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Contacts, motion, and chain breaking in a two-dimensional
granular system displaced by an intruder
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We investigate numerically how the motion of an intruder within a two-dimensional granular system affects its
structure and produces drag on the intruder. We made use of discrete numerical simulations in which a larger disk
(intruder) is driven at constant speed amid smaller disks confined in a rectangular cell. By varying the intruder’s
velocity and the basal friction, we obtained the resultant force on the intruder and the instantaneous network
of contact forces, which we analyze at both the cell and grain scales. We found that there is a bearing network
that percolates forces from the intruder toward the walls, being responsible for jammed regions and high values
of the drag force, and a dissipative network that percolates small forces within the grains, in agreement with
previous experiments on compressed granular systems. In addition, we found the anisotropy levels of the contact
network for different force magnitudes and regions, that the force network can reach regions far downstream of
the intruder by the end of the intruder’s motion, that the extent of the force network decreases with decreasing
the basal friction, and that the void region (cavity) that appears downstream of the intruder tends to disappear
for lower values of the basal friction. Interestingly, our results show that grains within the bearing chains creep
while the chains break, revealing the mechanism by which bearing chains collapse.

DOI: 10.1103/PhysRevE.105.034903

I. INTRODUCTION

The motion of a solid intruder in a granular medium is
commonly found in nature and human activities. For example,
we find it in the motion of animals and machines over and
within granular matter (snakes, worms, vehicles, etc.), the
penetration of solid bodies in sand (such as ballistic objects),
and the impact of objects on sandy surfaces (such as the
landing of space probes on other planets) [1,2]. Depending
on velocities, lengths, materials, and concentrations involved,
the granular system is forced to move in different manners.
For instance, the motion can be highly inertial, with a great
part of the kinetic energy being dissipated through friction
and collisions within grains [3], or it can be in the quasistatic
regime, being dominated by the formation and destruction of
contact networks and stick-slip motion [4–7].

When granular materials move in dense and quasistatic
regimes, interparticle forces are transmitted via a history-
dependent contact network, leading in many instances to
an anisotropic distribution of stresses [8,9]. Due to local
reorganizations of the granular packing [10], jamming and
unjamming regions appear depending on the persistence or
failure of contact networks [9,11–14], with, respectively,
grains resisting to strong external forces or moving under
weaker forces. In the case of a granular medium being
displaced by an intruder, breaking and formation of force
networks result in time varying drag on the intruder [4,15],
which gets stronger as packing fractions approach the limit
for jamming.

*erick.franklin@unicamp.br

Given their importance, many studies were devoted over
the last decades to stress transmission and jamming in gran-
ular matter under normal and shear stresses [8,9,11–13].
Radjai et al. [8] showed that the stress transmission in a
two-dimensional (2D) packing of rigid spheres under biaxial
compression occurs through two complementary networks:
a load-bearing network and a dissipative network. The for-
mer is a network of nonsliding contacts that transmit strong
forces (higher than the average), carrying the deviatoric load
and presenting anisotropy induced by shear, while the latter
is a network of sliding contacts that transmit weak forces
(smaller than the average), carrying only load contributing
to the average pressure and presenting anisotropy in a direc-
tion orthogonal to that of the load-bearing network. Later,
Seguin [13] investigated the force network of a monolayer
of disks under vibration compressed above the limit for jam-
ming. The results corroborate the existence of load-bearing
and dissipative networks, and show that the latter is char-
acterized by cycles consisting of three to eight grains that
are linked to the load-bearing chains, relieving part of the
load. Cates et al. [11] investigated fragile states in colloidal
suspensions and granular materials, being defined as those
whose internal structure has organized itself to support loads
in certain directions, but not in others. They showed that
those states result from the formation of force chains aligned
in preferential directions, and, therefore, fragile matter un-
dergoes jamming and is able to support loading in such
directions, while it undergoes unjamming and suffers plastic
deformation in others. Bi et al. [12] showed that granu-
lar materials sheared by external stresses present not only
the isotropic jamming observed in shear-free conditions, but
also fragile states and shear jamming that appear at particle
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FIG. 1. (a) Numerical setup for φ = 0.76. (b) Different subregions of the entire domain analyzed individually. (c) Force chains formed
during the motion of the intruder. Clear networks correspond to bearing (stronger) chains and darker networks correspond to dissipative
(weaker) chains. (d) Cavity formed downstream of the intruder for different packing fractions.

fractions lower than those necessary for isotropic jamming.
They showed also that the fragile state appears under small
shear stresses and is characterized by force chains that are
one-directional, while the shear jamming results from stronger
shear stresses with a force network that percolates in different
directions.

