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Weak curvature asymptotics for Debye layers as electrohydrodynamic discontinuities
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Important microfluidic phenomena, such as droplet deformation and cell motion, are impacted by the
formation of Debye layers at charged interfaces. Previous studies examined interface problems with leaky
dielectrics or the formation of diffuse charge layers. In most cases, the results are derived for weakly curved
spherical geometries. Moreover, many studies of streaming-potential phenomena at fluid-solid interfaces lack
a macroscale description of effects that are higher than first order. An asymptotic methodology capturing both
complex surface geometries and an accurate description of higher-order phenomena is presented in this study.
For this purpose, we consider a generic streaming-potential problem. As a result, the complex three-dimensional
electrohydrodynamics in the Debye layer are entailed in two-dimensional discontinuity conditions. The latter
contain a free parameter, the layer thickness, which mathematically represents the discontinuity position within
the Debye layer. It can be used to derive an alternative definition of the Debye thickness capturing the influence of
the ¢ potential. We introduce a virtual particle whose outer boundary envelopes the solid particle plus a fraction
of the Debye layer. It interacts with the macroscopic flow while incorporating the detailed electrohydrodynamics

inside the layer.
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I. INTRODUCTION

The formation of diffuse space-charge (Debye) layers at
charged interfaces affects electrolyte flow, charge transport,
and causes surface deformation [1]. Those effects are crucial
to a class of phenomena ranging from droplet deformation
to cell motion. Understanding droplet deformation is im-
perative for several industrial applications relying on the
precise control of the process [2,3]. Significant examples are
inkjet printing, spraying of one liquid in another, and droplet
pumping. A second field where charged surfaces play an
important role is cell biology. One key component of cells
is the lipid bilayer membrane acting as an interface to the
liquid environment [4]. Vesicles, often used as cell models,
are cell-size envelopes consisting of the mentioned bilayer
membranes [5]. They are attractive to study as their properties
permit a continuum-mechanical description [6] while they
mimic various cellular phenomena. In particular, dynamic
nonequilibrium phenomena, such as cell breathing or trem-
bling and tumbling, have been subject to theoretical [6-9] and
experimental investigations [10,11]. Both mentioned fields are
pertinent to the topic of droplet-based microfluidics. In this
application, droplets serve as cell models due to the similarity
in surface properties between droplet interface bilayers and
lipid bilayers. Thus, cell transport and interactions with chan-
nels and other cells can be studied, e.g., to develop polymerase
chain reaction amplification techniques. Most of the described
phenomena appear on droplets or cells of arbitrary shape as
illustrated in Fig. 1(a).

Clearly, these important phenomena and their applica-
tions have been subject to several investigations. A popular
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study addressing the discontinuity of electrical and mechan-
ical properties at a charged fluid-fluid interface is due to
Taylor and co-workers [12,13]. They intensively studied lig-
uids with small conductivities: leaky dielectrics. In parallel,
other analyses in the field of electrohydrodynamics focused
on the behavior of charged particles in electrolytes [14]. Both
branches were combined in the seminal analysis by Schnitzer
and Yariv [15]. They incorporated ionic transport and the
formation of two diffuse charge (Debye) layers in their model.
For this purpose, they performed an asymptotic analysis in
the double limit of the bilayer interface. As a result, Schnitzer
and Yariv [15] derived effective boundary conditions at the
interface connecting the outer bulk flow to the convection
inside the enveloping boundary. The domain coupling condi-
tions entail the detailed electrohydrodynamic phenomena in
the bilayer interface.

In analogy to the fluid-fluid phenomena described above, a
spherically shaped streaming-potential problem with a fluid-
solid interface [Fig. 1(d)] has been intensively discussed in the
literature. In this case, the outer bulk flow disrupts the equilib-
rium in the Debye layer of dimensionless thickness §. It thus
generates an electric field in the vicinity of the particle surface.
The particle behavior and the streaming potential (in this case
called sedimentation potential) in this setting were previously
examined by a number of authors [16—18]. Similarly to our
procedure, several asymptotic approaches [18-21] use § as
an asymptotically small parameter. The focus of these studies
lies on the asymptotic correction to Stokes drag considering
electroviscous effects. While Cox [18] concluded a correction
of 0(8*), Yariv et al. [21] reestablished the classical result
by von Smoluchowski [22] of O(8?). In the present study,
we follow the model by Yariv et al. [21]. Their approach
is based on the assumption that Ohmic charge fluxes in the
bulk flow must be balanced by convective charge fluxes in the
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FIG. 1. (a) Liquid-liquid bilayer model, (b) spherical liquid-
liquid bilayer model, (c) liquid-solid model, and (d) spherical
liquid-solid model.

thin double layer to fulfill charge conservation. Subsequently,
they were able to generalize their model for stronger electric
fields [23,24].

Yet, most modeling approaches [13,14] and model appli-
cations [8,25] focus on a droplet of (nearly) spherical shape
as displayed in Figs. 1(b) and 1(d). Performing their analysis
in spherical coordinates, Schnitzer and Yariv were able to de-
velop their results in the context of the previous authors’ work.
However, vesicle and drop shapes are not limited to spherical
or ellipsoid geometries. Note that a complex mechanism like
cell motion is based on the perpetual deformation of the cell
surface [Fig. 1(a)] [26]. Moreover, nonspherical geometries
play a role in medical applications, e.g., drug delivery [27].

