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Transport of condensing droplets in Taylor-Green vortex flow in the presence of thermal noise
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We study the role of phase change and thermal noise in particle transport in turbulent flows. We employ a toy
model to extract the main physics: Condensing droplets are modelled as heavy particles which grow in size, the
ambient flow is modelled as a two-dimensional Taylor-Green flow consisting of an array of vortices delineated
by separatrices, and thermal noise are modelled as uncorrelated Gaussian white noise. In general, heavy inertial
particles are centrifuged out of regions of high vorticity and into regions of high strain. In cellular flows, we
find, in agreement with earlier results, that droplets with Stokes numbers smaller than a critical value, St < Stcr,
remain trapped in the vortices in which they are initialized, while larger droplets move ballistically away from
their initial positions by crossing separatrices. We independently vary the Péclet number Pe characterizing the
amplitude of thermal noise and the condensation rate � to study their effects on the critical Stokes number for
droplet trapping, as well as on the final states of motion of the droplets. We find that the imposition of thermal
noise, or of a finite condensation rate, allows droplets of St < Stcr to leave their initial vortices. We find that
the effects of thermal noise become negligible for growing droplets and that growing droplets achieve ballistic
motion when their Stokes numbers become O(1). We also find an intermediate regime prior to attaining the
ballistic state, in which droplets move diffusively away from their initial vortices in the presence of thermal
noise.

DOI: 10.1103/PhysRevE.105.035101

I. INTRODUCTION

Fluid flows in which solid particles, liquid droplets, or gas
bubbles of a different material are suspended are the rule
rather than the exception in natural and industrial settings [1].
The suspended entities could range from a few micrometers in
size (water droplets in clouds) to several kilometers (asteroids
in the interstellar medium). Such suspended “particles” are
advected by the flow, but, due to their finite size, do not
necessarily follow fluid streamlines. As a result, the dynamics
of the suspended (“inertial”) particles could be qualitatively
different from that of the carrier fluid. For instance, particles
much denser than the fluid (“heavy” inertial particles) are cen-
trifuged out of vortical regions and cluster in strain-dominated
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regions in the flow [2]. Turbulent flows are, in general, chaotic
tangles of vortex tubes and sheets [3], and heavy inertial par-
ticles suspended in turbulent. flow are known to cluster onto
fractal attractors [4]. The clustering of heavy inertial particles
in turbulent flow has been studied theoretically, experimen-
tally, and numerically [5–14], and has been reviewed in, e.g.,
Ref. [15].

The dynamics of individual inertial particles can give rise
to multivalued particle velocities at a given spatial location
and time, even when they are suspended in an incompressible
fluid. These events give rise to folds in particle-velocity space,
commonly referred to as “caustics” [16–20]. Caustics lead to
enhanced clustering and are known to lead to higher collision
rates between inertial particles [21,22].

Numerical studies of turbulent suspensions model the sus-
pended phase either as a continuum (the Eulerian approach)
or as discrete units which need to be tracked individually (the
Lagrangian approach) [23]. These models can then be coupled
to a suitable solver for the Navier-Stokes equations governing
the dynamics of the fluid.

When the volume or mass fraction of the suspended phase
is sufficiently small, the feedback from the particles on the
flow can be neglected. This allows the dynamics of such
particles to be studied separately from the flow, for example,
by using publicly available data sets of turbulent flow (like
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the Johns Hopkins Turbulence Database. See, e.g., Ref. [24]
who study the orientation dynamics of asymmetric particles).
However, when the volume fractions are not negligible, the
feedback from the particles on the flow cannot be neglected,
and the dynamics of the flow and the suspended particles have
to be studied simultaneously [25,26].

When the suspended phase is made of liquid droplets
rather than solid particles, these droplets can also qualitatively
change the flow through the exchange of mass or energy.
For example, the evaporation of water droplets formed by
wave breaking at the ocean surface generates cloud conden-
sation nuclei [27], while the latent heat release accompanying
the growth of water droplets drives the dynamics in clouds
[28]. The fluid dynamics of respiratory events, relevant to the
ongoing global pandemic, also involve evaporating droplets
suspended in turbulent flows (e.g., Refs. [29–32]).

It is reasonable to assume that small suspended droplets
are spherical. The mass transfer may be assumed to oc-
cur diffusively, leading to an analytical expression for the
rate of growth of the droplets (see Ref. [33] for a detailed
derivation). Higher-order corrections accounting for advec-
tive mass transfer have also been proposed and used (e.g.,
Refs. [27,29,30,34,35]). These higher-order corrections may
be neglected when the droplets are sufficiently small. In ad-
dition, if the suspended droplets are small but larger than
a critical radius called the Köhler radius, effects due to the
curvature and salt concentration on the rate of growth may
also be neglected, and the growth rate takes on a simple form
(Refs. [36–38]; see Sec. II).

In addition to the systematic forces described above, sus-
pended particles may also experience stochastic forces from
collisions with fluid molecules due to thermal noises or fluc-
tuations. For sufficiently small particles, this leads to the
well-known phenomenon of “Brownian motion,” a diffusive
motion. For larger particles, the effects of the thermal noise
are negligible. Studies of the dynamics of particles in the
size range where both systematic inertial effects as well as
the effects of stochastic forces are relevant are relatively rare,
and include studies in simple shear flows [39], Taylor-Green
vortices [40,41], and turbulent flows [42].

Renaud and Vanneste [40] quantified the thermal diffusion
of particles using an effective diffusivity Deff for heavy and
light inertial particles for various ranges of the Stokes number
St and the Péclet number Pe. The Stokes number, St = τp/τ f ,
where τp and τ f are particle relaxation timescale and flow
timescale respectively, is a measure of the inertia of a parti-
cle. The Péclet number is given by Pe = τd/τ f , where τd =
L2

f /DE is the diffusion timescale, L f is the length scale of the
flow, and DE is the Stokes-Einstein diffusivity of a particle due
to thermal noise (see Sec. II) and is related to the strength of
the thermal noise. Both St and Pe are increasing functions of
the particle size. Thus in flows where the suspended droplets
grow or shrink due to phase change, St and Pe are functions
of time. The effects of thermal diffusion are important in
the early evolution of droplets growing by condensation and
become negligible as the droplets become sufficiently large.

Here we study the combined effects of growth by conden-
sation and thermal diffusion on water droplets in clouds. We
use a simple cellular flow, an array of Taylor-Green (TG) vor-
tices as a “toy model” for the highly turbulent flow in clouds

[43]. This approach is in the same vein as studies using model
flows as proxy for turbulent environments (e.g., Refs. [17,44]
where the turbulence is modelled as a superposition of Fourier
modes). However, we know that an actual turbulent flow has
features like eddies of multiple length and timescales, inher-
ent aperiodicity in space and time, and mixing, which are
extended over three dimensions. The simple model we con-
sider here cannot reproduce all features of turbulence. It also
contains features which do not occur in turbulence, such as
permanently closed streamlines and some of the physics seen
here does not carry over to turbulence. The model, however,
accounts for the fact that there are a large number of vortical
structures in a turbulent flow.

