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The current filamentation instability, which generically arises in the counterstreaming of plasma flows, is
known for its ability to convert the free energy associated with anisotropic momentum distributions into kinetic-
scale magnetic fields. The saturation of this instability has been extensively studied in symmetric configurations
where the interpenetrating plasmas share the same properties (velocity, density, temperature). In many physical
settings, however, the most common configuration is that of asymmetric plasma flows. For instance, the precursor
of relativistic collisionless shock waves involves a hot, dilute beam of accelerated particles reflected at the shock
front and a cold, dense inflowing background plasma. To determine the appropriate criterion for saturation in this
case, we have performed large-scale two-dimensional particle-in-cell simulations of counterstreaming electron-
positron pair and electron-ion plasmas. We show that, in interpenetrating pair plasmas, the relevant criterion is
that of magnetic trapping as applied to the component (beam or plasma) that carries the larger inertia of the
two; namely, the instability growth suddenly slows down once the quiver frequency of those particles equals or
exceeds the instability growth rate. We present theoretical approximations for the saturation level. These findings
remain valid for electron-ion plasmas provided that electrons and ions are close to equipartition in the plasma
flow of larger inertia. Our results can be directly applied to the physics of relativistic, weakly magnetized shock
waves, but they can also be generalized to other cases of study.
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I. INTRODUCTION

The interpenetration of fast charged particle beams or plas-
mas gives rise to the current filamentation instability (CFI),
often referred to as the Weibel instability [1,2]. One of its
remarkable features is to convert part of the free energy associ-
ated with the anisotropic momentum distribution into intense
magnetic fields on skin-depth scales, even in the absence of
preexisting, coherent magnetization [3–12]. Its generic nature,
its robustness, and its physical implications have thus given it
a compelling role in many fields of research, e.g., high-energy
density physics [13–17], laboratory astrophysics [18–23], cos-
mology [24,25], and high-energy astrophysics, where it is
thought to shape much of the nonthermal electromagnetic
radiation from powerful explosive transients [26–37].

Specifically, the CFI regulates the structure of weakly
magnetized, collisionless shocks, which form through the
counterstreaming of plasma shells at supersonic speeds [38].
As such, it controls the production of high-energy particles
and radiation in such environments, whether in the near [39]
or the remote universe [26]. Because of their paramount con-
sequences, those Weibel-mediated collisionless shocks have
inspired a large body of literature, both in the subrelativistic
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[40–49] and relativistic regimes [36,50–63]. Longstanding
issues, with obvious phenomenological implications in the
aforementioned domains of research, are the level of satu-
ration of the CFI [12,64–72] and the long-term evolution of
the self-generated magnetic turbulence [46,73–78]. Satura-
tion is thought to occur through either transverse trapping of
the particles in the magnetic filaments [64,79,80], cyclotron
gyration of the particles around the magnetic-field extrema
[38,65,66,80], or exhaustion of the available particle current
[65]. Most previous studies on the saturation of the CFI, and,
to our knowledge, all those related to relativistic astrophysical
systems, have considered symmetric configurations in which
the interpenetrating plasmas share similar characteristics (i.e.,
identical temperatures, densities and drift velocities). In the
precursor of collisionless shock waves, however, the inter-
action is strongly asymmetric, as it involves a hot, dilute
beam of accelerated particles interacting with a cold, dense
background plasma.

The main objective of the present work is therefore to
examine the saturation processes of the CFI in generic asym-
metric configurations. In particular, we seek to determine
which criterion holds, and whether this criterion applies to
the beam or to the background plasma, an ambiguity, which
obviously does not arise in symmetric configurations. We
do so by confronting analytical predictions with particle-in-
cell (PIC) simulations of initially unmagnetized, collisionless
plasmas. For most of our study, we consider plasmas com-
posed of equal mass species, interpenetrating each other at a
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relativistic velocity. This configuration is typical of the pre-
cursor of a relativistic shock propagating in a pair plasma,
but it is also relevant for the study of the CFI in asymmetric
electron-electron or ion-ion flows. We nonetheless extend our
simulations to the case of electron-ion plasmas, in the ultra-
relativistic and mildly relativistic regimes.

Our study is laid out as follows. In Sec. II, we recall the
salient features of the CFI in asymmetric counterstreaming
flows. In particular, we emphasize the notion of the preferred
Weibel frame, in which the instability is of a purely magnetic
nature, and which becomes crucial in the asymmetric interac-
tion regime. We then discuss the main saturation mechanisms
and give the corresponding estimates of the maximum mag-
netic field energy. In Sec. III, we present our PIC simulations
for pair plasmas and analyze their results in light of the above
mechanisms. We extend our analysis to the case of electron-
ion counterstreaming configurations in Sec. IV, and finally
summarize our results and conclusions in Sec. VI.

II. ASYMMETRIC CURRENT FILAMENTATION
INSTABILITY

In this section as well as the next one, our initial setup
comprises two counterstreaming, unmagnetized pair plasmas
drifting along the x axis. We note the beam with a subscript
b and the plasma with a subscript p. By convention, the
beam corresponds to the population with the lower relativistic
plasma frequency. The latter is defined as (cgs units are used
throughout)

�pα =
(

4πnαe2

w̃α/c2

)1/2

, (1)

where e is the elementary charge, c the velocity of light,
nα the proper number density, and w̃α the enthalpy per
particle of charged species α ∈ {b+, b−, p+, p−} in its ini-
tial state. Note that, in our notations, n refers to a single
charged species; it thus represents half of the initial total
number density of the corresponding component (beam or
plasma). Introducing the corresponding particle mass mα ,
adiabatic index �̂α and proper temperature Tα , one has
w̃α = mαc2 + �̂αkBTα/(�̂α − 1). This implies w̃α � mαc2 for
a plasma of subrelativistic temperature (kBTα/mαc2 � 1),
and w̃α � �̂αkBTα/(�̂α − 1) for a relativistically hot plasma
(kBTα/mαc2 � 1). Given the inverse normalized temperature
of species α, μα ≡ mαc2/(kBTα ), one has w̃α � mαc2 and
�pα � ωpα for a plasma of nonrelativistic temperature (μα �
1), but w̃α � �̂αkBTα/(�̂α − 1), and hence �pα � ωpα

√
μα/2

(taking �̂α = 4/3) for a relativistically hot plasma (μα � 1).
In the following, use will also be made of

ωpα = (4πnαe2/mα )1/2, (2)

the nonrelativistic plasma frequency of species α.
In this configuration, the counterstreaming instability can

be described in wave-number space (k‖, k⊥), in terms of the
longitudinal k‖ = k · x̂ and perpendicular k⊥ wave numbers.
This instability breaks into two main branches [8]: purely
transverse modes (the CFI) with k‖ � k⊥, and the so-called
oblique two-stream modes, for which k‖ ∼ k⊥. We neglect
here the purely parallel electrostatic branch with k⊥ � k‖,

which is usually subdominant in the relativistic limit. The
oblique modes are essentially electrostatic, while the trans-
verse CFI modes are essentially magnetic [9], of direct interest
to the present study.

A. Weibel frame

The notion of being magnetic or electrostatic is a frame-
dependent statement, which must be made precise in a
relativistic setting. This is discussed in detail in Ref. [62], and
we recap here the most salient features. The purely transverse
CFI (meaning k‖ → 0) develops through the pinching of the
counterstreaming plasmas into filamentary structures oriented
along x̂, each endowed with a net current. These structures are
surrounded by toroidal magnetic fields δB⊥ and radial electric
fields δE⊥. The CFI growth also comes with an inductive elec-
tric field component δE‖, oriented along the drift direction. In
a first approximation, the latter field can be neglected, because
its magnitude is of the order of |�ω/k⊥c| � 1 relative to the
magnetic field component. The dominance of the magnetic
component means δB2

⊥ − δE2
⊥ > 0 for each unstable wave

number k⊥, and hence that there exists a frame, moving at
velocity (in units of c)

βw = δE⊥ × δB⊥
δB2

⊥
, (3)

in which the transverse electric field component vanishes.
In this frame, which we call the Weibel frame, the CFI can
be regarded as purely magnetic, up to the weak inductive
component, which cannot be erased by a Lorentz boost.

