, we determine the frequency- and
strain-dependent shear moduli G(ω, γ ) using the stress-strain
response relation. From our determined G(ω, γ ), we discover
the shear-softening and -hardening behaviors of 2D Yukawa
solids in various orientations. In addition, we also provide
our interpretation of the discovered shear-softening and -
hardening behaviors using the calculated elastic constants.
Form our literature search, we have not found any related
investigations of the shear-softening and -hardening behaviors
discovered in the elastic regime for any other substances at all.
Finally, we briefly summarize our findings.

II. SIMULATION METHODS

To characterize the simulated 2D dusty plasmas, we follow
the tradition [44] to use the coupling parameter � and the
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screening parameter κ . The coupling parameter � is defined
as � = Q2/(4πε0akBT ), where T is the kinetic temperature of
dust particles, kB is the Boltzmann constant, and a = (πn)−1/2

is the Wigner-Seitz radius for the 2D areal number density
of n. The other parameter κ is defined as κ = a/λD. Here,
to normalize the time and length scales, we use the nominal
2D dusty plasma frequency ωpd =

√
Q2/2πε0ma3, and the

Wigner-Seitz radius a, respectively.
We perform Langevin dynamical simulations to mimic

2D dusty plasma solids manipulated by the periodic shear
deformations. The equation of motion for each particle i is
[17,46,47]

mr̈i = −∇
φi j − νmṙi + ζi(t ) + Fex, (1)

where the first three terms on the right-hand side are the
interparticle Yukawa repulsion, the frictional gas drag [48],
and the Langevin random kicks [49], respectively. The last
term of Fex is the external applied force of the periodic shear
deformation. Our simulations are performed using LAMMPS
[50], with the periodic boundary conditions in both the x and
y directions.

To induce the periodic shear deformation, we apply two
external forces with the same magnitude in the two opposite
directions at the different locations. As shown in Fig. 1(a),
each applied force is uniform within the shaded rectangular
region. To study the orientation induced property variation of
the 2D Yukawa solid, we choose two different shear direc-
tions, one is parallel to the lattice principal axis as in Fig. 1(b),
labeled as Sim I, and the other is perpendicular to the lattice
principal axis as in Fig. 1(c), labeled as Sim II. The external
forces are expressed as Fex = ±A cos(ωt )maω2

pd with the os-
cillation frequency ω, where A is the shear force amplitude. In
our simulations, we vary the oscillation frequency ω/ωpd from
0.005 to 0.1 to study the response of the 2D Yukawa solid,
which can be easily achieved in the operation of 2D dusty
plasma experiments, as Ref. [51]. For each ω, we vary the
amplitude of Fex, i.e., the value of A, to obtain different shear
deformations, i.e., the corresponding values of the shear strain
γ . Note, we verify that the applied shear modulation does not
produce any nonphysical effect under the periodic boundary
conditions due to the low level of the shear modulation and
the frictional damping in our simulated Yukawa solid.

Here are some details of our simulations. For each simula-
tion run, we always start from a perfect crystal with N = 4096
particles and specify the conditions in the solid state [52] of
� = 800 and κ = 0.75. The gas damping rate ν is chosen as
ν = 0.027ωpd, a typical experimental value [34,36]. We set
the integration time step as 7.07 × 10−3ω−1

pd for the lower

oscillation frequencies, or 1.41 × 10−3ω−1
pd for the higher

frequencies of ω, so that the time scale is small enough
to satisfy the energy conservation. When the external forces
are applied, the positions and velocities of all particles are
recorded in the temporal duration of tωpd = 14 000 for the
data analysis reported later.

The main purpose here is to investigate the mechani-
cal behavior of the Yukawa solid under the periodic shear
deformation. The data analysis is mainly focused on the rela-
tionship between the shear stress and strain of the 2D Yukawa
solid. Here, we follow the tradition in the previous studies
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FIG. 1. Sketch of the cyclic shear modulation on two-
dimensional (2D) Yukawa solids in our simulations (a). Each
simulation run always starts from the perfect crystalline without
defects, then the external shear manipulation Fex/F0 = A cos(ωt ) is
applied within the two shaded regions in the opposite directions.
Different shear directions are specified in our simulations, labeled
as Sim I for the lattice principal axis parallel to the shear direction
(b), and Sim II for the lattice principal axis perpendicular to the shear
direction (c). In the later data analysis, the shear stress of the central
region between two shaded regions, indicated by the solid rectangu-
lar in panel (a), is calculated, while the shear strain is determined
from the displacement gradient calculated from the contribution of
all particles inside the dashed rectangular regions in panel (d). Note,
only the central portion, i.e., 25% of the total simulation system is
shown here.