This work presents a mathematical framework that delivers
the conditions for electrical and (fluid-) mechanical disconti-
nuities for nonspherical geometries. In our development, we
follow the integral asymptotic procedure first applied by Class
et al. [28,29]. The basic idea of this approach was recently
adapted to electrohydrodynamic phenomena by Marthaler and
Class [30] utilizing a set of coupled Stokes and Nernst-Planck
equations. In agreement with the previous approaches, the
asymptotic method is performed using § as an asymptotically
small parameter.

For the sake of simplicity, we illustrate our approach using
a solid-fluid interface problem demonstrated in Fig. 1(c). The
conceptual idea and conclusions can be drawn using a prob-
lem with a single diffuse layer. Avoiding the double limit of
bilayer phenomena is intended to direct focus on the analysis
of the tensorial description.

To reach the prescribed goal, we start our analysis with
the formulation of surface flows in tensorial notation (com-
pare [31]). We supplement the fluid-dynamic equations to
capture electrohydrodynamic phenomena. For this purpose,
we consider the generic streaming-potential problem de-
scribed by Yariv et al. [21]. It comprises a charged solid
surface which is in contact with a binary and symmetric
electrolyte solution. As a result, we obtain a set of cou-
pled equations in tensorial form consisting of the Stokes and

Nernst-Planck equations. Then we perform a distinct treat-
ment of normal and tangential directions to the surface.

In a matched asymptotic expansion, we derive leading-
order inner and outer solutions by the asymptotic matching
procedure [21,32,33]. The corresponding boundary conditions
of the outer solution represent the discontinuity of velocity,
pressure, and potential caused by the Debye layer. In the
next step, we use the leading-order solution to find discon-
tinuity conditions of higher-order parameters such as stress,
mass flux, and electric field. Those usually require asymptotic
higher-order solutions, which are impossible or hard to de-
rive with the traditional matching procedure. However, our
integral approach delivers those conditions without explicit
calculation of the inner solutions. Eventually, this results in
two discontinuity conditions for each equation. After deriving
our results for arbitrary surfaces, we simplify them for a
spherically shaped solid particle [Fig. 1(d)].

For the fluid-fluid phenomena discussed above, those con-
ditions enable domain coupling and yield a closed macroscale
description. In the studied fluid-solid case, the discontinuity
conditions include a higher-order correction and thus improve
accuracy. Moreover, a different perspective can be added: the
concept of a virtual particle. To form virtual particles, we at-
tribute some fraction of the Debye layer to the particle while
the remainder is attributed to the fluid. Depending on the
precise location where we place the boundaries of the virtual
particle, i.e., where we introduce the mathematical disconti-
nuity, we find corresponding jump conditions. Conceptually,
this relates to Prandtl’s idea of the description of boundary
layers [34,35]. Moreover, the idea of virtual particles has been
brought up by Drew et al. [36] examining two-phase flow.
The outer boundary of the virtual particle coincides with the
alternative boundary layer description. It is characterized by
surface properties that are different from the solid one.

To address these issues, this article is structured as follows.
In Sec. II we set up the governing equations of the problem
for generic surface shapes in tensorial notation and derive
their solutions. In Sec. III the discontinuity conditions are
determined. Definitions of the Debye thickness and the virtual
particle are discussed in Sec. IV. The results are shown for the
sedimenting spherical particle and discussed in the context of
the analysis by Yariv ef al. [21] in Sec. V. We summarize in
Sec. VL.

II. GOVERNING EQUATIONS AND THEIR SOLUTION IN
CONTRAVARIANT FORM

A. Dimensionless formulation

We consider a stationary streaming-potential problem as
discussed by Yariv et al. [21] and displayed in Fig. 2. The
numbers mentioned in the following paragraph are typical for
a binary aqueous solution with millimolar concentration at
room temperature. It is further characterized by the character-
istic length scale of the solid r* (typically 1 um), the velocity
scale of the bulk flow v, and the electrolyte properties. In the
vicinity of the charged solid an electric double layer exhibiting
thickness
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FIG. 2. Generic surface of a solid (gray) with intrinsic length
scale r* with a fluid (white). On each surface point P, the surface is
described by the corresponding base {gi, g2, g3}. The parallel vector
[ is invariant in Euclidean space. However, its components vary with
‘P along the surface and are always parallel to the base vectors /; || g;
(I3 component not displayed).

forms. All parameters denoted by (---)* have dimensions,
while all other parameters are dimensionless. For a millimolar
solution at an ambient temperature 7,* = 298 K, the Debye
thickness is typically 10 nm. In the relation above, the vacuum
permittivity is denoted by €, the relative permittivity of water
by € = 80, the Boltzmann constant by k;;, the valence of
both ions by Z =1, the elementary charge by ef, and the
equilibrium charge by ¢ . The dimensionless Debye length
8 = I /r* « 1is utilized as a small parameter for the asymp-
totic solution of the problem. The solid’s surface is exposed
to an aqueous solution characterized by the viscosity pu* =
1073 Pas and the diffusion coefficient D* = 10~ m?s~'. As
the electrolyte solution is assumed to be symmetric, diffusion
coefficients D for both charges ¢ are equal and the subscript
=+ is dropped. The velocity scale is used to define the refer-
ence force pw*vi r* and stress u*v} /r*. The Péclet number
Pe = v} r*/D* is the ratio of convective and charge diffusion
fluxes. The electric Hartmann number