The dispersion of inertial particles in cellular flows has
been studied without [45–50] and with gravity [51–53]. These
studies find that, depending on their Stokes number and den-
sity ratio, inertial particles can display chaotic dynamics even
in nonchaotic flows. In fact, in time-periodic flows, even tracer
particles can display chaotic dynamics [54].

Wang et al. [47] found that large-St inertial particles sus-
pended in a TG flow undergo periodic zigzag motion along
open trajectories in the long-time limit. Here we call this kind
of motion “ballistic” (see Secs. IV and V). In contrast, Renaud
and Vanneste [40] found that inertial particles in TG flow
with thermal noise behave diffusively at long times when the
initial conditions are forgotten. We examine the competition
between these two nonadditive effects on droplets. We pro-
vide a supersaturated environment in which our droplets can
condense, so both St and Pe increase with time.

The remainder of this paper is organized as follows. In
Sec. II we set down the general formulation used in this study.
We then revisit the dynamics of inertial particles in the TG
flow in Sec. III and the role of thermal diffusion in inertial
particle dynamics in Sec. IV. We examine the effects of con-
densation growth of droplets on their dispersion in Sec. V.
We study the combined effects of condensation growth and
thermal diffusion in Sec. VI. We conclude in Sec. VII.

II. PROBLEM FORMULATION

The motion of suspended droplets is governed by the ex-
change of momentum, mass and heat between the droplets
and the ambient fluid. Here, we model the momentum transfer
using the simple form of the Langevin equation,

dvp

dt
= u(xp) − vp

τp
+

√
2 DE

τp
η(t ), (1)

where vp is the Lagrangian velocity of the droplet, u is the
ambient flow velocity at the droplet location xp, and η is
the stochastic forcing due to thermal noise, whose form will
be discussed later. The relaxation time τp = 2 r2 ρ/(9 μ f ), is
the timescale on which the velocity of the droplet relaxes to
the fluid velocity, where ρ and r are the instantaneous density
and radius of the droplet, and μ f is the dynamic viscosity of
the ambient fluid (air). The Stokes-Einstein diffusivity (DE )
depends on the instantaneous size of droplets, and so its value
evolves over time. In Eq. (1), it is assumed that the dominant
balance in the droplet dynamics is between the acceleration of
the droplet and the Stokes drag and stochastic forces on the
droplet, and the effects of added mass, the Saffman lift force,
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and the Basset history force are neglected (see Ref. [55]).
This is justified in the heavy-particle limit, i.e., when the
density ratio of droplet to air is large [ρ/ρ f ∼ O(103) � 1]
(see Ref. [53]). We have also neglected gravity, hydrodynamic
interactions, and collisions between the droplets. These may
not in general be negligible but are fair assumptions on a hor-
izontal plane, for particle sizes much smaller than flow length
scales, and dilute suspensions, respectively. Moreover, our
focus is on the effects of condensation and thermal diffusion.
We consider small droplets to begin with, which are in Stokes
flow relative to the ambient fluid, so we do not have included
drag corrections based on Reynolds number. Additionally, we
assume that the droplets remain spherical at all times and,
therefore, that their angular dynamics need not be considered.

In supersaturated ambients, suspended water droplets grow
by the diffusion of water molecules toward their surfaces and
their subsequent adsorption. An expression for the diffusive
growth rate of water, accounting for the effects of solutes
present in the water droplet, as well as the effects of the finite
radius of curvature may be found in Ref. [33]. For droplets
that are sufficiently large (r > 5 μm) for these effects to be
neglected, the expression for the growth rate takes on a simple
form (see, e.g., Refs. [36–38,56]), viz.,

dr2

dt
= 2 ξ . (2)

The parameter ξ is proportional to the vapor pressure dif-
ference between droplet surface and the ambient, which is
assumed to be constant here. This is a fair assumption in
a dilute suspension, since the ambient temperature and wa-
ter vapor concentration will not change significantly due to
condensation events. Equation (2) may be then integrated to
obtain the instantaneous radius as r(t ) =

√
r2

0 + 2 ξ t , where
r0 = r(t = 0) is the initial radius of the droplet, and we refer
to this as the “parabolic growth model.” The parameter ξ can
be written as ξ1 s, where s is the ambient supersaturation and
ξ1 is proportional to the mass transfer coefficient.

Particles suspended in a quiescent ambient which is in
thermal equilibrium can nevertheless experience random col-
lisions with molecules of the fluid, leading to stochastic
motion of the particle. This was first observed by Robert
Brown in 1827 for pollen grains in water. In 1905, Albert
Einstein used a molecular approach to derive an expression
(called the Einstein-Smoluchowski relation) for the diffusivity
(called the Einstein diffusivity or the Brownian diffusiv-
ity), DE = kB T/(6 π μ a) of such particles, where kB is the
Boltzmann constant, T is the temperature of the system at
equilibrium, μ is the dynamic viscosity of quiescent ambient
fluid, and a is the radius of the spherical particles. Ornstein
and Uhlenbeck [57] showed that by modeling the stochas-
tic thermal noise (η) as a simple Gaussian “white-noise,” in
the vanishing limit of particle inertia, Einstein diffusivity is
recovered. The white noise is an uncorrelated random sig-
nal which has zero mean (〈η(t )〉 = 0) and an autocorrelation
〈ηi(t ) η j (t ′)〉 = δi j δ(t − t ′), where δi j is the Kronecker delta,
δ(.) is the Dirac delta function, and 〈·〉 represents the average
over ensembles. The white noise can be naively said to be the
differential of a Wiener process (W).

Renaud and Vanneste [40] have used the white-noise model
for particles suspended in a TG flow. They revisited Chil-

dress’s classic calculation of O(Pe−1/2) effective diffusivity
of a passive scalar in a cellular flow with the inclusion of
particle inertia [58]. They showed that, in the St � 1 limit,
the effective diffusivity increases (decreases) for heavy (light)
particles with increasing St. Here we follow the same ap-
proach to model the thermal diffusion of droplets in a TG flow.

The TG flow is a doubly periodic array of counter-
rotating cellular vortices. The stream function for
the TG flow with length scale L f and velocity
scale Vf is ψ = Vf L f sin(x/L f ) sin(y/L f ). The cor-
responding nondimensional velocity field is u∗ =
[sin(x∗) cos(y∗),− cos(x∗) sin(y∗)]. We use the flow
length scale (L f ) and flow timescale (τ f = L f /Vf ) to
nondimensionalize the Langevin equation [Eq. (1)] to get

St dv∗
p = (u∗(x∗

p) − v∗
p) dt∗ +

√
2

Pe
dW∗, with (3)

dx∗
p = v∗

p dt∗,

where “∗” indicates that the parameters are nondimensional.
Hereafter, we only deal with nondimensional quantities
and drop the “∗.” The Stokes number is St = τp/τ f =
2 r2 ρ/(9 μ f τ f ) and the Péclet number is Pe = τd/τ f =
Vf L f 6 π μ f r/(kB T ). The first term on the right-hand side of
Eq. (3) is the “drift term” and the second one is the “diffusion
term.” Note that St and Pe are particular for each droplet, and
for growing droplets they increase with time. The parabolic
growth model given by Eq. (2) can be used to obtain their
instantaneous values as

St = St0 + � t, (4)

Pe = Pe0

√
1 + (�/St0) t, (5)

where � = τp/τc = 4 ρ ξ/(9 μ f ) is the nondimensional
droplet growth rate, τc = r2/(2 ξ ) is the condensa-
tion timescale while St0 = 2 r2

0 ρ/(9 μ f τ f ), Pe0 =
Vf L f 6 π μ f r0/(kB T ) are the Stokes number and Péclet
number based on initial droplet size.

