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Instabilities in stratified precessing fluid are investigated. We extend the study by Mahalov
[Phys. Fluids A 5, 891 (1993)] in the stably stratified Boussinesq framework, with an external Coriolis force
(with rate �p) altering the base flow through the distortion of the circular streamlines of the unperturbed axially
stratified rotating columns (with constant vorticity 2�). It is shown that the inviscid part of the modified velocity
flow (0, �r, −2ε�r sin ϕ) and buoyancy with gradient N2(−2ε cos ϕ, 2ε sin ϕ, 1) are an exact solution of
Boussinesq-Euler equations. Here (r, ϕ, z) is a cylindrical coordinate system, with ε = �p/� being the Poincaré
number and N the Brunt-Väisälä frequency. The base flow is transformed into a Cartesian coordinate system,
and the stability of a superimposed perturbation is studied in terms of Fourier (or Kelvin) modes. The resulting
Floquet system for the Fourier modes has three parameters: ε, N = N/�, and μ, which is the angle between the
wave vector k and the solid-body rotation axis in the limit ε = 0. In this limit, there are inertia-gravity waves
propagating with frequency ±ω and the resonant cases are those for which 2ω = n�, n being an integer. We
perform an asymptotic analysis to leading order in ε and characterize the destabilizing resonant case of order
n = 1 (i.e., the subharmonic instability) which exists and for 0 � N < �/2. In this range, the subharmonic
instability remains the strongest with a maximal growth rate σm = [ε(5

√
15/8)

√
1 − 4N 2 /(4 − N 2)]. Stable

stratification acts in such a way as to make the subharmonic instability less efficient, so as it disappears for
N � 0.5�. The destabilizing resonant cases of order n = 2, 3, 4, 5 are investigated in detail by numerical
computations. The effect of viscosity on these instabilities is briefly addressed assuming the diffusive coefficients
(kinematic and thermal) are equal. Likewise, we briefly investigate the case where N2 < 0 and show that the
instability associated to the mode with k3 = 0 is the strongest.

DOI: 10.1103/PhysRevE.105.035107

I. INTRODUCTION

Several planets and celestial bodies are characterized by
self sustained magnetic fields due to dynamos in action within
their fluid cores. The motions underlying the dynamo process
can be induced by mechanical driving mechanisms, especially
the precession, which has been explored in numerous studies
(see, e.g., Refs. [1–9]). Precession consists in the rotation
of the axis of a rotating flow. In a precessing domain, the
dynamics of the flow results therefore from the interplay be-
tween inertial waves, Ekman boundary layers, and large scale
motions however complex (see Ref. [10]). The flow can even-
tually become unstable and develop a fully develop turbulent
state with structures at all the scales filling the spatial domain
(see Refs. [2,9]). In geophysical and astrophysical frameworks
the turbulence driven by precession is able to support the
conversion of huge amounts of kinetic to magnetic energy,
and to sustain the generation of magnetic field like in the
Earth’s outer core (see Ref. [2]). Precession can also trigger
instabilities leading to the formation of vortex tangles and
it can generate turbulence in superfluid neutron star interiors
(see Ref. [11]).

A. Generic precessing flows

The case of rotating columns in a fluid on which is acting
an external Coriolis force represents a simple example of
precessing flows. Mahalov [12] showed that the Coriolis force
alters the base flow by distorting circular streamlines of the
unperturbed rotating fluid columns. In particular, making the
analogy with the elliptical cylinder [13,14], Mahalov consid-
ered the basic inviscid flow

U = (�r)eϕ − 2(ε�r sin ϕ)e3 (1)

within an infinite cylinder precessing at

�p = ε�(cos ϕer − sin ϕeϕ ),

W a = ∇ × U + 2�p = 2�e3,

where � is the (constant) rotation rate, ε = �/‖�p‖ is the
Poincaré number which gives the relative frequencies of pre-
cessional to diurnal rotation and controls the strength of the
precessional forcing. A negative ε refers to retrograde preces-
sion (as is the case for planets). Here, W a denotes the basic
absolute vorticity and (er, eϕ, e3) is a direct orthonormal basis
associated with the cylindrical coordinate system (r, ϕ, x3)
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FIG. 1. A stratified rotating fluid column of radius r0 about the
x3 axis. The rotation rate is � = cste > 0. The flow streamlines
are then circles of radius r � r0 and of axis x3, x2

1 + x2
2 = r2, with

x1 = r cos ϕ, x2 = r sin ϕ, and ϕ = �t . The figure shows a slice of
this stratified rotating column between the planes x3 = z0 and x3 = z1

where z1 > z0. The unperturbed velocity profile, U = �reϕ , normal-
ized by �r0, is shown in the z1 plane for the streamline of radius r0.
The color variation of the streamlines (from red to blue) represents
the linear variation of the buoyancy scalar, Θ = N2x3, as a function
of x3, with N2 > 0 (stable stratification) where N is the Brunt-Väisälä
frequency. The gravity vector g is then given by g = −ge3, with
g > 0. Schematic of the unperturbed buoyancy scalar, Θ = N2x3, is
also shown.

(see Figs. 1 and 2). The inviscid component of the modified
flow (i.e., the basic flow Eq. (1), hereinafter referred to as
MHF) is an exact solution of the Euler equations.

A physical interpretation of the modified flow can be found
here, as also in Salhi and Cambon [15]: the misalignment
of the basic “rapid” angular velocity � ≡ (∇ × U )(ε = 0)
and the precessional one �p, treated as an external Coriolis
force, induces a gyroscopic torque. This torque can be exactly
balanced by the plane shear (i.e., the second term in the right
hand side of Eq. (1) or U s = −2εr� sin ϕe3). The induced
shear is emphasized in previous experimental studies (see,
e.g., Vladimirov and Tarasov [16], Wiener et al. [17], Mouhali
et al. [8]), not to mention its close connection with more com-
plex flow patterns. For instance, Wiener et al. [17] presented
experimental investigations of Taylor vortex flow under the
effect of an external Coriolis force. observing the transition to
turbulence for larger rotation rates. Mahalov [12] conjectured
that this transition is indicative of parametric (precessional)
instabilities developing within the flow.

In terms of a normal mode stability analysis, the distur-
bances superimposed to MBF take the form ∼ exp i(mϕ +
lx3 + ωt ), where m and l are integers), a local (preces-
sional) instability occurs when two inertial modes of the
system, (ω1, m1, l1) and (ω2, m2, l2), are resonantly coupled
by the underlying strained state, (ω, m, l ) = (0, 1, 0) (see
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FIG. 2. A stratified precessing fluid column: The rotating fluid
column shown in Fig. 1 is now rotating about the x1 axis with rate
�p = ε� where ε is the Poincaré number. The effect of the Coriolis
force induces a vertical mean shear that acts to balance the gyro-
scopic torque. The trajectory of a fluid particle is given by x2

1 + x2
2 =

r2 = cste, ϕ = �t and x3 = 2εr cos ϕ + cste = 2εx1 + cste. Since
the difference (x3 − 2εr cos ϕ) = (x3 − 2εx1) is time-independent,
the trajectory of a fluid particle is in the plane perpendicular to the
axis x∗

3 = (x3 − 2εx1)/
√

1 + 4ε2 = cste and it is an ellipse, (x∗
1 −

2εx∗
3 )2/(1 + 4ε2) + x∗2

2 = cste, where x∗
1 = (x1 + 2εx3)/

√
1 + 4ε2

and x∗
2 = x2 (see Sec. IIA2). The plane (x∗

1 , x∗
3 ) is obtained by a

rotation, of angle γ = − tan−1(2ε), of the plane (x1, x3) around the
x2 axis. The unperturbed velocity profile, U = �r(eϕ − 2ε sin ϕe3),
normalized by �r0, is shown in the (x∗

3 = z1) plane for the ellipse
having r0 as the semiminor axis and r0

√
1 + 4ε2 as the semi-

major axis. In describing its elliptic trajectory the fluid particle
moves upward when 0 � ϕ < π

2 or 3π

2 < ϕ � 0 and down when
π

2 < ϕ < 3π

2 . Therefore, in the case with precession each one of
the planes x∗

3 = cste is a plane of isodensity, so that Θ = N2x∗
3 =

N2(−2εr cos ϕ + x3) = N2(−2εx1 + x3). Schematic of the unper-
turbed buoyancy scalar, Θ = N2x∗

3 , is also shown. The unit vector
n = ∇Θ/‖∇Θ‖ aligns with the x∗

3 axis.

Refs. [12,18]),

ω1 − ω2 = 0, m2 − m1 = 1, l2 − l1 = 0.

We would like to point out that the only boundary condition
implemented in the study by Mahalov [12] consist in having
no flow through the boundaries. We also note that the (pre-
cessional) instability mechanism is here similar to the one
of the elliptical instability as conjectured by Malkus [19].
The term “elliptical instability” is the name given to the lin-
ear instability mechanism by which three-dimensional flows
can be generated in regions of two-dimensional, elliptical
streamlines [18]. Its mechanism is also one of resonance in
which a pair of normal modes of oscillation on the undistorted
circular flow become tuned to the underlying strain field (so
that, m2 − m1 = 2, see, e.g., Refs. [14,18]). Elliptical flow
(m = 2) and precessing flow (m = 1) are examples of a a class
of nonaxisymmetric rotating flows with exp(imϕ)-dependent
asymmetries.

The findings by Mahalov [12] for waves traveling in
the precessing infinite cylinder are consistent with those by
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Kerswell [4] for waves traveling in a rotating unbounded fluid
whose rotation axis is precessing. The undisturbed, steady
state considered by Kerswell consists of sheared circular
streamlines,

U = A·x, A = �

⎛
⎝0 −1 0

1 0 −2ε

0 0 0

⎞
⎠,

W a = 2�(2ε, 0, 1)T , (2)

where (x1, x2, x3) is a Cartesian coordinate system associated
to the direct orthonormal basis (e1, e2, e3) and T denotes
transpose. This basic velocity has been derived from the so-
called Poincaré solution, characterizing the response of an
inviscid fluid within a precessing, oblate spheroid.

The “unbounded” analysis by Kerswell [4] consists in the
use of perturbations in terms of Lagrangian Fourier modes
(sometime called Kelvin’s mode, ∼ exp ik(t )·x) where k(t )
is the time-dependent wave vector [20,21]), in agreement
with an unbounded, or extensional, base flow. For extensional
flows, the use of Fourier modes with time-dependent wave
vector, or Lagrangian Fourier modes, reflects the conservation
of the phase of the Fourier modes, or k·x = k0·x0, where
x0 refers to the Lagrangian position of the mean, or base-
flow, trajectory, with k0 its wave-vector counterpart (details
in Sagaut and Cambon [22]). More generally and perhaps
more explicitly, the zonal theory of Lifschitz and Hameiri
[23] implies the conservation of phase 
, or k·δx = k0·δx0

for a wave packet following any smooth base-flow trajectory,
with any base-flow gradient. In this case the wave-vector, as
the gradient of the phase, depends on both time and position.
In short, the wave-vector is moving for having a nonmoving
phase.

Kerswell’s “unbounded” analysis, which is in effect an
idealisation of a small scale perturbation evolving in the center
of a precessing spheroid, explored the local precessional insta-
bility confirming that, in this case, the effect of boundaries is
mostly secondary.

