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Thin liquid films down a vertical microfiber: Effect of curvature elasticity
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In this paper, we use a long-wave model to examine how the curvature elasticity modifies the famous
Plateau-Rayleigh mechanism and the formation of viscous beads on a vertically placed fiber. By blending the
analyses of linear stability, weakly nonlinear stability, exact nonlinear solutions, and numerical simulations,
the effects of spontaneous curvature, surface bending rigidity, Gaussian curvature, and Van der Waals forces
on the Plateau-Rayleigh mechanism and breakup of the liquid film are examined. The spontaneous curvature
and surface bending rigidity are stabilizing the interface, which can reduce the amplitude and wave speed of
nonlinear traveling waves and retard the breakup of film caused by Van der Waals attractions. However, the
Gaussian curvature effect reinforces the Plateau-Rayleigh mechanism, which accelerates the rupture of film.
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I. INTRODUCTION

Liquid films coating a thin vertically placed fiber are
widely encountered in nature and industrial applications, e.g.,
viscous beads on spider silk, water collection, desalination,
and manufacture of nanofibers [1–3]. The gravity-surface-
tension driven flow exhibits rich interesting dynamical
phenomena, such as organized bead trains and complex in-
teractions between multiscale beads [4], which have attracted
much attention in the past decade. Many of these studies
were conducted in complicated situations, e.g., with an ap-
plied electric field, temperature field, or flows on fibers with
microstructured surfaces, aiming at controlling the Plateau-
Rayleigh mechanism and pattern formation [5–8].

The experimental work of liquid films coating a cylinder
was pioneered by Quéré [9], who found that a large droplet,
formed from the merging of small beads, will appear quickly
when the film is thick, while droplet formation will be arrested
by the mean flow when the film is thin. For thin liquid film
flows, simple models based on the long-wave assumption
were used to examine the instability phenomenon caused by
the surface tension, which showed that the azimuthal curva-
ture is responsible for the droplet formation and breakup of
films [10–13]. Recently, more interest has been concentrated
on thick film flows, which showed more complicated dynam-
ics than thin liquid film flow. In thick film, often thicker than
the fiber, the flow exhibits different patterns that depend on the
flow rates. Kliakhandler et al. [4] reported three different flow
patterns, labeled regimes “a,” “b,” and “c” in the experiments.
In flow regime “a,” large and steadily moving droplets are
separated by thin and long films. Flow regime “b” resembles a
necklace structure. Flow regime “c” is an oscillatory state, in
which a large droplet coexists with several tiny droplets. An
interesting phenomenon is that the complicated interactions
between the large droplet and small droplets result in the exact
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relative periodic orbit [14]. Modeling of the thick film flow is
more challenging than that in the thin film flow case. Craster
and Matar derived an asymptotic model for when the flow rate
is low, i.e., when the inertial effect is not important, and their
model can predict the dynamics of flow regimes “a” and “c”
with satisfactory accuracy [15]. Two-equation models, such as
the integral boundary layer model [16], the weighted residual
model [17], and the integral energy model [18], were devel-
oped for when the flow rate is high to account for the inertial
effect. Recent studies examined the influence of nozzle shape
on the flow dynamics [19,20]. An interesting discovery is that
the three different flow regimes, which were thought to be
solely dependent on the flow rates, can be manipulated by ad-
justing the nozzle shape at a constant flow rate. In addition, the
droplet spacing as well as the absolute-convective instability
can be alternated by controlling the nozzle shape.

Most previous studies were operated in macroscale sys-
tems, and the surface tension σ is assumed to be either
constant or correlated with other physical fields, e.g., the
temperature field. It is well known that the dynamics of fluid
flow is significantly dependent on the scales. For example,
turbulence will not occur in micro- or nanoscale systems,
which is widely seen in our daily lives, e.g., turbulent convec-
tion in the ocean and the atmosphere. The microscale, which
quells the inertial effect, can bring about other extraordinary
phenomena, which are unfamiliar in the macroscale of our
daily lives [21]. For example, in biological systems, a lipid
often has a hydrophobic head and one or several hydrophilic
tails [22]. When dissolved in water, their heads are cumulated
on the liquid surface, which reduces the surface tension and
forms the interface elasticlike membrane. For instance, lipid
drops coating stress fibers [23] and cotton fibers [24] play
an important role in modulating the fibers’ performance. The
surface elasticity is small in the macrosituation, but it will be
important in microcases. In addition, as the dimension goes
down to the microregime, the surface tension was argued to
be dependent on the radii of curvature [25]. The dependence
of the surface tension of a liquid droplet on the droplet radius
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R was investigated by Tolman as early as 1949 [26]. He
expanded the surface tension in power series of 1/R, which
correlates the surface tension and the spontaneous curvature
1/R at first order. Later, Helfrich made a more systematic
expansion of the surface tension to second order [22]. Specif-
ically, the new second-order terms were the bending rigidity
or elasticity of a liquid surface. One term was proportional to
1/R2 and the other was proportional to the Gaussian curvature
(saddle splay). Generalized curvature expansion of the surface
tension σ was done by Sagis [27]:

σ = σ0 − C̃bC̃0H + 1
2C̃bH2 + C̃t K, (1)

where σ0 refers to the surface tension of a flat interface. It
is therefore clear that the curvature elasticity is caused by
the curvature-dependent surface tension. The second and third
terms on the right-hand side of Eq. (1) are related to the mean
curvature H—which is also called the spontaneous curvature,
and it is characterized by parameters C̃0 and C̃b. The parameter
C̃b measures the bending rigidity of the interface, and C̃0

is usually defined as the spontaneous curvature parameter.
The last term on the right-hand side of Eq. (1) is related
to the Gaussian curvature K , which is characterized by the
saddle-splay modulus C̃t . The coefficients C̃0, C̃b, and C̃t are
surface elasticity coefficients. These parameters are typically
very small in macrocases, but they become important when
the curvature is large, e.g., a microdroplet of radius R ∼ 1 μm.
In the example of a thin liquid film coating a spider silk,
we assume that the mean thickness of the film is of the
same order as the spider silk radius (∼0.5 μm). Hence, the
mean radius of the liquid film is about 1 μm in the present
work. The three coefficients of spontaneous curvature, bend-
ing rigidity, and saddle-splay modulus are C̃0 ∼ 1 (μm)−1,
C̃b ∼ 3 × 10−19 J, and C̃t ∼ 10−19 J at room temperature [28].
Patrascu and Balan [28] argued that the surface tension of a
lipid-water solution is about σ0 ∼ 1 μN/m or less. Thus, the
curvature elasticity is important in this situation. For example,
the spontaneous curvature term in (1) is about 0.5 μN/m and
is comparable to σ0. Dymond [29] gathered lipid spontaneous
curvature data from the literature, where lipid monolayer
spontaneous curvatures vary from 106 to 108 m−1. Servuss
et al. [30] measured the bending rigidity of a single egg
lecithin bilayer, and showed C̃b ∈ [2 × 10−19, 2.3 × 10−19 J].
The saddle splay module can vary from 0 to 3 × 10−17 J
[31,32]. In the present study, we assume that the saddle splay
module is of order O(10−20) J. For more information on the
curvature elasticity of liquid surfaces, the reader can consult
the review papers in Refs. [33,34].