. 2k T r*cy,
22158

is defined as ratio of electric and viscous stress scales. The

product of both dimensionless numbers is of the order

Pe Ha ~ O(872). 3)

Ha 2

The relation is based on the argument that Ohmic charge
fluxes in the bulk flow balance convective charge fluxes in the
thin double layer (see the Introduction) [21]. The equilibrium
concentration ¢}, serves as the charge scale for the charges
¢’ as well as the mean charge concentration ¢* = %(cfL +c*)
and the charge density ¢* = %(ci — ¢*). The scale for the
electric potential is the thermal potential ¢ = kgT,*/e* ~
25 mV.

The dimensionless ¢ potential { = ¢*/¢; is assumed to
be constant on the surface. It is of order of the thermal
voltage, i.e., { ~ O(1) while § « 1, and thus the Dukhin
number becomes vanishingly small. According to Schnitzer

and Yariv [37], surface conduction plays a dominant role
for ¢ potentials of ¢ ~ O(In §) and nondilute effects become
important for £ ~ O(8~"). For a dimensionless Debye length
of § = 0.01, we expect surface conduction and nondilute ef-
fects at voltages of about 0.1 and 1 V, respectively. While the
presented approach is limited by these voltages, we refer the
reader to authors considering higher Dukhin numbers [37] or
steric effects [38] in their work.

B. Geometry of the problem

The described procedure following Class et al. [28] and
Marthaler and Class [30] is applicable to a wide range of
complex-shaped surfaces. Notably, it can be applied to arbi-
trary surface geometries surrounded by asymptotically thin
Debye layers, i.e., we consider O(§) curvatures. Details on
the used tensor notation can be found in the monograph by
Aris [31].

In tensor notation, a coordinate system is characterized by
a tensor which in contravariant form reads g/. The general
contravariant metric g”/ at each point of the surface is char-
acterized by g'* =0 as the coordinate vector g, is always
normal to the surface to which the vectors g, are tangential.
The greek indices only represent the two tangential coordinate
directions (2,3), while the latin indices include the normal
direction (1,2,3). The value g!'' =1 is chosen without loss
of generality. Additionally, we need the volume element ,/g
which is computed from the metric as /g = (det g/)~"/2.

We further introduce a parallel vector / whose direction is
arbitrary but invariant with regard to space and time. Yet, the
parallel vector can for each surface point be decomposed into
different components. Those are parallel to the base vectors
and thus also depend on the surface position. To reduce the
mathematical complexity of the momentum equation, all of
its terms are referred to this parallel vector. The result is a
scalar equation that can be dealt with more easily. According
to Class et al. [28], the normal derivative is dl,/dx' = 0.
Together with the characteristics of the metric g'' = 1 and
g'"% = 0, we find the corresponding Christoffel symbols of the
second kind '}, = 0 and I'{; = 0. Christoffel symbols result
from the derivation of the parallel vector and become

m
o = Thlk )

C. Generic conservation equation

One of the most generic approaches to physical model-
ing is the assumption that certain parameters are conserved
over a process. An equation representing the conservation
of the generic scalar parameter a with the effective three-
dimensional (3D) flux J/(a) and the source term S(a) is in
nondimensional form

0 0 .
5(\/5'61) + ﬁ[\/éﬂ(a)] = ./8S(a). )

The conservation of mass can be found be replacing a with
the density p* (here assumed as constant in time and space).
Due to the absence of a mass source, we find

0 .
—(/ah =0. ©)
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The Reynolds number is assumed to be small due to the length
scale of the particle r* <« 1 so that transient and convec-
tive terms in the momentum equation vanish and the Stokes
equation is established [1]. The balance of the Newton and
Maxwell stresses

results in the momentum conservation
0 . -
— o’ +6')H;]=0. 8
VA il ®)

The flux term is defined as the product of collective stress
o' 4+ 0" and the parallel vector /;. The latter has the unique
feature of vanishing covariant derivatives, i.e., /; ; vanish. The

. . 3 J

o =—g"p+ g + gk J p: ag’k , contravariant derivatives, however, do not vanish and include
. * Christoffel symbols of the second kind as mentioned by Class

9il — gik 1 9% % 1 ;09 3¢ % etal. [28]. For the equations describing the electrical problem,

TEE ok axd T 2% axk oxt we choose as scalar parameters ¢ and c. and obtain
J
ey . ) a

Pe— J— 4+ Pecy v’ V—1] =0, i = . 9
(Vges) + |:\/§< g o + Peciv’/ Feig Y )i| Py < fg BX’) 84 ©)]

The charge equations are defined by the three fluxes inheriting
jocx

the phenomena of diffusion Jchff (c+) = —g‘ -, convec-
tion Jconv(ci) = Pec.v/, and electrophoretic charge transport

e1ph(ci) = :Fcigf a¢ . For Poisson’s equation describing the
electric potential (Gauss s law), we utilize a diffusion-type
flux J/(¢p) = zng - and the charge density ¢ as the source
of the electric potentlal