B. Stratified precessing flows

The effect of an axial stable density stratification on Taylor
columns has been previously investigated experimentally and
theoretically (see, e.g., Davies [24]). Caton et al. [25] studied
stability and bifurcations in a flow between two concentric
cylinders, with the inner one rotating, in the presence of
an axial stable density stratification (i.e., a stratified Taylor-
Couette flow). Hollerbach [26] investigated numerically the
instabilities of Taylor columns in a rotating stratified fluid,
considering a flow in a differentially rotating spherical shell,
with stable stratification imposed along the rotation axis.

Here we intend to extend Mahalov’s theoretical study by
including the effect of stratification. In the Boussinesq approx-
imation and without precession (ε = 0), we find that

U = �reϕ, (3a)

Θ ≡ −(g/ρ0) = N2x3, (3b)

n ≡ ∇Θ

‖∇Θ‖ = e3, (3c)

is a solution of the Boussineq-Euler equations [see Eq. (7)].
The flow described by these equations corresponds to un-
perturbed rotating columns with axial constant stratification
N2 (see Fig. 1). Here,  indicates the basic density, ρ0 a
fixed reference density, g the gravity acceleration, and Θn
the unperturbed buoyancy force per unit mass. For ε �= 0,

a correction to the basic flow Eq. (3) is needed to fulfill the
so called “admissibility” conditions (i.e., the base flow must
be a solution of the Boussinesq-Euler equations [27]). With-
out stratification, Mahalov [12] proposed a correction to the
basic velocity Eq. (3a) that yields the solution Eq. (1). In the
presence of stratification, in a similar fashion, we implement
a correction to the basic buoyancy scalar field that yields the
following solution (see Appendix A and Fig. 2),

Θ = N2(−2εr cos ϕ + x3), (4a)

n = 1√
1 + 4ε2

[−2ε(cos ϕer − sin ϕeϕ ) + e3]. (4b)

Accordingly, one finds that the base flow, coupling the basic
velocity described by Eq. (1) and the basic buoyancy scalar
described by Eq. (4), is an exact solution of the Boussinesq-
Euler equations [see Eq. (7)]. The presence of the additional
horizontal component of the mean density gradient, which
vanishes in the case without precession (ε = 0), is thereby
due to the gyroscopic torque as for the additional mean shear.
This point is one of the original results proposed in the present
study.

We note that in some recent studies, buoyancy forcing has
been taken into account together with precession. Wei and
Tilgner [28] considered a fixed uniform background radial
stratification in a spherical shell with a small stress-free inner
core (see also Ref. [29]). They found that stable stratification
can suppress possible precessional instabilities and becomes
relevant if the ratio of the Brunt-Väisälä frequency N to the
rotation rate � is near 1. However, unstable stratification
(N2 < 0) and precession can either stabilize or destabilize
each other at different precession rates.

C. Extended linear stability approach and beyond

Following the findings by Mahalov [12] and Kerswell [4],
as indicated previously, we transform the solution stemming
from Eqs. (1) and (4) into a Cartesian coordinate system,

U = A·x, A = �

⎛
⎝0 −1 0

1 0 0
0 −2ε 0

⎞
⎠, W a = 2�e3, (5a)

Θ = N2(−2εx1 + x3), (5b)

n = 1√
1 + 4ε2

(−2εe1 + e3), (5c)

and perform a stability analysis for the perturbations to that
base flow. Similarities and differences between the Kerswell’s
base flow and the Mahalov’s base flow are mentionned in
Sec. IIA3.

Perturbations to the rotating stratified flow, recovered here
at ε = 0, are propagating inertia-gravity waves with disper-
sion frequency,

ω1,2 = ±
√

ω2
r + ω2

g, (6)
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where ωr = ±2�·k/‖k‖ is the frequency of inertial waves
and ωg = ±N‖e3 × k‖/‖k‖ is the frequency of gravity waves.
The inertia-gravity waves resonant cases, i.e., those for which
ω = n� with n an integer number, characterize the onset of
linear instability, hence are analyzed in detail (see Sec. IV).

Here we introduce the framework of the present study,
where a base (or mean) flow is defined and the linear analysis
of the perturbations is implemented in a rather straightforward
manner for ε �= 0. In agreement with extensional base flows
with space-uniform gradients, perturbations are treated in
terms of Lagrangian Fourier modes instead of normal modes.

The class of flows considered in the exploration of the el-
liptical flow instability by Bayly [20] and Pierrehumbert [30],
was emphasized as “exact solutions” by Craik and Criminale
[21] when considering a single-mode disturbance, as in the
conventional stability analysis. However, the application to
the rapid distortion theory (RDT) allows to treat turbulence
at large Reynolds number with a similar linear analysis, when
initial fluctuations have a large continuous spectrum gather-
ing several modes. Of course, the “rapid” (short-time) limit
ought to be justified, since RDT solutions are no longer exact
solutions. Beyond RDT, wave turbulence theory and triadic
closures were developed to evaluate the explicit nonlinearity,
especially in the case of purely rotating flows, and purely
stratified flows, stable and unstable (for a review on closures
see Ref. [22].) Last but not least, the linear theory is often
used as building block of the fully nonlinear approach: for
instance, nonlinearity is implicitly present in the analysis of
regeneration cycles for the study of the shear flows stability,
when considering, for instance, the application to the stability
of accretion discs (see, e.g., Refs. [31,32]). In this last exam-
ple, the accretion disk is treated as a Taylor-Couette flow, and
the shearing sheet approximation [33] reduces the problem to
the study of a base flow with uniform S and � parameters,
similar to though simpler than Eq. (5).

Considering explicit nonlinearity, DNS have been carried
here in the same context of (statistically) homogeneous tur-
bulence (for fluctuations) under the effect of space-uniform
mean velocity gradients and body forces. The analysis of
the DNS runs is anticipated by the exploration of a largest
range of parameters through the linear analysis, being done
to identify the flow regimes which are more relevant for the
numerical investigation. In that respect, the precessing flow
described by Eq. (5) appears to be particularly suitable to
perform DNS of (statistically) homogeneous precessing tur-
bulence. Recent DNS studies (see Refs. [34,35]) have shown
that the precessional instability is saturated by nonlinear in-
teractions. Indeed, for an initially homogeneous isotropic
turbulence flow characterized, in the presence of a mean flow
Eq. (5a), it was found that the temporal evolution of the
turbulent kinetic energy Eκ occurs in two main phases associ-
ated with different flow topologies: (i) an exponential growth
characterizing three-dimensional turbulence dynamics and (ii)
nonlinear saturation regime during which Eκ remains almost
time-independent, the flow becoming quasi-two-dimensional.
A similar behavior is found in the recent DNS study of a
precessing magnetized turbulence by Salhi et al. [36].

Because of the close similarity between elliptical and pre-
cessional instabilities, it is useful to briefly report here some
results characterizing the effects of stratification in unbounded

elliptical flows. Miyazaki and Fukumoto [37] considered
an unbounded strained-vortex flow with stable stratification.
Among more general setups, they choose a very simple strati-
fication profile, i.e., with the density varying exponentially in
the x3 direction. This simplification admits a constant Brunt-
Väisälä frequency throughout the fluid domain. This points
to the fact that the resulting linear differential system for
the perturbations superimposed to the base flow, is the same
when considering either an exponential mean stratification or
a linear mean stratification. Miyazaki and Fukumoto [37] have
found that the growth rates for the elliptical instability were
invariably reduced. Note that the elliptical instability of strat-
ified vortices has been addressed as well in previous studies
(see, e.g., Refs. [37–40]). Recently, Singh and Mathur [41]
have studied the effect of the Prandtl number (Pr = νv/κ, i.e.,
the ratio of the kinematic viscosity to the thermal diffusivity)
on the elliptical instability, under stable stratification. They
showed that Pr �= 1 influences in a nontrivial way the inviscid
instabilities reported by Miyazaki and Fukumoto [37], and
also introduces a new branch of oscillatory instability that is
not present at Pr = 1. In this study we focus on the case Pr = 1
to reduce the mathematical complexity of the asymptotic anal-
ysis.

Concerning the effect of precession on the resonant cases
of inertia-gravity waves, there are similarities with and differ-
ences from previous work on the effect of stratification on the
elliptical instability, as will be shown in the present study. The
paper is organized as follows: the Boussinesq equations for
the perturbations to the base flow in physical and Fourier
spaces are presented in Sec. II; by means of potential vor-
ticity (PV; see Ref. [42]), which is Lagrangian invariant for
a nondiffusive fluid, we then derive two-dimensional Floquet
systems governing the evolution of the Fourier amplitudes in
the linear regime; resonant cases of inertia-gravity waves are
then analyzed in Sec. III; the stability analysis of the Floquet
systems is presented in Sec. IV, with analytical derivations
based on perturbation techniques (see Refs. [43,44]) being
implemented together with the numerical computations, and
viscosity effects (for Pr = 1) as well as the effect of unsta-
ble stratification (N2 < 0) being briefly addressed; Sec. V is
finally devoted to concluding remarks.

II. MATHEMATICAL FORMULATION

A. The Boussinesq equations

We consider a stratified unbounded inviscid and non diffu-
sive fluid. The effects of viscosity (νv ) and thermal diffusivity
(κ ), such that νv = κ, so that the Prandtl number Pr = νv/κ

is unity, will be briefly addressed at the end of Sec. IV D.
The density variations are introduced using the Boussinesq
approximation for simplicity.

1. Governing equations

Boussinesq’s equations written in a frame rotating uni-
formly around a fixed axis are of the form (see Ref. [45])

∇·ũ = 0, (7a)

Dt ũ = −∇ p̃ − 2�p × ũ + ϑ̃n, (7b)

Dt ϑ̃ = 0, (7c)
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where, Dt (·) ≡ (∂t + ũ·∇)(·) denotes the material derivative
where t denotes time and �p denotes the rotation vector of
the reference frame. Here, p̃ being the total pressure (includ-
ing the centrifugal potential) divided by the constant density,
ρ0. The buoyancy scalar ϑ̃, which is re-scaled as an accel-
eration, is proportional to the gravitational acceleration and
to the background density (or temperature) gradient. In the
precessing frame (e1, e2, e3) defined in Sec. I, the expression
of the unit vector n is given by Eq. (5c). Therefore, without
precession (ε = 0), n aligns with the solid-body rotation axis,
but, in the presence of precession (ε �= 0), it deviates from this
rotation axis at an angle γ = − tan−1(2ε) (see also Fig. 1).