The temperature and pressure of the atmosphere at the
approximate height where cumulus clouds form are T ≈ 0 ◦C
and P ≈ 80 kPa. This yields ξ1 ≈ 68.2 μm2/s [56] for water
droplets. The typical supersaturation in a cloud is s ≈ 0.5%.
Thus the estimated value of the growth rate � for water
droplets is around 1.4×10−5. The TG vortices are a toy model
representation of the smallest-scale eddies in turbulence, the
Kolmogorov eddies. Typical Kolmogorov scales for a cloud
are Lη = 0.8 mm, τη = 0.04 s, and Vη = 2 cm/s [43]. Using
these scales, the initial Stokes number and Péclet number
for 5-μm water droplets are St0 ≈ 8.15×10−3 and Pe0 ≈
6.84×106. We study the dynamics for wider ranges of St0,
Pe0, and � than are typical in clouds in order to better under-
stand the effects of particle inertia, diffusion, and growth.

It is relevant to note that gravitational effects, which can
be large in growing cloud droplets, have been neglected here,
and their inclusion in a three-dimensional setting would form
a worthwhile and interesting future study. Our study is rep-
resentative of two-dimensional motion in a horizontal plane.
An earlier study [51] in TG flow in a vertical plane shows that
the relative orientation of gravity vector and flow field has a
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significant impact on particle settling. In clouds the impor-
tance of gravitational settling can be estimated by the Froude
number squared (Fr2 = Vf /gτ f ) or by the settling parameter
(ζ , the ratio of settling velocity to the flow velocity scale).
For the typical Kolmogorov scales listed above, Fr ≈ 0.226
or ζ ≈ 19.62 St, indicating that the effect of gravitational set-
tling becomes increasingly significant as the droplet grows by
condensation.

To study the dynamics of the droplets, we integrate Eqs. (3)
in time for each droplet. Since the droplets are initially micron
sized, they have a small Stokes number at initial times. Equa-
tion (3) is singular in the limit of St � 1 and its overdamped
form [40],

dxp =
(

u − St
Du
Dt

)
dt +

√
2

Pe
dW, (6)

where D/Dt = ∂/∂t + u · ∇ represents the material deriva-
tive, may be used instead. Equation (6) is valid in the limit
of St � 1, Pe � 1, and St · Pe = O(1). While we refer to
Eq. (6) to aid in understanding, the results presented here are
obtained by integrating Eqs. (3) directly with small enough
time steps.

We study numerically the dispersion and clustering of iden-
tical droplets randomly distributed over a selected region of
the TG flow. As time progresses, the droplets get advected
and diffused by the flow and the thermal noise, respectively,
during which they may also grow in size by condensation.
The instantaneous Stokes number and Péclet number are cal-
culated as per Eqs. (4) and (5). A fourth-order Runge-Kutta
scheme (RK4) is used to integrate the deterministic cases
(Pe−1 = 0) of Eqs. (3), while the EulerMaruyama method is
used to integrate the stochastic cases (Pe−1 �= 0) of Eqs. (3).
The time step for integration, dt � 0.1 min(St, St/�, Pe), is
a small fraction of the relevant timescales in the problem. We
validate our numerical scheme by comparing our results with
those of Ref. [40] (see Fig. 6).

The statistics of the distribution of droplets is analyzed
using the time evolution of the mean-square-displacement
(hereafter referred to as MSD) plots. The MSD is the ensem-
ble average of the mean-squared distance each droplet covered
from its respective initial location

σ 2(t ) =
〈

1

N

N∑
i=1

||xi(t ) − xi(0)||2
〉
. (7)

Here the angle brackets (〈·〉) represent an average over many
realizations of the initial distribution of droplets or many
realizations of the thermal noise and we use the symbol σ 2 to
represent the MSD. The nature of the MSD versus time curve
can reveal the behavior of the collective motion of particles
or droplets: MSD curves proportional to t2 indicate ballistic
motion, while a constant MSD indicates that the droplets have
attained steady states, i.e., they are all pinned at different sad-
dle (stagnation) points, approaching them along the attractive
manifolds, as discussed below. A measure of particles’ ballis-
tic velocity can be calculated from the expression d

√
σ 2(t )/dt

in the ballistic regime. However, if the MSD is proportional to
t , then the particles or droplets are in diffusive motion with
an effective diffusivity Deff = 1

4
dσ 2(t )

dt (for two-dimensional
flows).

FIG. 1. Dispersion of 103 identical inertial particles in a TG flow.
The Stokes number is set at the beginning of each simulation. (a) A
representative initial random distribution of particles within the cell
0 < x < π and 0 < y < π , with vx = vy = 0 at t = 0. (b) St = 0.1
particles at t = 100, (c) St = 0.5 particles at t = 100, and (d) St =
1.15 particles at t = 100. Note that the axes in (b)–(d) have different
scales.

In clouds, spatial and temporal variations in water vapor
content and temperature in the surroundings, would render
ξ in Eq. (2) a function of space and time. A more realistic
model for droplet condensation in clouds can be seen in pre-
vious studies [59–62]. The background turbulence in these
studies has been well resolved by directly solving Navier-
Stokes equations, and they obtain the evolution of droplet size
distribution, energy spectrum, etc. The focus of those studies
is different from the dispersion and collective dynamics of
droplets, which are of special interest here.

III. REVISITING THE ROLE OF PARTICLE INERTIA
(St �= 0, � = 0, Pe−1 = 0)

Previous studies of the dispersion of finite density inertial
particles in TG flow find that the particle trajectories can be
periodic or chaotic depending on the values of St and ρ/ρ f

[46,47,51,52]. Here we revisit the problem of dispersion of
heavy inertial particles in the TG flow (following Ref. [47] but
considering the heavy particle limit). In the absence of thermal
noise, and in the limit of large ρ/ρ f but finite St, Eqs. (3)
simplify to

dx

dt
= vx,

dvx

dt
= −vx + sin(x) cos(y)

St
, (8a)

dy

dt
= vy,

dvy

dt
= −vy − sin(y) cos(x)

St
. (8b)

Particles are initially distributed randomly within one TG
vortex cell (0 < x < π , 0 < y < π ) as shown in Fig. 1(a).
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FIG. 2. The fraction of particles that leave the TG vortex cell in
which they start, plotted for various times as a function of the particle
Stokes number St. Continuous lines represent particles starting with
zero initial velocity, and dashed ones represent particles starting with
the local fluid velocity. The curves are plotted using an ensemble
average over 500 simulations with Ntotal = 103 particles each. The
critical Stokes number Stcr is known to be 1/4.

