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Packing a flexible fiber into a cavity
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The insertion of an elastic rod or fiber into a confining cavity is studied. Such an insertion is a feature of a
variety of problems, including packing and unpacking of DNA in viral capsids and the insertion of catheters
during surgery. We consider a simplified geometry in which the container is a smooth (frictionless) circular
cylinder of radius a. The fiber is pushed through a hole in the curved surface of the cylinder and is then assumed
to stay in a cross-sectional plane perpendicular to the cylinder axis. A solution is found for the fiber shape in
which most of the fiber lies against the curved interior surface of the cylinder, apart from the final end section of
the fiber, of length 2.0888a, which crosses the interior of the cylinder before ending at the opposite side, which it
meets at an angle 1.15 rad to the normal. The force required to push the fiber into the cylinder is EI/2a2, where
E is the fiber’s Young’s modulus and I its cross-sectional moment of inertia. The shape of the final end section of
the fiber is confirmed by experiment.
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I. INTRODUCTION

The interaction between an elastic fiber and confining walls
plays an important role in a variety of problems on macro-
as well as micro- and nanoscales. A classic example of the
latter is the packing and unpacking of DNA into viral cavities
in various phases of the life cycle of certain viruses known
as “bacteriophages.” The genetic material of the phage is
enclosed in a protein capsid that encloses and protects it [1].
During infection, the DNA alone is injected into the cell while
the capsid remains attached to the cell membrane. In certain
cases, the release of elastic and electrostatic energy of the
stiff DNA polymer confined within the viral capsid [2] is the
driving force responsible for the ejection [3]. Experiments and
numerical simulations have confirmed that DNA within viral
capsids [4–7] packs in much the same way as wires and fibers
in large-scale mechanical models [8–15]. Aspects of the ex-
perimental data on ejection dynamics can be interpreted based
on mechanical models where frictional interactions with the
capsid wall provide the resistive force that determines speed
of translocation [16,17].

On the macroscale, the problem of inserting flexible fibers
in cavities is encountered in medicine when catheters are
inserted into body cavities during surgical or imaging proce-
dures. For example, children and infants with hydrocephalous
can be fitted with extended length peritoneal shunt catheters
that drain into the abdominal cavity [18]. In coronary angio-
plasty, a thin catheter is guided through the confining walls
of blood vessels following curved trajectories [19]. In such
problems, it is important to understand the shape assumed by
the fiber within the body cavity. This shape depends on the
applied load, frictional interactions with the confining walls
[20], and elastic properties of the fiber.

A related example is the buckling of drill string within a
petroleum well. The drill string is confined in a cylindrical
borehole, which in general has a curvilinear trajectory. Un-
der the influence of compressive and torsional loading, and
confined by the walls of the borehole, the drill string exhibits
buckling instabilities. Sinusoidal, helical, and more complex
structures can develop [21–24].

Analysis of the problem of the shape of a flexible fiber
in a cavity sometimes assumes that the fiber remains in con-
tact with the confining wall at all points. While this may be
mostly true for a very long fiber under confinement, there may
be “free-flying” sections at either end of the fiber. Here we
consider an idealized model problem in order to study such
end sections, which are completely absent in studies of the
deformation of fibers or elastica which form a closed loop and
therefore have no ends [25,26].

The geometry that we consider is shown in Fig. 1. We wish
to determine the shape of the fiber as well as the force required
to push the fiber into a container or capsid. Torsional loading is
not considered, and friction between the fiber and the cylinder
wall is neglected. The capsid is modeled as a smooth circular
cylinder of radius a, with an entry hole at A and with inwards
normal N̂. The fiber is sufficiently rigid that outside the capsid
it is straight, with curvature κ = 0, and it is pushed into the
capsid with a force F1, which we seek to determine. Thus
we assume that the unconstrained fiber outside the capsid is
sufficiently short that Euler buckling does not occur. We use s
as a coordinate along the length of the fiber, with s = s1 < 0
at the point of entry, and s = s2 at the end of the fiber, so that
the length of the fiber within the capsid is L = s2 − s1 > 0.
Within the capsid, the fiber is forced to curve around the inner
surface of the cylinder and therefore has curvature κ = 1/a in
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FIG. 1. The geometry considered in Secs. II and III. The fiber
enters the cylinder at A, where the coordinate along the fiber is
s = s1 < 0. The portion s1 < s < 0 of the fiber is in contact with the
inner surface of the cylinder, and the portion 0 < s < s2 traverses the
inside of the cylinder, which it contacts again at the fiber end s = s2.

the region s1 < s < 0 where it is in continuous contact with
the cylinder.

