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Enstrophy change of the Reynolds-Orr solution in channel flow
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The plane Poiseuille flow is one of the elementary flow configurations. Although its laminar-turbulent
transition mechanism has been investigated intensively in the last century, the significant difference in the critical
Reynolds number between the experiments and the theory lacks a clear explanation. In this paper, an attempt is
made to reduce this gap by analyzing the solution of the Reynolds-Orr equation. Recent published results have
shown that the usage of enstrophy (the volume integral of the squared vorticity) instead of the kinetic energy
as the norm of perturbations predicts higher Reynolds numbers in the two-dimensional case. In addition, other
research show has shown an improvement of the original Reynolds-Orr energy equation using the weighted
norm in a tilted coordinate system. In this paper the enstrophy is used in three dimensions combined with the
tilted coordinate system approach. The zero-enstrophy-growth constraint is applied to the classical Reynolds-Orr
equation, and then the solution is further refined in the tilted coordinate system. The results are compared to direct
numerical simulations published previously.
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I. INTRODUCTION

The delay of the laminar-turbulent transition in the bound-
ary layer is a promising way to achieve significant drag
reduction in streamlined bodies. The transition mechanism
has multiple scenarios depending on the circumstances. In the
case of a high free-stream turbulence level, a proper bypass
transition prediction method still does not exist. Furthermore,
Fransson and Shahinfar [1] pointed out that the relevant prop-
erties of the upstream flow are not clear.

The Reynolds-Orr equation (RO) [2,3], known as the
energy method, is a candidate for handling this problem. The
perturbation velocity field is varied to minimize the Reynolds
number such that the change of the kinetic energy is zero.
If the Reynolds number is below the critical, minimal one,
the kinetic energy of any perturbation cannot increase and
must decay exponentially. It can be shown that this value
is independent of the perturbation amplitude in the case of
periodic or wall-bounded domains. Consequently, it defines
the unconditional stability limit that can be determined by the
solution of the variational problem [3]. This means the flow
must be stable independently of the upstream flow conditions.
Unfortunately, the predicted values are overly conservative
and significantly below the experimental values in most cases.
The explanation is that above the critical Reynolds number,
certain perturbations can grow for a short time, but they decay
later, which does not necessarily lead to flow oscillations or
turbulence.

In our previous paper [4], an active coating on the bound-
ary layer flow was investigated by the RO equation and the
asymptotic solutions of the Orr-Sommerfeld equation (OS)
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with the aim of drag reduction. The coating consists of
miniature elements that move the wall in the streamwise
direction proportionally to the additional shear stress of
the disturbances. The eigenvalues of the Orr-Sommerfeld
equation predict the linear stability limit. The results show
a considerable difference in the critical Reynolds number,
and the two methods predict different tendencies. According
to the asymptotic stability analysis using the OS equation,
the flow is stabilized with the increasing proportional con-
troller parameter, while the RO equation predicts smaller
values of the critical Reynolds number. According to the OS
equation, the critical Reynolds number can significantly in-
crease with the right choice of the parameter. On the other
hand, the RO equation predicts that any streamwise movement
of the wall proportional to the wall shear stress slightly desta-
bilizes the flow. The opposite trend suggests that the coating
works at low-turbulence levels, but it accelerates transition
at high free-stream turbulence levels. However, the predicted
critical Reynolds numbers in the latter case are impractical.
The difference between the two methods is associated with the
nonnormality (nonorthogonal eigenvectors) of the linear prob-
lem [2] and the transient growth of disturbances discussed
by Schmid and Henningson [5]. Further research is necessary
for achieving a more reliable estimation of the transition at
high-turbulence levels. An improved relatively, yet relatively
simple prediction method is desired for developing passive
techniques to delay the laminar-turbulent transition and re-
duce the aerodynamic drag.

Recent studies have shown possible ways to improve the
energy method or find another Lyapunov function to predict
the unconditional stability limit of the flows [6–8]. These
methods try to predict the nonlinear stability limit with-
out prescribing the monotonic decay of the perturbations
kinetic energy. These are possible ways to get practically more
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FIG. 1. (a) Schematic drawing of the domain and the base flow.
(b) Schematic drawing of the perturbation in the original (x, y, z) and
the tilted (x′, y, z′) coordinate system. The wall-normal direction (y)
is unchanged. The wave number of the perturbation points into z′.

relevant critical Reynolds numbers. Falsaperla et al. [6] inves-
tigated the kinetic energy of disturbances in a tilted coordinate
system in the case of the plane Poiseuille [Fig. 1(a)] and
Couette flows. They used the weighted norm of the pertur-
bation energy, and they found a significantly larger Reynolds
number depending on the angle between the perturbation
wave-number vector and the streamwise direction. Further
details of their result and their formula and its criticism are
shown in the Appendix. Additionally, Falsaperla et al. [6]
found good agreement with numerical and experimental re-
sults from the literature for given wavelengths and angles
in Couette and Poiseuille flows. Besides, the estimated crit-
ical Reynolds number increases in both flows roughly by a
factor of 2 since the streamwise disturbances, originally as-
sumed to be more unstable, are more stable according to the
presented theory. However, the result is still conservative com-
pared to experiments. Furthermore, their study cannot explain
why the unstable solution at the lowest Reynolds numbers
calculated by means of numerical simulations [9] or experi-
ments [10] is not mainly composed of streamwise oscillating
(spanwise) perturbations. Since then, the authors have used
a similar theorem to investigate the Bingham-Poiseuille flow
[11], magnetohydrodynamic flows [12], and open channel
flow [13].