In the precursor of relativistic shocks, this frame gains
special importance because the interaction between the beam
of accelerated particles and the background plasma is so
asymmetric that βw � 1, meaning δE⊥ � δB⊥. It is crucial to
properly characterize this frame, as it controls the heating and
slowdown of the background plasma and because it greatly
helps evaluate the scattering rate of suprathermal particles
[59]. Hence, the Weibel frame is connected to acceleration
processes and has direct phenomenological consequences.

Let us consider a set of initial beam {nb, Tb, ub|r} and
plasma {np, Tp, up|r} parameters, where uα|r ≡ γα|rβα|r de-
notes the x component of the four-velocity of species α, and
βα|r and γα|r are the associated normalized three-velocity (in
units of c) and Lorentz factor, all defined in some reference
frame (subscript |r). We use proper densities and tempera-
tures unless explicitly specified otherwise. The corresponding
Weibel frame velocity can be determined in the following two
ways.

In the linear phase of the CFI, one can define the Weibel
frame as that in which the electrostatic component of the
dispersion relation vanishes. This has been done in Ref. [48]
in the subrelativistic regime, and in Refs. [59,62] in the rela-
tivistic regime. This amounts to setting the εxy component of
the total dielectric tensor to zero, assuming k⊥ = k⊥ŷ. This
is not a trivial step, as the dielectric tensor itself depends
on the solution to the dispersion relation, see Ref. [62] for
a discussion of the procedure.

Alternatively, one can describe the nonlinear phase of the
instability as a quasistatic equilibrium between particles and
fields, ordered along the transverse y direction [a reduced
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two-dimensional (2D) x-y geometry is assumed throughout
for simplicity] in a periodic sequence of current filaments.
In a four-fluid (isothermal) description, the density of each
component at equilibrium can be written as a function of the
electromagnetic potentials, see Ref. [78] for details. Setting
the electrostatic contribution to zero imposes a relationship
between the physical characteristics of the fluid, in the form

nbγ
2
b|wβb|w
Tb

+ npγ
2
p|wβp|w
Tp

= 0, (4)

where the normalized x velocities βα|w and Lorentz factors
γα|w are here measured in the Weibel frame. The above equa-
tion can be solved to obtain the velocity of the Weibel frame in
the reference frame. As it turns out, both methods give similar
expressions for this velocity under conditions relevant to the
precursor of relativistic shocks. Here, we rely on the latter
method and make the result explicit, as follows.

Writing βα|w and γα|w in terms of βα|r and γα|r through
standard Lorentz transforms, one finds that the Weibel frame
velocity, relative to the reference frame, can be expressed as

βw|r = Qw − √
Q2

w − 4

2
, (5)

where

Qw = nbγ
2
b|r

(
1 + β2

b|r
)
/Tb + npγ

2
p|r

(
1 + β2

p|r
)
/Tp

nbγ
2
b|rβb|r/Tb + npγ

2
p|rβp|r/Tp

. (6)

The minus sign in Eq. (5) reflects the fact that βw|r � βp|r if the
beam component becomes negligible: the turbulence is then
mostly magnetic in the rest frame of the background plasma.
Once βw|r is known, the velocity of each species in a given
reference frame can be Lorentz transformed to the Weibel
frame.

Henceforth, all velocities or Lorentz factors that do not
carry a subscript |r are understood to be defined in the Weibel
frame. The Weibel frame associated with the initial state of
the system is the reference frame in which our simulations
will be conducted. Note that this frame can differ from the in-
stantaneous Weibel frame that results from the time-evolving
properties of the beam and the plasma as the instability de-
velops. This will be manifest in our simulations, and we will
return to this point in Sec. III.

One could, of course, select other reference frames in
which to conduct the simulation, such as the center-of-mass
frame in which the beam and the plasma present equal mo-
mentum fluxes. For our purposes, however, the Weibel frame
provides the most convenient choice, as in that frame, the
CFI mode is essentially magnetic in nature, meaning that the
magnetic fluctuations overwhelm the electric ones, δB⊥ �
δE⊥. This provides a clear way to identify the CFI as the
leading mode, and to define the saturation point where δB
halts or slows its growth. Furthermore, the saturation cri-
teria that we use are all defined under the assumption that
δB⊥ � δE⊥. In other frames, such as the center-of-mass one,
which generically moves at relativistic velocities relative to
the Weibel frame, δE⊥ ∼ δB⊥ contrariwise; furthermore, the
growth timescale of the instability is enlarged by time dilation,
requiring longer simulations.

B. Linear stage of CFI growth

Let us first consider the linear properties of the purely
transverse CFI modes, that is, with wave vector k⊥ = k⊥ŷ
and frequency ω ≡ i�w, where �w is the k⊥-dependent growth
rate. In the linear phase of the CFI, each mode grows as

δBz(k⊥) = δB0(k⊥)e�w(k⊥ )t , (7)

where δB0(k⊥) is the seed magnetic field fluctuation. Assum-
ing that the magnetic spectrum ends up being dominated by
modes of similar growth rate and seeded by comparable fluc-
tuations, one can infer the instantaneous growth rate through

�w = 1

2

d

dt
ln

[ 〈δBz(t )2〉
〈δBz(0)2〉

]
. (8)

The quantity in the right-hand side (RHS) can be easily ex-
tracted from numerical simulations and directly compared
with analytic estimations of �w. The latter involve rather
heavy calculations of the dielectric tensor contained in the
kinetic dispersion relation of which we will summarize here
only the general key points.

The system is initially charge and current neutral with no
equilibrium electromagnetic fields. Linearizing the Vlasov-
Maxwell equations by expressing every perturbed physical
quantity as δξ ∝ ei(k⊥·r−ωt ) yields the dispersion relation of the
CFI:

εyy(εxx − 1/ζ 2) = ε2
xy, (9)

where ζ = ω/k⊥c, and the elements of the dielectric tensor
are given by

εi j = δi j +
∑

α

γαω2
pα

ζ 2k2
⊥c2

∫
ui

γ

∂ f (0)
α

∂u j
d3u (10)

+
∑

α

γαω2
pα

ζ 2k2
⊥c2

∫
uiu j

γ 2

∂ f (0)
α /∂uy

ζ − βy
d3u, (11)

where i, j = (1, 2, 3) and u = γβ. Hence, the filamentation
instability is generally not purely magnetic unless the off-
diagonal term of the dielectric tensor vanishes, which would
be the case for symmetric counterstreaming flows.

In the present work, we consider particle populations
characterized by Maxwell-Jüttner momentum distribution
functions. As shown in Ref. [62], approximate growth rates
of the CFI can be obtained in two asymptotic limits that
depend on the value of the parameter χα = γα|ζ |/

√
1 − ζ 2.

For each plasma species, we define the hydrodynamic limit
in which the thermal velocity spread of the distribution func-
tion is, broadly speaking, smaller than the (imaginary) phase
velocity of the waves, and the opposite kinetic limit. More
precisely, recalling that μα = mαc2/kBTα , the hydrodynamic
(kinetic) limit for the cold plasma component corresponds to
χ̃p ≡ χp

√
μp/2 � 1 (�1). For the relativistically hot beam

component, the hydrodynamic (kinetic) limit is rather defined
as χb � 1 (�1), see Ref. [62] for details.