A recent study examined the linear instability of a micro
inviscid jet under the influence of curvature elasticity [28].
The results showed that the bending rigidity can either play
a stabilizing role or a destabilizing role, depending on the
spontaneous curvature (i.e., the jet radius), and the Gaussian
curvature was found to suppress the Plateau-Rayleigh instabil-
ity. A circular liquid film coating a solid core is similar to the
jet flow in geometry but different in dynamics. The inner core
plays a stabilizing role in the coating flow, which prevents the
breakup of the film [35]. To the best of our knowledge, it is
unclear how the curvature elasticity influences the Rayleigh-
Plateau instability, and how the pattern formation in a circular
liquid film flows on a microfiber. Another question that has

yet to be answered is, does the viscosity matter? This paper
aims to provide insights into these questions.

A synopsis of the paper is as follows. In Sec. II, the
governing equations are stated. In this paper, since we are
considering a thin film flowing down a microfiber, the fluid
inertia is not important and there is no advantage of the two-
equation models in this situation. Hence, Sec. III derives a
single-equation model by extending the work of Craster and
Matar [15]. Linear stability analysis is performed in Sec. IV,
which is followed by a weakly nonlinear analysis in Sec. V.
Section VI seeks steady traveling-wave solutions, which are
brought about from Hopf bifurcation of the base state. Direct
numerical simulations of the model equation are performed in
Sec. VII to examine the nonlinear evolution and breakup of
the interface. Finally, conclusions are presented in Sec. VIII.

II. MATHEMATICAL FORMULATION

We consider a Newtonian fluid with constant dynamic
viscosity μ and density ρ, flowing down a vertical fiber as
shown in Fig. 1. The radius of the cylindrical fiber is r = a.
In the present study, we restrict ourselves to the axisymmetric
problem, and the coordinates (r, z) are chosen. The system
is governed by the continuity equation and the momentum
equations:

ur + u

r
+ wz = 0, (2)

ρ(ut + uur + wuz ) = −pr + μ

(
urr + ur

r
− u

r2
+ uzz

)
, (3)

ρ(wt + uwr + wwz ) = ρg − pz + μ

(
wrr + wr

r
+ wzz

)
,

(4)

where u and w denote the radial and axial velocity compo-
nents, and g is the acceleration of gravity.

On the surface of the fiber r = a, we apply the nonslip and
nonpenetration conditions:

u = w = 0. (5)

At the liquid interface R(z, t ) = α + h(z, t ), the normal and
tangential stresses are balanced by the surface tension:

T · n · t = ∇sσ · t, (6)

− p + T · n · n + A′

6π (R − α)3
= 2σH,

2H = Rzz(
1 + R2

z

)3/2 − 1

R
(
1 + R2

z

)1/2 , (7)

where h(z, t ) is the film thickness, T = μ[∇u + (∇u)T ] is
Newtonian viscous stress, n = (er,−Rzez )√

1+R2
z

is the surface normal,

t = (Rzer,ez )√
1+R2

z

is the surface tangent, and ∇s = ∇ − n(n · ∇) is

the surface gradient operator. A′ is the Hamaker constant,
and its value represents the magnitude of the Van der Waals
forces. The surface tension is assumed to be dependent on the
curvature as shown in (1), and the Gaussian curvature K is
defined as

K = −Rzz

R
(
1 + R2

z

)2 . (8)
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FIG. 1. Sketch of the system: a liquid film flowing down a verti-
cal fiber.

We note that the spontaneous curvature and the Gaussian cur-
vature are important only for a circular or spherical interface,
which are negligible in liquid films flowing down a planar
surface. In the present study the Van der Waals forces are
considered, which are characterized by the Hamaker number
A′ [36]. In the study by Ji et al. [7], the Van der Waals forces
were treated as repelling forces (A′ < 0), which was found
to prevent the breakup of the liquid interface. Ding et al.
[35] showed that Van der Waals forces play an adverse role
when A′ > 0, which accounts for the finite-time breakup of the
liquid film. But it is still unclear whether the surface elasticity
can prevent the breakup of the liquid film when A′ > 0, which
will be examined later in Sec. V.

Finally, the system is closed by the kinematic condition of
the interface,

Rt + wRz = u. (9)

III. SCALING AND ASYMPTOTIC MODEL

A. Scalings

We choose the mean radius of the liquid film R and the
capillary length L = σ0/(ρgR) as the radial and axial length
scales, ρgL, and W = ρR2g/μ as the pressure and velocity
scales. Hence, the dimensionless form of the governing equa-
tions reads

ur + u

r
+ wz = 0, (10)

ε4La(ut + uur + wuz ) = −pr + ε2

(
urr +ur

r
− u

r2
+ ε2uzz

)
,

(11)

ε2La(wt + uwr + wwz ) = 1 − pz +
(

wrr + wr

r
+ ε2wzz

)
.

(12)

Since the present work considers a thin liquid layer coating a
microfiber (R ∼ 10−6 m) and a low surface tension situation
(σ0 < 10−6 N/m [28]), the Laplace number La = σ0ρR/μ2,
which was also defined as the Reynolds number by Craster
and Matar [15], is very small, La � 1, and therefore the iner-
tial terms can be safely neglected. The parameter ε = R/L =
ρgR2/σ0 is the Bond number, and ε ∼ 10−1 in the present
study.