Another interesting outcome was found regarding the crit-
ical Reynolds number when the temporal change of the
enstrophy was investigated instead of the weighted norm of
the kinetic energy. The enstrophy is the integral of the squared
disturbance vorticity over the whole domain. Fraternale et al.

[7] used this quantity in their study based on the original paper
of Synge [14]. The derivation is similar to the Reynolds-Orr
equation, but the variational method is applied to the temporal
enstrophy change to minimize the Reynolds number. Below
the minimal (critical) one, the enstrophy of the disturbances
must decay, meaning that the kinetic energy must decay after
a certain time. Unfortunately, as pointed out by the authors,
in three dimensions the temporal growth of the enstrophy,
contrary to that of the kinetic energy, is not independent of the
amplitude. Furthermore, the variational problem is not linear
but contains a quadratic term. In the derived form, their theory
can be used in two dimensions only for spanwise (streamwise
oscillating) perturbations where the problematic term is zero.
However, the method predicts a Reynolds number (Re� =
155) significantly higher than that of the RO equation (Re =
87.6). The explanation for the difference can be interpreted as
follows. Between the two Reynolds numbers, there are certain
disturbance waves whose kinetic energy grows for a short time
and decays later, while their enstrophy decays monotonically.
Examples were shown to illustrate this in the cited paper. The
explanation is similar to the result of Falsaperla et al. [6].
There, the classical norm of the disturbance velocities can
increase in a certain coordinate system for a short time, but
the weighted velocity norm of the disturbance wave decays
below the critical Reynolds number calculated using Eq. (A1)
in a tilted coordinate system. The enstrophy-based stability
analysis was used for investigating channel flows with blow-
ing and suction at the walls by Lee and Wang [8]. There
are other alternative opportunities to define the generalized
energy or Lyapunov function. Galdi and Padula [15] wrote
a comprehensive description. Such a function was used in the
investigation of Couette flow by Kaiser et al. [16]. They found
a significantly larger Reynolds number, but surprisingly, the
value was equal to the original value of Orr [2], who solved
the two-dimensional problem.

An alternative way to obtain the critical Reynolds number
where the flow can become turbulent is the application of
numerical simulations. Although these approaches probably
do not give a rigorous stability limit contrary to the methods
mentioned above, they can reveal aspects of the development
of periodic orbits of perturbations and turbulence. Many stud-
ies have been concerned with this topic, and therefore, giving
a complete overview of the literature is beyond the scope of
this study.

One breakthrough was the technique developed by Toh
and Itano [17]. With their method, the unstable boundary
between the stable (laminar) and the unstable (turbulent) state
can be calculated in a numerically efficient way. The method
calculates the amplitude of the three-dimensional perturbation
by the shooting method, such that the kinetic energy remains
between predefined limits during one time step. They found a
periodiclike solution in the plane channel flow at the Reynolds
number of 3000. Their method was used later by Zammert and
Eckhardt [18]. First, they investigated and found streamwise
localized perturbations at the Reynolds number of 1400. They
were able to track the solution until the Reynolds number of
1038. Furthermore, they found a spanwise localized solution
that was used as an initial guess on a domain extended in
the spanwise direction. This initialization led to a streamwise
and spanwise double-localized solution. At the same time,
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reducing the Reynolds number in the direct numerical simula-
tions (DNS) or in the experiments of a turbulent channel flow
revealed oblique stripe patterns between the laminar and the
fully turbulent state [10,19–21]. The long-term computation
of these fields needs a large domain in both the stream-
wise and the spanwise directions, which is computationally
very expensive. The usage of the tilted computational do-
main was suggested for capturing these low-Reynolds-number
turbulent-laminar patterns in the case of plane Couette flow by
Barkley and Tuckerman [22]. The same technique was applied
on plane Poiseuille by Tuckerman et al. [23]. They set the tilt
angle to 24◦ and varied the Reynolds number between 700 and
2300. They could track a single turbulent band at the lowest
Reynolds number of 800. Recently, Paranjape et al. [9] used
the same tilted domain to reduce the computational needs and
carried out a thorough investigation to determine the critical
Reynolds number where a traveling wave perturbation can
exist for a long time. In their case, the perturbation fields
were localized similarly to the investigation of Zammert and
Eckhardt [18], but they were localized in the tilted z′ direc-
tions. This property was verified by varying the Lz′ length.
Above a certain value, the magnitude of the perturbation
decays close to zero at the boundaries in the z′ direction.
The further increment of the Lz′ length did not effect the
results. They investigated the tilt angle (�) and the streamwise
length (Lx′) of the domain. For a fixed-length, Lx′ = 3.33, the
minimum Reynolds number, where the perturbation energy
does not decay for a long time, was found to be 370.55 at
�‖ = 45◦. Here, the subscript of � indicates that in their
coordinate system, the perturbation oscillates mainly in the
x′ direction. This notation expresses the angle between the
wave-number vector and the original x direction here in the
case of a single-wave perturbation. In the DNS simulation,
the disturbance still depends on the z′ variable, but it de-
cays in that direction. At the same time, Falsaperla et al. [6]
used the tilt angle (�⊥) differently. The perturbation does not
change in the x′ direction at all and spatially oscillates along
z′. The difference between the two angles is trivial, π/2.
Due to the symmetry of the problem around the x axis, both
angles can be defined in the range [0, π/2] without the loss of
generality. In this case, they are complementary angles.