We can thus derive two useful approximations of the maxi-
mum growth rate and associated wave number in terms of the
nonrelativistic plasma frequencies of the plasma species, one
in the fully kinetic regime, meaning the kinetic approximation
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for both species, and one in the combined hydrodynamical
(beam) and kinetic (plasma) regimes, respectively,

�w,k−k �
(
ω2

pbμb
)3/2

γ 3
b|pβ

3
b|p√

2πμpω2
pp + 3π

2 ω2
pbμbγ

3
b|p

,

k⊥,k−k �
√

2

3
μbγb|pωpb, (12)

and

�w,k−h �
√

ω2
pbμb,

k⊥,k−h � (
2πω2

pbμpμb
)1/6

ω2/3
pp . (13)

The quantities βb|p and γb|p represent the normalized three-
velocity of the beam relative to the plasma and its correspond-
ing Lorentz factor. It is important to stress that the above
formulas have been derived solving the dispersion relation
of the instability making the approximation of cold plasma
(kBTp � mαc2) and hot beam (kBTb � mαc2) in the respective
dielectric tensor. Furthermore, those approximations assume
that the plasma moves at subrelativistic velocities with respect
to the Weibel frame; consequently, it neglects terms of order
O(βp|w). Those formulas encompass the majority of the situa-
tions addressed in the following but not all; this will be made
explicit.

C. Saturation criteria for CFI

In the early linear stage of the instability, the charged parti-
cles are deflected by magnetic field fluctuations with a polarity
perpendicular to their initial drift velocity. As a result, parti-
cles of opposite charge from each component of the system
(beam or plasma) are focused in different regions, forming
transverse current modulations or current filaments. Particles
of opposite charges from both components concentrate in the
same filaments where their currents add up; this amplifies the
initial magnetic field perturbation, thus leading to the devel-
opment of the instability.

Eventually, the particle dynamics becomes modified by the
fields so that saturation mechanisms take place. Ultimately,
the CFI enters a strongly nonlinear stage, in which secondary
instabilities, such as the merging of filaments of equal polarity,
or the kink of current filaments, can arise, see Ref. [78] for a
detailed discussion. The transition between these two phases,
i.e., saturation and the strongly nonlinear stage, is fraud with
ambiguities, as filaments can coalesce while the current fila-
ments keep building up through the CFI. We define here the
saturation as the point at which the growth of the magnetic
energy density is halted, or at least significantly reduced. This
will be made clear in the figures that follow.

To investigate the saturation of the instability, we will
compare the temporal evolution of the magnetic field as ex-
tracted from simulations, with different criteria of saturation
borrowed from the literature, which we summarize below. We
emphasize a key difference with respect to the case of sym-
metric counterstreaming plasmas, which are more commonly
envisaged. In the asymmetric configuration, an ambiguity
arises as to which component (beam or plasma) is eventually
responsible for the saturation, and through which mechanism.
For this reason, we discuss in the forthcoming paragraphs the

saturation criteria as applied to a generic component. We will
then apply each of them to the beam and to the plasma and
compare those to the simulation results in the next section.

1. Transverse trapping

The widely used trapping-based saturation criterion, first
proposed by Davidson in the nonrelativistic regime [64], and
later generalized to the relativistic regime [12,50,79,81], ex-
presses the fact that, in the weakly nonlinear phase of the
CFI, particles quiver transversely around the center of the
filament (i.e., around a magnetic field node) in which they are
focused. Assuming a harmonic B-field profile of amplitude B
and wave number k⊥, a particle of Lorentz factor γ and mass
m oscillates at the bounce frequency

ωB =
(

ek⊥β‖B

γ m

)1/2

. (14)

The onset of saturation can be viewed as when the assump-
tion of zero-order ballistic particle motion no longer holds.
This occurs when ωB becomes comparable with the instability
growth rate, �w. Introducing 〈γ 〉 the typical Lorentz factor of
the considered species, the corresponding saturation magnetic
field can thus be expressed as

Bt = �2
w

k⊥

〈γ 〉m
β‖e

. (15)

2. Magnetization limit

In the nonlinear phase of the CFI, the plasma can be
modeled as an ensemble of cylindrical filaments of radius
r � λ⊥/4 � π/2k⊥, carrying a current density j. As the B
field grows in amplitude, the Larmor radius of the particles,
rL = γ βmc2/eB, shrinks, possibly up to the point where it be-
comes smaller than the filament radius. Particles then become
spatially trapped within the filaments in both the longitudinal
and transverse directions, while orbiting around the B-field
extrema. In the literature, this limit is often referred to as the
Alfvén limit [65]. Similarly, particles gyrating at a Larmor
frequency ωL = eB/mγ higher than the instability growth rate
can be regarded as temporally magnetized. In either case,
the linear approximation, which assumes rectilinear motion
across the filaments, breaks down. The maximum value of the
magnetic field set by this condition is then given by

Bm = max
(
Bm, rL , Bm, ωL

)
, (16)

where

Bm, rL = 2

π
k⊥〈γ β〉mc2

e
(17)

satisfies the spatial constraint and

Bm, ωL = �w〈γ 〉mc

e
(18)

the temporal one. Since the CFI is characterized by �w � k⊥c
in relativistic shock precursors [62], it follows that usually
Bm = Bm, rL if β ∼ 1. Similar saturation criteria were consid-
ered in Refs. [26,38,42,50].
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3. Particle current limit

The magnetic field is also bounded from above by the max-
imum current density that can sustain it [65]. This maximum
current density corresponds to the current carried by one of
the two oppositely charged species making up the component
(i.e., beam or plasma) under study. This limit thus tacitly
assumes that, at maximum magnetic field, all the particles of a
given component within a transverse length λ⊥/2 have under-
gone complete spatial separation in two adjacent filaments.
Assuming these have a uniform current density, the B field
created by a charged species of initial apparent density γ n
(with γ characterizing here the drift motion) has a maximum
strength

Bp � 2π2 eγ n

k⊥
〈β‖〉. (19)

In the case of complete spatial separation, the contributions
of counterstreaming species of opposite charge should add
up within a filament. Yet in the asymmetric configurations
addressed in the following, only the particle limit associated
with the component that carries most, if not all of the particle
current density, matters. We will therefore identify that com-
ponent, which will turn out to be the beam component in most
cases, and ignore the particle limit associated with the other
(background plasma) component.

D. Analytical estimates

The hierarchy among the above saturation criteria depends
on the characteristic wave number of the instability and the
growth rate, given that

Bt

Bp
∼

(
�w

ωp

)2

, (20)

Bm

Bp
∼

(
k⊥c

ωp

)2

, (21)

where ωp represents here the nonrelativistic plasma frequency
of the component to which the saturation criterion is ap-
plied, and k⊥ denotes the dominant transverse wave number.
Considering first a cold symmetric counterstreaming con-
figuration, one has �w ∼ ωpp and k⊥ � ωpp/c to leading
order, e.g., Refs. [7,10]. As a consequence, Bt � Bp � Bm,
implying that the trapping and particle limits are equivalent
and determine saturation. For symmetric counterstreaming
hot plasmas, �w is reduced to values below ωpp, because it
scales with the relativistic plasma frequency �p = ωp

√
μ/2

and μ � 1. Consequently, the trapping criterion is expected
to become more stringent than the other two. In addition, a
relativistic temperature likely prevents the oppositely charged
species of a given component from fully segregating from
each other within a filament, further weakening the particle
limit in this regime.

In an asymmetric configuration, we identify distinct satu-
ration limits for the beam and the plasma, using the respective
superscripts b and p. As a general trait of such configurations,
we observe that the beam moves at relativistic velocities in
the Weibel frame, while the drift of the background plasma
is most often subrelativistic or mildly relativistic. This can
be read off Eq. (4), which relates the quantities nb/Tb ∝ �2

pb

and np/Tp ∝ ω2
ppμp. The beam is usually defined as the com-

ponent with the smaller plasma frequency of the two, hence
�pb � ωpp suggests that γ 2

b|w|βb|w| � γ 2
p|w|βp|w|. Therefore,

one must expect Bb
t � Bp

t . We anticipate that, for what con-
cerns saturation through trapping, only the larger of the two
values Bb

t and Bp
t matters, and this trend will be confirmed by

the simulations.
We also expect, for the same reasons as above, that Bb

t <

Bb
p and Bb

t � Bb
m, because of the large temperature of the

beam. Consequently, we may anticipate that the overall cri-
terion for saturation will be set by the trapping limit of beam
particles.