At the interface r = R(z, t ), the dimensionless normal and
tangent stress balance conditions are

p − εAH

La(R − α)3
− 2ε2

1 + ε2R2
z

[
ur − (

wr + ε2uz
)
Rz + ε2wzR

2
z

]
= 1

R
− ε2Rzz + εCbC0

2

(
1

R2
− 2ε2Rzz

R

)
− Ct

ε3Rzz

R2
− εCb

8

(
3ε2Rzz

R2
− 1

R3

)
+ O(ε4), (13)

wr = −CbC0

2

(
ε3Rzzz + εRz

R2

)
− Ct

ε3Rzzz

R

− Cb

4

(
ε3Rzzz

R
+ εRz

R3

)
, (14)

where higher-order terms of O(ε4) are neglected, and C0 =
C̃0R ∼ O(1) is defined as the dimensionless spontaneous
curvature parameter, Cb = C̃b

σ0R2 ∼ O(1) is defined as the di-

mensionless bending rigidity parameter, and Ct = C̃t
σ0R2 ∼

O(10−1) is the dimensionless saddle splay parameter. AH =
A′σ0

6πgR3μ2 ∼ O(10−5) is defined as the dimensionless Hamaker
number. Hence, following Ding et al. [35], a composite
Hamaker number A = AH/La is of order O(10−1) as La ∼
O(10−4).

The dimensionless boundary conditions on the fiber sur-
face r = α (α = a/R being the dimensionless fiber radius)
and the kinematic condition of the interface at r = R(z, t )
remain the same as their dimensional versions.
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B. Long-wave model

The leading-order dynamics of the system is governed by

ur + u

r
+ wz = 0, (15)

pr = 0, (16)

1 − pz + wrr + wr

r
= 0. (17)

w|r=α = 0,wr |r=α+h(z,t ) =M, (18)

p = εA

(R − α)3
+ 1

R
− ε2Rzz + εCbC0

2

(
1

R2
− 2ε2Rzz

R

)
− Ct

ε3Rzz

R2
− εCb

8

(
3ε2Rzz

R2
− 1

R3

)
, (19)

where M = wr |r=α+h(z,t ) = −CbC0
2 (ε3Rzzz + εRz

R2 ) − Ct
ε3Rzzz

R −
Cb
4 ( ε3Rzzz

R + εRz

R3 ). Inclusion of the higher-order terms up to
O(ε3) in (18) and (19) is ad hoc, which is under the con-
sideration of capturing the effects of curvature elasticity but
not making the model very complicated. For a liquid film
flowing down a fiber (radius about 1 mm), Craster and Matar
showed that the second-order term ε2Rzz should be included
in the model since it is essential to yield the correct cutoff
wave number as reflected by the linear stability analysis [15].
In the present study, linear stability analysis also suggests
that inclusion of these higher-order terms can yield accurate
predictions of the long-wave dynamics in the considered range
of Cb, C0, and Ct (see Fig. 2).

Solving Eq. (17) subjected to boundary conditions (18)
gives the solution of w,

w =
[
MR − R2(pz − 1)

2

]
ln(r/α) + r2 − α2

4
(pz − 1).

(20)
Substituting the velocity w into the kinematic equation, we
obtain the evolution equation of the film radius R(z, t ),

Rt + R−1qz = 0, (21)

with

q =
[

− pz − 1

4
R2 + MR

2

][
R2 ln

(
R

α

)
− R2 − α2

2

]
+ pz − 1

4

(R2 − α2)2

4
.

The pressure gradient pz can be calculated from Eq. (19).
Equation (22) is identical to Craster and Matar’s equation [15]
when curvature elasticity and Van der Waals attractions are
turned off.

IV. LINEAR STABILITY ANALYSIS

Equation (21) has the following trivial solution:

R = 1, q = 1
16 [−4 ln α − (1 − α2)(3 − α2)]. (22)

Linear stability of the trivial solution R = 1 is investigated by
perturbing it with infinitesimal disturbance. Using the normal
mode analysis, i.e., R = 1 + R̂ exp(ikz + λt ) (R̂ � 1, k is the
wave number, and λ = λr + iλi is the complex growth rate),
and after linearizing, we obtain the following dispersion rela-
tion:

λr =
(

− 1

4
ln α − 1 − α2

8
− (1 − α2)2

16

)(
3ε3Ak2

(1 − α)4
+ ε2k2 − ε4k4

)
+ ε5Ct k

4

(
− 1

4
ln α − 1 − α2

8
+ (1 − α2)2

16

)
+ εCb(ε2k2 − ε4k4)

(
1

32
ln α + 1 − α2

64
− (1 − α2)2

16
− (1 − α2)2

16
C0 − 3(1 − α2)2

128

)
,

(23)

λi = k

2
(2 ln α + 1 − α2). (24)

Introducing ω = ελ and κ = εk, we rewrite the dispersive
relation as

ωr =
(

− ln α − 1 − α2

2

)
A − (1 − α2)2

16
B, (25)

ωi = κ

2
(2 ln α + 1 − α2), (26)

in which

A = 1

4

[
3Aκ2

(1 − α)4
+

(

0 − Cb

8

)
(κ2 − κ4) + Ctκ

4

]
,

B = 3Aκ2

(1 − α)4
+

(

0 + CbC0 + 3Cb

8

)
(κ2 − κ4) − Ctκ

4,

and 
0 = ε−1. A critical wave number κc, corresponding to
ωr = 0, is defined as follows:

κc =
√√√√(

3A
4(1−α)4 + 
0

4 − Cb
32

)( − ln α − 1−α2

2

) − (1−α2 )2

16

[
3A

(1−α)4 + 
0 + CbC0 + 3Cb
8

](

0
4 − Ct

4 − Cb
32

)( − ln α − 1−α2

2

) − (1−α2 )2

16

(

0 + CbC0 + 3Cb

8

) . (27)

When curvature elasticity and van der Waals forces are inactive, κc = 1 is obtained, which corresponds to the classical result for
the Plateau-Rayleigh instability. For κ < κc the interface is linearly unstable, and for κ > κc the interface is linearly stable.
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α=0.3
α=0.5
α=0.7

A=-0.05
A= 0.00
A= 0.05

3
5

6
α=0.3
α=0.5
α=0.7

FIG. 2. Comparisons between the linear stability analysis of the Navier-Stokes equations (dashed lines) and the long-wave model (solid
lines). The Bond number is fixed at ε = 0.1. (a) Cb = 0, C0 = 0, Ct = 0, A = 0; (b) Cb = 0, C0 = 0, Ct = 0, α = 0.5; (c) C0 = 0, Ct = 0,
A = 0, α = 0.5; (d) Cb = 1, Ct = 0, A = 0, α = 0.5; (e) Cb = 0, C0 = 0, A = 0; and (f) Cb = 1, C0 = 1, Ct = 0.2, A = 0.01.