D. Leading-order solution

We expand all physical parameters a € v/, p, ¢, cs} and
all geometrical parameters b € {,/g, g, [;} as a Taylor series

a~ " 8"awX,x*,1),

n=0
"b(X = X x%) 6"
b~ _— X"~ 8" X" by (x%). 10
HX(; 0x) . ; m@*).  (10)

We note that v(lo) = v(ll) =0 and v, = 0, corresponding to
v ~ 0(8?) and v* ~ O(8'). As we aim at investigating the
limit of flow-driven phenomena, we choose a high Péclet
number Pe ~ O(8~2) without loss of generality. From Eq. (3)
follows Ha ~ O(1). Also, we introduce the stretched normal
coordinate x' = §X so that all derivatives in the normal direc-
tion rise by one order.

By employing the above expansions, coordinate stretch,
and assumptions in the governing equations (6)—(9) we find
the leading-order equations for the inner problem (parameters
denoted by capital letters)

1 o o
8V<2> ava 0= aV(l)
)¢ axe’ X ’
3C(0) od 32® )
0=— Cioy—, 0= . 11
ax T Oy Qo+ oxax: D

The relevant boundary conditions for the inner flow problem
are, according to Yariv et al. [21],

Vikco =0, Vixooo = L, Plxooo = Poos  (12)

and for the electrical problem
Vaier + Jellph)(ci)b(:o =0,

Ci|X—>oo —> 1,

@lx—0=2¢,

(

For the two latter equations we find the Gouy-Chapman solu-
tion [39] for the potential and charges that we write according
to Yariv et al. using the parameter separation ® ) = W(X) +
Do (x*). Van Dyke [33] matching yields

1 + exp(—X) tanh(%)

\Il = 2111 El
1 — exp(—X)tanh(%)
/ . P
y’ = —2sinh 5 V" =sinh W,
Ci0) = exp(FV). (14)

The two highest orders are relevant for the flow problem since
the leading-order solutions are independent of the electric

influence. The solutions are, according to Yariv et al.,
1 _ X’ — A
Vo =Ba— Vi) =AnX

2

L X
V§) = HaD(¢ = )+ Efy 5 + Fo)X. (15)

Van Dyke’s matching [33] delivers the integration constants

ove 0Poo
An = 2= oy ==
M [ axl :|x]=0 @ |: axl :|x]=0

axP axP ax! ]
(16)
The second-order velocity solution is influenced by the mean
curvature y which appears in the equations via é“) =2y
)

as the ratio of first- and zeroth-order volume elements.

III. DERIVATION OF INTEGRAL DISCONTINUITY
CONDITIONS

A. Continuous and discontinuous solutions

We decompose each of the solutions into a continuous and
a discontinuous solution using a procedure that differs from
the classical approach. The continuous solutions discussed in
the preceding section can easily be transformed into the dis-
continuous solutions. Therefore, we introduce a discontinuity
surface that does not necessarily coincide with the particle
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surface but can also lie within the fluid. Its position is denoted
by X (x*). The discontinuous solution of the basic parameters
takes the value of the continuous solution at the wall between
the wall and the discontinuity surface. At the discontinuity
surface it jumps to the far-field value of the continuous so-
lution. According to Eq. (14), the discontinuous solution for
the electric potential is

oy )¢, X <X

In dependence on that parameter we find the further discon-
tinuous solutions for charges

_ [expF0), X <X
and the flow problem
1 2
Vo) =By vy =AnX.
N X? N 0, X<2X
UGy = Eé)? + Fo)X + HaD(,, x {{, XX (19)

We note that the continuous and discontinuous solutions for
the leading-order velocities are identical. Therefore, we addi-
tionally consider the next-order velocity.

Later on, we integrate over both the continuous and discon-
tinuous solutions. We note that all discontinuous solutions are
singular at X. The integral, however, can still be evaluated by

J

1
“h

W g
/ 2 Ve~ Al + Ja @]+ /
0 0

splitting
00 Kiim 00
/ YdX = lim_ / ;’dX-l—/ 0dX
0 Xim—X \Jo Riim
= lim (¢ Rim) = ¢X. (20)
Xiim—

The derivatives are defined similarly. For the electrical poten-
tial, we find ¢’ = 0 with the same singularity at X, which is
removable in that case. Thus, integral splitting can be omitted.