III. PIC SIMULATIONS RESULTS

We have performed a number of 2D3V (2D in space, 3D
in momentum) PIC simulations of counterstreaming electron-
positron pair plasmas, which initially obey Maxwell-Jüttner
distribution functions, using the massively parallel CALDER

code [82]. These simulations resolve the direction parallel to
the plasma flows and one transverse direction, and use peri-
odic boundary conditions in both directions. Such in-plane 2D
configurations have been shown to reproduce more accurately
the results of 3D simulations than out-of-plane 2D simulations
restricted to the transverse plane [71,83]. Good agreement
between in-plane 2D and 3D geometries was also found in
relativistic shock simulations, with plasma injection at one
boundary of the domain [84]. Moreover, because they capture
both CFI and oblique two-stream instability modes, in-plane
2D simulations allow one to check the dominance of the CFI
over electrostatic modes, in which case their results on the
dynamics of the CFI have a broader range of validity than
those of purely transverse simulations.

To resolve properly the initial Weibel instability, the cell
size is set to �x = �y = 0.1 c/ωpp and the simulations are
run over 2 × 104 time steps of �t = 0.099 ω−1

pp on a 2D (x, y)
grid of 2000 × 2000 cells. Henceforth, ωpp represents the
nonrelativistic plasma frequency of each of the two charged
species of the plasma component in its initial state, i.e.,
ωpp = (4πnpe2/me)1/2 (me is the electron mass). Each cell
contains initially 100 macroparticles per species, yielding a
total number of about 109 macroparticles. Time and length
are normalized to the inverse nonrelativistic plasma frequency
ω−1

pp and the plasma inertial length c/ωpp. In order to suppress

the numerical Čerenkov instability [85], which affects simula-
tions of relativistic drifting plasmas, we used the Godfrey-Vay
filtering scheme combined with the Cole-Karkkainnen finite
difference field solver [86] and multiple passes of binomial
filtering [87,88] in order to quench nonresonant and resonant
modes, respectively. Our code has been extensively and suc-
cessfully tested against Čerenkov heating, up to large values
of drift Lorentz factors, e.g., Refs. [59,78].

As previously mentioned, we aim to investigate the sat-
uration of the current filament instability in an asymmetric
interaction between a hot dilute beam and a cold, dense, in-
flowing plasma as it happens in the precursor of astrophysical
collisionless shock waves in pair plasmas. For this reason,
we initiate our study making use of initial parameters bor-
rowed from a large-scale shock simulation corresponding to
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TABLE I. Summary of simulation parameters for pair plasmas.
Run (a) is the reference simulation. The parameters of the other runs
differ from those of run (a) as follows: (b) nb × 3; (c) Tb/3; (d) γb|d ×
3; (e) γb|d/3, (e) γb|d × 10, Tp × 10, Tb/10; (f) γb|d × 30, Tp × 30,
Tb/30. The table gives the simulation parameters once transformed
to the Weibel frame. Temperatures are given in units of mec2/kB.

Run γb γp Tb/γb Tp/γp γbnb/γpnp

(a) 18.9 1.01 2.4 0.2 1.9
(b) 16.7 1.05 2.9 0.2 4.6
(c) 16.7 1.05 0.95 0.2 1.5
(d) 40.8 1.2 1.09 0.2 3.5
(e) 25. 5.3 0.2 0.4 0.5
(f) 25. 15.4 0.06 0.4 0.2

a relative upstream to downstream Lorentz factor of 10, as
described in Ref. [59]. The parameters of the beam and plasma
populations, as measured in the downstream shock frame,
are as follows (temperatures are given in units of mec2/kB):
γb|d = 1.38, γp|d = 9.67, Tb = 45, Tp = 0.2, and nb/np = 0.1.
Those values are extracted from a region deep inside the
precursor of the shock, where the background plasma has
been slightly slowed down and heated to mildly relativistic
temperatures. As announced, we then transform those initial
parameters from the downstream shock frame to the Weibel
frame. This change of frame gives the set of parameters indi-
cated by (a) in Table I, hereafter referred to as the reference
run. Note that the plasma moves at subrelativistic velocities
in this Weibel frame, while the beam is now ultrarelativistic.
This difference demonstrates the importance of the Weibel
frame regarding the development of the instability, and more
importantly, regarding its saturation, since the saturation cri-
teria depend on the inertia of the particles, which in turn
depend on the reference frame. The parameters of subsequent
runs have been varied accordingly to fall in the region of
the parameter space dominated by the CFI over electrostatic
and oblique modes. In particular, we investigate a case where
the initial beam proper density is tripled with respect to the
reference case [run (b)], one in which the initial beam proper
temperature is reduced by a factor of 1/3 [run (c)], one with
an initial beam Lorentz factor reduced by a factor of 1/3 [run
(d)]. Finally, we examine two more extreme configurations by
reducing the initial temperature of the beam while increasing
its initial Lorentz factor and the initial plasma temperature by
a factor of 10 each [run (e)] or 30 each [run (f)]. The latter
runs are of particular interest for the present study, because
their parameters are such that the roles of background plasma
and beam are interchanged with respect to other runs.

What we refer to as the beam is set in motion in the pos-
itive x direction and represents the hot cloud reflected by the
shock, which encounters the cold incoming plasma streaming
along the negative direction. Correspondingly, the transverse
CFI generates an out-of-plane magnetic field component, Bz,
aligned with the ẑ direction, and its associated electrostatic
component Ey, along ŷ. Since the simulation frame initially
coincides with the Weibel frame, Ey remains much smaller
than Bz during the initial development of the instability. A
stronger Ey then emerges gradually, and as time progresses,

FIG. 1. Temporal evolution of the simulated mean B-field
strength (Bz, black curves) compared to various saturation criteria
for reference run (a). Top panel: particle (Bb

p, green dashed-dotted
curve) and trapping (Bb

t , blue dotted curve) limits as applied to the
beam particles. Bottom panel: spatial magnetization (Bp

m, red dashed
curve) and trapping (Bp

t , blue dotted curve) limits as applied to the
plasma particles. All curves are in units of mecωpp/e.

the physical conditions of the plasma and/or the beam change,
and so does the instantaneous Weibel frame. In particular, the
filamentary structures start to move along x̂ at an approxi-
mately coherent velocity corresponding to the time-dependent
value of βw. To discriminate between the various saturation
criteria, the magnetic field is directly extracted from PIC sim-
ulations and compared with the theoretical estimates of the
saturated B field given in Sec. II C.

In what follows, we focus on the linear and saturation
phases of the instability, while the late-time evolution is left
aside and treated in Sec. V.

A. Reference run

The growth of the magnetic field during the linear and
saturation phases of our reference case (a) can be clearly seen
in Fig. 1 (thick black line). In this figure, and subsequent
similar ones, the B-field strength is expressed in dimension-
less units, Bz = eBz/mecωpp = Bz/

√
4πnpmec2. The expected

maximum growth rate is �w � 0.02 ωpp at k⊥ � 0.6 ωpp/c,
as obtained by solving numerically the dispersion relation of
the CFI [9]. This computation also yields χ̃p � 0.006 and
χb � 0.07, thus showing that the kinetic limit does apply
for both components. For reference, the approximations of
Eq. (12) give �w,k−k � 0.01ωpp and k⊥ � 0.7 ωpp/c in that
regime. These predictions fairly match the simulations results:
the growth rate evaluated using Eq. (8) between t = 200 ω−1

pp

and t = 450 ω−1
pp is �PIC

w � 8 × 10−3 ωpp, while the dominant
k⊥ in the Fourier spectrum of Bz at saturation (t � 500 ω−1

pp ) is
measured to be kPIC

⊥ � 0.8 ωpp/c. Considering that the spec-
trum of the instability is rather broad and variable with time,
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the factor of ∼2 discrepancy between the theoretical and sim-
ulation results is not very significant.