We denote by

�̃κ = ω̃a·∇ϑ̃ (8)

the potential vorticity (PV, see Ref. [42]), which is a La-
grangian invariant, i.e., Dt�̃κ = 0 for a non diffusive fluid.
Here, ω̃a = ∇ × ũ + 2�p being the instantaneous absolute
vorticity,

2. Mahalov’s base flow

The solutions of system Eq. (7) are conveniently de-
composed into a ’basic flow’ (U , P,Θ ) and a ’disturbance’
(u, p, ϑ ),

ũ = U + u, p̃ = P + p, ϑ̃ = Θ + ϑ. (9)

The base flow mainly considered in the present study, espe-
cially for analytical developments, is the Mahalov’s base flow,
which was introduced in Sec. I, and also reported here, for the
sake of clarity,

U = A·x, A = �

⎛
⎝0 −1 0

1 0 0
0 −2ε 0

⎞
⎠, W a = 2�e3, (10a)

Θ = N2(−2εx1 + x3), (10b)

n = 1√
1 + 4ε2

(−2εe1 + e3). (10c)

It is informative to determine and to discuss the trajectory
of a fluid particle for the Mahalov’s base flow (MBF). Let
(x01, x02, x03) and (x1, x2, x3) be the positions of a fluid par-
ticle at times t = 0 and t > 0, respectively. The trajectory
of a fluid particle is obtained by integrating the equation
U = dx/dt = A · x, so that

x1(τ ) = r0 cos(τ + α), (11a)

x2(τ ) = r0 sin(τ + α), (11b)

x3(τ ) = x30 + 2ε(x1 − x10), (11c)

where τ = �t is a dimensionless time, r0 =
√

x2
10 + x2

20 and
α = tan−1(x20/x10). The trajectory of a fluid particle is then
an ellipse, as shown below (see also Fig. 2). Equation (11c)
indicates that the difference (x3 − 2εx1) is time-independent.
Therefore, the trajectory is in a plane perpendicular to the axis
x∗

3 defined by

x∗
3 = 1√

1 + 4ε2
(x3 − 2εx1). (12)

To find the planes perpendicular to the axis x∗
3 , we use the

fact that this axis is in the plane (x1, x3), and we then de-
termine the axis x∗

1 belonging to this plane and which is
perpendicular to the axis x∗

3 . The result is

x∗
1 = 1√

1 + 4ε2
(x1 + 2εx3). (13)

The plane (x∗
1, x∗

3 ) is obtained by a rotation, of angle
γ = − tan−1(2ε), of the plane (x1, x3) around the x2 axis.
Therefore, in terms of the variables (x∗

1, x∗
2, x∗

3 ), Eq. (11) can
be rewritten in the following form

(x∗
1 − 2εx∗

3 )2

r2
0 (1 + 4ε2)

+ x∗2
2

r2
0

= 1 with x∗
3 = cste, (14)

which clearly shows that the trajectory of a fluid particle
is an ellipse. The ellipse has r0 as the semiminor axis and
r0

√
1 + 4ε2 as the semimajor axis (see Fig. 2).

3. Kerswell’s base flow

Although there is a close similarity between the MBF and
the Kerswell’s base flow (KBF), some differences between
these two base flows can be pointed out. Recall that the KBF
[given by Eq. (5)] is derived from the so-called Poincaré solu-
tion, characterizing the response of an inviscid fluid within a
precessing, oblate spheroid [4].

The KBF is with horizontal shear (its cross-gradient direc-
tion is normal to both main and precessing angular velocities)
and the absolute vorticity vector W a = 2�(−2εe1 + e3) de-
viates from the main rotation axis. The flow streamlines are
circles that are sheared across each other (see also Kerswell
[4]),

(x1 + 2εx3)2 + x2
2 = r2

0ε, x3 = x30, (15)

where r0ε =
√

(x10 + 2εx30)2 + x2
20 . However, the MBF is

with vertical shear (its cross-gradient direction is aligned with
the main angular velocity) and the absolute vorticity vector
W a = 2�e3 aligns with the main rotation axis. The flow
streamlines are ellipses [see Eq. (14)]. However, even with
these differences, a linear stability analysis in terms of Fourier
modes gives the same result for the two basic flows if we
limit ourselves to the first order in ε. Indeed, by applying the
coordinate transformation described by Eqs. (12) and (13) to
the MBF, we obtain

U = A·x, A = �√
1 + 4ε2

⎛
⎝0 −(1 + 4ε2) 0

1 0 −2ε

0 0 0

⎞
⎠,

with Θ = N2x∗
3 and n = e∗

3. When retaining only the terms at
leading order of ε, we recover the KBF described by Eq. (2).
Obviously, differences between the two base flows can appear
for instabilities of order n � 2. In the present study, we only
consider Mahalov’s base flow for the sake of brevity.

B. Perturbed system

1. Linearized system in physical space

We substitute the solutions Eq. (9) into the system Eq. (7)
and linearize. Linearization is discussed in Sec. I C; it is not
readily justified by the fact that the flow disturbances are
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very small with respect to the base flow. Thus, we expect
our analysis to break down when the disturbances become so
large that nonlinear effects become important. The resulting
perturbed equations are

Dt u = −∇p − 2�p × u − (u·∇)U + ϑn, (16a)

Dtϑ = −(∇Θ )·u = −N2
√

1 + 4ε2 n·u, (16b)

together with the condition that u is solenoidal, i.e., ∇·u = 0.

As for the PV linear part, it takes the form

�κ = 2�∂x3ϑ − 2εN2(∇ × u)1 + N2(∇ × u)3. (17)

2. Time-dependent wave vector

The disturbances are expressed in terms of plane waves, for
which the direction and the speed of propagation depend on
time (see Refs. [20,21], with a extended review in Ref. [22]),

[u, p, ϑ](x, t ) = [û, p̂, ϑ̂](k, t ) exp[ix·k(t )], (18)

where i2 = −1. Accordingly, the material derivative of the
fluctuating velocity can be rewritten as

Dt u =
(

∂t + Uj
∂

∂x j

)
[û(k, t ) exp {ix·k(t )]},

with Uj = Ajmxm, so that

Dt u = {∂t û + i[(dt k j )x j + Ajmk jxm]û} exp [ix·k(t )],

or equivalently,

Dt u = {∂t û + i[(dt k + AT k)·x]û} exp[ix·k(t )].

To remove the explicit dependence on x in the resulting equa-
tions for the Fourier amplitudes û, p̂, ϑ̂, one has to ensure
that k(t ) varies in time according to the eikonal equation (see
Refs. [21,22]),

dt k = −AT ·k, (19)

where dt (·) ≡ d (·)/dt . We substitute the expression of A
given by Eq. (10a) into the eikonal equation, we obtain

dt k1 = −�k2, dt k2 = �k1 + 2ε�k3, dt k3 = 0. (20)

This amounts to following characteristic lines of the base flow,
although expressed in spectral variables (details in Ref. [15]).
We integrate system Eq. (20):

k1 + 2εk3 = (k10 + 2εk30) cos τ − k20 sin τ, (21a)

k2 = (k10 + 2εk30) sin τ + k20 cos τ, (21b)

k3 = k30, (21c)

where τ = �t being a dimensionless time, k j0 ( j = 1, 2, 3)
denotes the initial wave vector component. For convenience,
we introduce the wave number kp and the angle φ defined as
follows:

k10 + 2εk30 = kp cos φ, k20 = kp sin φ,

so that

k1 + 2εk3 = kp cos(τ + φ), (22a)

k2 = kp sin(τ + φ), (22b)

k3 = k30. (22c)

It follows that the wave-vector trajectories are circles with
sheared centers (i.e., they are sheared across each other so that
the line joining their centers is not now perpendicular to their
plane, see Ref. [4]), where (k1 + 2εk3)2 + k2

2 = k2
p and k3 =

k30. For purposes of studying stability, we may set φ = 0.

This is easily seen by making the substitution �t ′ = �t + φ,

which eliminates φ from the equation.

3. Toroidal, poloidal, and buoyancy modes

Substituting the plane waves solution Eq. (18) into the
system Eq. (16) and taking into account the eikonal Eq. (19),
we obtain

dt û = −i p̂k − 2�p × û − (∇U )·û + ϑ̂n, (23a)

dt ϑ̂ = −N2
√

1 + 4ε2 n·û, (23b)

together with k·û = 0. The use of the later condition allows
one to eliminate the Fourier amplitude of fluctuating pressure
and to reduce the above fourth order differential system to a
third order one.

Alternatively, one may use the following orthonormal ba-
sis:

e(3) = k
k
, e(1) = k × e3

k⊥
, e(2) = e(3) × e(1), (24)

in which the condition k·û = 0 is satisfied by construction, so
that, û = u(1)e(1) + u(2)e(2), where

u(1) = k2

k⊥
û1 − k1

k⊥
û2, u(2) = − k

k⊥
û3, (25)

and k2
⊥ = k2

1 + k2
2 . The two components u(1) and u(2) are re-

spectively called toroidal and poloidal modes (see Ref. [22]).
The buoyancy mode u(3) = ϑ̂/� is re-scaled as a velocity.
Therefore, the resulting linear differential system for the
modes (u(1), u(2), u(3) ) reads (see Appendix B1)

dτ u(1) =
(

2
k3

k
+ 2ε

k1k

k2
⊥

)
u(2) − 2ε√

1 + 4ε2

k2

k⊥
u(3),

dτ u(2) = −
(

2
k3

k
+ 2ε

k1

k

k2
3

k2
⊥

)
u(1) − 2ε

k2k3

k2
u(2)

− 1√
1 + 4ε2

(
k⊥
k

+ 2ε
k1

k

k3

k⊥

)
u(3),

dτ u(3) = 2εN 2 k2

k⊥
u(1) + N 2

(
k⊥
k

+ 2ε
k1

k

k3

k⊥

)
u(2), (26)

or equivalently, in a matrix form, by introducing the funda-
mental matrix �3(τ ) with �3(0) being the unit matrix I3,

dτ�3 = D3·�3. (27)

Note that the determinant |�3| of the matrix �3, takes the
form

|�3| = exp

[∫ τ

0
Tr D3(s)ds

]
= k(0)

k(τ )
,

where (Tr D) denotes the trace of the matrix D. Therefore,
|�3| reduces to unity at τ = 2π since the wave vector k is
2π− periodic. Consequently, the product of the eigenvalues
of the monodromy matrix M3 = �3(2π ) is unity.
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By using a fourth-order Runge-Kutta-Gill method we have
determined the matrix M3 and its eigenvalues (called Floquet
multipliers) for several values of the parameters ε, N and
μ (see below). The numerical results indicate that one Flo-
quet multiplier λ3 (say) is unity, and hence, the others being
complex conjugates of each other or real reciprocals since
|M3| = 1. More details on the stability of system Eq. (26) is
given in the next section.

For system Eq. (26), there are three dimensionless param-
eters, namely,

ε = �p/�, N = N/�, and μ = k3/

√
k2

p + k2
3 , (28)

where N measures the strength of stratification to rota-
tion. Recall that both the wave numbers k3 and kp are
time-independent. Without precession (ε = 0), the angle
cos−1(μ) is the angle between the wave vector and the
solid-body rotation axis. Note that the mode with kp =√

(k1 + 2εk3)2 + k2
2 = 0 is stable provided ε < 0.50 (see

Appendix B2).

C. Reduced Floquet systems

Thanks to Eq. (17), the Floquet system Eq. (26) can be
further reduced. Indeed, the fact that PV is a Lagrangian
invariant [see Eq. (17)] allows one to express the buoyancy
mode in terms of the toroidal and poloidal ones if k3 �= 0, or
to express the toroidal mode in function of the poloidal one if
k3 = 0,

2k3u(3) − N 2

[
k⊥

(
1 + 2ε

k1k3

k2
⊥

)
u(1) − 2εk2

k

k⊥
u(2)

]
= �̂κ

�
,

(29)
where �̂ is the spectral counterpart of PV. Consequently, we
study separately the stability of the two cases k3 = 0 and
k3 �= 0.