When the curvature elasticity and Van der Waals attractions
are turned off, our results are identical to those of Craster
and Matar [15], and the flow is more stable when the fiber
is thicker, as demonstrated in Fig. 2(a). In Fig. 2(b), we

vary the composite Hamaker number and find that Van der
Waals attractions (positive A) enhance the Plateau-Rayleigh
mechanism, while the repulsions (negative A) weaken the
Plateau-Rayleigh mechanism. Figure 2(c) illustrates the
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influence of the surface bending rigidity on the linear stability,
demonstrating that it plays a stabilizing role in the system.
Indeed, Eq. (23) indicates that surface bending rigidity and
spontaneous curvature always reduce the growth rate [see
also Fig. 2(d)]. If the surface bending rigidity is absent, the
spontaneous curvature will be muted. Clearly, our results are
different from the study by Patrascu and Balan [28], who
showed that the bending rigidity either plays a stabilizing
role or a destabilizing role, which depends on the radius of
the jet. A scrutiny of their study indicates that the different
conclusion by Patrascu and Balan [28] is caused by an error
expansion in the spontaneous curvature. The Gaussian cur-
vature plays an adverse role, which promotes the instability
as seen in Fig. 2(e). Such an observation is also completely
different from the study by Patrascu and Balan [28], who
reported that Gaussian curvature plays a stabilizing role in
the inviscid jet. To account for the instability mechanism of
Gaussian curvature, we examine the normal stress balance
condition in Eq. (19) and the tangential stress balance con-
dition in Eq. (18). In the normal stress balance condition, we
have known that the streamwise curvature term −ε2Rzz plays
a stabilizing role. In analogy with the streamwise curvature,
the Gaussian curvature should be a stabilizing role in the
normal stress balance condition. To understand its effect in
the tangential stress balance condition, we assume that the in-
terface is perturbed by a small disturbance, δ sin(kz) (δ � 1),
such that the term associated with the Gaussian curvature is
Ctδk3 cos(kz). Hence, the surface tension contributed by the
Gaussian curvature is driving the liquid out from the troughs
into the crests, thus enhancing the deformation of the inter-
face and instability. Thanks to the viscosity, the tangential
component is double the normal component, and the Gaus-
sian curvature becomes a destabilizing effect in the viscous
flow. For an inviscid flow on the fiber, the Gaussian curvature
should be a stabilizing effect, as is that in the inviscid jet
flow. It is interesting that the cutoff wave number predicted
by our long-wave model agrees well with the result by lin-

earized Navier-Stokes equations (LNS) in Figs. 2(a)–2(d).
The agreement, however, deteriorates as the Gaussian curva-
ture becomes large, as seen in Fig. 2(e). The linear stability
analysis showed that only the spontaneous curvature parame-
ter C0 is dependent on the bending rigidity parameter Cb. The
Gaussian curvature effect, Van der Waals attractions, and the
bending rigidity are independent effects. So, a net effect will
be a linear superposition of these effects. Figure 2(f) shows
that comparison between the long-wave model and the Navier-
Stokes equations wherein both the curvature elasticity and Van
der Waals attractions are turned on. The results demonstrate
that our model is reasonable in the long-wave regime (κ � 1),
and the model becomes more accurate for thinner films when
the Bond number is constant.

V. WEAKLY NONLINEAR STABILITY

After exploring the linear stability, this section aims to
understand the curvature elasticity on the weakly nonlinear
stability of the system. Instead of using the liquid radius R
as the variable, we use a new variable, S = R2, which is pro-
portional to the cross-sectional area, to investigate the weakly
nonlinear stability. This is so because the fluid volume is
conserved during the nonlinear evolution when the interface
is perturbed by a wavelike disturbance [14]. In addition, in all
of the previous literature, the fully nonlinear solution to the
evolution equation of the interface was sought by fixing the
liquid volume, which will also be enforced in Sec. VI. Hence,
to compare the analytical results of the weakly nonlinear
analysis with the fully nonlinear solution, we must also fix
the fluid volume in the weakly nonlinear analysis. Therefore,
we restate Eq. (21) as

St +A(S)Sz + B(S)Szz + C(S)Szzzz +D(S)S2
z

+ E(S)SzSzzz = 0, (28)

where

A(S) = 2S
1
2

(
S ln

S
1
2

α
− S − α2

2

)
,

B(S) =
(

3εAS

2(S
1
2 − α)4

+ ε


2
− εCb

16S

)(
S ln

S
1
2

α
− S − α2

2

)
− ε(S − α2)2

8

(
3A

(S
1
2 − α)4

+ 


S
+ CbC0

S
3
2

+ 3Cb

8S2

)
,

C(S) =
(

ε3S


2
− ε3Ct

2
− ε3Cb

16

)(
S ln

S
1
2

α
− S − α2

2

)
− ε3(S − α2)2

8

(

 + CbC0

S
1
2

+ Ct

S
+ 3Cb

8S

)
,

D(S) =
[

(S − α2)2

8
− S

2

(
S ln

S
1
2

α
− S − α2

2

)](
12εA

(S
1
2 − α)5

+ 2

S
3
2

+ 3εCbC0

S2
+ 3εCb

2S
5
2

)

+
(

S ln
S

1
2

α
− S − α2

2

)(
6εAS

1
2

(S
1
2 − α)4

+ 2

S
1
2

+ 3εCbC0

S
+ 3εCb

2S
3
2

)
,+

(
3S ln

S
1
2

α
− S − α2

2

)(
− εCbC0

2S
− εCb

4S
3
2

)
,

E(S) =
(

S ln
S

1
2

α
− S − α2

2

)(
2ε2S

1
2 + 2ε3CbC0 + 3ε3Ct

S
1
2

+ ε3Cb

S
1
2

)
+

(
3S ln

S
1
2

α
− S − α2

2

)(
− ε3CbC0

2
− ε3Ct

S
1
2

− ε3Cb

4S
1
2

)
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When the interface is perturbed by small-finite amplitude
disturbances, by setting S = 1 + η(t, z) (‖η‖ � 1) and after
retaining the terms up to O(η3), Eq. (28) is reduced as