with shear modulations [17,52–55] to choose the similar small
analyzed region for the easier data analysis. The analyzed
region of the shear stress τxy is the central region between two
external force manipulated regions, as indicated by the solid
rectangular in Fig. 1(a). In our simulations, the shear stress τxy

is calculated as [17]

τxy = 1

S

M∑
i=1

[
mvixviy − 1

2

∑
j �=i

xi jyi j

ri j

∂φ(ri j )

∂ri j

]
, (2)

where S and M are the area and the number of particles in the
analyzed region. The particle velocities vix and viy here are
just the fluctuating portions, from which the local mean flow
velocity has been removed, as in Ref. [17].

The shear strain is defined as the displacement gradient
along the shear direction [17], which is approximately cal-
culated as γ = (utop − ubottom )/�d . Here, utop and ubottom are
the averaged displacements over all particle within the top
and bottom regions marked in Fig. 1(d). The separation be-
tween the center of the top and bottom regions is specified
as �d = 4a, which is just the same as the analyzed region of
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the shear stress in Fig. 1(a). For the top and bottom analysis
regions, we use the Cloud-in-Cell algorithm [36,56] to aver-
age the displacement along the shear direction for all particles
inside, as compared with the initial lattice structure. Thus,
the obtained shear strain is just the displacement gradient of
the central region between two external force manipulated
regions. Note, we test that the particle displacement gradient
in the whole strain analysis region is almost linear for all
simulations presented here, similar to Ref. [17].

Here, we would like to clarify that, we only focus on
the elastic property of the 2D Yukawa solid in this paper,
so that for all results presented here, there is always neither
any generated defects, nor any generated nonlinear effects
[57] of transverse waves due to the applied shear. Note, our
simulation results are all presented in dimensionless units.
Thus, the frequency, force, and stress are normalized by ωpd,
F0 = maω2

pd, and τ0 = Q2/4πε0a3, respectively.

III. RESULTS

After two manipulated forces are applied in the 2D Yukawa
solid, the periodic shear deformation is generated, as one ex-
ample shown in Fig. 2. The resulting shear stress τxy exhibits
a phase difference π with the external force Fex, as shown
in Fig. 2(a), from the resistance of the Yukawa solid to the
external force. In Fig. 2(b), the resulting shear strain γ and Fex

oscillate simultaneously with the same phase. Thus, there is a
phase difference π between τxy and γ , and the stress-strain
response relationship can be obtained by replotting the data
in Figs. 2(a) and 2(b). Note, the slope of the stress-strain
curve would be positive if the direction of stress is defined
oppositely as in Refs. [3–5].

As shown in Fig. 2(c), we find that the stress-strain re-
sponse curve almost overlap in a straight line, indicated by
the dashed line there, i.e., the response of the shear stress and
strain is linear. The slope of this dashed line in Fig. 2(c) is
just the determined shear modulus G of our simulated system.
In Fig. 2(c), the obtained shear modulus is G/τ0 = 0.037,
agreeing with the theoretical shear modulus value 0.034τ0

obtained from the transverse sound speed of the 2D Yukawa
solid [17,44]. It seems that the use of continuum descriptions
in dusty plasmas is still appropriate, even for small analyzed
regions in Refs. [17,51,53–55], as we do here also. Note, since
only the elastic behavior of the 2D Yukawa solid is taken
into account in this paper, we always specify the amplitude
and frequency of the manipulated force small enough and low
enough, respectively, to achieve the typical linear response of
the shear stress and strain as in Fig. 2(c). The data presented in
Fig. 2 comes from Sim I with the condition of ω/ωpd = 0.005
and Fex/F0 = 0.0014.