We assume that the fiber has Young’s modulus E and
cross-sectional area moment of inertia I about its midplane.
The elastic energy of the fiber due to curvature is therefore

U (L) = EI

2

∫ s2

s1

κ2 ds = −EIs1

2a2
+ EI

2

∫ s2

0
κ2 ds. (1)

Once L is sufficiently large, any further increase in the length
of fiber inside the cylinder leaves the free-flying section (of
length s2) unchanged and merely changes the length −s1 of
the portion of the fiber in continuous contact with the cylinder
wall. The work required to push a further length δL = −δs1

of the fiber into the capsid is therefore F1δL, and the increase
in elastic potential energy is EIδL/(2a2). This suggests that
force required to push the fiber into the capsid is

F1 = EI

2a2
. (2)

The analysis tells us nothing about the stresses within the
fiber, nor the forces acting at the couple-free end of the fiber
at s = s2. In the next section, we examine the force balance in
more detail. The analysis combines recent work on tangential
forces due to a smooth confining sleeve [27–31] with an
analysis of free-flying sections of an elastica [32].

II. THE BEAM EQUATIONS

The state of stress within the fiber may be studied using the
classical beam equations [33]. We use s as a coordinate along
the length of the fiber, which has unit tangent t̂, unit normal
n̂, and binormal b̂. The state of stress within the fiber at s = σ

may be characterized by the force F(σ ) due to the portion of
the fiber in s > σ acting on the portion in s < σ , together with

the moment M(σ ) of the force in s > σ acting on the fiber in
s < σ . Equilibrium of moments and forces requires

dM
ds

+ t̂ × F = −�e, (3a)

dF
ds

= −�e, (3b)

where �e and �e are the external moment and force per unit
length acting on the fiber. In the problem considered here the
only external couple acting on the fiber is that caused by the
constraint of the hole in the capsid wall through which the
fiber passes; the only external forces are the force F1 pushing
the fiber into the container and the reaction due to contact with
the smooth wall, which is everywhere in the direction of the
local normal to the wall, N̂, except at the entry hole where the
constraint applies a tangential force (despite the assumption
that the hole through which the fiber passes is smooth). This
tangential force is sometimes described as an Eshelby-like
force, found by variational analysis of the potential energy of
the fiber together with the material momentum balance law
[27,29]. A more physical explanation, due to Balabukh et al.
[31], is given by Bigoni et al. [28]. We therefore assume

�e = RN̂ + Gt̂, (4)

where the tangential force is zero (due to the zero friction)
everywhere except at the exit to the constraining hole inside
the capsid, where the curvature of the fiber changes from 0
to a−1. Experiments in which the effects of this tangential
force is observed are discussed in [27,28], and there is further
theoretical discussion in [29,30].

The normal n̂ to the curved fiber is aligned with N̂ wher-
ever the fiber is in continuous contact with the cylinder wall.
Equation (3a) is supplemented by the constitutive relation

M = EIκb̂, (5)

and we resolve F as

F = T t̂ + Sn̂, (6)

so that

t̂ × F = Sb̂. (7)

We assume (for now) that the fiber is constrained to enter the
capsid tangentially. The moment balance (3a) becomes

EI
dκ

ds
+ S = EIκ1δ(s − s1), (8)

where we assume that a point couple

�e = −EIκ1δ(s − s1)b̂, (9)

imposed at the entry hole s = s1, is responsible for a jump
change in curvature from κ = 0 outside the capsid to κ =
κ1 inside. Thus κ = κ1H (s − s1) in the neighborhood of s1,
where H is the Heaviside function. Our assumption that the
fiber immediately comes into contact with the wall implies
κ1 = a−1, but we shall later consider entry conditions with
κ1 �= a−1. With the orientation of t̂ and n̂ indicated in Fig. 1,
the binormal b̂ is directed into the page, and the negative
couple represented by the right-hand side of (8) is a couple
in the anticlockwise direction.
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The tangential force (4) at the exit from a straight sleeve is
[27–29]

G = EI

2
κ2

1 δ(s − s1). (10)