B. Idea of integral discontinuity conditions

We are interested in the normal flux discontinuity close to
the wall. In the generic conservation equation (5) the fluxes in
normal and tangential directions are separated. We derive one
equation for the discontinuous model

0 d 0
o (VEa) + @[@ﬂ(an + oSVl (@] = eS(@)
1)

and one equation for the continuous model

9 9 1 9 o
5(\@4) + @[\/EJ Al + @[\/EJ A)] = «/Z’S(A()z.z)

As mentioned before, the parameters of the continuous model
are denoted by capital letters while the discontinuous model
has small parameters. Integrating the difference of both equa-
tions over the normal direction x!, we receive a formulation
for the normal flux discontinuity

9 Xé
@{\/E[J“(a) —J*(A)dx' = / JalS(a) — S(A)]ldx". (23)
0

The normal flux discontinuity is defined as [J'(a)] = J'(a) — J'(A) and the parameter we are mainly interested in. We can

manipulate Eq. (23) to find

SN 9
Vel @] = /0 (_5[‘@((1 —A)] - @{\/E[J“(a) —JUA} + J8lS(a) — S(A)])dxl- (24)
Application of the coordinate stretch x! = §X results in
0 d ]
VEll @] = 5/0 (—5[\/?(61 —A)l - @{\/E[J“(a) —J DI} + 8lS(a) — S(A)]>dX- (25

Using the notation [- - -] for the discontinuity parameters on the right-hand side as well and expanding all parameters in a Taylor

series, we find, for the leading order N,

o0 d d
\/E(O)[[J(IN)(a)]] = /(; <_5(«/§(0)[[a(Nl)H) - ﬁ[\/é(g)ﬂjg\]_l)(a)]]] + \/g'(o) [[S(Nl)(a)]]>dx + 0(3N+1)’ (26)

The following order(s) can be represented analogously as

©° d d
\/g(())[[J(INH)(a)]] = /(; (‘5(\@(0) [aan]) — @[\/E(O)[[J(OJ[V)(“)M + \/g(O)[[S(N)(a)DdX + 0. 27

Yet, this formulation is generic and is valid for any of the governing equations. Therefore, we introduce further simplifications.
For any stationary problem the leading-order discontinuity can be written as

e 0
\/g(O)[[J(lN)(a)]] = /(; <_@{\/§(0)[[J3\71)(a)]]} + «/g'(O)[[S(N—l)(a)]])dX + 0(5N+1)- (28)
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-1 s 1o

X q)

(b)

FIG. 3. Illustration of the discontinuity conditions for (a) the electric potential and (b) the charge density equations. The continuous (dashed
curve) and discontinuous (solid curve) models coincide at the surface and far from it. The integral jump condition is illustrated by the enclosed
area. Only the parts of the solution that depend on X are displayed, i.e., Zy and Z,,.

We note that our streaming-potential problem is stationary.
Moreover, in our set of equations two substantial types occur.
A source term only appears in the potential equation. At the
same time, the tangential fluxes in the potential equation van-
ish to lower orders. Thus, the first type of discontinuity
formulation evolves as

@] = /0 [Sov_1)(@)]dX.

Conversely, the equations for all other parameters a €
{v/, p, c1} lack the source term and therefore only depend on
the tangential fluxes. As a result, the discontinuity is

(29)

v, @] = O Va % @DdX.  (0)

I T
For our specific problem, we show the steps in detail for
the electric potential and give the solutions for the remaining
equations. For the electric potential, the charge density acts
as a source term. Substituting this source term for both the
discontinuous and the continuous model into Eq. (29), we get

[l @)] = /0 q0) — QdX

X o0
:/ —sinh{dX+/ sinh W dX. 3D
0 0

Using the relation 4% dX = —2sinh % we solve the integrals and
obtain
@] Y'h¢+/0 sinh
= —X sin _—
M ¢ —2sinh ¥

w
= —Xsinh¢ —2sinh3

¢
P SR .
= 2sinh 5~ X sinh¢ =: L. (32)
For each of the governing equations we find one discontinuity
condition. Those are for the charges

Vo) @] = Pe2BoyZy.  [Ji)(©)] = Pe(_2)B L.

The integrals Z are specified later in this paragraph. The
continuous and discontinuous solutions for both the potential

(33)

and charge density equation are displayed in Fig. 3. Depicted
are only the terms depending on X as well as the computed
integral. The latter is the area between the two curves. The
leading-order discontinuities for stress and mass flux in the
flow equations are

Ha(o)
\/_(0) o
[y le" +67)1] = —Ha)y Zo1l10)- 34

Later on, we will need the smaller discontinuity for the normal
direction

[ [0 + 0] =

[[J(IS)(m)H = (\/g(o) (2))Im,

Ha(())
VB 03

Yet, we notice that so far no tangential stresses appear. There-
fore, we compute, as the next-order discontinuity,

[75)[0" + 6")1] = —Ha)[Zo L0y + £ Tn)lao)]-

For the stress discontinuity we compute the two highest
orders as the normal and tangential parts are of different
orders. As the normal part is of O(8?), the part Z,, of O(8%) is
of minor interest and not fully evaluated. The corresponding
tangential part is defined as

1
“/—(0)

= (V80P Lo2li0)- (35)

(36)

f@m) =

—T PDTn) +T5,0, TP (DeyTn).
(37)

with the tensor 7% (z) = g*¥ % +gfris — vt dgm . The ar-
gument can be interpreted as the discontinuity of tangentlal
velocities Ha(’oi I [viyldX = D, Z,,. We note the analogy
of 72 to the Newton stress tensor as defined in Eq. (7). How-
ever, we consider only the tangential velocity diffusion here.
Accordingly, the result can be interpreted as a viscous stress
correction. The function f* can then be interpreted as the
volume force or divergence of that viscous stress correction.
The Christoffel symbol of leading order I'g, ,, results from
computing the divergence with respect to the parallel vector.
When the velocity discontinuity [[vf‘z)]] or equivalently 7, be-
comes zero, the stress correction and the force f vanish.