The measured value of Bz is compared to the saturation
limits Bb

t and Bb
p in the top panel of Fig. 1, and to Bp

t and
Bp

m in the bottom panel. As explained earlier, we only plot
the maximum of the two particle limit criteria corresponding
to either component, since the lower one is not relevant for
determining saturation. In the present case, the current density
carried by the beam largely dominates that of the plasma
because |βp| � 1. We do not plot Bb

m because it lies far above
Bb

t , as expected from the discussion of Sec. II D. Recalling that
the limits given in Eqs. (15), (16), and (19) are upper limits,
saturation is expected to occur once the measured B value
exceeds one of the corresponding curves in Fig. 1. All limits
shown here are computed from the instantaneous quantities
measured in the simulation, which explains their evolution in
time. A word of caution thus appears necessary regarding Bt :
as it scales with �2

w, which is computed through Eq. (8), this
limit becomes meaningless outside the phase of linear growth
of the CFI. In particular, the fact that B

b
t < Bz at early times

(t � 100 ω−1
pp ), does not mean that saturation has occurred.

On the other hand, the fact that B
b
t and B cross each other

at t � 400 ω−1
pp is indicative of saturation through trapping.

Around t � 400 ω−1
pp the magnetic field indeed becomes

so strong that the quiver frequency of the beam particles
exceeds the growth rate of the instability. Beam particles
can then be regarded as transversely trapped around the
B-field nodes (Fig. 1 top panel). To quantify this, we use
the characteristic momentum and Lorentz factor averaged
over the Maxwell-Jüttner distribution as 〈γbβb‖〉 � 〈γb〉 �
4γb/μb. Combining those values with the theoretical esti-
mates of �w, k⊥, and the parameters of Table I, we derive the
trapping limit as B

b
t � (�w/ωpp)2(ωpp/k⊥c)〈γb〉/βb‖ � 0.5,

which matches well the observed saturation value Bz � 1.
B

b
t is also close to the estimate from the measured values

of �w, k⊥, 〈γb〉 and βb‖, that is, B
b,PIC
t � 0.3. As expected,

the particle limit for the beam lies above those values,
B

b
p � (π/2)(nb/np)(ωpp/k⊥c)〈γbβb‖〉 � 50, and the magne-

tization limit well above, B
b
m,rL

� (2/π )(k⊥c/ωpp)〈γbβb‖〉 �
1.6 × 103. As anticipated in Sec. II D, the trapping limit for
the beam thus appears to provide the relevant criterion for
saturation. Interestingly, B

p
t � Bz at all times, even during

linear growth, indicating that the strong quiver motion of the
plasma component does not prevent the CFI from growing,
neither does it matter from the point of view of saturation.

The large value of B
b
m confirms that magnetic trapping does

not act longitudinally, meaning that the Larmor radius of the
beam particles remains much larger than the characteristic
radius of a filament; see in particular Fig. 2, which carries
out such a comparison. As already pointed out in Sec. II C 2,
if the drift velocity is relativistic, as is the case for the beam
particles, the magnetization limit is determined by the spatial
constraint rL � r. We recall that the notion of Larmor radius
implies a constant B field along with a null electric field, and
hence has to be computed in the instantaneous Weibel frame,
which departs, given the development of the instability, from
the simulation frame. This change of frame is relevant for the

FIG. 2. Comparison of the typical filament size, as extracted
from simulation (black line), with the Larmor radius of plasma parti-
cles in the simulation frame (red dashed line) and of beam particles in
the instantaneous Weibel frame (orange dotted line). Both radii are
computed using dynamical quantities extracted from the reference
run (a) as defined in Table I.

beam, which moves relativistically in the simulation frame at
ub � 19 � const, while it can be neglected for the background
plasma, given that its velocity and the Weibel frame velocity
remain subrelativistic in the simulation frame (|βp|w| � 1).

To better understand why the particle limit does not provide
the relevant saturation criterion here, we quantify the contri-
bution of the beam to the total current to this effect. We plot
in Fig. 3 the particle current density (n〈γ β‖〉) of each species
in a limited region of the periodic y domain. One can see that
the contributions of the beam and the plasma to the electric
current density fluctuations are comparable in scale, although

FIG. 3. Transverse profiles of the beam (blue curves) and plasma
(yellow curves) longitudinal current densities at the time of saturation
(t � 400 ω−1

pp ) in the reference run (a) listed, and in a limited region
of the periodic y domain. For each species, the solid and dashed
curves correspond to positrons and electrons, respectively.
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the beam dominates the total particle current density, which
enters Eq. (19). Importantly, charge separation is not complete
and the filaments are rather diluted than spatially split. For
this reason, the magnetic field associated with the maximum
particle limit among the components remains always greater
than the simulated value (compare the green and black curves
in Fig. 1), and therefore does not account for saturation.

Concerning the background plasma, it remains subrela-
tivistic and relativistically cold in the Weibel frame, hence
〈γp〉 ∼ γp and 〈up〉 ∼ γpβp. As previously mentioned, the B
field associated with particle trapping inside the filaments is
nearly everywhere much smaller than measured in the simu-
lation: B

p
t � (�w/ωpp)2(ωpp/k⊥c)〈γp〉/βp‖ � 0.001, as can be

verified using the above theoretical estimates for �max and k⊥.
As a matter of fact, the bottom panel of Fig. 1 shows that
the background plasma particles are rapidly trapped inside the
filaments„ both transversely and longitudinally, since B

p
m,rL

�
(2/π )(k⊥c/ωpp)γpβp � 0.1 < Bz. Actually, B

p
m,rL

rapidly ap-
proaches Bz (at ωppt � 200) and stays remarkably close
to it at later times. We do not interpret this as a cause
for saturation of the CFI, but rather as a relaxation of
the low-inertia background plasma into the strong magnetic
fields driven by the large-inertia beam particles. In runs (b),
(c), and (d), B

p
m,rL

gets even smaller than Bz during linear
growth, indicating that plasma particles become magneti-
cally trapped inside the filaments without inhibiting the CFI
growth.

Well beyond saturation, the characteristic filament radius
r increases, roughly linearly in time (see Fig. 2), as a conse-
quence of filament coalescence. However, the B-field strength
as measured in the Weibel frame, that is, (B2

z − E2
y )1/2, re-

mains approximately constant. The slow evolution of B in
the simulation frame results from the slow evolution of the
Weibel frame velocity; it is therefore of kinematic origin.
Interestingly, Fig. 2 shows that the typical Larmor radius
of background plasma particles adjusts at all times to the
filament radius, rL,p ∼ r, which increases from r ∼ 3c/ωpp

at saturation to r ∼ 10c/ωpp at the final time. This growth
implies that background plasma particles gain energy inside
the filaments. Qualitatively, this process can be related to the
chaotic dynamics of particles trapped in an effective potential
characterized by the potential four-vector Ax ∼ rBz, which
tends to bring equipartition between kinetic 〈p〉 and potential
eAx/c energies, under the approximate conservation of the
canonical momentum �x = px + eAx/c. Such equipartition
indeed corresponds to rL,p ∼ r.

We note that we precisely stopped our simulations once the
transverse direction could not accommodate more than several
filaments. Furthermore, saturation as we define it occurs well
before that stage, making the transverse size of the simulation
domain sufficient for our purposes.

B. Scan in parameter space

The parameters of the reference run (a) are such that the
beam carries most of the energy density of the system, and its
relativistic plasma frequency is the lower among the two. The
smaller inertia of the background plasma particles, which re-
main subrelativistic or mildly relativistic in the Weibel frame,

FIG. 4. Same as Fig. 1 for simulation run (e).

explains why they relax rapidly in the magnetized filamentary
structures while the rigid beam current keeps driving the insta-
bility. For this reference run, we thus find that the transverse
trapping of beam particles provides the relevant criterion for
determining the saturation of the CFI. This general picture
proves robust [i.e., it applies from runs (a) to (e) in Table I]
even if the initial parameters are pushed to extreme values,
though always in the CFI-dominated regime.