The Frenet-Serret equations for a plane curve

d t̂
ds

= κn̂,
dn̂
ds

= −κ t̂, (11)

imply that

dF
ds

=
(

dT

ds
− κS

)
t̂ +

(
dS

ds
+ κT

)
n̂. (12)

Hence Eq. (3b) can be resolved as

dT

ds
− κS = −EI

2
κ2

1 δ(s − s1), (13)

dS

ds
+ κT = −R, (14)

where the normal reaction R � 0. We use (8) to eliminate S
from (13) and obtain

dT

ds
+ κEI

dκ

ds
− κEIκ1δ(s − s1) = −EI

2
κ2

1 δ(s − s1). (15)

Noting that
∫

H (s)δ(s) ds = 1/2 if the range of integration
includes the origin, we integrate (15) to obtain

T + EI

2
κ2 = −C = EI

a2
C2, (16)

where C = −C2EI/a2 is a constant of integration, equivalent
(in the absence of gravity) to the material force C used, e.g.,
by O’Reilly [29].

In s < s1 the fiber curvature κ = 0 and the fiber is in
compression, so T = −F1 and C = F1 > 0.

III. THE UNSUPPORTED ELASTICA

We now examine the region s > 0 in which the fiber is no
longer in contact with the inner surface of the capsid cylinder
(Fig. 1). We assume that the end of the fiber contacts the cylin-
der at s = s2 (as yet unknown). This final section 0 < s < s2

of the fiber takes the form of an unsupported elastica, similar
to those studied in [32,34–37].

We set up Cartesian coordinates (x, y) with origin at the
center of the circle and with x tangential to the cylinder wall
(and fiber) at s = 0, so that s = 0 corresponds to the point with
Cartesian coordinates (0, a), as shown in Fig. 1. We describe
the orientation of the tangent to the fiber by an angle θ , with
θ = 0 along the x axis. We nondimensionalize all lengths by
a, forces by EI/a2, and moments by EI/a. The shear force
S = 0 in s1 < s < 0, since κ = 1 is constant. We assume that
there is a point force reaction at s = 0, and write this nondi-
mensionalized reaction in the form R = R0δ(s). This reaction
is normal to the friction-free surface of the confining cylinder,
which is smooth except at the corner of the inlet hole.

We consider the various forces acting on the fiber in s > s1.
All reaction forces are normal to the cylinder and have zero
moment about the axis of the cylinder. At s1 the couple �e (9)
acts on the fiber, as does the force −T (s+

1 ) = −C2 + 1
2 , where

we use the superscript + to denote a limit as s approaches s1

from above. The (nondimensional) balance of couples about
the axis therefore requires

C2 = −1

2
. (17)

We conclude from (16) that in s < s1, outside the capsid,
where the curvature of the fiber is assumed to be zero,

T = −F1 = −1

2
(18)

[or, in dimensional form, F1 = EI/(2a2)] in agreement with
the result (2) obtained by virtual work arguments.

Integrating (14) across s = 0, we find that the shear force
at s = 0+ is

S(0+) = −R0. (19)

We now eliminate T and S from (14), using (8) and (16), to
obtain

d2κ

ds2
+ κ3

2
− C2κ = 0. (20)

This can be integrated once to give

1

2

(
dκ

ds

)2

+ κ4

8
− C2

κ2

2
= D, (21)

where D is a constant of integration that can be evaluated
in terms of C2 and the values κ = 1 and [by (8) and (19)]
dκ/ds = R0 at s = 0+. The shape of an elastica can be ex-
pressed in terms of elliptic integrals (see, e.g., [26,32]), but it
is more convenient here to integrate (20) numerically to obtain
κ (s). If the tangent to the fiber is at angle θ to the x axis, then

dθ

ds
= −κ, (22)

and we note that θ < 0 for suitably small values of s > 0. As
we move along the fiber from s = 0, the Cartesian coordinates
evolve as

dx

ds
= cos θ,

dy

ds
= sin θ. (23)

The nondimensional governing equation (20) can be
rewritten in a form suitable for numerical integration:

dκ

ds
= λ,

dλ

ds
= C2κ − κ3

2
,

dθ

ds
= −κ, (24a)

dx

ds
= cos θ,

dy

ds
= sin θ, (24b)

with initial conditions

κ = 1,
dκ

ds
= λ = R0, θ = 0, x = 0,

y = 1, at s = 0. (25)