The initial velocity of the particles is either set to zero or set
to the local fluid velocity, with similar results. All particles
with St > 0 are centrifuged away from the vortex center at
(π/2, π/2) and spiral outwards. Whether these particles re-
main within, or leave, the cell depends on St. In the long-time
limit, particles with St < Stcr remain within the area bounded
by the the separatrices x = 0, x = π , y = 0, and y = π [see
Fig. 1(b)], whereas particles with St > Stcr leave the cell. We
also see that particles with St < Stcr are ultimately absorbed
by the stagnation points (hereafter referred to as SPs) at the
corners of the cell (at later times than those shown here).

The critical Stokes number Stcr = 1/4 is identified by
plotting the fraction of particles that exit the initial cell (see
Fig. 2). The existence of a critical Stokes number, Stcr, was
first studied by Taylor in 1940 [63] in the context of deicing
experiments in a wind tunnel. For a planar extensional flow,
Taylor showed that when St > 1/4 (related to the parameter
α in his paper), a droplet can cross the separatrices. The
knowledge of the critical Stokes number is crucial in studies
on inertial impaction, and its analysis was generalized by
Levin [64] for a wide range of flows past bluff bodies for di-
verse initial conditions. For flows past axisymmetric or n-fold
rotationally symmetric bodies, Levin’s theorem states that a
minimum Stokes number (St = Stcr) is necessary for a parti-
cle to reach the body [65–67]. The value of Stcr depends on
the magnitude of velocity gradient at the stagnation point. We
calculate the leak fraction as the fraction of particles that cross
the separatrices of the initial cell. Some of the particles that
leave the initial cell, we note, may eventually be captured by
SPs other than those of the initial cell [see Fig. 1(c)]. However,
when St � 0.77, a fraction of the particles move outwards
forever with a mean direction parallel to the diagonals of the
initial cell, continually crossing TG vortex cells [Fig. 1(d)],
and exhibiting periodic motion on open zigzag trajectories.

-4

-3

-2

-1

0

1

0 0.25 0.5 1 1.5

-1

0

1

FIG. 3. The (a) real and (b) imaginary parts of the four eigen-
values (λ) of the linearized dynamics at a stagnation point, plotted
as a function of the particle Stokes number St. The dotted lines
represent asymptotes to eigenvalues for small St obtained from the
slow manifold approximation, Eq. (6).

Similar “ballistic” motion in which the MSD scales quadrati-
cally with time has previously has been observed for inertial
particles with finite density ratios in TG flow [45,47].

In Ref. [68], St = 1/4 was identified as the critical Stokes
number of escape across the separatrices in a cellular flow
[Stcr was 1/(8 π ) in their analysis due to a different choice
of scaling]. Below we use linear stability analysis at the SPs
to describe the change in behavior across this Stokes number
and to explain the leakage of particles to neighboring cells for
St > 1/4.

A. Stability properties of inertial particles in TG flow

Equations (8) constitute a dynamical system with four
variables (x, y, vx, vy). The fixed points of the system
are vortex centers ((n + 1/2) π, (m + 1/2) π, 0, 0) and SPs
(n π, m π, 0, 0) where n, m ∈ Z. The system is linearized
about the fixed points, with perturbations (x′, y′, v′

x, v
′
y) =

(x̂, ŷ, v̂x, v̂y) eλ t and solved for the eigenvalues λ to obtain
exponential stability characteristics, where (x̂, ŷ, v̂x, v̂y) are
perturbation amplitudes. At the vortex centers, the eigenvalues
all have positive real parts and the vortex centers behave
as unstable spirals for any finite St particle, explaining why
particles are centrifuged away from the center (π/2, π/2) in
the simulations.

The behavior at the SPs is more complicated and the eigen-
values are plotted as a function of the Stokes number in Fig. 3.
For St < 1/4, all the eigenvalues are purely real, and one of
them is positive. Such a fixed point is termed a “3 : 1 saddle”
[69]. For St > 1/4, two of the eigenvalues become complex
conjugates, while the positive eigenvalue remains positive; the
fixed point is thus a “spiral-3 : 1 saddle” [69]. The change in
the four-dimensional phase-space behavior is best shown in
the two-dimensional projections in Fig. 4. The trajectories of
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FIG. 4. The projections of phase-space trajectories onto x-y
[(a) and (b)] and y-vy [(c) and (d)] planes near an SP, here placed
at the origin, for particles with St = 0.1 [(a) and (c)] and St = 0.5
[(b) and (d)]. Here n + m is even, the axes represent separatrices
in the flow, and each curve shows the trajectory of a particle. The
spiralling of trajectories in the phase plane in (d) is a signature of the
crossing of the flow separatrices by the particles.

particles of St < 1/4, asymptote to the separatrices and do not
cross them [see Fig. 4(a)], whereas particles of St > 1/4 can
cross separatrices. In phase space the latter support spiral tra-
jectories at the Stokes number shown, which is consistent with
the ability to cross separatrices in finite time [see Fig. 4(b)].
The existence of a positive eigenvalue indicates that the SPs
are linearly unstable fixed points for inertial particles of finite
St. However, the phase-space behavior of these unstable fixed
points changes when the St exceeds 1/4, and the phase-space
trajectories attain a spiral nature as well. While this change to
unstable spiral-saddle behavior does not explain why particles
with St < 1/4 remain inside the initial cell (see Fig. 2), we
expect that the agreement between the Stcr found numerically
and from the linear stability analysis here is not simply co-
incidental. In fact the connection can be clearly explained, as
done in the following subsection.

B. The threshold to cross a separatrix

Numerical simulations of Eqs. (8) reveal that particles with
St > 1/4 always cross the separatrices in the vicinity of one
of the SPs. Therefore, we linearize Eqs. (8) at a general SP
(n π, m π, 0, 0) where n, m ∈ Z, to get

dx′

dt
= v′

x,
dv′

x

dt
= −v′

x + (−1)n+m x′

St
, (9a)

dy′

dt
= v′

y,
dv′

y

dt
= −v′

y − (−1)n+m y′

St
, (9b)

where (x′, y′, v′
x, v

′
y) are perturbation quantities. Since the x

and y equations are decoupled, we can combine them and
rewrite Eqs. (9) as follows:

St
d2x′

dt2
+ dx′

dt
− (−1)n+m x′ = 0, (10)

St
d2y′

dt2
+ dy′

dt
+ (−1)n+m y′ = 0, (11)

which are the equations for damped harmonic oscillators with
two degrees of freedom. The two oscillators have opposite
stability, since they have oppositely signed stiffness coeffi-
cients (i.e., if n + m is an even integer, then the x oscillator is
unstable while the y oscillator is stable, and vice versa). Here,
without loss of generality, we consider SPs with even n + m
to explain things unless otherwise specified. The behavior at
SPs with odd n + m are obtained by exchanging x and y.

Equation (11), therefore, represents a damped harmonic os-
cillator in the y direction, with a positive stiffness coefficient.
The damping coefficient for the system is 1, and the critical
damping factor is 2

√
St, giving a damping ratio of 1/

√
4 St.