We have separated in the above results the prefactor de-
pending on the tangential coordinates from the integral parts
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depending on the normal coordinate X . Those integrals are for
the flow parameters

2

Tn=Ko(Q)+¢X — —,

T, = 4X sinh? 5,
2 2

T =¢—2X sinh% (38)

and for the electric parameters
02

N X
I¢,=25inh%—Xsinh§, qug—ysinhg,

X? v
I = TCosh{ + M(¢) —4lncoshz

A

N v N N
+2Xcosh5 + X Mo(¥) — M (V). (39)

In order to make the solutions above easier to read, the abbre-
viation ¥ = W(X) is used, as well as

Ko(V) = / W dx

=Y[—In(l — e ¥?) +In(1 + e ¥/?)]
—2Liy(—e ¥2) 4+ 2 Lis(e7V/?),

)\ v
Mo(¥) = / —cosh W dX = 2cosh 5 + In tanh T
Mi(¥) = /Mo(\ll)dX

1 AN v v
= ——(Intanh — )] — 2| Incosh — + Intanh — }.
2 4 2 2

(40)

While we mentioned the jump conditions for the potential and
the charge density in [30], we now elaborate on the derivation
complemented by the whole set of jump conditions. To obtain
the above discontinuity conditions, integrals with respect to
the stretched coordinate X have to be solved. Those can be
transformed by the relation % = —2sinh % and then more
elegantly integrated with respect to .

Finally, we rewrite the discontinuities in Eq. (33) in a
more intuitive form. For that reason, we use the gradient, the
Laplacian, and the two symbols || and L for the directions
parallel (i = o = 2, 3) and normal (i = 1) to the thin layer,
respectively. In addition, we employ the integration constants
to find, for the hydrodynamic parameters,

[v*] = 8*Ha) V{poc s + O(5*),
[o" + 6] = —8'Ha()y Zo1 — 8°Ha(o)Vpoo(—¢)
+0(8%),
[o*!+ 6+ = 8°Ha)[— 1 (Z)] + 0, (41)
and for the electric parameters,
[¢] = 8'Zy + O"),

V(@] = PV 1doZ, + O,
[74(c)] = Pe_2) V1 b + O(SY). (42)

We note that the discontinuities of mass flow and momentum
depend on gradients of the electric field along the surface,
similar to the Marangoni effect [40]. In contrast to that, the
charge fluxes originate from the electric field perpendicular to
the surface.

IV. LAYER THICKNESS AND THE VIRTUAL PARTICLE

The set of discontinuity conditions derived in the preced-
ing section is not uniquely defined. It depends on the layer
thickness X which behaves as limg_wf( = 0. While for the
first-order solutions the exact position of the discontinuity
surface is irrelevant, it becomes significant for the solutions of
higher order. In general, the parameter X can be chosen freely.
For each choice, one consistent set of discontinuity conditions
evolves, representing the electrohydrodynamic physics inside
the layer.

Although any choice X > 0 is possible, there are some
choices that lead to more convenient sets of discontinuity
conditions. For instance, the results can be applied much
more easily in numerical simulations. Each choice for X > 0
defines a new particle that includes the solid particle together
with a fluid film of thickness X. We call that new particle the
virtual particle. Its properties differ from those of the solid
particle and are specified in the form of the discontinuity
conditions.

Simpler properties can be achieved by having one van-
ishing condition. Each discontinuity condition vanishes if
the relevant integral Z = 0. This can be illustrated by the
condition Z,, = 0. Here we find a virtual particle with no
excess mass fluxes through the surface. However, the mass
flux discontinuity of O(8?) is small enough to be neglected
independently of the choice of X. Thus, one of the integrals
for the electrical problem might be a better choice. Different
possibilities are

2
0=[v'] = X, = 1(% —Ko(c)>,

¢
O=|IO_L“+GL||H:>XU=O’
2sinh §
0=[¢] = % = 2
[¢7= ¢ sinh ¢

N 2 N
0= @) =X = ,/ Sinflg . 0=[J"0)] = X.. 43)

The classical definition of the layer thickness (which was
discussed earlier) does not include the ¢ potential. However,
higher ¢ potentials lead to an increase of the polarization and
a stronger attraction of charges. The layer becomes thinner
as displayed in Fig. 4. All thicknesses X capture this phe-
nomenon as

lim X, =0 fork=m,o,¢,q,c. (44)

—>00

Figure 4 presents data for ¢ € [0,87']. For ¢ > O™
nondilute effects appear which are not captured by the de-
scribed model. In particular, ¢ potentials ¢ ~ O(In §) give rise
to surface conduction and higher Dukhin numbers [37]. The
model does not hold in that case. The macroscale description
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by

o!