For the case of an intruder moving in granular matter, local
variations of particle fractions, forming compressed fronts
and expanded trails [4,15], together with the breaking and
reorganization of the force networks around the intruder, make
the prediction of granular motion and drag forces complex.
Many studies were therefore devoted to the drag force on in-
truders [4,6,7,15–20]. In particular, Kolb et al. [4] investigated
experimentally the drag force on the intruder and the motion
of grains around it as the intruder was driven within a bidi-
mensional granular system consisting of disks. They showed
the formation of a region in front (upstream) of the intruder
where grains reach the jamming packing fraction (compres-
sion), and a region behind (downstream) the intruder where

a cavity without grains (expansion) appears. As the intruder
moves, grains recirculate intermittently from the compressed
front toward the downstream region with the occurrence of
chain breaking and unjamming, making the drag force on the
intruder fluctuate, sometimes very strongly, around a mean
value. They showed also that the cavity tends to disappear
and the drag tends to increase greatly as the average particle
fraction grows because the compressed front is confined by
lateral walls, leaving no room for local compression or ex-
pansion in the limit of the highest possible packing fraction.
Seguin et al. [15] inquired further into the motion around an
intruder in a granular system similar to that of Ref. [4], but
using simultaneously photoelastic and tessellation techniques
to measure the strain and stress rates at the grain scale. They
showed that, although the strain and shear are localized, the
macroscopic friction coefficient μ (ratio of shear to normal
stresses) depends on the azimuthal direction, indicating that a
local rheology is not adequate to describe the motion of grains
around the intruder.
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TABLE I. Properties of materials used in the simulations: E is Young’s modulus, ν is the Poisson ratio, ρ is the material density, and d is
the particle diameter.

Material E (Pa) ν ρ (kg/m3) d (mm)

Intruder Steel(1) 1.96 × 109 0.29 7800 dint = 16
Grains Polyurethane(1)(2) 4.14 × 106 0.50 1280 ds = 4; dl = 5
Walls Glass(1) 0.64 × 1011 0.23 2500 Lx = 400; Ly = 400

(1)Hashemnia and Spelt [29].
(2)Gloss [30].

More recently, Kozlowski et al. [6] and Carlevaro et al. [7]
investigated the effects of the packing fraction and the inter-
particle and basal frictions (the latter between the bottom wall
and the grains, excluding the intruder) on the motion of an
intruder moving within a bidimensional granular system in a
Couette geometry. The experiments [6] made use of photoe-
lastic disks moving over either a glass plate or a layer of water,
while the numerical simulations [7] were 2D and varied the
friction coefficient (static and dynamic) over broader ranges.
In both, the intruder was driven by the continuous loading of a
spring. The experiments showed that in the presence of basal
friction there are two regimes depending on the particle frac-
tion: at low particle fractions, an intermittent regime where
the intruder moves freely between clogging events appears,
while at high particle fractions a stick-slip regime takes place,
where the intruder moves through fast slip events alternated
with long periods of creep. In the absence of basal friction
(water layer), only the intermittent regime is observed. The
numerical simulations showed that the intermittent to stick-
slip transition is highly affected by the dynamic coefficient
of basal friction, with the intermittent regime occurring for
values below 0.1 and the stick-slip occurring for higher values,
while it is virtually independent of the static coefficient, which
contributes mainly to the duration of stick events.

Although extensively studied, the physics involved in a
granular medium displaced by an intruder remains to be
fully understood and important issues need to be investigated
further. This paper presents a numerical investigation of a
three-dimensional (3D) cylindrical intruder (disk) driven at
constant speed within an assembly of smaller bidisperse disks
(3D cylinders) confined in a rectangular cell, with the same
configuration of Seguin et al. [15] (quasistatic regime). We
made use of the open-source code LIGGGHTS [21,22] and of
the DESIgn toolbox [23] to perform discrete element method
(DEM) computations for an ensemble of disks with static and
dynamic coefficients of friction. We first validate our numer-
ical computations by replicating some of the experimental
results obtained by Ref. [15], and we afterward investigate
further the motion of particles and force transmission. We
find that there is a bearing network that percolates large
forces from the intruder toward the walls, being responsible
for jammed regions and high values of the drag force, and a
dissipative network that percolates small forces, in agreement
with previous observations for compressed 2D granular sys-
tems [8,13]. In addition, we find the anisotropy levels of the
contact network for different force magnitudes and regions,
that bearing chains occur preferentially in long chains in front
of the intruder (which we associate with local jamming in-
duced by shear), and that the force network can reach regions

far downstream of the intruder by the end of the intruder’s
motion. By varying the coefficients of basal friction, we show
that bearing networks transmit stronger forces within longer
distances for higher basal friction, and that the void region
(cavity) that appears downstream of the intruder tends to
disappear for lower values of basal friction. Interestingly, our
results show that grains within the bearing chains creep while
the chains break, revealing the mechanism by which bearing
chains collapse, and allowing the intruder to proceed with its
motion.