Therefore, the system is overdamped for St < 1/4 and under-
damped for St > 1/4. The oscillations in y′ for St > 1/4 are
about the horizontal separatrix connected to the SP, and thus
the particle crosses the separatrix in the y direction near the
SP. For SPs with n + m is odd, the identical argument reads
as follows: Oscillations in x′ for St > 1/4 about vertical sepa-
ratrices makes the particle to cross separatrices in x direction
near SPs. Since this argument is true at all SPs, we conclude
that particles can only cross the separatrices if St > 1/4.

Equations (10) and (11) are, in fact, exactly solvable. For
an initial condition (x′

0, y′
0, v

′
x0, v

′
y0), and n + m even, the exact

solutions are

x′ = C1 e
(α−1) t

2 St + C2 e
−(α+1) t

2 St , (12)

y′ = C3 e
(β−1) t

2 St + C4 e
−(β+1) t

2 St , (13)

where α = √
1 + 4 St, β = √

1 − 4 St, C1 = x′
0 (1 +

α)/(2 α) + v′
x0 St/α, C2 = x′

0 (−1 + α)/(2 α) − v′
x0 St/α,

C3 = y′
0 (1 + β )/(2 β ) + v′

y0 St/β, and C4 = y′
0 (−1 +

β )/(2 β ) − v′
y0 St/β.

From these solutions, it can be seen that the nature of the
system changes at Stcr = 1/4. Furthermore, the time taken by
a particle with St > 1/4 to cross the horizontal separatrix y =
m π and escape the cell (escape time, tesc) is the smallest of
the solution for y′(tesc) = 0 and is

tesc ∼ 2 St√
4 St − 1

⎧⎨
⎩π − tan−1

⎛
⎝ √

4 St − 1

1 + 2 St
v′

y0

y′
0

⎞
⎠

⎫⎬
⎭. (14)

By this time, the particle could typically be sufficiently far
away from the SP in the x direction so that the linearized
system no longer governs further dynamics. Thus, Eq. (14)
would be only a rough estimate for the escape time of the
particles in the y direction across horizontal separatrices.

From the exact solution Eq. (12), we also see that particles
with a sufficiently large initial velocity, directed specifically,
can cross the vertical separatrices as well. The magnitude of
critical velocity can be obtained from Eq. (12) as |v′

x0| > vcr =
2 |x′

0|/(−1 + √
1 + 4 St), and should be directed toward the
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FIG. 5. The trajectories of inertial particles with different Stokes
numbers St and different initial velocities vx (continuous lines)
starting from the same location near the SP at the origin in a TG
flow represented by the black dot (−0.01, −0.05). These trajectories
could cross the horizontal and vertical separatrices depending on the
initial conditions. Faded purple dashed or dotted lines represent tra-
jectories of St = 0.1 particles with zero initial velocity, for different
realizations of thermal noise (Pe = 104), and show that even St <

1/4 particles could cross the separatrices for individual realizations
of the noise. The thin dashed gray lines are the streamlines of the
flow.

vertical separatrix x = n π . For St � 1/4, the particles can
usually have that much velocity; however, that will not be
directed toward the vertical separatrix, instead directed away
from it near any SP, due to the centrifuging effect of the vortex.
Extra forces in the system like gravity, acting toward the
vertical separatrix could activate this criterion. Thus, it is not
relevant in explaining the leakage of particles with St � 1/4
from the initial TG vortex cell in the present system.

In Fig. 5, we plot the trajectories of inertial particles start-
ing near an SP placed at the origin (n + m = 0). The axes
coincide with separatrices. When the initial velocity is large,
the trajectories cross the x = 0 separatrix; when the initial
Stokes number is large, the trajectories cross the y = 0 sepa-
ratrix; when both the initial velocity and the Stokes number
are large, trajectories cross both the x = 0 and the y = 0
separatrices. Examples are shown in the figure.

IV. THE ROLE OF THERMAL NOISE
(St �= 0, � = 0, Pe−1 �= 0)

In the weak molecular diffusion limit (Pe � 1), the effec-
tive diffusivity of passive scalars crucially depends on the flow
topology. In shear flows with open streamlines Deff ∼ Pe—the
classical Taylor-Aris dispersion [70–72]. For cellular flows,
molecular diffusion becomes dominant in a thin boundary
layer near the separatrices, assisting migration across cells,
leading to Deff ∼ Pe−1/2 [58]. To understand the enhanced
transport due to convection in the above two scenarios, one
should recall that the diffusivity in the absence of flow is
D ∼ Pe−1. The effective diffusivity Deff of inertial particles
in a TG flow, with the asumption of St � 1, Pe � 1, and
St Pe = O(1), was recently calculated in Ref. [40]. For St =

10 1 10 2 10 3 10 4

0.3

0.4

0.5

0.6

0.7

0.8

FIG. 6. Effective diffusivity for heavy particles in TG flow
against Péclet number Pe at various Stokes numbers. Our results
(solid lines with markers) are compared with the expression of Re-
naud and Vanneste [40] (dashed lines).

0.1, our simulated results find excellent agreement with theirs,
as shown in Fig. 6. At higher values of St, however, the
expression in Ref. [40] is no longer accurate. As St increases,
we find that the effective diffusivity acquires a nonmono-
tonic variation with Pe, and decreases rapidly for large Pe, in
qualitative departure from the distinguished limit of St Pe =
O(1). The diffusion of inertial particles in periodic, shear,
and elongational flows are studied in Refs. [73–76]. The
study by Rubi and Bedeaux [74] on elongational flows is
of particular interest since, near the SPs, TG flow resembles
elongational flow. The linearized governing equations near an
SP (n π, m π, 0, 0) when Pe−1 > 0 read

St
d2x′

dt2
+ dx′

dt
− (−1)n+m x′ =

√
2

Pe
ηx(t ), (15)

St
d2y′

dt2
+ dy′

dt
+ (−1)n+m y′ =

√
2

Pe
ηy(t ). (16)

The MSD of a particle near the elongational flow can be
calculated as (for n + m even)

〈x′2〉 = C2
1 e

(α−1) t
St + 2C1 C2 e

−t
St + C2

2 e
−(α+1) t

St

× 1

α2 Pe

{
e

−t
St

[
cosh

(
α t

St

)
+ α sinh

(
α t

St

)]

− 1 − 4 St (1 − e
−t
St )

}
, (17)

〈y′2〉 = C2
3 e

(β−1) t
St + 2C3 C4 e

−t
St + C2

4 e
−(β+1) t

St

× 1

β2 Pe

{
−e

−t
St

[
cosh

(
β t

St

)
+ β sinh

(
β t

St

)]

+ 1 − 4 St (1 − e
−t
St )

}
, (18)

where α and β and the constants C1, C2, C3, and C4 are as
defined in Sec. III. Equations (17) and (18) generalize the ex-
pressions in Ref. [74] to arbitrary initial conditions and St. At
short times, the MSD scales as 〈x′2 + y′2〉 ∼ 4 t3/(3 Pe St2).
Thus, when Pe−1 > 0, particles of any St can cross
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FIG. 7. MSD for St0 = 10−2 droplets with (Pe0 = 103) and with-
out (Pe0 = ∞) thermal noise, for different growth rates, plotted
against time. The asymptote for the long time ballistic motion is
shown in green. The circle within the inset indicates that the switch
to the ballistic regime occurs at a scaled time � t ∼ O(1).

separatrices and escape the initial cell. This tendency in-
creases for stronger noise (smaller Pe). Figure 5 shows sample
trajectories of particles with Pe = 104 and zero initial ve-
locity. For the same initial condition, individual realisations
of the thermal noise may lead to trajectories crossing the
separatrices.