In the case where k3 �= 0, we deduce from Eq. (29) the
expression of u(3) in terms of u(1) and u(2),

u(3) = N 2

2

(
k⊥
k3

+ 2ε
k1

k⊥

)
u(1) − εN 2 k

k3

k2

k⊥
u(2) + �̂κ

k3�
,

and we substitute it into the first two equations of system (26),
we obtain the following reduced two-dimensional inhomoge-
neous system,

dτ û = D·û + ϕ̂, (30)

where

D11 = − εN 2

√
1 + 4ε2

(
k2

k3
+ 2ε

k1k2

k2
⊥

)
, (31a)

D12 = 2
k3

k
+ 2ε

k1k

k2
⊥

+ 2ε2N 2 k

k3

k2
2

k2
⊥

, (31b)

D21 = −2
k3

k
− 2ε

k1

k

k2
3

k2
⊥

− N 2

2
√

1 + 4ε2

(
k2
⊥

k3k
+ 4ε

k1

k

)
,

(31c)

D22 = −D11 − 2ε
k2k3

k2
= −D11 − 1

k
dτ k. (31d)

The inhomogeneous term in Eq. (30) takes the form

ϕ(1) = − 2ε√
1 + 4ε2

k2

k⊥

�̂κ

k3�
, (32a)

ϕ(2) = − 1√
1 + 4ε2

(
k⊥
k

+ 2ε
k1

k

k3

k⊥

)
�̂κ

k3�
, (32b)

and it can be seen as a time-varying forcing excitation. The
linear system Eq. (30) has the properties D(τ + T ) = D(τ )
and ϕ̂(τ + T ) = ϕ̂(τ ), where T = 2π is the period common
to both the matrix D and the vector ϕ̂. Floquet theory does
not address stability of the inhomogeneous system described
by Eq. (30), where the “forcing excitation” ϕ̂(τ ) is present.
However, the T -periodic nature of ϕ̂(τ ) allows an extension
to the theory (see Slane and Tragesser [46]). Following the
study of Slane and Tragesser [46], it is shown that the basic
behavior of the homogeneous system,

dτ û = D·û, (33)

does not change with the addition of the term ϕ̂(τ ). In other
words, for purposes of studying stability, one may set �̂κ = 0,

so that ϕ̂ = 0.

We denote by �(τ ) any fundamental matrix solution of the
homogeneous system Eq. (33), where �(0) = I2. According
to Floquet-Lyapunov theorem, � is expressible in the form
(see, e.g., Ref. [47]),

�(τ ) = F(τ ) exp (Kτ ), (34)

where F(τ ) is a nonsingular continuous 2π -periodic 2 × 2
matrix-function (whose derivative is an integrable piecewise-
continuous function) and K is a constant matrix. Also the
determinant of � is unity at τ = 2π, |�(2π )| = 1. It follows
that whenever λ is an eigenvalue of the monodromy matrix,
M = �(2π ), so also are its inverse λ−1 and its complex
conjugate λ∗ (see also Ref. [44]).

Consequently, in the stable case, eigenvalues of M lie on
the unit circle: each one of two multipliers is not identically
one, but has both real and imaginary parts with magnitude
equal to one, and is semisimple, λ1,2 = λ1r ± iλ1i with λ2

1r +
λ2

1i = 1. In that case, the solution to the inhomogeneous sys-
tem Eq. (30) after n time periods, where n is an integer, takes
the form

û(2nπ ) = Mnû(0) +
[

n∑
�=1

M�

] ∫ 2π

0
�(τ )−1ϕ̂(τ )dτ, (35)

and is bounded as n increases to infinity [46].
In counterpart, if, as parameters change, an eigenvalue of

M is at the onset of instability, then it must have multiplic-
ity two, i.e., λ1 = λ2 = ±1. Thus a necessary condition for
the onset of instability of system Eq. (33) is a resonance
where two Floquet Floquet characteristic exponents, σ1,2 =
(log λ1,2/(2π ), coincide (see Ref. [44]). There is instability
whenever 
σ1,2 > 0 that is, whenever

|Tr M| = |λ1 + λ2| = ∣∣λ1 + λ−1
1

∣∣ > 2. (36)

For these two cases (i.e., when λ1 = λ2 = ±1 or
|λ1 + λ−1

1 | > 2), the inhomogeneous solution û(2nπ ) is
unbounded as as n increases to infinity [46].
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Accordingly, for purposes of studying stability, one may
set �̂κ = 0. The same conclusion can be drawn from compu-
tations. Indeed, for a given of the triplet (μ, ε,N ), the systems
Eqs. (26) and (33) yields the same regions of instability.

III. RESONANT INERTIA-GRAVITY WAVES

In this section, we discuss the resonant cases of inertia-
gravity waves which characterize the onset of linear instabil-
ity. At ε = 0, the matrix D in system Eq. (30) reduces to

D0 ≡ D(ε = 0) =
[

0 2μ

−2μ − 1
2N 2μ−1(1 − μ2) 0

]
(37)

and admits two distinct eigenvalues σ1,2 associated to the two
frequencies, ω1,2 = −i�σ1,2, of inertia-gravity waves,

ω1,2 = ±
√

ω2
r + ω2

g = ±�
√

4μ2 + N 2(1 − μ2), (38)

where

ωr = ±2� cos(�, k) = ±2�μ, (39a)

ωg = ±N sin(n, k) = ±N
√

1 − μ2 (39b)

are the frequencies of inertial and internal gravity waves,
respectively.

Disturbances induced by the unstratified flow with circular
streamlines (so that, ε = 0 and N = 0), are inertial waves with
frequency ωr . With additional stable vertical stratification
(N2 > 0), there are inertia-gravity waves propagating with
frequency ω1,2 = ±

√
ω2

r + ω2
g .

The resonant cases of inertia-gravity waves are those pa-
rameter values (μ,N ) such that ω1 − ω2 = n�, where n is
an integer. Since ω2 = −ω1 [see Eq. (38)], the resonant cases
are then characterized by

�−2ω2
1 = (4 − N 2)μ2 + N 2 = n2

4
. (40)

The condition Eq. (40) for resonance readily extends the one
by Bayly [20], foreshadowed in the Cambon’s thesis (1982,
details in Ref. [22]), for basic elliptical flow instability. Note
that π/� is the typical time (period) for a wave packet to
run the closed elliptical streamline, in the limit of vanishing,
but nonzero, ε; in the same limit, this period characterizes
the periodic alignment of the fluctuating vorticity with the
mean (weak) strain, as 2π/ω. The condition can be written
4�μ = n� from the seminal study [20], that immediately
yielded μ = n/4, giving the origin of angle-dependent insta-
bility tongues at vanishing ε. The main (harmonic instability)
case of n = ±2, μ = ± 1

2 was the easiest to display, numeri-
cally or experimentally.

Because ω2
1(−μ) = ω2

1(μ) and ω2
1(−n) = ω2

1(n), we only
consider, without a loss of generality, 0 � μ � 1 and n ∈ N.

Relation Eq. (40) implies that

2N � n < 4 if 0 < N < 2,

n = 4 if N = 2 or if μ2 = 1,

4 < n � 2N if 2 < N .

Therefore, the resonant cases of order n = 1 exist for N �
0.5, those of order n = 2 exist for N � 1, while those of order

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-1 -0.5  0  0.5  1

n=1

n=2

n=3

n=4

n=5

n=6

n=7

N
/Ω

μ

FIG. 3. The first seven resonant cases of inertia-gravity waves
according to the dispersion relation Eq. (40). For fixed N , the
intersection of the horizontal straight line with the curve N (μ, n)
determines the resonant cases.

n = 3 exist for N � 1.5, implying that

μ = 1

2

√
n2 − 4N 2

4 − N 2
� n

4
, n = 1, 2, 3, and N � 3

2
.

(41)
Thus, for n = 1 (respectively, n = 2 or n = 3) the ratio μ

changes from 0.25 (respectively, 0.5 or 0.75) at N = 0 to
0 as N = 0.5 (respectively, N = 1 or N = 1.5). Resonant
cases of order n = 4 exist for all values of N implying that
0 � μ � 1 if N = 2 or μ = 1 otherwise (see Fig. 3).

When 1.5 < N � 2.5 there are only resonant cases of or-
der n = 4. In counterpart, when N > 2.5, only resonant cases
of order greater than or equal to 4 exist, implying that μ = 1
for n = 4, or

μ = 1

2

√
4N 2 − n2

N 2 − 4
< 1 (42)

for 4 < n � 2N . Figure 3 shows the variation of N versus
μ. For fixed N , the intersect of the horizontal straight line
with the curve N (μ, n) determines the resonant cases (at least,
resonant cases of order n = 4 exist).

Note that in the purely stratified case (i.e., � = 0) the
modes with μ = ±1 (so that ωg = 0) are called “slow” modes.
In the case with N = 0 (the purely rotating flow), the “slow”
modes correspond to two-dimensional modes with μ = 0. For
N = 2� the group velocity

vg = ∇kω1(k) = (4�2 − N2)

ωk4
[k × (k3e3 × k)]

is zero, signifying that, in the linear limit, the wave energy
does not propagate. We also note that the regime of rapid
rotation and strong stratification with N ≡ N/� > 2 is most
relevant to the atmosphere and ocean (see Ref. [48]) and for
N < 2 convective columns are likely to form. Although the
present linear analysis concerns only the dynamics of a single
mode k which cannot interact with itself, it is instructive to
note that, nonlinear resonant triad interactions, which require
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FIG. 4. Inviscid instabilities on the (ε,N = N/�) plane for the
stratified precessing flow. Let σmn with n = 1, 2, 3, 4 be the maxi-
mal growth rate of the instability of order n over 0 � μ � 1). The
figure displays max(σm1, σm2, σm3, σm4) determined numerically as a
function of the parameters ε and N . The white band between N =
1.5 and N = 2 corresponds to the case where there is no instability,
in agreement with the analysis presented in Sec. III. In counterpart,
for 0.5 < N < 1.5 or 2 � N � 2.6, the white areas correspond to
very small values (< 10−8) of the maximal growth rate.

that the interacting modes k, p, and q form a triangle and
ω1(k) + ω1(p) + ω1(q) = 0 where ω is given in Eq. (38), can-
not occur for 1 � N � 4 (see Ref. [49]). For the later range
(1 � N � 4), quasigeostrophic (QG) motions are expected to
dominate the dynamics of rotating stratified turbulence, while
the strength of the waves is weaker (see, e.g., Refs. [50,51]).

IV. STABILITY ANALYSIS

In this section, we investigate the destabilizing resonant
cases of precessing inertia-gravity waves. Our analysis is
based on numerical computations and on an asymptotic anal-
ysis to leading order in ε. The asymptotic analysis to leading
order in ε is performed by extending analytical techniques de-
veloped by Lebovitz and Zweibel [44]. For the sake of clarity,
all the asymptotic calculations are reported in Appendix C.
Here we only state the results.

In Fig. 4, we show the continuous variation of the dominant
inviscid instability. Let σmn with n = 1, 2, 3, 4 be the maximal
growth rate of the instability of order n. The figure displays
max(σm1, σm2, σm3, σm4) determined numerically as a function
of the parameters ε and N . The grid consists of 101 points
evenly distributed in the interval 0 � ε � 0.25 and 361 points
evenly distributed in the interval 0 � N � 2.6). The fact that
Fig. 4 is divided into horizontal bands can be explained as
follows.