In the following, Secs. II and III present, respectively, the
model equations and numerical setup, and Sec. IV presents
the results for the formation of contact networks, anisotropic
levels, creep motion, and drag on the intruder. Section V
presents the conclusions.

II. MODEL DESCRIPTION

Our numerical investigation was conducted with
DEM [24], where the dynamics of each individual particle
was computed using the forces and torques on each of them.
We used the open-source code LIGGGHTS [21,22] for DEM
computations, and, in order to produce disks that have friction
with the bottom and lateral walls and between them, we made
use of the DESIgn toolbox developed by Herman [23].

TABLE II. Coefficients and threshold used in the numerical
simulations.

Coefficient Symbol Value

Restitution coefficient (grain-grain) εgg 0.3
Restitution coefficient (grain-intruder)(2) εgi 0.7
Restitution coefficient (grain-wall)(3) εgw 0.7
Dynamic friction coefficient μgg 1.2

(grain-grain)(1)

Dynamic friction coefficient μgi 1.8
(grain-intruder)(2)

Dynamic friction coefficient μiw 0.7
(intruder-bottom wall)

Dynamic friction coefficient μgw 0.4
(grain-walls)(1)

Static friction coefficient μs,gw 0.7
(grain-bottom wall)

Threshold velocity v′ v′ = 5 × 10−4 m/s
(dynamic/static friction)

(1)Carlevaro et al. [7].
(2)Hashemnia and Spelt [29].
(3)Gondret et al. [31].
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FIG. 2. (a) Magnitude of the resultant force on the intruder FD when the mean packing fraction is φ = 0.76 and V0 = 2.7 mm/s as a
function of time t . (b) Time-averaged magnitude of the resultant force on the intruder 〈FD〉 as a function of its velocity for φ = 0.76. (c) 〈FD〉
as a function of φ for V0 = 2.7 mm/s. In panels (b) and (c), symbols correspond to the average values and bars correspond to the standard
errors.

The dynamics of each particle is computed by the linear
and angular momentum equations, given by Eqs. (1) and (2),
respectively:

m
d �u
dt

= �Fc + m�g, (1)

I
d �ω
dt

= �Tc (2)

where �g is the acceleration of gravity and, for each particle,
m is the mass, �u is the velocity, I is the moment of inertia, �ω
is the angular velocity, �Fc is the resultant of contact forces
between solids, and �Tc is the resultant of contact torques
between solids. The contact forces and torques are computed
by Eqs. (3) and (4), respectively:

�Fc =
Nc∑

i �= j

( �Fc,i j ) +
Nw∑

i

( �Fc,iw ), (3)

�Tc =
Nc∑

i �= j

�Tc,i j +
Nw∑

i

�Tc,iw (4)

where �Fc,i j and �Fc,iw are the contact forces between particles
i and j and between particle i and the wall, respectively, �Tc,i j

is the torque due to the tangential component of the contact
force between particles i and j, and �Tc,iw is the torque due to
the tangential component of the contact force between particle
i and the vertical wall. Nc − 1 is the number of particles in
contact with particle i, and Nw is the number of particles in
contact with the wall. Since the grains are disks lying on a
horizontal wall, �Fc,iw includes the friction force between the
bottom wall and each grain, which follows the Coulomb law
with static and dynamic values.

For the contact forces between particles ( �Fc,i j), and be-
tween particles and the lateral walls (included in �Fc,iw), the
elastic Hertz-Mindlin contact model [25] is used. This model
consists in the combination of two spring-dashpot pairs, the
first one including the normal interactions, and the second
one including the tangential forces and a Coulomb friction co-
efficient. Equations for computing the normal and tangential
forces based on particle overlaps (modeling deformations) are
available in the Supplemental Material [26].

Because the DESIgn toolbox originally does not compute
the friction between the grains and the bottom wall (included
in �Fc,iw), we implemented that in its library. The friction force
was modeled in a similar manner as in Ref. [7]: if a grain
i is moving at a speed vi = |�ui| above a threshold value v′
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FIG. 3. Time evolution of (a) contact anisotropy ρ and (b) average number of contacts per particle Z for the entire system.