ηt + Āηz + B̄ηzz + C̄ηzzzz + D̄η2
z + Ēηzηzzz

+
(
Ā′η + Ā

′′

2
η2

)
ηz +

(
B̄′η + B̄

′′

2
η2

)
ηzz,

+
(
C̄′η + C̄

′′

2
η2

)
ηzzzz +

(
D̄′η + D̄

′′

2
η2

)
η2

z

+
(
Ē′η + Ē

′′

2
η2

)
ηzηzzz + O(η4) = 0, (29)

in which the primes stand for derivatives with respect to z,
and the overbar indicates that the polynomial is evaluated at
the unperturbed state, i.e., S = 1. To account for the nonlinear

effect, we invoke the multiscale expansion technique here
[37]:

∂

∂t
→ ∂

∂t
+ ζ

∂

∂t1
+ ζ 2 ∂

∂t2
, (30)

∂

∂z
→ ∂

∂z
+ ζ

∂

∂z1
, (31)

η(z, z1, t, t1, t2; ζ ) = ζη1 + ζ 2η2 + ζ 3η3, (32)

where ζ is a small perturbation parameter, and ζ = k − kc in
the present work. Therefore, Eq. (29) is expanded to

(L0 + ζL1 + ζ 2L2)(ζη1 + ζ 2η2 + ζ 3η3) = −ζ 2N2 − ζ 3N3,

(33)
where

L0 = ∂

∂t
+ Ā ∂

∂z
+ B̄ ∂2

∂z2
+ C̄ ∂4

∂z4
, L1 = ∂

∂t1
+ Ā ∂

∂z1
+ 2B̄

∂2

∂z∂z1
+ 4C̄

∂4

∂z3∂z1
,

L2 = ∂

∂t2
+ B̄ ∂2

∂z2
1

+ 6C̄
∂4

∂z2∂z2
1

, N2 = Ā′η1η1,z + B̄′η1η1,zz + C̄′η1η1,zzzz + D̄η2
1,z + Ēη1,zη1,zzz,

N3 = Ā′(η1η2,z + η1,zη2 + η1η1,z1 ) + B̄′(η1η2,zz + 2η1η1,zz1 + η1,zzη2)

+ C̄′(η1η2,zzzz + 4η1η1,zzzz1 + η1,zzzzη2) + D̄(2η1,zη2,z + 2η1,zη1,z1 )

+ Ē(η1,zη2,zzz + 3η1,zη1,zzz1 + η1,zzzη2,z + η1,zzzη1,z1 ) + 1
2Ā′′η2

1η1,z + 1
2 B̄′′η2

1η1,zz

+ 1
2 C̄

′′η2
1η1,zzzz + D̄′η1η

2
1,z + Ē′η1η1,zη1,zzz.

The leading-order O(ζ ) problem solves the following lin-
ear eigenvalue equation:

L0η1 = 0, (34)

which admits the harmonic-wave solution

η1 = a(t1, t2; z1) exp[i(kz + λit )] + c.c. (35)

Here λi = −Āk, λr = B̄k2 − C̄k4 = O(ε2), and k =
√
B̄/C̄.

Because λr is small, the slowly time-varying term is absorbed
by the amplitude a. At order O(ζ 2), we solve

L0η2 = −L1η1 − N2. (36)

By inserting η1 into Eq. (36), we have

L0η2 = −
[

∂a

∂t1
+ (Ā+ 2ikB̄− 4ik3C̄)

∂a

∂z1

]
ei(kz+λit )

− (iĀ′k + B̄′k2 − C̄′k4 + D̄k2 − Ēk4)

× a2e2i(kz+λit ) + c.c. (37)

The solvability condition of the O(ε2) problem requires that
the forcing term on the right-hand side of Eq. (37) is orthogo-
nal to the null-space of L+

0 (the adjoint operator of L0). Hence,
we have

∂a

∂t1
+ (Ā+ 2ikB̄− 4ik3C̄)

∂a

∂z1
= 0, (38)

and the solution of a is followed by

a(t1, t2; z1) = a(t2)eik[z1−(Ā+2ikB̄−4ik3C̄)t1]. (39)

Hence, Eq. (37) admits the following solution:

η2 = e0a2 exp[2i(kz + λit )] + c.c. (40)

Here, e0 = er + iei = B̄′−C̄′k2+D̄−Ēk2

16C̄k2−4B̄ + i −Ā′
16C̄k3−4B̄k

.

Furthermore, we proceed to the third-order problem:

L0η3 + ζ−2L0η1 + L1η2 + L2η1 = −N3. (41)

Similarly, the solvability condition of Eq. (41) gives the fol-
lowing Landau-type equation:

∂a

∂t2
+ (B̄− 6C̄k2)

∂2a

∂z2
1

− ζ−2λra + (J2 + iJ4)a2a∗ = 0,

(42)
where

J2 = (−5B̄′k2 + 17C̄′k4 + 4D̄k2 − 10Ēk4)er − Ā′kei

+ (− 3
2 B̄′′k2 + 3

2 C̄′′k4 + D̄′k2 − Ē′k4
)
,

J4 = (−5B̄′k2 + 17C̄′k4 + 4D̄k2 − 10Ēk4)ei + Ā′ker

+ 1
2Ā′′k. (43)

For a filtered wave, which has no spatial modulation, the
diffusion term in Eq. (42) can be dropped and the amplitude a
obeys the following simple form:

a = a0 exp[−ib(t2)t2] (44)
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k=kc+0.1
k=kc

k=kc-0.1

 increasing  

0a

FIG. 3. (a) The J2 = 0 curve with different k in the α-ε plane. (b) The perturbation amplitude ζa vs k − kc at different α. The other
parameters are A = 0, Cb = 0, C0 = 0, Ct = 0, ε = 0.25, and k = kc. Solid lines are results from weakly nonlinear analysis, dots are results
from traveling-wave solutions. The value of α is marked by different colors: red, blue, and black are for α = 0.20, 0.59, and 0.75, respectively.

and

∂a0

∂t2
= (

ζ−2λr − J2a2
0

)
a0, (45)

∂ (b(t2)t2)

∂t2
= J4a2

0. (46)

The amplitude for a saturated wave is given by

ζa0 =
√

λr

J2
. (47)