As the major result of this paper, we obtain the frequency-
and strain-dependent shear moduli G(ω, γ ) of the 2D Yukawa
solid from our simulations, as shown in Fig. 3. In Figs. 3(a)
and 3(b), when the shear strain γ is unchanged, the shear mod-
ulus G always increases monotonically with the frequency ω.
When the frequency ω is unchanged, for Sim I in Fig. 3(a), the
shear modulus decreases monotonically with the shear strain,
exhibiting a typical shear-softening feature. However, for Sim
II in Fig. 3(b), when the shear strain increases, the shear
modulus exhibits the reversed variation trend of increasing
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FIG. 2. Time series of the obtained shear stress τxy (a) and shear
strain γ (b), as well as the corresponding stress-strain response
(c) from Sim I for the conditions of ω/ωpd = 0.005 and Fex/F0 =
0.0014. After applying the cyclic shear force Fex, the resulting stress
τxy (a) and strain γ (b) both oscillate simultaneously, and there
is a phase difference π between them. The stress-strain response
curve almost overlap in a straight line, the dashed line in panel (c),
suggesting that the slope of this dashed line is just the determined
shear modulus G of our studied system.

monotonically with the shear strain, i.e., the so-called shear-
hardening feature. These results clearly indicate that the shear
modulus of the 2D Yukawa solid is strongly dependent on the
orientation of the lattice. Note, when the magnitude of the
shear force is large enough, a transition from the elastic to
the plastic deformation, or even to the phase transition, would
occur, and some nonlinear wave effects would also generate as
in Ref. [57]. As a result, the relationship between τxy and γ is
not linear any more, and the shear modulus cannot be directly
determined this way, well beyond the scope of this paper.

To clearly present the orientation dependence of our ob-
tained shear moduli, the typical horizontal and perpendicular
profiles from the cross section views of Fig. 3 are shown in
Fig. 4. In Fig. 4(a), the shear modulus increases gradually with
the frequency for both lattice orientations. It is reasonable
because the stiffness of most materials is more remarkable
at shorter time scales. Clearly, for each frequency value in
Fig. 4(a), the shear modulus from Sim II is always larger than
that from Sim I. This result indicates that, for the same value
of γ , the response of the shear modulus to frequency in the
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FIG. 3. Obtained frequency- and strain-dependent shear moduli
G(ω, γ ) from Sim I (a) and Sim II (b), respectively. When the
frequency ω increases, for both Sim I and Sim II, the shear mod-
ulus increases monotonically. When the amplitude of shear strain
γ increases, i.e., the shear strength increases, the shear modulus
decreases monotonously in Sim I (a), exhibiting the shear-softening
behavior. However, in Sim II (b), as the amplitude of shear strain γ

increases, the shear modulus increases monotonously, exhibiting the
reversed feature, i.e., the so-called shear-hardening behavior. Note
that, for the parameters on the top of these two panels, the stress-
strain response curve deviates from the linear relation of Fig. 2(c),
so that the shear modulus value cannot be determined directly any
more, as we will discuss at the end.

shear direction perpendicular to the lattice principal axis is
more significant than that parallel to the lattice principal axis.

Our observed shear-softening and -hardening properties of
2D Yukawa solids are clearly presented in Fig. 4(b), where the
shear moduli exhibit the completely opposite variation trends
for the two lattice orientations, as the shear strain increases
gradually. For Sim I, the shear modulus value decreases
monotonically from 0.042τ0 to 0.038τ0, reducing about 10%.
However, for Sim II, the shear modulus value increases mono-
tonically from 0.042τ0 to 0.044τ0, increasing about 5%. In
our simulations, the applied shear forces do cause the local
temperature increases briefly as in Ref. [17], probably par-
tially causing the decrease of the obtained shear modulus. The
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FIG. 4. Typical horizontal (a) and perpendicular (b) profiles of
the obtained frequency- and strain-dependent shear moduli G(ω, γ ),
from the cross section views of two dashed lines in Fig. 3. In panel
(a), where the shear strain is around 0.12, γ ≈ 0.12, for both Sim
I and Sim II, the shear modulus always increases monotonically
with the frequency ω. In panel (b), where the frequency is specified
as ω/ωpd = 0.08, the variation trends of the shear modulus as the
function of the strain γ are completely different, i.e., decreasing
monotonically with γ for Sim I, while increasing monotonically with
γ for Sim II. Note, for the same conditions of Yukawa solids, when
both the frequency and shear strength are small enough, the obtained
values of the shear modulus from Sim I and Sim II are almost the
same, suggesting that the effect of the lattice orientation on the shear
modulus mainly happens at the shorter time scale and for the larger
shear strength.

increasing temperature due to the applied shear may partially
enhance the observed shear softening, however, this trend is
completely reversed for the observed shear hardening. The
variation range of the shear modulus value in Sim I is obvi-
ously larger than that in Sim II. These results suggest that the
shear deformation along the lattice principal axis is easier than
that perpendicular to the lattice principal axis.