(vi > v′), then a dynamic friction force with the bottom wall
is considered as being �Fc,iw = −μd,gmi|�g|�ui/|�ui|. Conversely,
if it is moving with a velocity vi smaller than or equal to the
threshold value v′ (vi � v′), then a static friction force with
the bottom wall �Fc,iw = −μs,gmi|�g|�ui/|�ui| is applied and the
particle is stopped by setting vi = 0. This ensures that a grain
will only resume its motion if the forces exerted by the other
grains exceed the static friction force [7]. In this model, we
do not consider rotational friction between the grains and the
bottom wall.

III. NUMERICAL SETUP

The computed system consisted basically of an assembly
of 3D disks settled over a horizontal wall and confined by ver-
tical walls, and of a larger 3D solid disk (intruder) that moved
at constant velocity amid the other disks (the top wall was
absent). Although the solid objects are 3D disks, we employ

the terminology two-dimensional granular system since they
form a monolayer of particles. The dimensions and properties
are roughly the same as in Ref. [15], the steel intruder having
diameter and height of dint = 16 mm and hint = 3.6 mm, re-
spectively, and the granular system consisting of a bidisperse
mixture of polyurethane (PSM-4) disks with small and large
diameters of ds = 4 mm and dl = 5 mm, respectively (in
order to prevent crystallization [27]), and height hg = 3.2 mm.
We forced the intruder to move within the disks at a con-
stant velocity that varied within 10−1 � V0 � 10 mm/s.
The disks were distributed in a proportion of Nl/Ns ≈ 0.64,
where Ns and Nl are the numbers of small and large parti-
cles, respectively, in a way that the areas occupied by the
small and large grains were almost the same. The disks were
placed over a horizontal glass plate and were enclosed by
vertical glass walls, so that the system dimensions were of
Lx × Ly = 400 × 400 mm, where Lx and Ly are the longitudi-
nal and transverse lengths, respectively. All simulations were
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FIG. 4. Time evolution of (a) contact anisotropy ρ and (b) average number of contacts per particle Z , computed for the bearing (continuous
line) and dissipative (dashed-red line) networks. Time-average values are 〈ρ〉 = 0.107 and 〈Z〉 = 2.592 for the bearing network, and 〈ρ〉 =
0.060 and 〈Z〉 = 2.711 for the dissipative network.
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FIG. 5. Time evolution of the anisotropy of the contact network ρ for each individual region of Fig. 1(b).

performed with a fixed cell size (total domain), in a way that
the mean packing fraction is kept constant for each computed
case, being varied within 0.76 � φ � 0.83 by varying the
number of disks in each tested case. The number of disks
and the corresponding packing fractions are available in the
Supplemental Material [26], and an example of a setup of one
simulation can be seen in Fig. 1(a).

Although Young’s modulus of the steel is E = 1.96 ×
1011 Pa, we used a value two orders of magnitude smaller in
the numerical simulations in order to decrease the time step
without considerably affecting the accuracy of the results [28].
The properties of the materials used in the numerical simu-
lations are summarized in Table I. We do not consider any
motion in the direction perpendicular to the xy plane, so that
there is no collision between the disks and bottom wall. The
intruder is placed initially at the location xi = −160 mm,
yi = 0 mm, in the left side of the simulation cell, and is moved
at a constant velocity V0 from left to right, through the granular
medium, toward its final position at xi = 160 mm, yi = 0 mm
[Fig. 1(a)]. Therefore, for all values of V0 and φ used in the
simulations, the intruder traveled a total distance equal to
�S = 320 mm. The drag force FD exerted by the grains onto
the intruder, the forces on each grain, their displacements,

and the contact network are computed at every time step. We
defined a region of interest ROI of size AROI = 160 × 160 mm
in the center of the domain [green-dashed area in Fig. 1(a)] for
computing time averages while avoiding intense boundary ef-
fect (see the Supplemental Material [26] for a figure showing
the effect of considering the entire domain on time averages).
The remaining computations considered the entire domain.