Estimating the critical amplitude is important for choosing a
convergent initial guess for exact invariant solutions to the
nonlinear evolution equation (21). If the amplitude of the
initial guess is not well chosen, the nonlinear exact invariant
solution (e.g., the traveling-wave solution or the periodic or-
bit) either diverges or converges to the unperturbed solution.
The sign of J2 is crucial to determine the instability character-
istics of the flow. To illustrate this, we plot J2 = 0 in the α-ε
plane by fixing k = kc, kc ± 0.1 as seen in Fig. 3(a). We have
known that the flow is linearly stable for k = kc + 0.1 and
linearly unstable for k = kc − 0.1. Hence, in the α-ε plane,
the curve for k = kc marks the boundary for the supercritical
(λr > 0, J2 > 0) and subcritical (λr < 0, J2 < 0) instabilities,
i.e., below the curve the instability is subcritical and the above
regime is supercritical. To further illustrate the supercritical
and subcritical instabilities, we deactivate the van der Waals
attractions and the curvature elasticity, and we plot the am-
plitude of saturated waves against the distance away from the
linear stability k = kc, which is shown in Fig. 3(b). It is clear
that the fiber radius plays an important role in determining
the stability type: by increasing the fiber radius (or reducing
the film thickness), the instability transits from subcritical
to supercritical. And our results agree with the bifurcation
analysis of the fully nonlinear model excellently (the nonlin-
ear traveling-wave solutions are sought in Sec. VI). But the
agreement deteriorates near the transitional boundary, i.e., the

critical fiber radius αc ≈ 0.59, which is due to the neglected
higher-order terms in the weakly nonlinear analysis.

Figure 4(a) demonstrates that the Van der Waals attrac-
tions promote subcritical instability when the fiber is thin,
and supercritical instability when the fiber is thick (roughly
α > 0.6). The effects of the bending rigidity and spontaneous
curvature on the weakly nonlinear stability are more compli-
cated. As seen in Figs. 4(b) and 4(c), as Cb and C0 increases,
the contour line develops into a sandwich structure: J2 > 0
in the middle region and J2 < 0 in the side regions. This
implicates that the bending rigidity and spontaneous curvature
are playing dual roles in determining the subcritical or super-
critical stability. For instance, in Craster and Matar [15], their
flow regime “c” (wherein a large droplet coexists with several
tiny small beads) is subcritically unstable. When the bending
rigidity Cb � 4.6 or the spontaneous curvature parameter C0 �
3.1, the subcritical instability is completely suppressed and the
instability transits to supercritical (see more illustrative plots
in Fig. 5). The Gaussian curvature, however, plays an adverse
role in the Van der Waals attractions, which suppresses the
subcritical instability when the fiber is thin, and the super-
critical instability when the fiber is thick, as demonstrated in
Fig. 4(d).

VI. PRIMARY BIFURCATION AND TRAVELING-WAVE
SOLUTION

To explore the influence of various parameters on nonlinear
solutions, we seek the coherent nonlinear traveling-wave so-
lutions, which were widely used to understand the formation
of organized droplets in previous studies [14,15]. Introducing
the following traveling-wave transformation:

ξ = z − ct, (48)

and setting R(z, t ) = R(ξ ), the evolution equation (21) trans-
forms into

−cRRξ + qξ = 0, (49)
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FIG. 4. Contour lines of J2 = 0 in the α-ε plane, the black solid lines are A = 0, Cb = 0, C0 = 0, Ct = 0. (a) Red dashed line, A = 0.01;
blue dashed-dotted line, A = 0.02; green long dashed line, A = 0.03. The other parameters are Cb = 0, C0 = 0, Ct = 0. (b) Red dashed line,
Cb = 2; blue dashed-dotted line, Cb = 4; green long dashed line, Cb = 6. The other parameters are A = 0, C0 = 0, Ct = 0. (c) Red dashed line,
C0 = 0; blue dashed-dotted line, C0 = 2; green long dashed line, C0 = 4. The other parameters are A = 0, Cb = 1, Ct = 0. (d) Red dashed line,
Ct = 0.1; blue dashed-dotted line, Ct = 0.2. The other parameters are A = 0, Cb = 0, C0 = 0.

where c is the wave speed, which is fixed by imposing the
constant volume of fluid condition [14,15],

1

L

∫ L/2

−L/2
R2dξ = 1. (50)

Here, L is the computational domain size, which is also the
wavelength of the traveling wave. We use a Fourier spectral
method to solve Eq. (49), and a detailed numerical method can
be found in the study by Ding and Willis [14]. The one-hump
traveling-wave solution is sought from the primary bifurcation
of the base state, which is the focus of this section. Other
families of traveling-wave solutions can also be found, e.g.,
period-doubling bifurcation and symmetry-breaking solutions
(see Ref. [14]), which will not be explored. The initial guess
is drawn from the weakly nonlinear analysis, and branch
continuation is implemented for solution tracking as the pa-
rameters vary. First, we examine the bending rigidity’s effect
on the fully nonlinear solutions. Figure 6(a) shows that the
bending rigidity promotes the wave speed of the short wave,

but it reduces the wave speed of the long wave. Near the pri-
mary bifurcation point, as Cb increases, the nonlinear solution
branch bends from the subcritical region to the supercritical
region, which agrees well with the weakly nonlinear analysis
[see also Fig. 6(b)]. Figure 6(b) shows that the droplet size
reduces as the surface becomes more rigid [a clearer picture
is provided in Fig. 6(d)], which agrees well with the linear
stability analysis that the bending rigidity plays a stabilizing
effect. Previous studies indicated that larger droplets move
faster than small droplets. As a result, the bending rigidity
causes a slower moving droplet [see Figs. 6(a) and 6(c)].
The spontaneous curvature plays a similar role to the bend-
ing rigidity (see Fig. 7), since it is paired with the bending
rigidity. Unlike the spontaneous curvature, the Gaussian cur-
vature plays a different role. The results of traveling-wave
solutions shown in Fig. 8 demonstrate that, in the long-
wave regimes, the wave speed and height are promoted by
the saddle-splay modulus, which agrees well with the lin-
ear stability that the Gaussian curvature plays a destabilizing
role.
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FIG. 5. (a) Neutral stability curve of liquid film for ε = 0.178, α = 0.3262, A = 0, C0 = 0, Ct = 0. (b) Subcritical to supercritical change
with the increase of Cb. (c) Neutral stability curve of liquid film for ε = 0.178, α = 0.3262, A = 0, Cb = 1, Ct = 0. (d) Subcritical to
supercritical change with the increase of C0.