V. THE ROLE OF CONDENSATION
(St �= 0, � �= 0, Pe−1 = 0)

We next study the dynamics of growing (by condensation)
droplets in the TG flow without thermal noise. Droplets of
initial Stokes number St0 = 0.1 and zero initial velocity are
distributed randomly in a square patch as shown in Fig. 1(a),
and allowed to grow with a growth rate � = 10−2. We note
that a different choice of initial velocity (the local fluid ve-
locity) does not change the dynamics qualitatively. We solve
Eqs. (3) with Pe−1 ≡ 0. The advective motion by the flow
dominates the initial dynamics of the droplets, where the
droplets are thrown out of the vortex center (π/2, π/2). As
time progresses, the instantaneous Stokes number of droplets,
St(t ) = St0 + � t exceeds 1/4, allowing droplets to cross the
separatrices and spread in a manner qualitatively similar to
that seen in Fig. 1(c). Unlike fixed St particles, all continu-
ously growing droplets eventually enter the ballistic regime
of motion [qualitatively as will be seen in Fig. 9(d)]. In this
phase, the droplets are observed to travel along 45◦–135◦ lines
in a zigzag manner, which is similar to the open-trajectory
periodic motion identified in Wang et al. [47]. However, for
sufficiently small growth rates (� � 0.005), our simulations
show that growing droplets get trapped at the stagnation points
instead of attaining ballistic velocities. Once these droplets
are trapped (to within numerical precision) at the SPs, their
velocities remain zero despite their continuous growth in size.

We plot the MSD of the droplets, ensemble-averaged over
103 realizations of initial distributions of 103 particles each,
for an initial Stokes number St = 10−2, three different val-

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

FIG. 8. The fraction of condensing droplets (� = 10−2) that exit
their initial cell is plotted against St0 for various simulation times.
Continuous lines indicate the case of particles with zero initial ve-
locity, and dashed ones represent particles initially at the local fluid
velocity. Simulations are performed with Ntotal = 103 particles over
500 realizations.

ues of growth rates (� = 10−3, 10−2, and 10−1) in Fig. 7
(Pe0 = ∞ case). Initially, i.e., for t � 1, the MSD grows
independent of �. In the intermediate phase [t ∼ O(10) −
O(103)], the MSD has a clear dependence on �. The curves
in this phase display waviness, which could be caused by
droplets hopping back and forth between neighboring cells. At
large times [t > O(103)], the MSD scales as t2/2 and droplets
enter the ballistic regime. The time at which the dynamics
becomes ballistic is approximately the same time at which
St(t ) ∼ O(1). This time decreases for larger � as t ∼ 1/�,
as shown in the inset of Fig. 7. The scaling � t was obtained
empirically. For the lowest growth rate � = 10−3 < 0.005
shown in the figure, the MSD is saturated at large times,
indicating that the droplets are trapped at the SPs of the flow
even though they are continuously growing.

For other values of initial Stokes number St0 (not shown),
the MSD plot is qualitatively the same as shown in Fig. 7.
We also see that for sufficiently large � and long times,
the numerical value of the MSD becomes independent of
St0 and �. Empirically we obtained that the asymptotic fit
in this phase is σ 2(t ) ∼ t2/2, indicating that the measure
of the nondimensional ballistic velocity of droplets in this
phase asymptotically reaches the value 1/

√
2 for large St (see

Sec. II).
The evolution of the leakage fraction of particles against

their initial Stokes number St0 is plotted in Fig. 8. Unlike in
Fig. 2, there is no critical initial Stokes number St0 for grow-
ing particles, as one would intuitively expect. In the following
subsection, we examine the reason using a local analysis near
SPs. Also, we obtain an analytical expression for the escape
time of droplets from a vortex cell.

A. Local analysis near SPs

We observe from the numerical simulations that con-
densing droplets, like constant-size particles, also cross the
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separatrices near SPs. The linearized perturbation equa-
tions (see Sec. III B) for a droplet with a Stokes number
St1 > St0 (allowing for droplet growth by the time it reaches
the vicinity of an SP) near the SP (n π, m π, 0, 0) read as
follows:

(St1 + � t )
d2x′

dt2
+ dx′

dt
− (−1)n+m x′ = 0, (19)

(St1 + � t )
d2y′

dt2
+ dy′

dt
+ (−1)n+m y′ = 0. (20)

The system is thus composed of damped harmonic oscillators
with two degrees of freedom but with increasing mass. Using
the transformation t1 = t + St1/�, these equations for SPs
with even n + m can be written as

� t1
d2x′

dt2
1

+ dx′

dt1
− x′ = 0, (21)

� t1
d2y′

dt2
1

+ dy′

dt1
+ y′ = 0. (22)

The general solutions are in terms of Bessel functions,

x′ = t
− γ

2
1

{
C5 Iγ

(
2

√
t1
�

)
+ C6 I−γ

(
2

√
t1
�

)}
, (23)

y′ = t
− γ

2
1

{
C7 Jγ

(
2

√
t1
�

)
+ C8 J−γ

(
2

√
t1
�

)}
, (24)

where γ = −1 + �−1. Since these expressions are not partic-
ularly helpful in the limit (� → 0), because of the singular
nature of arguments of Bessel functions, we use the Wentzel-
Kramers-Brillouin (WKB) method to obtain the asymptotic
solutions for � → 0 (see Appendix A)

x′ ∼ t
−1
2 π

1 {C9 exp(−χ+) + C10 exp(χ+)}
4

√
�

(
1
t1

− 1
2 t2

1

) + 1
4 t2

1

, (25)

y′ ∼ t
−1
2 π

1 {C11 sin χ− + C12 cos χ−}
4

√
�

(
1
t1

+ 1
2 t2

1

) − 1
4 t2

1

, (26)

where

χ± = 1

�

∫ t1

St1
�

√
�

(
1

τ
∓ 1

2 τ 2

)
± 1

4 τ 2
dτ. (27)

The lower limit of the integral is taken as the value
of t1 corresponding to t = 0, i.e., St1/�. The constants
C5 · · ·C12 depend on the initial conditions of the perturbation
(x′

0, y′
0, v

′
x0, v

′
y0). The form of the asymptotic solution Eq. (26)

implies that there exists a critical Stokes number (1 − 2 �)/4,
a modification to Stcr = 1/4 of fixed St particles. When St1 >