For instance, Fig. 4 compares the saturation criteria for
run (e), in which the initial γb and Tp have been multiplied
by 10 and Tb divided by 10. The instability grows fast, with
a measured growth rate �PIC

w � 0.3 ωpp, kPIC
⊥ � 0.9 ωpp/c,

saturating at t � 30 ω−1
pp . Here as well, transverse magnetic

trapping of beam particles appears to control the saturation
level, while the Larmor radius of background plasma parti-
cles still adapts to the filaments size. The parameters of this
simulation, though, are such that Eq. (12) cannot be applied
because the plasma is hot, and because it moves at relativis-
tic velocities in the Weibel frame. Solving numerically the
dispersion relation of the CFI, we obtain �w � 0.3 ωpp at
k⊥ � 1.2 ωpp/c, which nicely agrees with the PIC values. We

then obtain B
b
t � 37, a factor of a few above the simulated

value Bz � 10, and slightly below the theoretical particle limit
B

b
p � 44. The time evolution of these limits, computed with

the instantaneous measured values and plotted in the top panel
of Fig. 4, confirms that saturation results from transverse
trapping of the beam particles. Moreover, the closeness of the
PIC field value and plasma magnetization limit (compare Bz

and B
p
m in the bottom panel of Fig. 4) indicates that the plasma

particles are fully trapped in the filaments, as before.
Case (f) of Table I, where Tb is reduced by a factor of

30 while γb and Tp are increased by the same amount, pro-
vides an exception to that general picture. In this particular
configuration, both the beam and the plasma become relativis-
tically hot, leading to comparable initial relativistic plasma
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FIG. 5. Same as Fig. 1 for simulation run (f). In the top panel
is also plotted the time evolution of the B field associated with the
spatial magnetization limit as applied to the beam (Bb

m, red dashed
curve).

frequencies, namely, �pb � 0.14 ωpp and �pp � 0.2 ωpp. One
can then hardly discern which plays the role of the beam
and which plays the role of the background plasma. What
matters for the (transverse or longitudinal) trapping limits,
however, is the inertia of the particles. Here, 〈ub〉 � 40 and
〈up〉 � 100 initially, so that the background plasma particles
will be trapped later than the beam particles.

In detail, we measure �PIC
w � 0.3 ωpp and kPIC

⊥ � 3ωpp/c,
in fair agreement with the numerical solution to the CFI dis-
persion relation (�w � 0.4 ωpp at k⊥ � 1.6 ωpp/c) and which
translates into a plasma trapping limit, B

p
t � 38, exceeding

the beam trapping limit, B
b
t � 15. Moreover, since the plasma

now carries a larger current density than the beam, it gives
a greater particle limit: B

p
p � 180 vs. B

b
p � 38. Those limits

have been evaluated using the simulation parameters; they
qualitatively match (yet overestimate by a factor of a few) the
values obtained using the instantaneous simulation parameters
(as plotted in Fig. 5). We therefore expect saturation to be
determined by transverse plasma trapping as confirmed by
Fig. 5.

In summary, we observe that the CFI growth rate is set
by the species with the lower (relativistic) plasma frequency,
while the saturation level is determined by that component
with the larger inertia per particle, according to the transverse
trapping criterion. The expected overall B-field amplitude at
saturation can thus be approximated as

Bsat.√
4πnpmc2

�
(

�w

ωpp

)2
ωpp

k⊥c
max(〈γb〉, 〈γp〉). (22)

In the forthcoming section, we extend this analysis to
electron-ion compositions.

TABLE II. Parameters of the electron-ion simulations, once
transformed to the Weibel frame. Run (i1) is analogous to run (a)
in which the positrons have been replaced with ions. Run (i2) treats
a mildly relativistic regime. Electron and ion temperatures are given
in units of mec2/kB and mic2/kB, respectively.

Run γb γp
Tbe
γb

Tbi
γb

Tpe

γp

Tpi

γp

γbnb
γpnp

(i1) 18.9 1.011 2.4 0.024 0.20 0.0020 1.9
(i2) 6.7 1.00075 4.5 0.15 0.2 0.002 1.3

IV. ELECTRON-ION CASE

The presence of ions introduces a new scale in the problem,
associated with the hierarchy mi/me (mi ion mass). If both
ions and electrons are cold, the ratio of ion to electron plasma
frequencies scales in proportion to

√
me/mi. If the electrons

are heated to such a degree that their effective inertia becomes
similar to that of the ion species, then the above hierarchy
disappears: both species share a similar relativistic plasma
frequency, and hence the electron-ion component effectively
behaves as a pair plasma. Thus, one may expect to obtain
results similar to those for the pair systems examined in the
previous section.

In the particular context of relativistic shock physics, it is
known that electrons are efficiently heated up to near equipar-
tition in ultrarelativistic, weakly magnetized conditions (see,
e.g., Refs. [63,89] and references therein). By contrast, in the
mildly relativistic and magnetized regime, electron heating
appears to be weak, implying that some hierarchy between
the response of electrons and ions remains preserved. Both
situations will be addressed in the following. In order to be
able to capture the physics of the instability for both electron
and ion species, with a sufficient number of macroparticles per
cell and spatial extent, we will adopt an ion-to-electron mass
ratio mi/me = 100.

A. Ultrarelativistic regime

Let us first examine the saturation criteria for case (i1)
described in Table II. The parameters of this run are obtained
from run (a) by replacing the positrons with ions of charge
+e and mass mi = 100 me. The beam electrons and ions then
have a comparable inertia: 〈pbe〉/mec � 4γbTbe � 3430 and
〈pbi〉/mec � γbβb(mi/me)K3(μbi )/K2(μbi ) � 4520 (Kn is the
modified Bessel function of the nth kind). Note that the beam
ions have a proper temperature Tbi/mic2 � 0.45, so that they
cannot be considered as fully relativistic.

Accounting for the ion mass modifies the trapping and
magnetization limits as

Bi
t = �2

w

k⊥

〈γ 〉mi

β‖e
(23)

and

Bi
m, rL

= 2

π
k⊥〈γ β〉mic2

e
. (24)

The time evolution of the simulated mean B field is plotted
in Fig. 6. Unlike previous studies (e.g., Ref. [46]), the system
does not experience an early phase governed by electrons,
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FIG. 6. Temporal evolution of the simulated mean B-field
strength (black curves) compared to various saturation criteria for
run (i1) defined in Table II. Top panel: particle (green dashed-dotted
curve) and trapping (blue dotted curve) limits as applied to the beam
ions. Bottom panel: spatial magnetization (red dashed curve) and
trapping (blue dotted curve) limits as applied to the plasma ions. All
curves are in units of mecωpp/e.

in which the CFI grows faster, before moving to a regime
ruled by the slower ion-driven CFI. We ascribe this behavior
to the similar inertia of the beam ions and electrons. Solving
the CFI dispersion relation in the presence of ions yields a
maximum growth rate �w � 0.025 ωpp for a wave number
k⊥ � 0.5 ωpp/c (as before, ωpp denotes the electron plasma
frequency of the background plasma). These values are very
close to the simulation values, namely, �PIC

w � 0.024 ωpp [as
obtained by exponentially fitting Bz(t ) over 300 < ωppt <

500] and kPIC
⊥ � 0.4 ωpp/c (as measured from the spatial

Fourier spectrum of Bz).
As in run (a), the CFI saturates through transverse trapping

of the beam particles (electrons and ions). This is consistent
with the fact that the theoretical trapping limit, B

b
t � 6, is

much smaller than the particle limit, B
b
p � 75, both limits

being computed for the beam ions and using the initial sim-
ulation parameters. This estimate of B

b
t matches well that

evaluated at saturation time (t � 400 ω−1
pp ) instantaneous sim-

ulation parameters (see top panel of Fig. 6). At later times,
again similarly to run (a), the background plasma particles
turn fully magnetized, with their typical Larmor radius ad-
justing to the mean filament size (bottom panel of Fig. 6).
A notable difference with run (a), however, is that the mean
B field strength here remains quasi-constant following satu-
ration (up to the final simulation time, t = 2400 ω−1

pp ), rather
than slowly increasing as in Fig. 1.