Finally, the influence of Van der Waals attractions on the
nonlinear solutions is explored (see Fig. 9). By fixing the
domain size, we found that the one-hump traveling-wave
solutions do not exist when the Van der Waals attractions
exceed a critical value, which is marked by the turning point
on the curve. The upper branch solution will lose stability
to an oscillatory mode, and small-sized beads will emerge
[14] (see Appendix B). The interaction between the small
beads and the large drop will cause the rupture of the film.
The lower branch solution is also unstable, which quickly
breaks up into discrete droplets without small-sized beads.
An interesting phenomenon observed is that the critical value
Ac increases as the domain size L becomes larger. As the
wavelength increases, the droplet is larger and moving faster.
Thus, the viscous shear stress becomes stronger, which can
prevent the breakup of the film. Such a phenomenon has also
been reported in liquid jets [38]. We also observed that Ac is
promoted by the bending rigidity and spontaneous curvature
effect, which, however, is reduced by the Gaussian curvature
effect. These results imply that the bending rigidity and the
spontaneous curvature effect can retard the breakup of the
interface, but the Gaussian curvature effect will accelerate the

breakup of the film. Nevertheless, it is not clear how a uniform
interface responds to small disturbances, e.g., does it evolve
into a stable traveling-wave solution or break up due to the
Van der Waals attractions, and how does the surface elasticity
affect the evolution process of a uniform interface?

VII. NUMERICAL SIMULATION

This section aims to provide insights into the nonlinear
dynamical evolution of a uniform interface subjected to small
finite disturbances. We perturb the interface by a harmonic
wave:

R(z, 0) = 1 + δ sin

(
2πz

L

)
, δ = 0.2. (51)

Equation (21) subjected to periodic boundary conditions was
solved numerically using a Fourier spectral method. The so-
lution of R(z, t ) is expanded by the Fourier series:

R(z, t ) =
N/2∑

−N/2

R̂n(t ) exp

(
i
2πnz

L

)
, (52)
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FIG. 6. (a) The wavelength L vs wave speed c with difference bending rigidity Cb. (b) The wavelength L vs maximum film thickness Rmax

with difference bending rigidity Cb. (c) Bending rigidity Cb vs wave speed c with difference wavelength L. (d) The shape of liquid with different
Cb = 1 (red solid line), Cb = 4.6 (blue dashed line), and Cb = 7 (black dashed-dotted line). The other parameters are α = 0.3262, ε = 0.178,
A = 0, C0 = 0, and Ct = 0.

in which N is the number of Fourier modes, R̂n(t ) is the
time-dependent coefficient, and L is the computational do-
main size. In this section, we used N = 256 Fourier modes,
which provide sufficient numerical accuracy. We employed an
implicit Gear’s method for the time stepping, and the relative
error is 10−6 at each time step [14]. Figure 10(a) displays a
typical shape of the liquid film before breakup at A = 0.05.
Figure 10(b) shows that the film breaks more quickly when
the Van der Waals attractions become stronger, which also
shows that the minimal thickness reduces exponentially be-
fore rupture. To understand the breakup process, a self-similar
transformation is used to extract the underlying scaling law
[35]:

R − α = �tβF (ξ ), �t = tr − t, ξ = z − zr

(tr − t )γ
, (53)

where tr is the breakup time and zr is the breakup location.
When the Van der Waals attractions are present, we find that
β = 1/5, γ = 2/5, i.e., the minimal film thickness reduces as
(tr − t )1/5, which is demonstrated in Fig. 10(c). The influence
of the curvature elasticity on the breakup process of the film
is illustrated in Fig. 11. As expected, the bending rigidity and
spontaneous curvature effect retard the breakup of the film,
but the Gaussian curvature effect reinforces the breakup of the
film, which agrees with the predictions of the linear stability
analysis and the traveling-wave solutions. When the Van der

Waals force is repulsive, it plays a stabilizing role and pre-
vents the breakup of the film [20]. By starting with the same
initial condition, two different flow states were observed by
increasing the strength of Van der Waals repulsion, which are
illustrated in Figs. 12(b) and 12(c). Figure 12(a) indicates that
the flow is steady when the repulsion is weak, but it becomes
oscillatory when the repulsion is strong. Such results imply
that the steady traveling-wave solutions (which contain two
large droplets in a bound state) are not stable attractors, while
a time-dependent traveling-wave state (or relative periodic
orbit) is stable when the repulsion is strong.

VIII. CONCLUSION

In this paper, we have investigated the dynamics of a liquid
film flowing down a microfiber. The effects of Van der Waals
attractions and curvature elasticity on the linear stability,
weakly nonlinear stability, and fully nonlinear dynamics have
been examined using a long-wave model equation. We found
that Van der Waals attractions always play a destabilizing ef-
fect and Van der Waals repulsions play an adverse role. Unlike
the study of an inviscid jet wherein the spontaneous curvature
and bending rigidity either stabilize or destabilize the interface
due to a wrong expansion of the spontaneous curvature [28],
linear stability analysis of the viscous film showed that the
spontaneous curvature and the bending rigidity are always
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FIG. 7. (a) The spontaneous curvature C0 vs wave speed c. (b) The wave number k vs maximum film thickness Rmax with difference
spontaneous curvature C0. The other dependent parameters are Cb = 1, Ct = 0, A = 0, α = 0.3262, and ε = 0.178. (c) Spontaneous curvature
C0 vs wave speed c with difference wavelength L. (d) The shape of liquid with different C0 = 1 (red solid line), C0 = 3.1 (blue dashed line),
and C0 = 5 (black dashed-dotted line). The other parameters are α = 0.3262, ε = 0.178, A = 0, Cb = 1, and Ct = 0.

stabilizing. The Gaussian curvature, which was found to be a
stabilizing role in the inviscid jet [28], is a destabilizing effect
in the viscous film flow due to its tangential component on the
liquid interface.

Weakly nonlinear stability analysis showed that the subcrit-
ical instability nature of a thick liquid film flow on a thin fiber
can transit into supercritical due to the spontaneous curvature
and the bending rigidity. The Van der Waals attractions were

found to promote the subcritical instability when the fiber is
thin, and the supercritical instability when the fiber is thick.
But the Gaussian curvature was found to suppress the sub-
critical instability when the fiber is thin, and the supercritical
instability when the fiber is thick.