The point force reaction R0 is unknown and must be deter-
mined so as to ensure that boundary conditions (discussed
below) are satisfied at the end of the fiber. We integrate
these equations (24) numerically, using the MATLAB routine
ode45, until the fiber hits the cylinder again, which occurs
at s = s2 (determined as part of the solution), where κ = κ2,
θ = θ2, and (x, y) = (x2, y2) with x2

2 + y2
2 = 1. The outward

normal at the point of contact is at an angle φ2 = tan−1(y2/x2)
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FIG. 2. The trajectory satisfying the boundary condition (28),
corresponding to a point force reaction R0 = 0.7053 with C2 = −0.5.
The fiber enters the cylinder at A, where s = s1, and remains in
contact with the cylinder wall up to s = 0.

to the x axis. The components of the force on the end of the
fiber are

T2 = C2 − κ2
2 /2, S2 = −dκ

ds
. (26)

The total force acting on the end of the fiber at s = s2 has
components

F2x = T2 cos θ2 + S2 sin θ2, (27a)

F2y = T2 sin θ2 − S2 cos θ2, (27b)

and we require that these are the components of the normal
force at the wall, which is along the direction (nx, ny) =
(−x,−y). Hence we require

nx

ny
= x2

y2
= F2x

F2y
. (28)

The choice R0 = 0.7053 gives the solution satisfying the
boundary condition (28) shown in Fig. 2 with the end of
the fiber at s2 = 2.0888: these values agree with those found
by Romero et al. [32]. At the end of the fiber, (x2, y2) =
(0.8172,−0.5764), the curvature κ2 = 0, the tangent to the
fiber is at an angle θ2 = −1.7641 rad to the x axis, the shear
force S2 = 1.1168, and the tension T2 = −0.5. As a result,
F2x = −1 and F2y = 0.7053, so the forces on the fiber at s2 are
equal and opposite to those acting on it at s = 0. The tangent
to the fiber at its point of contact with the wall is at an angle
ψ2 = 1.15 rad to the normal to the cylinder.

The length of fiber within the cylinder, s2 − s1, has been
assumed greater than s2, but is otherwise unconstrained. Our
assumption that the fiber lies within a cross-sectional plane of
the cylinder means that if |s1| > 2π the fiber overlaps itself as
it wraps around the inside of the cylinder. In practice, the fiber
might take the form of a closely wound helix, such as those
seen in experiments [5,12], particularly when friction is low
[13].

IV. OTHER ENTRANCE CONDITIONS

A. A fiber freely orientated at the entry point

We have so far assumed that the fiber passes through a
cylindrical hole in the capsid wall that forces the fiber to
enter tangentially and immediately conform to the curvature
of the confining wall. One could alternatively imagine the
fiber to pass through a hole in a thin-walled cylinder. The hole
fixes the position of the fiber as it enters and may impose a
force on the fiber, but it does not constrain the orientation
of the fiber, nor can it impose a couple. The fiber does not
immediately come into contact with the cylinder wall, so there
is a section of free-flying fiber inside the cylinder immediately
after the entrance hole. In the absence of any imposed couple
at the entry hole, the balance of couples acting on the fiber
about the axis of the cylinder now requires that the force on
the fiber at the entrance hole is normal to the cylinder wall.
The free-flying section at the entrance is therefore a suitably
orientated mirror image of the free-flying section s > 0 at the
end of the fiber. The force required to push the fiber into
the hole is T = −0.5, again in agreement with the result (2)
of the simple energy analysis. Examples of computed shapes
will be given in Sec. V, where they will be compared against
experiment.

B. A fiber with prescribed orientation at the entry point

In Secs. II and III we assumed that the fiber was
constrained to enter the cylinder tangentially, but other con-
strained orientations of the fiber are possible at the entrance.
We now consider the case in which the fiber is constrained
to pass perpendicular to the wall of the cylinder. The fiber
then crosses the interior of the cylinder before landing on
the opposite wall. The unsupported elastica is governed
by the same equations as before, and the constant C2 = −0.5,
as before, in order to maintain the balance of forces and
couples acting on the free-flying end section of the fiber. The
computation of the fiber shape at the entrance, shown in Fig. 3,
was started at (x, y) = (0, 1), which was taken to be the origin
s = 0. The reaction force R0 at s = 0 was used as a shooting
parameter: the computation was continued along the fiber to
the opposite wall, which the fiber intersected perpendicularly
at s = s1 = −2.697 when the reaction force was chosen to
be R0 = 1.848. This entry point s1 is at (x, y) = (x1, y1) =
(0.255,−0.967), where the curvature (just inside the cylinder)
is κ1 = −1.437 and the shear stress (8) is S1 = −dκ/ds =
1.437. The computed forces and couples at the two ends of
the unsupported elastica are in equilibrium to within 0.2%.
The tension in the fiber just inside the cylinder, at s = s+

1 is,
by (16), T1 = C2 − κ2

1 /2 = −1.5328, but the tension outside
is again T1 = C2 = −0.5.