From Figs. 4(a) and 4(b), we also find that, when the
frequency ω or shear strain γ is small enough, the obtained
shear modulus values of two lattice orientations are almost
the same. The distinctive variation trend of the shear modulus
between Sim I and Sim II occurs when ω or γ increases
gradually. These results suggest that the effect of the lattice
orientation on the shear modulus mainly happens for the larger
shear strength and at the higher frequency, i.e., the shorter time
scale. Note that, the simulation conditions are ω/ωpd = 0.08
and γ ≈ 0.12 for Figs. 4(a) and 4(b), respectively.

To quantitatively explain the observed shear-softening and
-hardening behaviors of the 2D Yukawa solid, we use the
tensor expressed stress–strain relationship, defined as σi j =
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FIG. 5. Time series of the elastic constant Cxyxy and the resulting
shear strain γ for Sim I (a) and Sim II (b), respectively, when two
external forces are applied. For Sim I (a), in one shear deformation
cycle, Cxyxy reaches its maximum when γ is zero, and then it also
reaches its minimum when the absolutely value of γ becomes its
maxima. This variation clearly results in the shear-softening feature
in Sim I. However, for Sim II (b), the variation trend of Cxyxy exactly
follows the absolutely value of γ , i.e., the completely reversed trend
of (a). That is to say, Cxyxy in (b) reaches its minimum when γ is zero,
and then it also reaches its maximum when the absolutely value of γ

becomes its maxima, leading to the shear-hardening feature in Sim
II. Here, Cxyxy is calculated from the particles between two shears.
Note that, the frequency ω/ωpd of simulated data presented here are
0.08 and 0.1 for Sim I and Sim II, respectively.

∑
kl

Ci jklεkl . Here, σi j is the i j-component of the stress tensor

σ , εkl is the kl-component of the strain tensor ε, and Ci jkl

are the elastic constants. Based on the atomic-level theories
of mechanical properties [58,59], the contribution from each
particle i to the elastic constants is given by

Cαβδλ(i) = 1

2�(i)

∑
j �=i

(
φ′′(ri j )

r2
i j

− φ′(ri j )

r3
i j

)
[xα ( j) − xα (i)]

× [xβ ( j) − xβ (i)][xδ ( j) − xδ (i)][xλ( j) − xλ(i)]

+ φ′(ri j )

ri j
[xβ ( j) − xβ (i)][xλ( j) − xλ(i)]δαδ. (3)

Here, ri j is distance between particles i and j, the differen-
tiations are with respect to ri j , �(i) is the volume of the
Wigner-Seitz cell surrounding the particle i, and xα (i) is the
α-component of the position vector for the particle i. For
our 2D Yukawa solid simulations, the particle position vector
just contains two components, x and y, so that the indices
in Eq. (3) can be simplified to α, β, δ, λ = x, y. Note, the
analyzed region of the elastic constants here is the same as
the analyzed region of the shear stress.

To study elastic properties of the 2D Yukawa solid under
the shear deformation, we just need to take the elastic constant
Cxyxy into account, and the time series of Cxyxy are presented in

Fig. 5. Here, the elastic constant Cxyxy is calculated as Cxyxy =
1
M

M∑
i=1

Cxyxy(i). For Sim I in Fig. 5(a), the value of Cxyxy changes

periodically and its initial value is its maximum. However, for
Sim II in Fig. 5(b), the value of Cxyxy changes periodically and
its initial value is its minimum. For both types of simulations,
the initial value of Cxyxy is always 0.036τ0, well agreeing with
the theoretical shear modulus of the 2D Yukawa solid as in
Refs. [17,44]. Note, when the shear is applied suddenly, the
system has not reached the steady state, so that the amplitude
of Cxyxy in the first period is slightly smaller in Fig. 5.