Next, Paranjape et al. [9] investigated the length of the
domain at the fixed tilt angle �‖ = 45◦, and the new min-
imum Reynolds number was found to be 367 at Lx′ = 3.2.
However, they could not exclude the existence of a local
minimum corresponding to unreported families of traveling
wave solutions. However, these solutions were found at a
much lower Reynolds numbers than in the case of the previ-
ously reported results. Formerly, Wall and Nagata [24] found
traveling wave solutions at the Reynolds number of 665.4 at
the streamwise and the spanwise wave number of 1.32 and
2.89, respectively. Later, Tao et al. [25] found self-sustained
bands at Re > 660 by means of full-domain DNS initializing
the problem with a turbulent band found at Re = 900. An-
other approach was used recently by Parente et al. [26], who
minimized the energy necessary for initiating turbulence at
Re = 1000. They solved the linear and the nonlinear optimal
growth problem. In the linear case, the optimal perturbation
was found at the spanwise and streamwise wave numbers of
1.2 and −1.75, meaning that the angle of the critical initial

perturbation is �‖ = 34.5◦. The critical perturbation of the
nonlinear problem has a similar tilt angle, but the structure
is more complex than that of a single wave. Furthermore, the
solution is localized contrary to the solution of the linear prob-
lem. As the authors concluded, orders of magnitude smaller
localized perturbation can trigger the turbulent state. This was
verified by artificially localizing the solution of the linear
problem.

Although these numerical computations can reveal many
aspects of the laminar-turbulent transition, they have two
significant drawbacks. First, they are computationally very
expensive. Second, it is a challenging or impossible task to
prove that the solution is the one at the lowest Reynolds
number that does not decay to the laminar state. A further
improvement of the energy method is inevitable in order to
find the edge state solution. Furthermore, a simpler transition
prediction method is desired for an engineering practice that
can be used for the investigation of various control techniques.

In this paper, the effect of the zero-enstrophy-growth con-
straint on the classical RO equation is investigated in the
channel flow. The hypothesis is that the edge state distur-
bance is close to the disturbances whose kinetic energy and
enstrophy do not grow or decay. First, the derivation of the
equation and the solution method are introduced in Sec. II.
Then, the equation is solved as a modal problem, and the
enstrophy change is evaluated for various wave numbers.
Next, the results are shown in Sec. III. After that, the crit-
ical Reynolds number is improved using the formula of
Falsaperla et al. [6]. The results are compared to the numer-
ical investigation of Paranjape et al. [9]. Finally, concluding
remarks are made in Sec. IV.

II. THEORY AND SOLUTION METHOD

The evolution of a perturbed flow field can be described
by the following nondimensional form of the Navier-Stokes
equations:

∂ui

∂t
= −Uj

∂ui

∂x j
− u j

∂Ui

∂x j
− u j

∂ui

∂x j
− ∂ p

∂xi
+ 1

Re

∂2ui

∂x2
j

(1)

and the continuity equation

∂ui

∂xi
= 0. (2)

Ui is the base flow velocity, ui is the perturbation velocity, and
p is the pressure. Re is the Reynolds number defined as

Re = U0h

ν
, (3)

where U0 is the maximum velocity at the center line, h is
the half gap, and ν is the kinematic viscosity. The domain
is a cuboid, x = x1 ∈ [0, Lx], y = x2 ∈ [−1, 1], and z = x3 ∈
[0, Lz], which can be seen in Fig. 1(a). The domain is periodic
in the streamwise, x, and spanwise, z, directions. At y = ±1,
no-slip wall boundary conditions hold. The base flow is the
well-known parabolic profile

Ui = U (x2)δi1 = (1 − x2)2δi1, (4)
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where δi j is the Kronecker delta. The perturbation kinetic
energy is

e = 1

2

∫
V

u2
i dV . (5)