In the range 0 < N < 0.5, the instabilities of order n =
1, 2, 3 exist but it is the subharmonic instability (n = 1) which
is the strongest: its maximum growth rate is strictly greater
than that of the other two instabilities as shown in Fig. 5,
so that, maxn=1,2,3(σnm) = σm1. Figure 5 shows σmn with n =
1, 2, 3, 4 versus N for ε = 0.25.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.5  1  1.5  2  2.5

σ m
n

N/Ω

ε= 0.25,  n=1, σm1
n=2, σm2
n=3, σm3
n=4, σm4

FIG. 5. Destabilizing resonant cases of order n = 1, 2, 3, 4. The
figure shows the maximal growth rate (σmn) of each one of these four
unstable cases versus N for ε = 0.25.

In the range 0.5 � N � 1 the subharmonic instability is
suppressed by the stratification and only the instabilities of
order n = 2, 3 exist, but the growth rate, σn2 of the harmonic
instability (n = 2) is strictly greater than that of the instability
of order n = 3 (see Fig. 5), so that, maxn=1,2,3(σnm) = σm2.

In the range 1 < N < 1.5, the harmonic instability (n =
2) is also suppressed and only the instability of order n = 3
exists, so that, maxn=1,2,3(σnm) = σm3.

The white band corresponds to the case where 1.5 � N <

2 for which there is no instability, in agreement with the
analysis presented in Sec. III which indicates that there is no
resonant cases of inertia-gravity waves for 1.5 � N < 2.

The instability occurring for 2 � N � 2.6, is weaker
than those observed for 0 � N � 1.5. For convenience, we
denote by D1, ...,D5 the five domains of Fig. 4: those
for which 0 � N � 0.5, 0.5 � N � 1, 1 � N � 1.5, 1.5 �
N � 2, and 2 � N � 2.6, respectively.

A. Subharmonic instability

The results yielded by the asymptotic analysis to leading
order in ε (see Appendix C) allows us to characterize the
effects of stable stratification on the subharmonic instability
(i.e., the one resulting from the resonant case of order n = 1).
The asymptotic analysis, as well as numerical computations,
indicate that the precessional subharmonic instability occurs
for 0 � N < 0.5 and gets suppressed at N = 0.5.

According to the asymptotic analysis, for a given value
of N , the region in the (μ, ε) plane where the subharmonic
instability occurs is typically a wedge with apex at a point
(0, μ0) such that [see Eq. (41) with n = 1]

μ0 = 1

2

√
1 − 4N 2

4 − N 2
� 1

4
, (43)

and boundaries

μ = μ0 + ν±ε, (44)

where the slopes ν± are [see Eq. (C23) in Appendix C3]

ν± = ±5
√

15

64

(
1 − N 2

4

)− 3
2

. (45)
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FIG. 6. Destabilizing resonant case of order n = 1 (i.e., the sub-
harmonic instability). The figure shows the instability band in the
(ε, μ) plane for N = 0.4. The lines correspond to the results yielded
by the asymptotic analysis [see Eq. (44)]. Symbols represent the
numerical results.

We no longer need the designation μ0 and, hereinafter, use the
symbol μ in its place, except in Appendix C.

The subharmonic instability has a bandwidth (ν+ − ν−)ε
that is, for given ε and N , the length of the μ interval
for which the unperturbed configuration is unstable (see
Ref. [44]). The maximal growth rate σm1 of the subharmonic
instability is [see Eqs. (C22) and (C23) in Appendix C3]

σm1 = ε
5
√

15

8

√
1 − 4N 2

(4 − N 2)
. (46)

Without stratification, N = 0, the subharmonic instabil-
ity band in the (μ, ε) plane emanates from the point (μ =
0.25, 0) with maximal growth rate σm1 = (5

√
15/32)ε as sug-

gested by Eq. (46) (see also Refs. [4,15]).
When stratification is not zero, the point of the μ axis at

which occurs the subharmonic instability moves to the left
as N (< 0.5) increases, so as it reaches to the point (0,0) at
N = 0.5. Figure 6 shows the instability band in the (ε, μ)
plane for N = 0.4 As it can be seen, there is an expected
agreement between Eqs. (44) and (45), especially for ε < 0.2.

We note that the the bandwidth of the subharmonic instability
does not substantially change when N increases (0 � N <

0.5). For this, here we only show the region of the subhar-
monic instability in the (ε, μ) plane (see Fig. 6) determined at
N = 0.4.

In counterpart, the maximal growth rate σm1 is drastically
reduced as N increases, so as σm1 = 0 at N = 0.5. In other
words, stable stratification acts in such a way as to make the
subharmonic instability less efficient so as it disappears when
N � 0.5. In Fig. 7, we plot the maximal growth rate σm1

normalized by ε versus N � 0.5. The numerical data reported
in Fig. 7 correspond to all the (7070) points of the domain
0 � ε � 0.25 and 0 � N � 0.5 in Fig. 4. We observe that
the numerical results well follows the relation Eq. (46) except
near N = 0.5. This is due to the fact that, near N = 0.5, the
subharmonic instability becomes weaker than the harmonic
instability (i.e., the one corresponding to the destabilizing
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FIG. 7. Destabilizing resonant case of order n = 1. The fig-
ure shows the maximal growth rate σm1 normalized by ε versus
N ≡ N/�. The line corresponds to Eq. (46) yielded by the asymp-
totic analysis. Symbols represent all the points (7070 points) of the
domain 0 � ε � 0.25 and 0 � N � 0.5 in Fig. 4.

resonant case of order n = 2) as explained as follows. With
the help of the dispersion relation [see Eqs. (41) and (42)], in
the sense that it allows us to localize the point of μ axis at
which emanates the instability, we have determined numeri-
cally the maximal growth rate σmn of each of instabilities of
order n = 1–4.

The numerical results indicate that, for 0 < N � 0.48, σn1

remains greater than σn2, signifying that the subharmonic
instability is the strongest. However, near N = 0.5, σn2 be-
comes greater than σn1 and the instability of order n = 2
becomes the strongest, as shown by Fig. 5.

B. Destabilizing resonant cases of order n = 2, 3, 4, 5

The investigation of the destabilizing resonant cases of
order n > 1 is based on the numerical computations per-
formed for 101 (respectively, 361) values evenly distributed
in the interval 0 � ε � 0.25 (respectively, 0 � N � 2.6), as
already indicated. This implies that n = 2, 3, 4, 5 according to
relations Eqs. (41) and (42) given in the Sec. III. Note that the
destabilizing resonant cases of order n > 5, which can occur
for N � 3, are likely to be weak and difficult to spot.

The instability resulting from the resonant case of or-
der n = 2 (sometimes called harmonic instability) exists for
0 � N � 1. In the range 0 � N � 0.48, the subharmonic
instability remains weaker than the subharmonic one, while
in the range 0 � N � 0.5 it becomes the strongest. The point
of the μ axis at which emanates this instability is given by
Eq. (41) with n = 2 : without stratification (N = 0), it em-
anates from μ = 0.5, and at N = 1 it emanates from μ = 0.

Recall that, at k3 = 0 so that μ = 0, the frequency of inertia-
gravity waves is equal to the Brunt-Väisälä frequency N. In
that case (k3 = 0), the resonant case of order n = 2 is unstable
near N = 1 (see the next section)

In Fig. 8, we plot the maximal growth rate of this insta-
bility σm2 normalized by ε2 versus N . The numerical data
reported in Fig. 8 correspond to all the points of the domain
0 � ε � 0.25 and 0.5 � N � 1.03 in Fig. 4. As it can be
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FIG. 8. Destabilizing resonant cases of order n = 2 (i.e., har-
monic instability). The figure shows the maximal growth rate (σm2)
of the instability normalized by ε2 versus N for 0 � ε � 0.25.

seen, some of the points for which 0 � ε � 0.01 are not
correlated and show an important disparity. They correspond
to the white subdomain (for which the maximal growth rate is
very weak) of the domain D2 in Fig. 4. The behavior of the
correlated points indicates that σm2/ε

2 ≈ 1 at N = 0.5 and
decreases as N increases so as, it takes the value σm2/ε = 0.5
at N = 1, and after, it decreases very quickly and reach
zero, σm2/ε

2 ≈ 0, at N ≈ 1.03. The behavior of σm2/ε
2 near

N = 1 could be due to the fact that, at k3 = 0, the resonant
case of order n = 2 is destabilizing where its maximal growth
rate is found as σm2/ε

2 = 0.5 (see the next section). The
destabilizing resonant case of order n = 2 gets suppressed by
stable stratification at N ≈ 1.03 and completely disappears
beyond this threshold.

In the range 1 < N < 1.5, only the instability of order
n = 3 survives to the effect of stable stratification. Without
stratification, this instability emanates from the point μ =
0.75 of the μ axis. In the presence of stratification, the point
from which emanates this instability moves to the left to reach
to μ = 0 at N = 1.5 [see Eq. (41)].

In Fig. 9, we plot σm3/ε
3 versus 1 � N � 1.5. The nu-

merical data reported in Fig. 9 correspond to all the points
of domain 3 of Fig. 4. It appears that some points among
those for which 0 � ε � 0.075 are not correlated and are
very scattered in the diagram (N , σm3/ε

3), and correspond
to the white subdomain of the domain 3 of Fig. 4. The points
for 0.075 � ε � 0.25 seem to be correlated. The behavior of
these ’correlated’ points indicates that σm3/ε

3 ≈ 1.3 at N ≈
1, and decreases as N increases to reach zero at N = 1.5.

At k3 = 0, the resonant case of order n = 3, which occurs
for N = 1.5 [see Eq. (41)], is not destabilizing (see the next
section). Therefore, the destabilizing resonant case of order
n = 3 gets suppressed at N = 1.5 and does not exist beyond
this threshold (N = 1.5).

In the range 1.5 � N < 2, there are no resonant cases
of inertia-gravity waves, as shown in Sec. III. In addition,
computations do not reveal the presence of any instability in
this range which corresponds to the white domain (domain 4)
of Fig. 4.
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FIG. 9. Destabilizing resonant cases of order n = 3. The fig-
ure shows the maximal growth rate (σm3) of the instability
normalized by ε3 versus N for 0 � ε � 0.25.

For N = 2, all the points of the interval 0 � μ � 1 are res-
onant cases of order n = 4, as indicated earlier. However, the
present numerical computations indicate that they are not all
destabilizing. Indeed, only three narrow bands of instability
are detected: they emanate from μ = 0, μ ≈ 0.38 and μ = 1,

respectively (see Fig. 10). The later one is much narrower
though visible on the scale of the figure.

Numerical computations reveal that, for any given value of
N in the range 2 < N < 2.5, it exists an instability band that
emanates from μ = 1 and remains narrow with a weak growth
rate, especially for 0 � ε � 0.15 (see domain 5 of Fig. 4). In
Fig. 11, we plot the maximal growth rate σm4 normalized by
ε4 versus N . As it can be seen, the points for which 0 � ε �
0.15 are scattered and many of them are characterized by a
very small growth rate (see also Fig. 4). For 0.15 � ε � 0.25,

one has 1 � σm4/ε
4 � 1.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0. 0.001 0.002 0.003 0.004

 unstable

 stable

 stable

 stable

μ

ε4

FIG. 10. Destabilizing resonant case of order n = 4. The fig-
ure shows the regions of instability in the (ε4, μ) plane for N = 2.