(1 − 2 �)/4, the behavior of y′ would be oscillatory, similarly
to the case of a fixed St particle, but the time variation in St
is accounted for here. In contrast, when St1 < (1 − 2 �)/4
the scenario is different from that for constant St. At a time
tTP = (1 − 2 � − 4 St1)/(4 �) there is a “turning point” by
WKB analysis (see Appendix A), close to which the WKB so-
lution Eq. (26) will not be valid. However, when t � tTP, this
oscilatory solution will be valid even for St1 < (1 − 2 �)/4,
which could allow the droplet to cross the separatrices. Again

the time taken to cross a horizontal separatrix y = m π would
be the smallest of the solution of y′(tesc) = 0. Using Eq. (24),
the actual estimate would be the solution tesc of the following
transcendental equation:

Jγ

(
2√
�

√
tesc + St1

�

)
J−γ

(
2√
�

√
tesc + St1

�

)

=
J1+γ

( 2
√

St1

�

) + v′
y0

y′
0

√
St1 Jγ

( 2
√

St1

�

)
−J−1−γ

( 2
√

St1

�

) + v′
y0

y′
0

√
St1 J−γ

( 2
√

St1

�

) . (28)

An approximate estimate can be obtained using the WKB so-
lution Eq. (26) as tesc ∼ tTP + [9 π/(32

√
�)]2/3 when St1 <

(1 − 2 �)/4 (see Appendix B), indicating that as � decreases,
the escape time increases. A more accurate expression using
WKB is given in the Appendix B, both for St1 < (1 − 2 �)/4
and St1 > (1 − 2 �)/4 cases.

As we mentioned earlier, for the case of noncondensing
particles, this exit time is a rough estimate from the linear
theory. By this time, the droplet could be sufficiently away
from SP so that nonlinear effects could alter this exit time.

VI. COMBINED EFFECTS OF CONDENSATION
AND THERMAL NOISE (St �= 0, � �= 0, Pe−1 �= 0)

We now study the dynamics of condensing droplets in
TG flow with thermal noise by solving the full stochastic
Langevin equation Eq. (3). Since the droplets are condensing,
both St and Pe increases with time as per Eqs. (4) and (5).
The strength of the thermal noise is inversely proportional
to the Pe. Thus, as time progresses, the influence of thermal
noise becomes weaker. Diffusive behavior takes a long time
to be set up even for droplets which are not growing, i.e.,
when the thermal noise is not decreasing in strength with time.
It would take even longer for growing droplets. Similarly,
ballistic motion would take less time to be set up for growing
droplets. We therefore expect that at long times, ballistic dy-
namics will be predominant. The intermediate time behavior,
where the effects of advection and thermal diffusion may be
in competition, is not easy to anticipate.

We numerically study the dynamics of initially identical
droplets (St0 = 0.1 and Pe0 = 103, v = 0) distributed ran-
domly over the TG vortex cell, as shown in Fig. 9(a). The
growth rate is chosen as � = 10−2. For short times, advection
and stochastic forcing together make the particles to cross
separatrices despite having Stokes numbers St < 1/4 [see
Fig. 9(b)]. For larger times, the combined effects of conden-
sation growth and thermal noise lead to the greater diffusion
than with condensation alone [see Fig. 9(c)]. As expected, in
large time limit, the droplets move ballistically along 45◦–
135◦ paths [see Fig. 9(d)].

The MSD, ensemble-averaged over 103 realizations with
103 droplets each with St0 = 10−2 and Pe0 = 103, is plotted
in Fig. 7 for three different values of the growth rate �. We see
that thermal noise (finite Pe) significantly alters the dynamics
for small droplet growth rates � = 10−3, leading to ballistic
motion instead of droplets trapped at SPs.

In Fig. 10, we plot the MSD for different Pe0 but the
same St0 and �, showing that the intermediate phase becomes
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FIG. 9. Dispersion of identical condensing droplets (N = 103,

St0 = 0.1, � = 10−2) in TG flow with thermal noise (Pe0 = 103) at
(a) t = 0, (b) t = 15, (c) t = 150, and (d) t = 300. Initial velocity of
all the droplets are chosen to be zero.

smoother for smaller Pe0 (and thus larger thermal noise).
Furthermore, the intermediate regime scales linearly with t
indicating that the behavior is diffusive. As Pe0 decreases, this
diffusive regime becomes wider.

Last, we study the behavior of droplets with parameter val-
ues representative of atmospheric clouds: St0 = 8.15×10−3,
Pe0 = 6.84×106, and � = 1.4×10−5 (see Sec. II). The MSD,
ensemble-averaged over 100 realizations of 104 particles each,
is plotted in Fig. 11. We note that fewer realizations were
possible due to the extremely long times for which these
simulations need to be run. For comparison, the MSD curves

10 -1 10 0 10 1 10 2 10 3 10 4

10 -2

10 0

10 2

10 4

10 6

10 8

FIG. 10. MSD for droplets with St0 = 10−2 and � = 10−3, for
different Pe0. The O(t ) asymptote, indicative of a diffusive regime,
is shown in magenta.

FIG. 11. MSD versus time for 5-μm droplets with initial Stokes
number St0 = 8.15×10−3, realistic � and Pe0 compared with non-
condensing and nondiffusing droplets. Asymptotes for ballistic and
diffusive behavior are shown. For � = 0 and finite Pe0, the diffu-
sivity Deff = 0.05786 matches that calculated from the expression of
Ref. [40]. Growing droplets subject to thermal noise transition from
diffusive to ballistic behavior at t ∼ 1/�.

corresponding to the special cases studied in Secs. III–V are
also plotted in Fig. 11. It is observed that after 106 nondimen-
sional time (11 hours), the enhancement in MSD is of O(1010)
by the inclusion of both condensation and thermal noise. We
observe that the MSD for Pe0 = ∞ cases is independent of
whether condensation occurs, and � > 0 (still � < 0.005)
leads to a constant MSD indicative of a steady state. Here,
this steady state is achieved due to the capture of droplets
at the SPs of the TG flow, despite the fact that the droplet
Stokes numbers have increased to St = O(10) by t = 106 (cf.
the discussion of Fig. 7).

With nonzero thermal noise, droplets behave diffusively
both for � = 0 and � > 0, although growing droplets show
departures from the asymptote (4 Deff t), eventually transition-
ing to ballistic motion at t ∼ 1/�, as expected from Sec. V.
The combined effects of condensation and thermal noise are
reflected in the greater diffusion at intermediate times.

VII. CONCLUSION

We studied the effects of thermal noise and condensation
on the dispersion of monodisperse droplets suspended in a
Taylor-Green vortex flow. In the absence of thermal noise
and condensation, we found, in agreement with Ref. [68], that
droplets with St < 1/4 remain trapped in their initial vortices.
We showed that the addition of either thermal noise or a finite
condensation rate removes this condition, increasing droplet
dispersion by orders of magnitude. Ignoring gravity and work-
ing in a horizontal plane, we showed that droplets growing
by condensation typically attain a state of ballistic motion
away from their initial vortices for times t � �−1, traveling
along 45◦ diagonal trajectories with average nondimensional
velocities of 1/

√
2, but that sufficiently small growth rates

� � 0.005 allow droplets to remain trapped at the stagna-
tion points of the flow. We showed that, in the presence of
thermal noise, this transition from the trapped state to the
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ballistic state occurs proceeds through an intermediate dif-
fusive regime where the mean-squared displacement of the
droplets grows linear as σ 2 ∼ t . Our results with this model
flow are encouraging, and suggest further studies where the
effects of polydispersity and collision-coalescence of droplets,
their gravitational settling, and the effects of latent heating and
buoyancy are included.