Figure 3 shows the trajectory of a fiber constrained to enter
the cylinder perpendicular to the cylinder wall at (x, y) =
(0.255,−0.967). The incoming fiber, of length −s1 = 2.697
occupies the left-hand portion of the figure and contacts the
cylinder at (x, y) = (0, 1), after which the final fiber section of
length s2 = 2.0888 is shown. If the fiber has total length
greater than s2 − s1, the additional length would touch the
cylinder wall along a circular arc between the two free-flying
sections.
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FIG. 3. The trajectory of a fiber constrained to enter the
cylinder perpendicular to the cylinder wall at A, where (x, y) =
(0.255, −0.967) and s = s1 = −2.697. The incoming fiber contacts
the cylinder at s = 0, where (x, y) = (0, 1), after which the final fiber
section of length s2 = 2.0888 is shown. If the fiber has total length
greater than s2 − s1, the additional length would touch the cylinder
wall along a circular arc between the two free-flying sections, rather
than at the single point s = 0.

More generally, any angle ψ1 can be imposed between the
tangent to the fiber at its point of entry and the normal to the
cylinder wall at this point. ψ1 = 0 corresponds to perpendicu-
lar entry, discussed above, whereas ψ1 = π/2 corresponds to
tangential entry, discussed in Secs. II and III. We consider an
elastica that enters the cylinder at s = s1 < 0 and regains con-
tact with the cylinder wall at s = 0; Fig. 4 shows s1(ψ1). We
note that multiple solutions are sometimes possible, though
highly tortuous shapes require a higher bending energy and
are not discussed here. Solutions for −π/2 < ψ1 < 0 are the
mirror image (about the plane of symmetry through the point

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-3

-2.5

-2

-1.5

-1

-0.5

0

FIG. 4. Plot of s1 at the entrance against the imposed entry angle
ψ1 (radians) for an unsupported elastica regaining contact with the
cylinder wall at s = 0. The length of the unsupported section of
elastica is −s1. The elastica shown entering the cylinder at A in
Fig. 3 corresponds to ψ1 = 0, whereas tangential entry (ψ1 = π/2)
contacts the wall immediately.

FIG. 5. A steel hacksaw blade of length LH = 266 mm = 4.97a
confined within a PVC pipe coupling of diameter 2a = 107 mm. The
dashed line is the fiber shape predicted in Secs. III and IV A.

of entry) of solutions for −ψ1 > 0. Sufficiently high forces
can lead a free-flying section of the elastica to contact itself,
as seen in the computations of Alben [38] and, in a somewhat
different geometry, those of Lu and Chen [39].

V. EXPERIMENTS

Experiments to verify the shape of the free-flying sec-
tion were performed with steel hacksaw blades confined
within a circular 4 inch PVC pipe coupling of internal di-
ameter 2a = 107 mm. Figure 5 shows a blade, of length
LH = 266 mm = 4.97a, within the pipe. The experiments are
similar to those of Romero et al. [32] in which paper or mica
sheets were coiled within a cylinder, but differ somewhat from
those of De Tommasi et al. [26] who studied deformation of
an elastic ring (which had no ends) confined within a cylinder.

There is no entry hole in the experiments, and the configu-
ration of the blade should be symmetric about its midpoint.
Both ends of the fiber are constrained solely by a reaction
force normal to the curved wall of the cylinder, and the ori-
entation of neither end is constrained by the wall. This is
the scenario discussed in Sec. IV A for the shape of the fiber
within the cylinder when the entry hole does not constrain the
fiber orientation. Also shown in Fig. 5, as a red dashed line, is
the computed fiber shape. This consists of the two free-flying
end sections, each of nondimensional length s2, together with
a central circular arc of nondimensional length LHa−1 − 2s2.
Agreement between experiment and theory is good.