The instability band emanating from the point (0, μ = 1) is much
narrower though visible on the scale of the figure. The other insta-
bility band emanates from the point (0, μ = 0.38) and its maximal
growth rate is about σm4 ≈ 1.8ε4.
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FIG. 11. Destabilizing resonant cases of order n = 4. The
figure shows the maximal growth rate (σm4) of the instability nor-
malized by ε4 versus N for 0 � ε � 0.25.

The destabilizing resonant cases of order n = 5, which
occur for 2.5 < N , are very weaker than those of order n = 4.

For instance, at N = √
27/2 ≈ 2.598, the unstable region

emanates from the point [ε = 0, μ = √
2/11 ≈ 0.426 (see

Fig. 12)], in agreement with relation Eq. (42). The maximal
growth rate of this region of instability is about σm5 ≈ 3ε5.

C. Destabilizing resonances of gravity waves
propagating in the k3 = 0 plane

At k3 = 0, the wave numbers k1 and k2 perform a circu-
lar motion, k1 = k cos τ and k2 = k cos τ, and then one has
k = k⊥ = kp which is time-independent. In that case, i.e.,
k3 = 0, Eq. (29) with �̂ = 0 yields u(1) = 2εN 2(k2/k)u(2).

Substituting the later relation together with k3 = 0 into the
second and third equations in system Eq. (26), we obtain a
two-dimensional Floquet system,

dτ u(2) = − 1√
1 + 4ε2

u(3), dτ u(3) = N 2

(
1 + 4ε2 k2

2

k2

)
u(2).
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FIG. 12. Destabilizing resonant case of order n = 5. Instability
band in the (ε5, μ) plane for N = √

27/2. The instability emanates
from μ = 0.426 and its maximal growth rate is about σm5 ≈ 3ε5.

The combination of the later two equations leads to the
following Mathieu’s equation

dττ u(2) + N 2

√
1 + 4ε2

{1 + 2ε2[1 − cos(2τ )]}u(2) = 0. (47)

The resonant cases of the gravity waves propagating in the
k3 = 0 plane are obtained by setting μ = 0 in Eq. (40), so
that, 2N = n. We will now prove that only the resonant cases
of even order are destabilizing.

By assuming that ε  1 and N ε  1 and seeking a
straightforward expansion for the solution of Eq. (47) in
power series of ε1 = ε2 in the form

u(2)(τ, ε1) = u(2)
0 (τ ) + ε1u(2)

1 (τ ) + ε2
1u(2)

2 (τ ) · · · , (48)

we prove that the expansion breaks down when N =
1, 2, 3, · · · because of the presence of small-divisor terms. For
instance, we report here the solution to second order in ε,

u(2)(τ ) = A0 cos(N τ + ψ ) − ε2A0N 2 cos((N + 2)τ + ψ )

4(1 + N )

− ε2A0N 2 cos[(N − 2)τ + ψ]

4(1 − N )
+ · · · , (49)

where A0 and ψ are constants. Accordingly, we may conclude
that only resonant cases of even order n are destabilizing.

To characterize the instability at and near N = 1, we use
the method of multiple scales (see Ref. [52]):

û(2) = û(2)
0 (T0, T1) + ε1û(2)

1 (T0, T1) + · · · , (50a)

N 2 = 1 + ε1δ + · · · , (50b)

where T0 = τ (fast timescale) and T1 = ε1τ (slow timescale)
are treated as independent variables. Equation (50b) traduces
an expansion of N 2 around the unit value in powers of ε1.

As shown in Appendix D, the solutions are unstable (on
timescales of order ε−2) provided −1 < δ < 1. The case
where δ = ±1 or, equivalently,

N ≡ N/� = 1 ± ε2 (51)

(on timescales of order ε−2), characterizes the transition from
stability to instability. As for the maximal growth rate σm2 of
instability, it corresponds to the maximum value of the char-
acteristic exponent 1

2ε2
√

1 − δ2, which is reached for δ = 0,

σm2 =
[
ε2

2

√
1 − δ2

]
δ=0

= ε2

2
. (52)

Figure 13(a) shows the inviscid instability boundaries in
the (ε2,N ) plane obtained from a numerical integration of
Eq. (47). These results well followed the analytical ones, i.e.,
N 2 = 1 ± ε2, especially for ε � 0.15. Moreover, at a suffi-
ciently small value of ε, the numerical results indicate that
σm2/ε

2 ≈ 0.5, in agreement with Eq. (52).
Also, the numerical results indicate that the instability at

and near N = 2 is very weak where its maximal growth rate
is σm4 ≈ 0.95ε4. In the (ε4,N ) plane, the instability region
originates from the point (0,N = 2) and remains very thin
[see Fig. 13(b)]. Note that, when ε is not very close to zero, the
“neutral” curve (characterizing the transition between stability
and instability) is below the line N = 2.
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FIG. 13. Destabilizing resonant cases of order n = 2 and n = 4
of inertia-gravity waves propagating in the k3 = 0 plane. At k3 =
0, instabilities exist only if n is an even integer and N = 2n. The
figure shows the instability bands in the (N , ε2) plane [n = 2 (a)]
and in the (N , ε4) plane [n = 4 (b)].

D. Remarks on the effect of viscosity and
the effect of unstable stratification

Of course, weakly growing instabilities will be susceptible
to suppression by viscosity and thermal diffusivity. For in-
stance, we consider the case where the diffusivity coefficients
are equal, νv = κ. In that case, the Fourier amplitudes û(v) and
ϑ̂ (v) of the velocity and buoyancy scalar perturbations may
be associated to those in the inviscid limit û and ϑ̂ by the
substitution

(û(v), ϑ̂ (v) ) = (û, ϑ̂ ) exp

[
−νv

∫ t

0
k2(s)ds

]
.

Accordingly, the maximal growth rate of the instability, if
attainable, is

σ (v)
mn = σmn − Re−1(k2

p + k2
3

)
L2

0 (1 + 4ε2μ2), (53)

where Re = �L2
0/νv is a Reynolds number and L0 is a char-

acteristic length scale. Thus, it can be seen that the effects of
viscosity on instabilities are more important at small scales
than at large scales. For L0

√
k2

p + k2
3 ∼ 1 and ε = 0.25, the

destabilizing resonance of order n = 4 with σm4 ≈ 2ε4, sur-
vives to viscous decay if Re > 160.

So far all our analysis has been carried out with N2 > 0.
This means that when the mean stratification is alone, it
is stabilizing, resulting in neutral dispersive gravity waves
and constant PV (toroidal) mode. The case where N2 < 0
is now briefly investigated: the stratification alone is desta-
bilizing, resulting in exponential disturbances, which are
no longer waves (e.g., Ref. [22], Chap. 10). If N2 < 0,
then the mode with k3 = 0 (or with μ = 0, i.e., the case
where the wave vector is perpendicular to the solid-body
rotation axis) is always unstable, and its growth rate is
|N |/�. In counterpart, the modes for which μ satisfies the
inequality

0 < μl < μ � 1, μl =
√

−N2

4�2 − N2
(54)

are stable in the absence of the precession. Here, μl is the
value of μ for which the frequency of the inertia-gravity waves
vanishes [see Eq. (38)]. The resonant cases among these sta-
ble modes are described by Eq. (40). In view of the above
inequality, they are then characterized by

0 < μl < μ = 1

2

√
n2�2 − 4N2

4�2 − N2
� 1, (55)

where n = 1, 2, 3, 4. According to the present numerical com-
putations, these resonant cases are destabilizing except the one
of order n = 4. However, the mode with k3 = 0 remains the
strongest except for small values of |N | where the maximal
growth rate of the subharmonic instability exceeds the one of
the mode with k3 = 0,

0 < σm(k3 = 0) = |N |
�

< σm(n = 1) = ε
5
√

15

8

√
�2 − 4N2

4�2 − N2
.

(56)

For example, for ε = 0.2 and 0 < |N | < 0.123�, σm(n = 1)
exceeds |N |/�.

V. CONCLUDING REMARKS

We have performed a linear stability analysis of a generic
stratified precessing flow. The base flow considered in the
present study [see Eq. (5)] constitutes an extension of the one
characterizing nonstratified rotating fluid columns subjected
to a weak external Coriolis force by Mahalov [12]. In the study
of Mahalov [12], it has been shown that an external Coriolis
force alters the base flow distorting circular streamlines of the
unperturbed rotating columns. He proposed a first order cor-
rection to the basic flow, which consists of an exact solution of
Euler’s equations, namely, U = (0,�r,−2ε�r sin ϕ), written
in a cylindrical coordinate system (see Appendix A).

The effect of an axial stable density stratification on Tay-
lor columns has been investigated in some experimental and
theoretical studies (see, e.g., Refs. [24–26]). Not only the
basic velocity but also the basic buoyancy scalar are altered
in the case of axially stratified Taylor columns subjected to
a Coriolis force. Similar to the analytical developments by
Mahalov [12], we have proposed a correction for the basic
buoyancy scalar, namely, ∇Θ = N2(−2ε cos ϕ, 2ε sin ϕ, 1)
(see Appendix A).
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A physical interpretation of the modified flow has been
indicated in Sec. I: the misalignment of the basic “rapid” an-
gular velocity � = (∇ × U )(ε = 0) and the precessional one
�p, treated as an external Coriolis force, induces a gyroscopic
torque. This torque can be exactly balanced by the plane shear
or U s = (0, 0,−2εr� sin ϕ). The induced shear can be shown
in previous experimental studies (see, e.g., Refs. [8,16,17]).
The presence of the additional horizontal component of the
basic buoyancy scalar which vanishes in the case without
precession (ε = 0) is thereby caused by the gyroscopic torque
as for the additional mean shear.

We have transformed this exact solution of Euler-
Boussinesq equations into a Cartesian coordinate system and
obtain the so-called Mahalov’s base flow [the one described
by Eq. (5)]. However, we have shown that, at leading order
in ε, the Kerswell’s base flow [see Eq. (2)] can be recovered
by applying the coordinate transformation given in Sec. IIA2
to the Mahalov’s base flow. Note that the Kerswell’s base
flow [4] has been derived from the so-called Poincaré solution
that characterizes the response of an inviscid fluid within a
precessing, oblate spheroid.

The disturbances to that base flow are expressed in terms
of plane waves, where the direction and the speed of propaga-
tion depend on time. The use of PV, which is a Lagrangian
invariant for a non diffusive fluid, allowed us to obtain a
two-dimensional Floquet system governing the dynamics of
disturbances in the linear limit. We have shown that the insta-
bility growth rate is the same whether or not PV is zero.

In the limit case ε = 0, the misalignment between the
unperturbed buoyancy force and the solid-body rotation axis
vanishes (stratification then becomes axial). In this case, they
are inertia-gravity waves propagating with frequency ω =
±

√
ω2

r + ω2
g (ωr and ωg are the inertial and gravity frequen-

cies, respectively). The resonant cases of these waves are
those for which 2ω = n� (n being an integer number).