Its temporal change can be calculated by multiplying Eq. (1)
by ui and integrating it over the whole domain. Using the
Gauss divergence theorem, some terms are eliminated or
rewritten, knowing that the velocity and the pressure pertur-
bations are periodic in the x and z directions, and the velocity
is zero at the walls. After simplification, the expression is

de

dt
=

∫
V

(
−uiu j

∂Ui

∂x j
− 1

Re

∂ui

∂x j

∂ui

∂x j

)
dV . (6)

The first term on the right-hand side is identified as the
production and the second one is the dissipation of the
kinetic energy. Minimizing the Reynolds number, where the
temporal change of the kinetic energy is zero, leads to a
variational problem. The ith component of the corresponding
Euler-Lagrange equation of Eq. (6) is

−u j

(
∂Ui

∂x j
+ ∂Uj

∂xi

)
+ 2

Re

∂2ui

∂x2
j

− ∂q

∂xi
= 0, (7)

where the Lagrange multiplier q was added to the functional
to prescribe divergence-free perturbations. This is the RO
equation. Equations (7) and (2) form an eigenvalue problem
for the Reynolds number, and the smallest real solution is the
valid one.

The enstrophy (s) is the volume integral of the squared
disturbance vorticity (ωi):

ωi = −εi jk
∂u j

∂xk
, (8)

s = 1

2

∫
V

ω2
i dV , (9)

where εi jk is the Levi-Civita symbol. The temporal evolution
of the disturbance enstrophy can be calculated as

ds

dt
=

∫
V

(
− ωiu j

∂�i

∂x j
+ ωi� j

∂ui

∂x j

+ωiω j
∂ui

∂x j
+ ωiω j

∂Ui

∂x j
+ 1

Re
ωi

∂2ωi

∂x2
j

)
dV , (10)

where �i is the base flow vorticity. In this case, the last
integrand∫

V

1

Re
ωi

∂2ωi

∂x2
j

dV �=
∫

V
− 1

Re

∂ωi

∂x j

∂ωi

∂x j
dV , (11)

and since the vorticity is nonzero on the walls, the term
cannot be simplified using the Gauss divergence theorem.
The presence of the third integrand in Eq. (10) causes the
temporal growth rate of the enstrophy, 1

s
ds
dt , to depend on the

amplitude of the perturbation contrary to the growth rate of
the kinetic energy. The third term scales with the amplitude to
the power of 3, while the enstrophy and the other terms scale
to the power of 2. However, the third term is zero for a single
periodically oscillating mode. It can be only nonzero on the
periodic domain if multiple modes are present. From this point

on, the investigation is restricted to single-wave perturbations.
This assumption reduces the universality of the outcome of
the paper, but the results are more general than assuming
two-dimensional perturbations that were investigated recently
by Fraternale et al. [7]. Furthermore, if the perturbation is
small, the problematic term is 1 order of magnitude smaller
than the others. The constraint is applied in the following
way. The original RO equation is solved for the Reynolds
number on a modal basis at various streamwise and spanwise
wave-number pairs (α, β), and then the enstrophy change is
evaluated for each mode. Since the solution of RO fulfills
the zero-energy-change condition, the wave-number pairs are
selected where the enstrophy change is zero. The critical
Reynolds number is the smallest one among these solutions.
Since the enstrophy change constraint can be fulfilled with the
sum of other modes, the predicted critical Reynolds number
is not a mathematically strict limit like that derived from the
original method or the results of Falsaperla et al. [6]. However,
a physically reasonable assumption is that the most critical
perturbation is a single wave, according to the energy theory.
Here, this theory is supplemented by the enstrophy constraint.
This analysis can reveal the long-living, critical traveling wave
solution in the flow.

The modal solution has the following form:

ui = ûi(y) exp [i(αx + βz)], (12)

q = q̂(y) exp [i(αx + βz)], (13)

where α = 2π/Lx and β = 2π/Lz. The wavelength of the per-
turbation can be calculated as λ = 2π/

√
α2 + β2. The general

eigenvalue problem for the eigenvalue (Re) and the eigenfunc-
tions [ûi(y), q̂m(y)] can be summarized from Eqs. (2) and (7)
in a matrix form as⎡

⎢⎣
2L 0 0 −iα
0 2L 0 −D
0 0 2L −iβ
iα D iβ 0

⎤
⎥⎦

⎡
⎢⎣

û1

û2

û3

q̂m

⎤
⎥⎦

= Re

⎡
⎢⎢⎣

0 dU
dy 0 0

dU
dy 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎣

û1

û2

û3

q̂m

⎤
⎥⎦, (14)

after substituting Eqs. (12) and (13) into Eqs. (2) and (7).
L = D2 − (α2 + β2) is the Laplace operator and D = d

dy is
the differential operator. The introduction of q̂m = q̂/Re is ad-
vantageous since then the numerically discretized operator on
the left-hand side is not singular. This reduces the number of
the spurious modes appearing in the numerical calculation.
The problem is discretized by means of the Chebyshev col-
location method with N = 60 polynomials, similarly to the
investigation of Falsaperla et al. [6]. The wall boundary
condition ûi(y = ±1) = 0 is prescribed for each velocity
component. The method is implemented in MATLAB 2019b,
and the eigenvalue problem is solved using the built-in func-
tion eig.