Figure 6 shows a second experiment with the same PVC
pipe but a longer hacksaw blade of length LH = 315 mm =
5.89a. In this second experiment friction between the blade
and the pipe walls was higher, allowing multiple equilibrium
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FIG. 6. As for Fig. 5, but with a hacksaw blade of length LH =
315 mm = 5.89a. The dashed line is the fiber shape predicted in
Secs. III and IV A.

configurations. The inside of the pipe was coated with grease
in an attempt to reduce the friction.

The longer blade showed significant plastic deformation
after removal from the PVC pipe section. The shorter blade
showed some plastic deformation but less than that of the
longer blade. This difference may be due to the greater de-
formation to which the longer blade was subjected, but may
also be due to differences in the composition of the steel.

VI. CONCLUDING REMARKS

A problem in microbiology that has been studied exper-
imentally using modern methods of single-molecule manip-
ulation is DNA packing and ejection from bacteriophages.
Double-stranded DNA (dsDNA) can be modeled as a highly
charged semiflexible elastic rod subject to fluctuating Brow-
nian forces. The persistence length lp = EI/(kT ) (where kT
is the Boltzmann temperature) of dsDNA is typically of the
order of 25–50 nm [40]. Since this is of the same order as the
diameter of the protein capsids in which the phage DNA is
packaged, the equilibria and dynamics of elastica in confined
cavities provide an appropriate paradigm for describing the in-
teractions between DNA and capsid. Taking lp = a = 50 nm
and T = 300 K, we find a force F1 = EI/(2a2) ≈ 40 fN.
In practice, once the capsid starts to fill, the curvature of
the packed DNA inevitably increases [41], and as spacings
between segments become smaller, other effects (e.g., elec-
trostatic repulsions) start to play a role. As a result Smith
et al. [42] measured a force that increased eventually to 55 pN.
Experimentally measured forces are discussed in more detail
by Purohit et al. [3].

Two classes of problems have been studied previously:
the insertion of DNA into capsids during synthesis of the
virus and ejection of DNA from the capsid when the phage
infects a bacterial cell by attaching itself to the cell mem-
brane and injecting its DNA into the cytosol. In the first case,

molecular motors do work against the electrostatic self-energy
and elastic bending energy of the DNA molecule. The slowing
of the molecular motor as more of the DNA is packaged can be
measured [42]. In the second case, the DNA is forcibly ejected
due to the release of elastic and electrostatic self-energy of the
confined DNA and the slowing of the DNA ejection velocity
as the capsid empties can be quantified experimentally [43].
Typically, the electrostatic self-energy and the elastic bending
energy contribute about equally to the potential energy of the
confined DNA, though the electrostatic part can be eliminated
in controlled experiments by the addition of multivalent ions
[44]. The equilibrium [3,7] as well as the nonequilibrium
[16,17] (with friction) problems have been studied using the
constrained elastica paradigm. However, since the total DNA
length (≈17 μm for the lambda phage) is typically very large
compared to the capsid diameter ≈50 nm, any free-flying
sections at the ends of the DNA generally do not play an
important role in the energetics, except during relatively short
time intervals at the beginning and end of the ejection process.
Indeed, in most theoretical models, one regards the DNA
as spooled in contact with the capsid wall with a radius of
curvature that progressively decreases as more of the space
within the capsid becomes filled. Nevertheless, the existence
of free-flying sections is confirmed in Brownian dynamics
simulations using a “chain of beads” model for the DNA [7].
These simulations show that once the packing fraction of the
capsid becomes sufficiently high, the inner region of the DNA
stops spooling in ever tighter circles and makes loose coils
parallel to the spool axis near the end of the DNA. When
DNA packs into phages, the DNA enters the capsid through a
long narrow tubular structure called the “tail.” This is also the
structure that attaches to the host cell and through which the
DNA passes during ejection. Thus, the fiber enters the capsid
in a direction perpendicular to the wall resulting in free-flying
sections at both the entrance to the capsid and at the end of the
fiber.

Friction between the fiber and cylinder wall has been ig-
nored in the computations presented here. Friction will not
only modify the computed elastica shapes, but also introduce
new effects, such as the possibility of rolling contact, rather
than sliding contact, and hysteresis, as discussed in [20,37].

We have not discussed the behavior of the fiber outside
the cylinder. If we regard the straight section of fiber outside
the cylinder as an Euler buckling beam with fixed ends, the
applied force EI/(2a2) would cause buckling once the length
of the straight section exceeds 23/2πa.
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