In short, in this asymmetric, relativistic electron-ion simu-
lation, in which both species share a similar inertia, we recover
the general picture of the previous section. Accordingly, the
CFI saturation is determined by the trapping limit as applied
to the species with the largest inertia.

FIG. 7. Temporal evolution of the simulated mean B-field
strength (Bz, black curves) compared to various saturation criteria for
run (i2) defined in Table II. Top panel: comparison of the spatial mag-
netization (Bbe

m , red dashed curve), particle (Bbe
p , green dashed-dotted

curve), trapping (Bbe
t , blue dotted curve) limits as applied to the beam

electrons, plus the trapping limit applied to beam ions (Bbi
t , light-blue

dotted curve). Also plotted is the saturated B field from Eq. (29) (Bc,
magenta dotted line). Bottom panel: spatial magnetization (Bpe

m , red
dashed curve) and trapping (Bpe

t , blue dotted curve) limits as applied
to the plasma electrons. All curves are in units of mecωpp/e.

B. Mildly relativistic regime

We now address the case of two electron-ion plasmas
counterstreaming with a moderate Lorentz factor (∼3) in a
reference frame. These two plasma flows mainly differ in
their temperatures: the beam’s electron and ion populations
are much hotter than their plasma counterparts, and for each
(beam or plasma) component, the electrons are also much
hotter than the ions. In particular, the difference in temperature
between the beam ions and electrons is justified by the fact
that, according to kinetic simulations, the shock-reflected ions
have a temperature at least three times larger than their elec-
tronic counterpart in the downstream frame (see Refs. [90–93]
and references therein). The initial parameters for this run
(i2), as expressed in the corresponding Weibel frame, are
summarized in Table II.

In this configuration, one has 〈pbe〉 � 800 mec, while
〈pbi〉 � 3000 mec. A hierarchy therefore persists between the
beam electrons and ions, leading to a somewhat different
picture for the evolution of the instability and its saturation
level.

Figure 7 shows that after a transient early phase ruled
by oblique modes, the CFI sets in at t � 300 ω−1

pp and
rapidly saturates at t � 400 ω−1

pp with a measured growth rate
�PIC

w � 5 × 10−3 ωpp and a dominant wave number kPIC
⊥ �

0.35 ωpp/c. During this short period, the B field grows only
by a factor of a few, likely because the transverse trapping
limit for beam electrons is already partially fulfilled, see top
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FIG. 8. Out-of-plane magnetic field (Bz) generated by the coun-
terstreaming of mildly relativistic electron-ion flows (i2). The
magnetic field is plotted at two different times: in the early (ωppt =
594, top) and late (ωppt = 990, bottom) phases of the CFI when
cavities have started to form.

panel of Fig. 7. This figure also suggests that the trapping of
beam ions contributes to the instability saturation, as would be
expected from their larger inertia.

At later times (t � 700ω−1
pp ), a secondary instability de-

velops, leading the mean B-field strength to rise by almost
two orders of magnitude. As shown in Fig. 8, this instability
generates isolated, large-scale magnetic filamentary struc-
tures, which are essentially filled with beam electrons and
plasma ions, and devoid of beam ions and plasma elec-
trons. Those structures, or cavities, have been observed in
previous electron-ion simulations [47,94] and studied re-
cently in greater detail in Ref. [95]. Although the latter
paper considered a simpler setting consisting of an electron
beam-plasma system embedded in an ion background, the
picture that it sketches can be readily extended to the present
problem. Specifically, the cavities are driven by the beam
electrons, which are initially overdense relative to the plasma
(γbenbe/γpenpe � 1.3 at t = 0). As a cavity expands due to the
magnetic pressure exerted by the beam electron current, more
beam electrons join and add their contribution to the current
inside the cavity, thus feeding back positively on the magnetic
field. Meanwhile, the beam ions are expelled from the cavity
by the growing field, just as the plasma electrons. The back-
ground ions accumulate in the cavity, mainly (initially) as a
result of the confining force exerted by the Ey electric field
component. This scenario is illustrated in Fig. 9, in the case of
the cavity formed at (x, y) � (450,−60) c/ωpp in the bottom
panel of Fig. 8. The top left panel depicts the time evolution
of the B-field profile across the cavity, while the bottom left
panel plots the density profiles of the various populations of
the system.

Interestingly, this secondary instability is essentially driven
by one species, here the beam electrons, and it leads to a sharp
contrast between the beam electron density inside and outside
the cavity. Thus, it is not surprising that the particle limit, as
evaluated for the beam electrons, nicely follows the evolution

FIG. 9. Top left panel: magnetic field profiles along the trans-
verse direction (y) and at successive times, as indicated, for
simulation run (i2). The figure reveals the growth of the magnetic
field as the cavity expands. Bottom left panel: transverse profiles of
the number density of the beam and plasma components at the onset
of saturation, ωppt � 1000. Right panel: (y, px ) phase space of the
plasma ions at the same time.

of the magnetic field during this nonlinear phase,1 yet this
does not cause the instability to saturate.

We also note that a key factor for this secondary instability
is a clear hierarchy between the beam ions and the beam
electrons. Were they of equal inertia, these two species would
react similarly in adjacent filaments, leading to the growth
of all filaments as in the standard CFI. A comparison of this
simulation with the previous one (i1) suggests that in order for
the instability to develop, the beam electrons and ions should
differ in their inertia by at least a factor of a few.

This instability causes the magnetic field to grow rapidly
until saturation is reached at t � 1100 ω−1

pp . While in Ref. [95],
the magnetic pressure pushes a wall composed of background
ions initially at rest, in the present case it evacuates the beam
ions, which are relativistic. We can thus adapt the calculation
of the instability growth rate made in that study to our con-
ditions by taking into account the inertia of the beam ions, as
follows.

Assuming that the B field inside the cavity is mainly gen-
erated by the beam electrons, the magnetic pressure acting on
this wall can be expressed as

B2
z

8π
= (4πenbeγbeβberc)2

8π
. (25)

The momentum per unit area of the wall is mainly car-
ried by the expelled beam ions, and so can be estimated as
γbinbi〈pbi〉rc(t ), where rc(t ) is the instantaneous cavity radius.

1In Fig. 7 there is an offset of about an order of magnitude between
the measured value Bz (black solid curve) and the theoretical limit
given by Eq. (19) (green dashed-dotted curve). This offset is related
to the overall geometry, in particular the fact that the structures are
not space filling while the averages are taken over the simulation box.
It is clear, however, that inside a cavity, the magnetic field is mostly
carried by the beam electrons.
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Momentum balance in the transverse (y) direction then leads
to

d

dt

(
γbinbi〈pbi〉rc

drc

dt

)
= 2π (enbeγbeβberc)2. (26)

The solution to this equation grows as rc ∝ e�ct , where the
growth rate is given by

�c = �pbi

2
. (27)

In the present case, �pbi � 0.02 ωpp and therefore, �c �
0.01 ωpp, which is in fair agreement with the growth rate
�PIC � 0.015 ωpp measured in the simulation over the interval
750 � ωppt � 960.

According to Ref. [95], saturation is reached once the back-
ground plasma ions are accelerated by the inductive electric
field (Ex) to a point where they become relativistic (pi,x �
mic) and neutralize the electron beam current. The right panel
of Fig. 9, which displays the (y, px ) phase space of the plasma
ions at the onset of saturation (ωppt = 990), confirms that they
have indeed attained relativistic momenta by that time inside
the cavity. Adapting again the calculations in Ref. [95], the
radius of the cavity at saturation can be expressed as

rc,sat = c

γ
1/2
b ωpbi

= c

〈γbi〉1/2�pbi
, (28)

recalling that ωpbi =
√

4πnbie2/mi. This gives rc,sat �
10 c/ωpp, which agrees relatively well with the size of the
structures seen in Figs. 8 and 9.