The code is verified by data from the literature. The min-
imal Reynolds number is determined for the most critical
spanwise and streamwise perturbation. The spanwise problem
is solved using series expansion by MacCreadie [27]. His min-
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imum is Re = 87.63 using the notation of this paper, but he
defined the Reynolds number based on the gap width and the
mean velocity of the base flow. The minimal Reynolds num-
ber found using the presented technique is Re = 87.593 68
at α = 2.098 599. The critical Reynolds number in the case
of a streamwise perturbation is Re = 49.6035 at β = 2.044
according to Busse [28]. (The values are converted since
he defined the Reynolds number based on the gap width.)
The minimal Reynolds number is Re = 49.603 578 at β =
2.043 697 using the presented technique. The values are in
good agreement with data published previously in both cases.

III. RESULTS AND DISCUSSION

The problem is solved on a fine grid of wave numbers. α is
varied between 0.02 and 8 with the resolution of α = 0.05
and β ∈ [0, 8] with the resolution of β = 0.05. The critical
Reynolds numbers as a function of wave numbers are plotted
in Fig. 2(a). As well known from the literature [29], the most
critical perturbations belong to spanwise oscillating cases.
However, for a large range of parameters it does not change
significantly. For example, the change of the critical Reynolds
number is less than 10% larger than the most critical value in
the domain of α ∈ [0, 0.75] and β ∈ [1.5, 2.75].

The temporal growth rate of the enstrophy,

μs = 1

s

ds

dt
, (15)

is evaluated using Eqs. (9) and (10). See Supplemental
Material [30] for growth rate values and the critical Reynolds
number in the MATLAB data format. The growth rate is plotted
in Fig. 2(b). In the case of spanwise perturbations (α �= 0,
β = 0) at the bottom of the figure, the enstrophy decreases.
This is the expected result since the calculated Reynolds
number is much smaller than the enstrophy-based one (155)
[7]. Below the critical Reynolds number for the enstrophy
change, the enstrophy must decay. However, as the tilt angle
of the perturbation wave is increased, the temporal enstro-
phy change increases. It changes sign at �‖ = 45◦ for long
waves and at higher angles for shorter waves. Furthermore,
the critical Reynolds number decreases as the wave-number
vector rotates toward the spanwise direction. This means
that the enstrophy can grow for tilted perturbations easily,
and the enstrophy-based critical Reynolds number must be
lower than the energy-based one for streamwise perturbations
(α = 0, β �= 0). The further consequence of this result is that
the enstrophy-based stability analysis would predict a critical
Reynolds number, in a three-dimensional case, lower than
the kinetic energy-based one. It must be mentioned that the
result of Fraternale et al. [7] was valid only in two dimensions
for spanwise perturbations and their enstrophy-based analysis
predicts a much higher critical Reynolds number only in that
case. The usage of an enstrophy-based stability analysis is not
beneficial on its own in three-dimensional flows, even if the
problematic term is neglected.

However, these results do not explain why streamwise
(α = 0, β �= 0) perturbations are not the most critical ones.
Both enstrophy-based and classical kinetic energy-based anal-
yses would predict that. According to the energy theory, the
critical Reynolds number is smaller in that case, and the

FIG. 2. (a) The Reynolds number (original RO equation) and
(b) the temporal growth rate of the enstrophy as a function of the
streamwise (α) and spanwise (β) wave numbers for the most crit-
ical perturbation according to the RO equation. The solid magenta
line represents the zero growth of enstrophy. The black dashed line
shows the perturbations where the angle between the wave-number
vector and the streamwise direction is 45◦. The most critical per-
turbation with zero enstrophy growth was found at α = 1.32, β =
1.78, and Recrit = 57.3 according to the original RO equation and at
α = 1.13, β = 1.38, and Rem

crit = 140.8 according to the method of
Falsaperla et al. [6].

enstrophy increases, too. The explanation can be given fol-
lowing the theory of Falsaperla et al. [6], who introduced a
weighted norm for the kinetic energy. They showed that the
critical Reynolds number with the new norm must increase as
the angle of perturbation (�‖) increases. According to their
theory, a spanwise perturbation should be the critical one,
but the enstrophy-based analysis suggests that a streamwise
perturbation is the most critical one. Furthermore, enstrophy-
based analysis predicts a Reynolds number higher than that
of the theory of Falsaperla et al. [6] in the case of spanwise
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perturbations. The contradiction of the two results implies
that the critical perturbation should be a tilted one between
the streamwise and spanwise directions. This is a possible
explanation for the phenomena observed in experiments [10]
and numerical simulations [9,19–21].