[)"/
FIG. 4. Layer thickness vs position of the discontinuity surface
by different definitions [green solid line, X,,(¢); magenta dashed line,
Xq) (¢); and brown dash-dotted line, )?q(g)]. The black dots represent

X.(¢), which was computed numerically from Z, = 0. The diagram
shows values for ¢ € [0, In §].

of our thickness definition is

o= k() = &[Gkl ¢y (45)
X = = — .
¢ r* ZZze*zc’go ¢

The layer becomes thinner for higher ¢ potentials and when
more charges ¢, are in the fluid. In a more complex case with
a ¢ potential ¢ (x*) varying along the wall, the layer thickness
X (x*) varies as well. In Fig. 4 the layer thickness with respect
to the mean salt concentration )?L.(C) grows with increasing ¢.
This results from the formation of an intermediate diffusion
layer, which is described in detail by Yariv et al. [21].

V. INTEGRAL EFFECTS ON A SEDIMENTING SPHERE

We now apply our results to the specific streaming-
potential problem of a sedimenting sphere (Fig. 5). For

discontinuity surface

FIG. 5. Problem statement for the sedimenting sphere with ra-
dius R*: definition of the spherical coordinates and the corresponding
base vectors. Decomposition of parallel vector / corresponds to co-
ordinates at point P.

this purpose, we utilize the sedimentation velocity and
particle radius as references. As integral effects, like the
electrohydrodynamic drag, have been of great interest in
the literature [18,19,21], we choose the upward direction
(opposite to the velocity) as the direction of interest. We
already have our results with regard to the arbitrary parallel
vector. Thus, it is convenient to define its direction to coin-
cide with the direction of interest and choose its length to
unity.

In this setting, we simplify the coordinates from curvilinear
to spherical. The radial coordinate is denoted by x! and the po-
lar and azimuthal directions are x* € [0, 27) and x> € [0, 7],
respectively. As a result, we find the metric

1 0 0
¢ =10 H2 0 (46)
0 0 [(x1 ) sin(x2)]‘2

and the volume element
V8= /8 = &) [sin(x*)]. (47)
The parallel vector is projected to the spherical base by
L0y = cos x*1). (48)

We find, according to Stokes [41], that the pressure field on
the sedimenting sphere is equal to

Poo = —% cosx?, 49)
and from Yariv et al. [21] it follows that

Poo = Pe(_2)¢ poo = —3Pe(_2) cosx’. (50)

A. Drag correction

Integrating the first-order solutions results in inaccurate
second-order solutions. The derived discontinuity conditions
serve as corrections in this case. We estimate the influence
of our correction by comparing it to the electrohydrodynamic
drag that was evaluated by Yariv et al. [21].

To reach this goal, we choose the discontinuity coinciding
with the particle surface at X = 0 and integrate over the polar
coordinate. The problem is due to its symmetry independent
of the azimuthal coordinate. Our result of leading order does
not deliver a correction to the electrohydrodynamic drag as its
surface integral vanishes. We employ X = 0 in the correction
of 0(8?) to find

\/g(o) [[J(]z)((gi'i + elj)ll)]]

2 af
_Ha(O)S ﬁ (\/g(o)g(o)w) (é‘ — ZX SlIlh 5)[1(0)

= —3Ha9)8°Pe(_2)¢ cosx”|sin x?| <§ — 2X sinh %)11(0)-
(D

We then integrate the flux discontinuity over the surface 9€2.
From the definition of the fluxes, all discontinuity conditions
are directed from the particle to the fluid. As we are interested
in the drag on the particle, we evaluate the integral with a
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(a)  green solid line: ¢ = 1/2, magenta dashed line:
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(b) green solid line: X = 0, magenta dashed line:
X = 1/2, brown dash-dotted line: X =1

FIG. 6. Surface tension correction over the polar variable x> for different (a) ¢ potentials and (b) discontinuity conditions X.

negative sign to find the force correction
[F] =& /m — 5L + 6)1]d (02)
= / —VEo [l +07)i]]dx*dx’
o Jo

2w
= 37 Ha()8?Pe(_2)¢? f cos x? |sin x|} gydx*
0

4l
3 ©)

=d4n Ha(o)SZPe(,z)é'zl(o).

=3r Ha(o)82Pe(2)§'2<

(52)

We note that this correction is of the same order as von
Smoluchowski’s basic relation [22] that Fp gmoel ~ ¢ 2] and the
drag calculated by Yariv et al. [21] using their outer solutions
and the formula by Brenner [42].

B. Further integral effects

The choice X = 0 is made in all publications on this topic
which are known to the authors [16-18,21]. However, there
are several possibilities for X in the limit § — 0.

As mentioned before, an intuitive approach is to choose
one of the fluxes to vanish and define a virtual particle with
X # 0. The normal stress discontinuity depending on both the
(constant) ¢ and X is displayed in Fig. 6. The value of ¢ affects
the amplitude of the stress discontinuity, while X defines the
mean value of the periodic distribution. The leading-order
effect is an excess surface stress originating from a curved
Debye layer. However, the integral value of this effect is zero.
The O(8?) surface stress can be described as a Marangoni-type
effect as it depends on the tangential electric field V| ¢.
Shear stress corrections appear first at O(8*) and are small
enough to be neglected.

With increasing ¢ the discontinuity position X becomes
smaller according to Eq. (44). With the observations from be-
fore, we find that in that case the amplitudes increase and the
mean value over the circumference of the stress discontinuity
vanishes. For small ¢ the opposite effects can be observed.