Finally, by examining the patterns of particle trajectories
in the ballistic regime [see Figs. 1(d) and 9(d)], we infer that
particle dispersion is anisotropic at high inertia. For small
Stokes number, however, recent work [40] shows that the
particle diffusivity tensor is isotropic. The Stokes number for
the transition to anisotropy of the diffusivity tensor would be
of interest.
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APPENDIX A: WKB ANALYSIS FOR CONDENSING
DROPLETS NEAR STAGNATION POINTS

By eliminating first-order terms, Eqs. (21) and (22) can be
rewritten as

�2 d2x′′

dt2
1

+
{
−�

t1
+

(
� − 1

2

)
1

2 t2
1

}
x′′ = 0, (A1)

�2 d2y′′

dt2
1

+
{

�

t1
+

(
� − 1

2

)
1

2 t2
1

}
y′′ = 0, (A2)

where x′′ = x′ t1/(2 �)
1 and y′′ = y′ t1/(2 �)

1 . These equations re-
semble the form of differential equations

�2 d2φ

dt2
+ q(t ) φ = 0, (A3)

which can be asymptotically solved using the WKB method
[77]. For � → 0, the asymptotic solution is

φ(t ) ∼ 1

q(τ )1/4
(A sin θ + B cos θ ), (A4)

where θ = 1
�

∫ t √
q(τ ) dτ and A, B are constants to be de-

termined using initial or boundary conditions. The solution
can be sinusoidal or exponential type depending on the nature
of the “potential” q(t ). By substituting respective q(t ) terms
from Eqs. (A1) and (A2) in Eq. (A3) and rearranging, x′(t )
and y′(t ) can be obtained as in Eqs. (25) and (26), respectively.

The asymptotic expression Eq. (A3) is valid only away
from the “turning point” (tTP) at which q(tTP) = 0. Thus,
from Eq. (A2), {�

t1
+ (� − 1

2 ) 1
2 t2

1
} = 0 has a solution at t1 =

(1 − 2 �)/(4 �), indicates that there exists a turning point

time tTP = (1 − 2 � − 4 St1)/(4 �) near which the oscilla-
tory solution Eq. (26) is not valid (remember t1 = t + St1/�).
Nevertheless, away from this turning point time, Eq. (26) will
be a good approximation. Thus y′(tesc) ∼ 0 can be asymptot-
ically solved to get escape time estimate when � → 0 for a
SP with n + m is even.

APPENDIX B: ESCAPE TIME FOR CONDENSING
DROPLETS ESTIMATED USING WKB WHEN � → 0

To calculate escape time, here we solve y′(tesc) ∼ 0.

1. St1 > (1 − 2 �)/4

In this situation, 1 − 2 � − 4 St1 < 0 indicates that tTP <

0, i.e., the turning point does not exists in positive time, thus
the solution Eq. (26) is valid in all t > 0. χ− can be evaluated
by performing the integral Eq. (27) as χ− = F (t + |tTP|) −
F (|tTP|), where |tTP| = (−1 + 2 � + 4 St1)/(4 �) > 0 and

F (τ ) =
√

1 − 2 �

�

{
2

√
�τ√

1 − 2 �
− tan−1

[
2

√
�τ√

1 − 2 �

]}
.

(B1)

For the initial position y′
0 and initial velocity v′

y0, the constants
C11 and C12 can be evaluated as

C11 = C12

G+(|tTP|) , (B2)

C12 = y′
0

(
St1

�

)γ /2

�1/4 |tTP|1/4, (B3)

where (remember γ = −1 + �−1)

G±(τ ) = 4
√

�τ

4 St1
v′

y0

y′
0

± St1
τ

+ 2 (1 − �)
. (B4)

From Eq. (26), y′(tesc) = 0 thus leads to C11 sin χ− +
C12 cos χ− = 0, can be simplified to

tan {F (tesc + |tTP|) − F (|tTP|)} + G+(|tTP|) = 0. (B5)

The solution tesc of this transcendental expression gives the
asymptotic estimate for escape time when � → 0 and St1 >

(1 − 2 �)/4.

2. St1 < (1 − 2 �)/4

In this situation, 1 − 2 � − 4 St1 > 0 indicates that tTP =
(1 − 2 � − 4 St1)/(4 �) > 0, i.e., there exists a turning point
in positive time, near by which the oscillatory solution
Eq. (26) is not valid. However, far in time from the turning
point (i.e., t � tTP or t << tTP), the solution Eq. (26) will be
valid. From Eq. (27), we can see that the numerical value of
χ− = i [Fh(tTP − t ) − Fh(tTP)] will be purely imaginary for
t ∈ (0, tTP) and complex number χ− = F (t − tTP) − i Fh(tTP)
for t > tTP, where

Fh(τ ) =
√

1 − 2 �

�

{
2

√
�τ√

1 − 2 �
− tanh−1

[
2

√
�τ√

1 − 2 �

]}
.

(B6)

Thus, the solution Eq. (26) will behave exponentially for
t < tTP and can have oscillations only when t > tTP. Thus,
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we conclude that the condensing droplets can hence cross the
separatrix by oscillation only when t > tTP. (Note that when
� = 0, this reduces to the case St < 1/4 and the correspond-
ing tTP → ∞, indicates that the particle will never cross the
separatrix.)

Using initial position and initial velocity, the constants C11

and C12 can be evaluated for Eq. (26) as

C11 = −i C12

G−(tTP)
, (B7)

C12 = (1 + i)√
2

y′
0

(
St1

�

)γ /2

�1/4 t1/4
TP . (B8)

However, these constants along with Eq. (26) will be asymp-
totically valid estimate of y′(t ) only when t � tTP and cannot

be extrapolated for t � tTP. The constants C11 and C12 need
to be determined separately for this region using appropriate
solution matching techniques at t = tTP. However, we ob-
served that the real part of the solution Eq. (26) along with
constants Eq. (B7) and (B8) have oscillatory nature and its
zeros matches with the zeros of actual asymptote Eq. (26) with
appropriate constants. Thus simply Re[y′(tesc)] ∼ 0 solved us-
ing Eq. (26) along with constants Eq. (B7) and (B8) can give
estimate of escape time when � → 0 and St1 < (1 − 2 �)/4
as the solution of the following transcendental equation:

tan {F (tesc − tTP)} = tanh
{
Fh(tTP) − tanh−1 G−(tTP)

}
. (B9)

By expanding terms in series for � � 1, the leading-
order approximate solution can be obtained as tesc ∼ tTP +
[9 π/(32

√
�)]2/3.
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