In Fig. 2(b), a single, continuous line shows the wave-
number components where both the enstrophy and kinetic
energy neither grow nor decay initially. For small wave num-
bers (α, β < 1) and large wavelengths (λ > 5), the critical
perturbation oscillates in the direction with an angle of 45◦
to the streamwise direction (black dashed curve in the figure).
This finding agrees well with the literature. The systematic
optimization procedure of Paranjape et al. [9] found the most
critical traveling wave solution on the domain tilted with an
angle of 45◦. Attempts are made to explain this observation.
First, the terms of the enstrophy change (10) are analyzed. It
can be shown that the first term∫

V

(
−ωiu j

∂�i

∂x j

)
=

∫
V

(
∂ωi

∂x j
u j�i

)
dV (16)

since ∫
V

∂

∂x j
(ωiu j�i ) = 0 (17)

according to the Gauss divergence theorem. Using Eq. (16), it
can be derived that the integral of the first term in Eq. (10)
is equal to the second term in the case of a single-wave
perturbation and parallel base flow:∫

V

(
−ωiu j

∂�i

∂x j

)
=

∫
V

(
ωi� j

∂ui

∂x j

)
dV

= LxLz

∫ 1

−1

[
R

(
û2,

d2û1

dx2
2

)

+ R

(
i
dû2

dx2
, i

dû1

dx2

)]
�3dx2, (18)

where R(a, b) = �(a)�(b) + 	(a)	(b). �() and 	() are the
real and imaginary parts of a complex number, respectively.
Relation (18) is striking and surprisingly simple. The third
term in Eq. (10) is zero in the case of a single perturbation
wave, as it was discussed in Sec. II. Unfortunately, the re-
maining two terms cannot be significantly simplified. All of
the nonzero terms in the integrand were plotted in Fig 3. The
results showed that the first and second terms are positive
in the case of critical perturbations [Fig 3(a)]. They have a
maximum roughly at α = 0 and β = 1.75 that is close to the
location of the most critical perturbation according to energy
theory (α = 0, β = 2.04). Far from this point, their effect be-
comes insignificant. These two terms dominate the enstrophy
production for long waves and cause the enstrophy change of
the critical perturbations with 45◦ tilt angle to be zero. The
fourth term [Fig. 3(b)] is negative in the case of very long
perturbation waves (small α and β values), increases rapidly
with the spanwise wave number, and dominates the overall
enstrophy production as β > 2. The fifth term expresses the
dissipation [Fig. 3(c)], and its value is always negative. As
the wavelength of the perturbation is reduced (increasing α

and β), the absolute value increases significantly, as expected,
because of the effect of the Laplacian operator. In the case

FIG. 3. The terms of the enstrophy change in the inte-
grand of Eq. (10) normalized by the enstrophy in the case
of the critical perturbations according to the Reynolds-Orr en-
ergy theory. (a) First and second terms: 1/s

∫
V −ωiu j

∂�i
∂x j

dV =
1/s

∫
V ωi� j

∂ui
∂x j

dV . (b) Fourth term: 1/s
∫

V ωiω j
∂Ui
∂x j

dV . (c) Fifth

term: 1/s
∫

V
1

Re ωi
∂2ωi
∂x2

j
dV . In panel (b), the dashed line represents

the zero enstrophy growth.

of short waves, the overall enstrophy change is dominated by
the fourth and fifth terms. Since the production of the fourth
term increases mainly with the spanwise wave number β,
and the dissipation (the opposite of the fifth term) increases
with the wave number

√
α2 + β2, the perturbations with zero

change of enstrophy have a larger spanwise wave number
than a streamwise one. This explains why the tilt angle of the
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FIG. 4. The critical Reynolds number as a function of the wave-
length in the case of perturbations with zero change of enstrophy.
The continuous line is the classical solution and the dashed line is the
improved solution, according to Eq. (A1). The two crosses represent
the minima.

short critical perturbation waves with zero enstrophy change
is larger than 45◦. However, the physical mechanism behind
the observations remains unrevealed.

In the next step, a heuristic search for the most critical
perturbation is carried out. It is assumed that, in the case of the
critical perturbation, both the kinetic energy and the enstrophy
should be in a neutrally stable state. The wave-number pairs
of such kind of perturbations belong to the continuous line in
Fig. 2(b). The zero enstrophy growth curve can be expressed
as a function of β. In this step, β is varied between 0.02
and 10 with the resolution of β = 0.02. The corresponding
α value, where the enstrophy growth is zero, is determined
utilizing the built-in function fminsearch. The initial guess
comes from the previous results. For that wave number and
tilt angle, the critical Reynolds number is obtained, and a
further estimation is carried out making use of the corrected
formula (A2) of Falsaperla et al. [6]. The wavelength and the
tilt angle were determined from the wave-number pairs. Since
Falsaperla et al. [6] assumed that the perturbations vary along
the z′ axis, the tilt angle can be calculated as

�⊥ =
∣∣∣∣arctan

(
α

β

)∣∣∣∣. (19)

The absolute value is calculated since the results are invariant
to the sign of the wave numbers, and �⊥ is defined here
between 0 and π/2.