We compare the calculated elastic constant Cxyxy with
the obtained shear strain γ , to explain the observed shear-
softening and -hardening behaviors. As shown in Figs. 5(a)
and 5(b), when γ is zero in each shear deformation cycle,
i.e., the system is in the unsheared state, Cxyxy reaches its
maximum for Sim I, or its minimum for Sim II. When the
absolute value of γ becomes largest in each shear deforma-
tion, i.e., the shear deformation is largest, Cxyxy reaches its
minimum for Sim I, or its maximum for Sim II. These two
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FIG. 6. Two different elastic-stress-yielding behaviors of the
stress-strain responses in Sim I (a) and Sim II (b), respectively, due to
the larger applied shear strength. Clearly, the stress-strain response is
nearly linear in the central portion where the shear strain γ is smaller.
However, when the shear strain γ is larger, the stress-strain response
follows a different variation trend, i.e., a more gradual trend in Sim
I (a) and a steeper trend in Sim II (b). These two different elastic-
stress-yielding behaviors just correspond to the shear-softening and
shear-hardening features, well consistent of our results above. Note,
here the simulation conditions are ω/ωpd = 0.08 and 0.1 for Sim I
(a) and Sim II (b), respectively.
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opposite variation trends of Cxyxy just result in the shear-
softening feature in Sim I and the shear-hardening feature
in Sim II, respectively. The calculated elastic constant Cxyxy

for each particle fluctuates over a larger range, however, the
averaged Cxyxy results over all particles in the analysis region
presented in Fig. 5 clearly exhibit the variation trends well
agreeing with the discovered shear softening and hardening
here, further suggesting that the shear softening and hardening
are the collective properties of the Yukawa solid. Note, the
simulation conditions here are ω/ωpd = 0.08 and 0.1 for Sim
I and Sim II, respectively.

To better show the difference of the deformation with dif-
ferent shear directions, several typical deformation sketches
of single lattice cell consisting of seven particles are also
presented in Fig. 5. For each type of simulations, we choose
three lattice cell sketches as representatives, corresponding to
the zero, maximum, and minimum value of shear strain γ ,
respectively. Note, when the shear strain is largest, for both
shear directions, the lattice deformation is still in the elastic
stage, as shown in Fig. 5.

We also observed two different elastic-stress-yielding be-
haviors from our simulation results, as presented in Fig. 6.
In Figs. 6(a) and 6(b), the central portion of the stress-strain
response curve is nearly linear with the smaller shear strain
γ . However, when the shear strain γ is larger, the slope of
the stress-strain response changes, as the two edges shown in
Figs. 6(a) and 6(b), just corresponding to the elastic-stress-
yielding feature. For Sim I in Fig. 6(a), the stress-strain
response curve follows a more gradual trends at both ends.
However, for Sim II in Fig. 6(b), the stress-strain response
curve follows a steeper trends at both ends. These different
elastic-stress-yielding features also correspond to the shear-
softening and shear-hardening features, well agreeing with
our findings above. Further increase of the force amplitude
would induce defects in the analyzed region, causing the in-
elastic deformation, which is beyond the scope of this paper.

Note that, when the elastic-stress-yielding behavior occurs,
we do not provide the shear modulus value at those conditions
any more in this paper. The simulation conditions in Fig. 6 are
the same as that in Fig. 5.

IV. SUMMARY

In summary, we perform Langevin dynamical simulations
of 2D solid dusty plasmas under the periodic shear defor-
mation. From the obtained ratio of the shear stress to strain,
we determine the frequency- and strain-dependent shear mod-
uli G(ω, γ ) of the 2D Yukawa solid. We discover that the
shear modulus of the 2D Yukawa solid exhibits the shear-
softening and shear-hardening behaviors, when the shear is
applied parallel and perpendicular to the lattice principal axis,
respectively. Our discovery indicates that the shear modulus of
the 2D Yukawa solid is strongly dependent on its orientation.
To further verify our findings, we calculate time series of
the elastic constant Cxyxy of these two types of simulations
with different shear directions, and find that the variation
trend of Cxyxy with the shear strain is exactly the same as the
shear-softening and shear-hardening properties. Furthermore,
we also observe two different elastic-stress-yielding behaviors
in our simulations when the shear strength is increased further.
Unlike the complicated variation trend of G(ω, γ ) with γ

described above, we find that the shear modulus of 2D Yukawa
solids always increases monotonically with the frequency ω

from all of our simulations.
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