Besides the kinematics, the relocation and accumulation of
charges is a topic of interest. The flux discontinuity [[J(l())(q)]]
and [J,(c)] describe the excess “sucking in” and “spitting
out” of charges into and from the virtual particle. Their inte-
gral values

T 2w
Jo= ./o 0 \/§(0>[[J(10)(‘1)ﬂdx2dx3 =0,

b4 2w
J. = / VB0 (©ldx*dx’ =0 (53)
0o Jo
vanish, which means that at each point of time exactly the
same amount of charge is transported into and out of the
particle. The sedimentation potential is found as

b4 2
Js = / Vo o @ldx’de’ =4[/ @] (54
0 0

The parameter [[J('O)(qb)]] does not depend on the surface coor-
dinates x*. Therefore, the integral result is the product of the
surface area with the flux discontinuity. The particle acts as a
source of the electric field.

VI. CONCLUSION

The present study derived from first principles discontinu-
ity conditions of a macroscopic model replacing the Debye
layers on arbitrarily shaped surface geometries. These in-
clude corrections to the second-order parameters stress, mass
flux, charge fluxes, and electric field. In contrast to that,
integration of just the first-order parameters, i.e., velocity,
pressure, charge, and electric potential, ignores important
physical effects that can be captured by our approach. Unlike
the leading-order parameters, the correction terms depend on
the precise location of the discontinuity surface within the De-
bye layer. For each surface, which can be arbitrarily chosen,
we found one consistent set of such discontinuity conditions
which close the corresponding macroscopic problem. These
conditions represent a physical simplification, incorporating
complex 3D electrohydrodynamics in 2D jumps. For instance,
the discontinuities of mass flow and momentum depend on
gradients of the electric field along the surface, similar to the
Marangoni effect [40].
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Although the discontinuity position is a free parameter, it
can be used to simplify results. Enforcing that the correction
term of one specific conservation equation vanishes, we found
for each conservation equation corresponding positions that
can be interpreted as definitions for the Debye thickness.
Unlike the classical definition, they take the ¢{ potential into
account. At high ¢ potentials, ions are strongly attracted to the
solid surface, which causes the layer to shrink, while at low ¢
potentials the layer becomes wider. This effect was captured
by our definitions of the Debye thickness.

Eventually, we defined virtual particles, i.e., particles
which comprise not only the solid but also some fraction of
the Debye layer. These virtual particles are bounded by the
discontinuity surface. The macroscopic outer flow and physics
need to be supplemented by a consistent set of boundary con-
ditions, i.e., the derived jump conditions. As the discontinuity
surface, i.e., the virtual particle, can be arbitrarily chosen, the
consistent jump conditions take into account the exact bound-
ary of the virtual particle. The geometry, i.e., the boundary,
can be chosen to be aligned with the aim of the investigation.
Note the analogy to the boundary layer thickness definitions
by Prandtl [35]. By choosing X,, or X, we found an equivalent
to the displacement or momentum loss thickness. In addition,
we found distinct thicknesses for the electric problem. In our
case, the latter are of higher order and thus more impor-
tant. In particular, we suggested defining a thickness based
on the charge density flux. As charge density is an electric
field source, we could avoid perturbations in the electric field
around the virtual particle by choosing the mentioned flux to
vanish. The ¢ potential stays the only source of the electric
field.

As indicated in the Introduction, the proposed method-
ology is applicable beyond streaming potential phenomena
with constant surface charge. The complex interplay between
variant surface charge and an arbitrary surface is fundamental
for cell motion and droplet deformation. While the present
study represents a step in this direction, further work should
focus on ¢ potentials that are functions of space and/or time.

Drag perturbations due to streaming potentials have been
widely discussed in the theoretical literature. Yet, the pos-

sibilities of experimental validation are very limited for this
specific problem. Therefore, an extension of the proposed
model capturing applied electric fields is desirable. For that
purpose, an outer electric field can mimic the shape of the
surface potential. In fact, due to the controllability of the outer
conditions, most experimental settings in this context include
an applied field. By controlling its amplitude, significant devi-
ations in the particle movement can be measured for both solid
and deformable particles, making the experimental validation
of the presented methodology possible.

For a bilayer problem, such as a drop or vesicle, the jump
conditions do not describe the parameter variation between
the outer solution of the surrounding fluid and the solid
particle surface. In a bilayer problem, the discontinuity condi-
tions connect both fluid domains, the one of the surrounding
fluid and the one encapsulated drop domain. Despite these
differences, for moderate Péclet numbers the leading-order
electric problem has strong analogies to the Gouy-Chapman
solution. In this work, the electric effects originate from
the intrinsic surface charge of the particle, while in bilayer
problems the fluid-fluid interface acts as a capacitor. Under
the influence of an outer electric field, ions travel to the
interface and accumulate, giving rise to excess charges and
potentials on both sides of the interface. Due to the interface,
the bilayer case is described by a more complex set of equa-
tions, including boundary conditions for charge separation
and stress continuity as well as one equation describing the
interface deformation. By adding the discontinuity position
as an additional degree of freedom, it is possible to derive
a set of jump conditions without solving the whole inner
problem. In numerical simulations, these conditions make a
macroscopic solution of the problem possible without a de-
tailed treatment of the 3D electrohydrodynamics inside the
layer.
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