The critical Reynolds number calculated using the classical
equation and the modified theory are plotted in Fig. 4. Among
the original theory solutions, the minimum Reynolds number
of zero-enstrophy-growth perturbations is 57.3 at α = 1.32
and β = 1.78, and the wavelength is λ = 2.83. The angle
between the streamwise direction and the wave-number vector
is �‖ = 53.5◦. The eigenfunctions (û, v̂, ŵ) of this most crit-
ical perturbation wave are plotted in Fig. 5, and the velocity
components of the perturbation are plotted as a function of
streamwise and wall-normal coordinates in Fig. 6. The veloc-
ity field is nonlocalized in this case. This is the consequence
of the Reynolds-Orr equation being a linear equation de-

FIG. 5. The critical perturbation field according to the original
theory, in which case the enstrophy change is zero. From left to right:
Streamwise component, wall-normal component, and spanwise com-
ponent. The blue curves are the real part and the red curves are the
imaginary part of the eigenfunction.

spite describing the nonlinear stability limit. Furthermore, the
components of the velocity field have the same magnitude.
Although Parente et al. [26] optimized the perturbation field at
a given Reynolds number which is notably larger, Re = 1000,
the comparison of this result with theirs can be interesting.
First, they optimized the perturbation field to obtain maximal

FIG. 6. The components of the critical perturbation field accord-
ing to the original theory at z = 0 (Re = 57.3, α = 1.32, β = 1.78):
(a) the streamwise component, (b) the wall-normal component, and
(c) the spanwise component.
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growth in the linear case. They found that the optimal tilt
angle of the perturbation wave is �‖34.5◦ and their analysis
predicted that the wall-normal component is larger than the
others. Second, they optimized the initial perturbation field
with minimal initial-energy-triggering turbulence by means of
a nonlinear simulation. In this case, the magnitudes of the op-
timal initial-velocity field components were equal. The shape
of the eigenfunctions (the amplitude of the perturbation wave
as a function of the wall-normal coordinate) was completely
different in both cases compared to this analysis. At the same,
the aim of the two methods is significantly different.

In the next step, the modified theory of Falsaperla et al.
[6] is applied to the problem. The most critical Reynolds
number increases by a factor of 2 to 140.8 at α = 1.13 and
β = 1.38. The wavelength of the most critical perturbation
is λ = 3.52. The angle between the streamwise direction and
the wavenumber vector is �‖ = 50.7◦. At the same time, the
shape of the perturbation wave remains very similar to the
velocity fields in Figs. 5 and 6 since the wave numbers are
very close to that case.

The smallest Reynolds number, where a traveling wave
solution on the tilted domain can exist, was found to be 367 at
the tilt angle �‖ = 45◦ from DNS simulations by Paranjape
et al. [9]. Their angle of minima is very close to the result
with the zero enstrophy growth and the improved theory.
Furthermore, they varied the tilt angle in their study between
25◦ and 60◦ with the resolution of 5◦ first. Then, they fixed the
tilt angle at 45◦, and only the length of the domain was varied.
The authors pointed out that their approach does not certainly
predict the smallest critical Reynolds number. However, it is
probably close to that value. The minimum Reynolds number
in the numerical simulation was obtained at L′

x = 3.2. The
most energy content is associated with the perturbation wave
at a wavelength equal to the size of the domain. In my analy-
sis, the critical wavelength is 3.52 according to the improved
theory, which is only a 10% longer wavelength than that of the
DNS result. The predicted critical Reynolds number (140.8) is
better than the values from previous theories (49.6, 87.6), but
it still underestimates the value by a factor of 2.6 compared
to the DNS (367). Furthermore, it must be mentioned that
the solution of the RO equation is computationally orders
of magnitude less expensive than a DNS analysis. The data
that support the findings of this study are available within the
Supplementary Material [30].

IV. CONCLUSION

The stability of channel flow is investigated. The classi-
cal Reynolds-Orr equation is solved in a modal framework,
and it is improved in two ways. First, the zero-enstrophy-
growth constraint is added to the problem. The restriction
narrows down the parameter space to a single curve in the
wave-number plane. In the case of large wavelengths (α, β <

1 → λ > 5, where the length scale is the half gap), the
angle between the oscillation and the streamwise direction
is 45◦. Next, the theory of Falsaperla et al. [6] is applied
to these wave-number pairs. This method predicts a signifi-
cantly higher Reynolds number for tilted perturbations. The
critical Reynolds number is found to be 140.8 at a wave-
length of 3.52 with a tilt angle of 51◦. The angle and the

wavelength are in good agreement with numerical simulations
from the literature. The predicted critical Reynolds number is
still significantly smaller than that from the DNS simulations.
At the same time, the new value is 3 times larger than the
most critical one according to the classical theory (49.6) and
1.5 times larger than the one resulting from the theory of
Falsaperla et al. [6] (87.6). This study explains by nonlinear
stability analysis why the tilted waves are the critical ones.