For k3 = 0, which corresponds to an infinite wavelength in
the axial direction, the frequency of inertial waves is zero and
the resonant cases of gravity waves are those where 2N = n�

(N being the buoyancy frequency). We have proven that the
precession (ε �= 0) destabilizes the resonant cases of even
order (n = 2l where l is an integer). The instability at and near
N ≡ N/� = 1 has been studied analytically using perturba-
tive techniques [see Sec. III B and Fig. 13(a)]. Its maximal
growth rate is σm2 = ε2/2. In counterpart, the instability at
and near N = 2, which is very weak, has been investigated
numerically. These instabilities are caused by the misalign-
ment between the buoyancy force and the solid-body rotation
axis. In the case of an unstable stratification (N2 < 0), the
mode k3 = 0 remains the most unstable except for small val-
ues of |N | [see Eq. (56)].

We note that, in the case of unbounded elliptical flow [with
basic velocity, U = �(−Ex2e1 + E−1x1e2), where E � 1 is a
measure of elliptical deformation of the streamlines], an axial
stable stratification does not destabilize the mode k3 = 0. In
other words, the resonant cases of gravity waves propagating
in the k3 = 0 plane are not destabilized by the ellipticity of the
streamlines.

For k3 �= 0, the destabilizing resonances of inertia-
gravity waves by precession are those of order n �= 0. The

subharmonic instability (the one corresponding to the reso-
nant cases of order n = 1), has been investigated analytically
using the perturbative method by Lebovitz and Zweibel [44].
Such an instability gets suppressed by stable stratification
when N exceeds the threshold N = 0.5. The analytical re-
sults yielded by the asymptotic analysis at leading order in ε

are in good agreement with the numerical ones (see Figs. 6
and 7). For instance, the maximal growth rate of the sub-
harmonic instability is σm1 = ε(5

√
15/8)

√
(1 − 4N 2)/(4 −

N 2). We indicate that, in the case of the unbounded stratified
elliptical flow, the maximal growth rate of subharmonic insta-
bility (that associated to the resonant case of order n = 2) is
σm2 = ε(9/4)(1 − N 2)/(4 − N 2) (see Ref. [18,37]).

The instabilities associated to the resonant cases of order
n = 2, 3, 4, 5 have been investigated numerically. As sug-
gested by relation Eq. (38) characterizing the resonant cases
of inertia-gravity waves, the instabilities of order n = 2 and
n = 3 are suppressed by stratification for N > 1 and N >

1.5, respectively, while the instability of order n = 4 exists
for all N and the one of order n = 5 appears for N > 2.5.

Even if these instabilities are weak, they can survive under
the effect of viscosity for high Reynolds number, especially
at large scales [see Eq. (53)]. Based on the present parametric
study, the effect of nonlinear interactions on the most unstable
modes will be investigated by means of DNS in a subsequent
paper.

Since the fluid dynamics underlying the dynamo process as
a competition between rotation, magnetic fields and the forc-
ing provided by convection and perhaps also precessional or
tidal driving (see Ref. [53]), it should be relevant to investigate
the destabilizing resonant cases of magneto-inertia-gravity
waves by the precession or by the ellipticity of the streamlines.
This forms the motivation of a future paper.

APPENDIX A

1. Correction to the base flow of rotating fluid columns
subjected to a weak external and stable stratification

Mahalov [12] performed a linear stability analysis of un-
stratified infinite rotating fluid columns subjected to a weak
Coriolis force. He showed that external Coriolis force alters
the base flow distorting circular streamlines of the unper-
turbed rotating fluid columns and proposed a first-order
correction to the base flow. In this Appendix, we extend
Mahalov’s theoretical study by including the effect of strat-
ification.

As indicated in Sec. II A, the instantaneous velocity field
ũ and buoyancy scalar ϑ̃ satisfy the inviscid Boussinesq’s
equations [see Eqs. (7)]. Equations (7) are supplemented with
boundary conditions. The only boundary condition is that
there is no flow through the boundaries [12]. For �p = 0,

so that ε = 0, one finds that the following form is an exact
solution of Eqs. (7):

U = V (r)eϕ = �reϕ, Θ = N2x3, (A1)

where (er, eϕ, ez ) is a direct orthonormal basis associated to
cylindrical coordinates (r, ϕ, z ≡ x3). The above solution cor-
responds to the unperturbed rotating columns under a stable
axial stratification. When ε �= 0, We substitute ũ = U + u and
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ϑ̃ = Θ + ϑ into Eq. (7) written in cylindrical coordinates to
obtain the following equations for the perturbation velocity

field, u = (u, v,w), perturbation pressure field, p, and pertur-
bation buoyancy scalar field, ϑ :

∂t u + u∂ru + v

r
∂ϕu + w∂zu − v2

r
+ �∂ϕu − 2�v = −∂r p + 2ε�w sin ϕ + ϑmr

∂tv + u∂rv + v

r
∂ϕv + w∂zv + uv

r
+ �∂ϕv + 2�u = −1

r
∂ϕ p + 2ε�w cos ϕ + ϑmϕ

∂tw + u∂rw + v

r
∂ϕw + w∂zw + �∂ϕw = −∂z p − 2ε�2r cos ϕ − 2ε�(v cos ϕ + u sin ϕ) + ϑmz,

∂tϑ + u∂rϑ + v

r
∂ϕϑ + w∂eϑ + �∂ϕϑ + N2w = 0,

1

r
∂r (ru) + 1

r
∂ϕv + ∂zw = 0, (A2)

where m = (mr, mϕ, mz ) is a unit vector that aligns with ∇ϑ.

As in the study by Mahalov, we consider that the perturbation
is time-independent, and we expand the velocity, the pressure,
and the buoyancy scalar in powers of ε,

u = ε2u2 + ε2u3 · · · , v = ε2v2 + ε2v3 · · · ,

w = εw1 + ε2w2 · · · , p = ε2 p2 + ε2 p3 · · · ,

ϑ = εϑ1 + ε2ϑ2 · · · . (A3)

For terms of order ε we have from Eq. (A2)

∂ϕw1 + 2�r cos ϕ = 0, (A4a)

∂ϕϑ1 + N2

�
w1 = 0. (A4b)

In the unstratified case (N2 = 0), Mahalov [12] have derived
the following solution for w1(r, ϕ):

w1(r, ϕ) = −2r� sin ϕ, (A5)

and indicated that, in the limit of high Reynolds numbers,
Re = �2R/ν (where R is a characteristic radial lengthscale),
the inviscid solution U = r�eϕ − 2ε�r sin ϕez coincides
with the viscous solution in the inner region while differing
near the boundaries. Details on the derivation of the solution
Eq. (A4) are given in Mahalov [12] and not reported here for
the sake of brevity. Accordingly, the integration of Eq. (A4 b)
yields the following solution for ϑ1:

ϑ1(r, ϕ) = −2N2r sin ϕ + g(r), (A6)

where g(r) is an arbitrary function of r. By proceeding in
a similar manner as in the study by Mahalov [12] [see his
analysis after Eq. (4) on p. 893], we show that, in the limit
Re/Pr → +∞, the function g(r) vanishes.

Accordingly, the expression of the basic buoyancy scalar
Θ = N2(−2εr cos ϕ + z), so that

n = ∇Θ

‖∇Θ‖ = 1√
1 + 4ε2

[−2ε(cos ϕer − sin ϕeϕ ) + e3]

is an exact solution of inviscid Boussinesq Eqs. (7).

APPENDIX B

1. Differential system for poloidal, toroidal,
and buoyancy modes

In the orthonormal basis (e(1), e(2), e(3) ) defined by
Eq. (24), in which the condition k·û = 0 is satisfied by con-
struction, û has only two components, û = ûiei = u(α)e(α)

with i = 1, 2, 3 and α = 1, 2 (the Greek indices take only
values 1 or 2), and

e(1) = k2

k⊥
e1 − k1

k⊥
e2, e(2) = k1k3

k⊥k
e1 + k2k3

k⊥k
e2 − k⊥

k
e3.

Therefore, Eq. (23a) can be rewritten as

dt
(
u(α)e(α)

i

) = −i p̂ke(3)
i − 2ε�u(α)(e1 × e(α) )i

− (∇U )i je
(α)
j + ϑ̂ni, (B1)

where e(β )
i is the component of e(β ) in the canonical basis

(e1, e2, e3). In view of the eikonal equation [i.e., Eq. (20)] and
the orthonormal properties, e(α)

i e(β )
i = δαβ and e(α)

i e(α)
j = δi j ,

it is found that

e(2)
i dt e

(1)
i = −e(1)

i dt e
(2)
i = �

(
k3

k
+ 2ε

k1k2
3

k2
⊥k

)
.

Therefore, Eq. (B1) can be transformed as

dt u
(β ) = −u(α)e(β )

i dt e
(α)
i −2ε�u(α)

(
e1 × e(α)

)
ie

(β )
i︸ ︷︷ ︸

(I)

−e(β )
i (∇U )il e

(α)
j u(α)︸ ︷︷ ︸

(II)

+ ϑ̂nie
(β )
i︸ ︷︷ ︸

(III)

, (B2)

where

(I) = �
k1

k
(u(2),−u(1) ),

(II) = �

(
−k3

k
u(2),

(
k3

k
− 2ε�

k1

k

)
u(1) − 2ε

k2k3

k2
u(2)

)
,

(III) = �√
1 + 4ε2

(
−2ε

k2

k⊥
,

k⊥
k

− 2ε
k1

k

k3

k⊥

)
u(3), (B3)

and u(3) = ϑ̂/�. Likewise, we transform Eq. (23b), dτ u(3) =
−N 2

√
1 + 4ε2 nie

(α)
i u(α), and obtain the differential system

for the toroidal (u(1) ), poloidal (u(2) ) modes and buoyancy
(u(3) ) modes [see Eq. (26)].
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2. Stability of the mode kp = 0

As indicated earlier, both the wave numbers k3 and kp =√
(k1 + 2εk3)2 + k2

2 are time-independent. In this Appendix,
we show that the mode kp = 0 is unstable for ε � 0.5. At kp =
0, so that

k1 = −2εk3, k2 = 0, k⊥ = 2ε|k3|, k = |k3|
√

1 + 4ε2,

system Eq. (26) reduces to

dτ u(1) = 1 − 4ε2

√
1 + 4ε2

k3

|k3|u(2), dτ u(2) = − 1√
1 + 4ε2

k3

|k3|u(1),

and dτ u(3) = 0, implying that

dττ u(2) +
(

1 − 4ε2

1 + 4ε2

)
u(2) = 0.

Hence, the solution of the above second-order ordinary differ-
ential equation is unstable for ε � 0.5.

APPENDIX C

1. The asymptotic method by Lebovitz and Zweibel

In this Appendix, we use the asymptotic method of
Lebovitz and Zweibel [44] (see also Ref. [54]) to determine,
at leading order in ε, the maximal growth rate of the solution
of the two-dimensional Floquet system Eq. (30), dτ û = D·û.

Recall that �(τ, ε, μ,N ) denotes the fundamental matrix so-
lution,

dτ� = D·�, �(τ = 0) = I2, (C1)

and M = �(2π, ε, μ,N ) the Floquet multiplier matrix where
its determinant is unity (see the end of Sec. II C). It follows
that whenever λ is an eigenvalue of M, so also are its inverse
λ−1 and its complex conjugate λ∗ (see also Ref. [44]). We
denote by p(λ, ε) = |M − λI2| the characteristic polynomial
of M and by �1 and �2 its roots. A necessary condition for
stability is that each root lie on the unit circle.