The primary bifurcation analysis shows good agreement
with the weakly nonlinear stability analysis. It demonstrated
that the droplet size and moving speed are reduced by the

FIG. 8. (a) The wavelength L vs wave speed c with difference saddle-splay modules Ct . (b) The wavelength L vs maximum film thickness
Smax with difference saddle-splay modules Ct . (c) Saddle-splay modules Ct vs wave speed c with difference wavelength L. The other dependent
parameters are A = 0, Cb = 0, C0 = 0, ε = 0.25, and α = 0.5.
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FIG. 9. (a) The wave speed c vs the composite Hamaker number A. Triangles mark the turning points. (b) The critical composite Hamaker
number Ac vs the wavelength. The other depending parameters are ε = 0.178, α = 0.3262.

bending rigidity and the spontaneous curvature, but promoted
by the Gaussian curvature. Results showed that the nonlin-
ear traveling-wave solution does not exist when the Van der
Waals attractions exceed a critical level, which was believed
to be connected with the rupture phenomenon. The bending
rigidity and spontaneous curvature can lift up the critical
level, while the Gaussian curvature reduces the critical level.
Although the nonlinear solutions showed that a larger droplet
may move more slowly than a smaller droplet due to the
Van der Waals attractions, numerical simulations indicate that
these solutions are unstable. Therefore, this counterintuitive
phenomenon may not be observable.

Direct numerical simulation demonstrated that the Van der
Waals attractions can cause the finite-time breakup of the film,
which follows the scaling of (tr − t )1/5 (tr is the rupture time).
The rupture event is postponed by the bending rigidity and

the spontaneous curvature, but it is accelerated by the Gaus-
sian curvature. The repulsive Van der Waals force was found
to suppress the rupture of film, and increasing the repulsive
strength can drive the film to evolve into an oscillatory state
rather than a steady state.
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FIG. 10. (a) The instant interfacial shape before breakup. (b) The minimum film thickness vs the evolution time t at different composite
Hamaker numbers. (c) The minimal thickness Rmin − α vs the time tr − t . The other parameters are α = 0.3262, ε = 0.178, and C0 = Cb =
Ct = 0.
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FIG. 11. The change of interface breakup time with bending rigidity, spontaneous curvature, and saddle-splay modulus for A = 0.05,
ε = 0.178, α = 0.3262. (a) The other parameters are C0 = 0,Ct = 0. (b) The other parameters are Cb = 3,Ct = 0. (c) The other parameters
are Cb = 0,C0 = 0. (d) The minimal thickness Rmin − α vs the time tr − t .

APPENDIX A: FULLY LINEARIZED PROBLEM

We decompose the (u,w, p, R) into a base state
(ū, w̄, p̄, R̄) = (0, 1

4 (α2 − r2) + 1
2 ln r

α
, const, 1) and a per-

turbed state (û, ŵ, p̂, R̂)eikz+ωt wherein the normal mode
analysis has been considered:

(u,w, p, R) = (ū, w̄, p̄, 1) + (û, ŵ, p̂, R̂)eikz+λt . (A1)

After linearization, we obtain the following eigenvalue
problem in λ:

Dû + û

r
+ ikŵ = 0, (A2)

ε4La(λû + ikw̄û) = −Dp̂ + ε2

(
D2û + Dû

r
− û

r2
− ε2k2û

)
,

(A3)

ε2La(λŵ + Dw̄û + ikw̄ŵ)

= −ik p̂ +
(

D2ŵ + Dŵ

r
− ε2k2ŵ

)
, (A4)

where D = d/dr.

At the fiber interface r = α, the boundary conditions are

û = ŵ = 0. (A5)

And at the liquid surface, the linearized boundary condi-
tions are

p̂ = − 3εAR̂

(1 − α)4
+ (−1 + ε2k2)R̂ + εCbC0(−1 + ε2k2)R̂

+ ε3k2Ct R̂ + 3εCb

8
(ε2k2 − 1)R̂ + 2ε2(Dû − ikDw̄R̂),

(A6)

Dŵ + ikε2û =−CbC0

2
(−ik3ε3R̂ + ikεR̂) + ik3ε3Ct R̂

− Cb

4
(−ik3ε3R̂ + ikεR̂), (A7)

λR̂ + ikw̄R̂ − û = 0. (A8)

The fully linearized problem is solved using a Chebyshev
collocation method [6].
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FIG. 12. (a) The maximum thickness Rmax vs the evolution time t . (b) Steady state with two droplets at A = −0.01. (c) Oscillatory state
with one large droplet and a tiny droplet at A = −0.05. The other dependent parameters are Cb = 0, C0 = 0, Ct = 0, α = 0.3262, ε = 0.178,
and L = 5π/3.

APPENDIX B: NONLINEAR EVOLUTION—STARTING
FROM A TRAVELING-WAVE SOLUTION

We examine how the solution evolves from an initial
condition of the traveling-wave solution perturbed by small
pseudorandom disturbances, such that the stability of the
solution on the upper branch and the lower branch can be
assessed. For illustration purposes, we fix the domain size at
L = π . The results showed that both the upper branch and the
lower branch are unstable. However, the upper branch solution
loses stability to an oscillatory mode (periodic orbit). The
coalescence between the large drop and the small beads will

then cause the breakup of the film. The lower branch is very
vulnerable to perturbations, and the small capillary wave in
front of the large droplet will be quickly attracted to the fiber
surface due to the Van der Waals attractions (see Fig. 13). A
counterintuitive conclusion is that the larger droplet solution
on the lower branch moves slower than the smaller droplet on
the upper branch. Nevertheless, both solutions are unstable,
thus we will not observe such a phenomenon in experiments of
liquid film flows. However, it is not clear if we can observe this
interesting scenario in the motion of a single discrete droplet,
when the Van der Waals attractions are significant.

FIG. 13. (a) The traveling-wave speed vs A. The other depending parameters are L = π , α = 0.3262, ε = 0.178, Cb = 0, C0 = 0, Ct = 0.
Parts (b) and (c) are selected traveling-wave solutions, which were perturbed by small random disturbances, and the corresponding time
evolution is illustrated in the right panel. [(b),(c)] Spatial-temporal diagram of the film thickness R − α. The circles mark the rupture events.
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