Applying further constraints or using other norms
(weighted norms, enstrophy) may provide a more accurate
estimation of the critical Reynolds number and reduce the gap
between theory, simulations, and experiments in the transition
mechanism of the channel flow.
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APPENDIX: ABOUT THE CRITICAL REYNOLDS
NUMBER ESTIMATION ON TILTED DOMAINS

Falsaperla et al. [6] stated that the usage of the classi-
cal L2 kinetic energy integral norm of perturbations, e =
||u|| + ||v|| + ||w|| is not optimal for the nonlinear stability
investigation. u, v, and w are the perturbation velocity fields
in the streamwise, wall-normal, and transversal directions,
respectively. They used a special norm of the perturbation ve-
locity in the tilted coordinate system, where the first velocity
component has a constant multiplier (weight). They proved
mathematically that the 1

2 (C||u′|| + ||v′|| + ||w′||) energy will
decrease for a properly chosen C parameter, if the Reynolds
number is below the critical one obtained as the variation
of the temporal change of 1

2 (||v′|| + ||w′||). (The prime in-
dicates the velocity fields in the tilted coordinate system.)
This variational problem leads to the same equation as the
classical Reynolds-Orr equation for a spanwise perturbation,
if ReOrr = R̄e sin �⊥ is substituted and the velocity fields are
properly changed. �⊥ is the tilt angle when the x′ direction
is perpendicular to the wave-number vector of a single-wave
disturbance that can be seen in Fig. 1(b). R̄e is the critical
Reynolds number for the weighted norm in the tilted coor-
dinate system, while ReOrr is the original solution. Here, the
streamwise disturbance is defined as a wave that oscillates
spatially in the spanwise direction, independent of the stream-
wise coordinate. Similarly, the spanwise disturbance does not
change in the spanwise direction and oscillates spatially in
the streamwise direction. The configuration can be seen in
Fig. 1(b). x is the coordinate in the streamwise direction, y
is the coordinate in the wall-normal direction, and z is the
coordinate in the spanwise direction. (In the cited paper, y was
the spanwise direction and z was the wall-normal direction.
Their results are presented with the notation of this paper.)

Falsaperla et al. [6] gave the following relation between the
original critical Reynolds number and the new one:

R̄e = ReOrr
(

2π
λ sin �⊥

)
sin �⊥

, (A1)
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where λ is the wavelength of the perturbation. Below this
Reynolds number, the previously defined norm of any single-
wave perturbation must decay monotonically even if the
classical energy norm can increase. However, the two state-
ments imply that the classical energy can grow only for a
short time and must decay later. In this case, the flow is
nonlinearly stable, but it is not monotonically stable. From
a practical point of view, the determination of the nonlinear
limit is more important than the strict monotonically stable
limit since turbulence cannot even develop in the former
case.

At the same time, I argue that the division with sin �⊥ is
not necessary in the argument of the function. In Ref. [6],
Eq. (A9) together with the continuity equation is the same
as the classical Reynolds-Orr equation, after the substitutions
mentioned previously. In the following steps, a coordinate
transformation to the original system of coordinates was used,
and the solution assumed the form v(x, y) = ṽ(y) exp(iax).
This means that the parameter a in the cited paper is the wave
number in the original coordinate system, not in the tilted one.
In my opinion, the critical Reynolds number of the weighted
energy change for a tilted perturbation is

R̄e = ReOrr
(

2π
λ

)
sin �⊥

= ReOrr (β ′)
sin �⊥

, (A2)

where β ′ is the wave number in the z′ direction.

Although the relation (A1) or (A2) is similar to the
Squire theorem [31], it was obtained for the nonlinear energy
equation instead of the linear Orr-Sommerfeld equation. How-
ever, the consequences of the two theorems are similar: the
spanwise perturbations (oscillating in the streamwise direc-
tion) become unstable first, since the minimum of expression
(A1) is at �⊥ = π/2, meaning that the critical perturba-
tion changes only in the z′ = −x direction. In this case,
this equation is basically identical to the original Reynolds-
Orr equation using its symmetry property. Furthermore, any
streamwise (spanwise oscillating) perturbation must be stable,
since R̄e → ∞ for �⊥ = 0. This statement agrees with the
result of Moffatt [32], who proved that a streamwise per-
turbation is always stable. Falsaperla et al. [6] generalized
his theorem. This outcome seems to contradict the result of
Joseph and Carmi [29] who found that the critical Reynolds
number is 49.6 (using the Re definition of this paper) for
a streamwise perturbation. The conflict can be resolved by
the fact that the choice of classical norm used by Joseph
and Carmi [29] is not the best one. The weighted norm of
a streamwise perturbation must decay and the flow is stable;
even though the classical kinetic energy of the perturbation
can grow for a short time. The consequence of this is that Orr’s
original solution [2] is a better estimation for the nonlinear
stability limit. According to the theorem of Falsaperla et al.
[6], a spanwise perturbation is the most critical one.
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