2. Expansion in Taylor series of the Floquet multiplier matrix

We expand the Floquet multiplier matrix M(ε, μ,N ) in
Taylor series in the neighborhood of (ε, μ) = (0, μ0), holding
N constant,

M = M0(μ0, 0)+ εMε(μ0, 0)+ (μ − μ0)Mμ(μ0, 0)+ · · · ,

(C2)
where Mε = (∂M/∂ε), Mμ = (∂M/∂μ) and the dots indicate
higher-order terms in ε and μ − μ0. Generally, at sufficiently
small ε, the region in the the (ε, μ) plane where instability oc-
curs is typically a wedge with apex at a point (ε, μ) = (0, μ0)
and boundaries

μ = μ0 + ν±ε, (C3)

where the slopes ν+ and ν− are to be found. Therefore,
Eq. (C2) can be rewritten as

M = M0 + εM1 + O(ε2), M1 = Mε + νMμ. (C4)

Accordingly, we no longer need the designation μ0 and, here-
inafter, use the symbol μ in its place.

To determine matrices M0, Mε, and Mμ, we expand, for a
given τ ∈ [0, 2π ],� and D,

�(τ, ε) = �0(τ, μ, 0) + ε�1(τ, μ, 0) + O(ε2), (C5a)

D(τ, ε) = D0 + εDε(τ, 0) + O(ε2), (C5b)

where �0(τ = 0) = I2 and �1(τ = 0) = 0. Substituting
Eq. (C5) into Eq. (C1), we obtain

dτ�0 = D0·�0, dτ�1 = D0·�1 + Dε·�0,

with solution �0(τ ) = eτD0 and

�1(τ ) = �0·
[∫ τ

0
�−1

0 (s)·Dε(s)·�0(s)ds

]
. (C6)

Because the characteristic polynomial p(λ, ε) is the same
in any coordinate system and the two eigenvalues of
the matrix D0, given by Eq. (38), are distinct σ1,2 =
±i

√
(4 − N 2)μ2 + N 2 �= 0 with μ �= 0, we transform the

solution in the base diagonalizing D0,

D̃0 = T−1·D0·T = diag(σ1,−σ1), (C7)

where the columns of T are the eigenvectors of D0,

T = 1

2μ

(
2μ 2μ

σ1 −σ1

)
, T−1 = 1

2σ1

(
σ1 2μ

σ1 −2μ

)
. (C8)

Therefore, in the base diagonalizing D0, M̃0 and M̃ε take the
form

M̃0 = T−1·M0·T = diag(e2πσ1 , e−2πσ1 ), (C9a)

M̃ε = T−1·Mε·T = M̃0·J̃, (C9b)

J̃i j = (T−1)imTl j

∫ 2π

0
e(σ j−σi )τ (Dε )ml (τ )dτ. (C9c)

To complete the construction of the matrix M̃1, which appears
in Eq. (C4), we need the derivative of M̃0(μ) = M̃(μ, 0) =
diag(e2πσ1 , e−2πσ1 ), with respect to μ,

M̃μ(μ, 0) = −2π
(4 − N 2)μ

σ1
diag(e2πσ1 ,−e−2πσ1 ). (C10)

The elements (M̃)i j are calculated in Appendix C3.

3. Expansion of the characteristic polynomial

We expand the characteristic polynomial in Taylor series
around ε = 0 to second order in ε,

p(λ, ε) = p0(λ) + p1(λ)ε + p2(λ)ε2 + O(ε3), (C11)

where p0(λ) is the characteristic polynomial of M0 with roots
λ1 = e2πσ1 and λ2 = e2πσ2 = e−2πσ1 , so that, λ1 = λ2 for σ1 −
σ2 = ±in (n being an integer). Thus, one can obtain the roots
of p(λ, ε) in the form of a Puiseux expansion (see Hille [55])

�1 = λ1 + ε
1
2 β 1

2
+ εβ1 + O(ε

3
2 ),

where β2
1
2

= −2p1(λ1)/(d2p0/dλ2)(λ1) and β1 can be estab-

lished from the quadratic equation (see Eq. (32) in Ref. [44])

1

2

[
d2p0

dλ2
(λ1)

]
β2

1 +
[

dp1

dλ
(λ1)

]
β1 + p2(λ1) = 0. (C12)
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By the use of the formulas for the derivatives of the charac-
teristic polynomial with respect to parameter ε, derived by
Lebovitz and Zweibel [44] (see their Appendix B), we obtain

p1(λ1) = 0,
d2p0

dλ2
(λ1) = 2,

dp1

dλ
(λ1) = (M̃1)11 + (M̃1)22,

p2(λ1) =
∣∣∣∣(M̃1)11 (M̃1)12

(M̃1)21 (M̃1)22

∣∣∣∣. (C13)

Defining α = β1/λ1. Either α is pure-imaginary and we infer
stability (to leading order in ε), or 
α �= 0 and we infer
instability (see Proposition 2 in Lebovitz and Zweibel [44]).

4. Characterization of the subharmonic instability

From Eq. (30) giving the matrix D, we deduce Dε,

(Dε )11 = iN 2

√
1 − μ2

2μ
(eiτ − e−iτ ),

(Dε )12 = 2μ2(1 − μ2) + 1√
1 − μ2

(eiτ + e−iτ ),

(Dε )21 = −1

2
√

1 − μ2
[6μ2 − 4μ4 + N 2(1 − μ2)2]

× (eiτ + e−iτ ),

(Dε )22 = i

√
1 − μ2

2μ
(2μ2 − N 2)(eiτ − e−iτ ). (C14)

This implies that
∫ 2π

0 e(σ j−σi )τ Dεdτ = 0 if σ j − σi �= ±i,
and hence, the diagonal elements J̃11 and J̃22 given by Eq. (C9)
are zero. For σ j − σi = ±i, the expression of J̃12 given by
Eq. (C9c) can be rewritten as follows:

J̃12 = (T−1)1mTn2

∫ 2π

0
e−iτ (Dε )mndτ = (T−1)1mTn2H+

mn,

where

H+
11 = iπ

N 2(1 − μ2)

μ
√

1 − μ2
,

H+
12 = 2πμ

μ
√

1 − μ2
[2μ2(1 − μ2) + 1],

H+
21 = − μπ

μ
√

1 − μ2
[6μ2 − 4μ4 + N 2(1 − μ2)2],

H+
22 = −iπ

(1 − μ2)

μ
√

1 − μ2
(N 2 − 2μ2). (C15)

By replacing σ1 by i/2 in Eq. (C8) giving the matrices T
and T−1, we find

J̃12 = iπ

4μ
√

1 − μ2
[1 + 2μ2(1 − μ2)][4N 2(1 − μ2) − 1]

− iπ

4μ
√

1 − μ2
[4μ2(1 − 13μ2 + 8μ4)]. (C16)

The later expression can be further simplified by using the
resonance condition, σ1 − σ2 = ±i, or equivalently,

4N 2(1 − μ2) = 1 − 16μ2, (C17)

so that

J̃12 = −iπ5μ
√

1 − μ2. (C18)

In a similar manner, we calculate J̃21

J̃21 = (T−1)2mTn1

∫ 2π

0
eiτ (Dε )mndτ = (T−1)2mTn1H−

mn,

where

H−
11 = −H+

11, H−
12 = H+

12, H−
21 = H+

21 H−
22 = −H+

22.

We find that J̃21 = −J̃12. Accordingly, with the help of
Eq. (C10), in which we replace σ1 by i/2, and the expression
found for J̃i j we determine the matrix M̃1 given by the second
relation of Eq. (C4),

λ1
−1(M̃1)11 = −λ1

−1(M̃1)22 = 4iπ (4 − N 2)μν,

λ1
−1(M̃1)12 = −λ1

−1(M̃1)21 = −iπ5μ
√

1 − μ2, (C19)

where λ1 = e2πσ1 = −1 for σ1 = i/2. Finally, in view of
Eqs. (C12), (C13), and (C19), the quadratic equation for α =
β1/λ1 = −β1 takes the form

α2 + [4π (4 − N 2)μν]2 − [5πμ
√

1 − μ2]2 = 0. (C20)

This has a maximum instability increment (when ν = 0)
given by

σm1 = ε

2π
(
α)max = 5

2
εμ

√
1 − μ2. (C21)

Replace μ by its expression deduced from Eq. (C17)

μ = 1

2

√
1 − 4N 2

4 − N 2
,

it comes

σm1 = ε
5
√

15

8

√
1 − 4N 2

(4 − N 2)
. (C22)

This subharmonic instability has a bandwidth (ν+ − ν−)ε that
is, for given ε and N , the length of the μ interval for which
the unperturbed configuration is unstable (see Ref. [44]). It
is determined by the values of that make the real part of α

vanish, so that

ν± = ± 5
√

1 − μ2

4(4 − N 2)
= ±5

√
15

64

(
1 − N 2

4

)− 3
2

. (C23)

APPENDIX D

1. Destabilizing resonant cases at k3 = 0:
A solution at and near N/� = 1

In this Appendix, we show that, at and near N ≡ N/� =
1, the solution of the Hill’s Eq. (47), governing the evolution
of u(2) in the k3 = 0 plane, is unstable. As indicated previ-
ously, we use the method of multiple scales (see Ref. [52]).
We denote by ∂0 (respectively, by ∂1) the partial derivative
with respect to the variable T0 = �t (respectively, T1 = ε�t ).
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Substituting the expansion given by Eq. (50) for u(2) into Hill’s
Eq. (47) gives

0 = (
∂00u(2)

0 + u(2)
0

)
+ ε1

[
∂00u(2)

1 + u(2)
1 + 2∂01u(2)

0 + δu(2)
0 + 2u(2)

0 cos(2T0)
]

+ · · · , (D1)

where the expansion (1 + 4ε2)−
1
2 = 1 − 2ε1 + · · · has been

used. Equating each of the coefficients of ε0
1 and ε1, we obtain

∂00û(2)
0 + û(2)

0 = 0, (D2a)

∂00û(2)
1 + û(2)

1 = −2∂01û(2)
0 − δû(1)

0 + 2û(1)
0 cos(2T0). (D2b)

The leading order solution reads

u(2)
0 = A(T1)eiT0 + A∗(T1)e−iT0 ,

where A∗(T1) denotes the conjugate. Substituting the later
solution into Eq. (D2b), we obtain

∂00u(2)
1 + u(2)

1 = (−2i∂1A − δA + A∗)eiT0

+ (2i∂1A∗ − δA∗ + A)e−iT0

+ Ae3iT0 + A∗e−3iT0 . (D3)

Thus, the secular terms in û(2)
1 are zero if

−2i∂1A − δA + A∗ = 0,

or equivalently, by setting A = α(T1) + iβ(T1), if

∂1α = − 1
2 (δ + 1)β and ∂1β = 1

2 (δ − 1)α. (D4)

The integration of the above system gives

α(T1) = A1e
1
2

√
1−δ2T1 + A2e− 1

2

√
1−δ2T1 ,

where A1 and A2 are constants. Thus, the solution is unstable
if −1 < δ < 1.
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