The corresponding saturated value of the magnetic field is
given by

Bc � γ
1/2
be

(
mi

me

)1/2
ωpbe

ωpp
(29)

in normalized units. One obtains Bc � 11 in correct agreement
with the observed value Bz � 6 (see top panel of Fig. 7).
Note that in Ref. [95] an extra factor of 1/2 was added in the
estimation of the saturated field, which is not included here.

V. LATE-TIME EVOLUTION OF BEAM-PLASMA SYSTEM

We conclude by investigating briefly the late-time evolu-
tion of the beam-plasma system after the saturation of the
magnetic field growth. It is worth noting that in this final
stage, both the beam and plasma components are expected to
relax to isotropy in the turbulence frame. This can be seen
as a transition from the two-stream collisionless system to
a long-term hydrodynamical system in which everything has
been effectively mixed. In this respect, if we assume that the
beam and plasma have relaxed to the same final velocity but
with different temperatures, the conservation of energy and
momentum implies:

γ 2
biwbi − pbi + γ 2

piwpi − ppi = γ 2
f (wbf + wpf ) − pbf − ppf ,

(30)

γ 2
biβbiwbi + γ 2

piβpiwpi = γ 2
f βf (wbf + wpf ), (31)

FIG. 10. Time evolution of various four-velocities as extracted
from run (a) defined in Table I. Light-green dotted curve: four-
velocity of the Weibel frame. Yellow curve: four-velocity of the
plasma. Blue curve: four-velocity of the beam. Magenta dashed line:
four-velocity of the relaxed plasma and beam as given by Eq. (33).

where the subscripts i and f here refer, respectively, to the
initial and final states of the beam (b) and plasma (p) com-
ponents. As before, w denotes the enthalpy density and p
the pressure. Note that we have neglected the contribution of
magnetic turbulence in the final state, as it is expected to be
subdominant.

In the case where the final states of the beam and plasma
are relativistically hot, and therefore share the same adiabatic
index, �̂f = wf/(wf − pf ) (wf and pf are the total final en-
thalpy density and pressure), the final velocity βf satisfies

γ 2
biwbi − pbi + γ 2

piwpi − ppi

γ 2
biβbiwbi + γ 2

piβpiwpi
= κf − 1 + β2

f

κfβf
, (32)

where κf ≡ �̂f/(�̂f − 1).
Consider for instance the case, exemplified by run (a)

of Table I, of an initially subrelativistic (βp,i ∼ 0) and cold
(pp,i ∼ 0) plasma interacting with a relativistically hot beam,
which carries most of the energy (i.e., γ 2

b,i pb,i � wp,i). We
then have κf � 4 (as in the initial state), so that

βf � βb

(
1 − 1

2

wpi

γ 2
bi pbi

)
,

γf � γb

(
1 − wpi

pbi

)
. (33)

The second equation further assumes wpi � pbi. The Lorentz
factors are evaluated in the simulation frame of the two-stream
system.

The above indicates that the asymptotic velocity of the
relaxed components should be close to the initial beam ve-
locity. This behavior is illustrated in Fig. 10, which plots the
time evolution of various four-velocities as extracted from our
reference run (a). The beam four-velocity decreases steadily
with time, slowly approaching from above the predicted
asymptotic four-velocity, uf = βfγf (magenta dashed line).
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For detailed analyses of the late-time momentum and energy
transfers in (nonrelativistic) unstable beam-plasma systems,
see Ref. [96]. Conversely, the plasma four-velocity, up, is
seen to increase steadily toward uf . Also overlaid is the in-
stantaneous four-velocity of the Weibel frame (green dotted
line), computed from the simulation data as uw = γwβw with
βw = (〈E2

y 〉/〈B2
z 〉)1/2 (the average is taken over the simulation

domain). Note that this quantity is not defined at early times
because of the dominance of oblique modes characterized by
〈E2

y 〉/〈B2
z 〉 > 1. The four-velocity of the Weibel frame tracks

that of the background plasma quite well. We note that the
convergence to the hydrodynamical regime is not attained
over the time scale of the simulation. As a matter of fact, we
expect the convergence to proceed at an increasingly slower
rate as time passes. This is because relaxation takes place in
the Weibel frame, hence time dilation effects associated with
the relativistic velocity of the Weibel frame relative to the
simulation frame will decrease the apparent relaxation rate.

VI. CONCLUSIONS

In this paper, we have investigated the saturation of the
current filamentation instability, or Weibel instability, in an
asymmetric configuration, meaning in the case in which the
counterstreaming plasmas differ in terms of velocity, temper-
ature, and density. This configuration is notably representative
of the precursor region of electron-positron or electron-ion
shocks, although the implications of our results are not re-
stricted to such systems. Our study relies on large-scale
periodic PIC simulations of counterstreaming flows composed
of a hot dilute population representing the beam (e.g., the
particles reflected at the shock front) and a relatively cold
plasma (e.g., the background plasma that is incoming toward
the shock). The parameters of our fiducial run have been
directly borrowed from a large-scale relativistic shock sim-
ulation at a position deep in the precursor; the parameters of
subsequent runs have then been varied in an ad hoc manner to
explore different possible settings. We have discussed several
theoretically motivated criteria for saturation and compared
them to the simulation results.

The asymmetric counterstreaming configuration departs
from its symmetric counterpart in two important ways: (i)
there exists an ambiguity as to whether a given criterion
should be applied to the beam, or to the plasma component;
(ii) there exists a preferred reference frame, dubbed here the
Weibel frame [62], in which the instability is purely magnetic;
this reference frame does not a priori coincide with that in
which the total momentum flux vanishes, as happens for the
symmetric configuration. Here, we pay particular attention to
that latter point. We have set up our simulations such that for
each set of parameters characterizing the plasma flows, the
simulation frame initially coincides with the Weibel frame.

We have then compared different mechanisms as possible
sources of saturation of the magnetic field associated with

the instability: magnetic trapping, particle limit, Alfvén limit.
Our general conclusion is that, for pair plasmas, the saturation
level is determined by the criterion of magnetic trapping as
applied to the (beam or plasma) component that carries the
larger inertia of the two: the growth rate is found to diminish
strongly once the quiver frequency of that component be-
comes comparable with, or larger than the instability growth
rate. For all studied cases, our theoretical estimates of the
instability properties, such as the maximum growth rate and
associated wave number, are consistent with those extracted
from the simulations. Consequently, it is possible to obtain
reasonable analytical approximations for the strength of the
magnetic field at saturation. Furthermore, we find that the
particle limit is never fulfilled, all the more so when the com-
ponent of larger inertia is relativistically hot, as its temperature
then prevents its charged species from being fully segregated
in separate filaments. We have observed that the component of
smaller inertia becomes rapidly trapped inside the filaments,
in some cases even during the linear phase of the CFI. At late
times, the Larmor radius of those particles closely follows the
characteristic filament radius and thus grows in time through
coalescence. Asymptotically, the system tends to a final state
where the two fluids are effectively mixed, drifting at the
same mean velocity. However, due to relativistic time dilation
effects, this ultimate regime could not be accessed from our
simulations.

We have also investigated the case of asymmetric electron-
ion systems with a mass ratio mi/me = 100. As long as there
is not a clear hierarchy in inertia between the electron and
ions species of a given (beam or plasma) component at the
beginning of the simulation, the development of the insta-
bility and the saturation proceed much as in the case of a
pair plasma. The picture and saturation criterion discussed
above thus remain applicable. However, if the electron and ion
inertia differ by a factor of a few or more, a different instability
eventually supersedes the CFI. It leads to the formation of
cavities in which the beam electrons and background plasma
ions accumulate and drive magnetic field growth, while the
beam ions are pushed outwards along with the plasma elec-
trons. This mechanism comes to an end when the plasma ions
inside the cavities, accelerated by the inductive electric field,
become capable of neutralizing the electron beam current, as
discussed recently in Ref. [95].
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