Values for the coefficient of restitution were 0.3 for the
grain-grain and 0.7 for the grain-wall and grain-intruder in-
teractions [29,31]. For the friction coefficients, we considered
only the dynamic coefficient for interactions occurring on
surfaces oriented in the vertical plane (grain-grain, intruder-
grain, and grain-vertical wall interactions), for which we
applied the Hertz-Mindlin contact model. Values for the
polyurethane-polyurethane and polyurethane-steel found in
the literature are relatively high [7,29] when compared to
the other materials involved. The friction between both the
intruder and disks with the bottom wall was implemented
by ourselves, for which we considered both the static and
dynamic coefficients. For that, we defined a threshold veloc-
ity v′ = 5 × 10−4 m/s for the transition between static and
dynamic conditions. Values of the coefficients of restitution
(ratio between the momentum just after and prior to collision)
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FIG. 6. Time evolution of the average number of contacts per particle Z for each individual region of Fig. 1(b).

and friction (Coulomb law) and the threshold velocity used in
the simulations are listed in Table II. Most of the coefficients
were obtained from the literature [7,29,31], and sensitivity
tests varying the coefficients are available in the Supplemental
Material [26].

With the total domain and the particle fraction to be sim-
ulated defined, the set of disks with the desired proportion is
generated. First, the particles are randomly distributed over
a square space larger than the computational domain. After-
ward, the space occupied initially by the disks is compressed
from the external limits toward its interior until reaching
the size of the computational domain. In this initialization
process, the number of generated particles is that neces-
sary to achieve the desired packing fraction φ, according to
Eq. (5) [4]:

φ =
π
4

(
Nsd2

s + Nld2
l

)

LxLy − π
4 d2

int

. (5)

This initialization is necessary because the software is not
capable of randomly inserting disks at high particle fractions
in the domain within reasonable times (it takes much greater

times than those of the simulations themselves). Finally, the
disks are allowed to relax and, afterward, the simulation starts
by setting the intruder into motion at a constant speed. All
computations were performed with a time step �t = 3.2 ×
10−6 s, which, in the worst scenario, is less than 10% of
the Rayleigh time [timescale for Rayleigh waves resulting
from collisions, given by tR = π (d/2)(ρ/G)1/2(0.163ν +
0.8766)−1, where G is the shear modulus] [32].

IV. RESULTS AND DISCUSSION

A. Drag force on the intruder

For each simulated condition, we computed the resultant
force on the intruder at each time step and associated it with
the instantaneous drag force on the intruder �FD. We then
obtained its magnitude FD and, for each different condition,
the time-averaged magnitude 〈FD〉. Figure 2(a) presents FD

as a function of time t when the intruder moves with V0 =
2.7 mm/s in a system with mean packing fraction φ = 0.76.
We observe an initial transient, when the intruder begins
moving and FD increases due to an increasing number of
contacts [shown next in Fig. 3(b)], and that afterward the mean
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FIG. 7. Grains within a bearing chain (shown in red) of the
network shown in Fig. 1(c) (bearing network in white). (a) Grains
just after the chain was formed, with labels from 1 to 23 according to
their distance from the intruder. (b) Grains just after the considered
chain broke.

value remains roughly constant, with very high oscillations
with peaks reaching values three times the mean value. Those
strong oscillations are caused by the formation and destruction
of contact networks that percolate forces within the bed, as
shown next. The same behavior was found experimentally
by Seguin et al. [15]. Figure 2(b) shows the time-averaged
magnitude of the drag force 〈FD〉 as a function of the intruder
velocity V0 for φ = 0.76. We obtain values that are roughly
independent of V0 (as in Refs. [15] and [33]), with a mean
value 〈FD〉 ≈ 0.21. For the same case, Seguin et al. [15] found
experimentally 〈FD〉 ≈ 0.22. Finally, Fig. 2(c) presents 〈FD〉
as a function of φ for V0 = 2.7 mm/s, showing that the mean
force remains roughly constant until 0.80 � φ � 0.81, and
from φ ≈ 0.81 on 〈FD〉 increases strongly with φ, similar to
results obtained experimentally by Kolb et al. [4]. Considering
that experimental uncertainties are expected in Refs. [4,15]
and that we obtained the particle properties (with the excep-
tion of the diameter) from other works, the agreement is good.

We observed also the formation of a cavity (void region)
downstream of the intruder, the size of which decreases with
increasing the packing fraction, as shown in Fig. 1(d) for
0.76 � φ � 0.83. We observe that for φ = 0.80 the cavity
has almost disappeared, and for φ = 0.83 it no longer exists,

in accordance with the experimental observations of Kolb
et al. [4].

Altogether, the resultant drag and cavity agree with experi-
mental observations and validate part of our numerical results.
More information on the numerical simulations (input and
output files, numerical scripts for postprocessing the outputs,
etc.) is available on a public repository [34].

B. Network of contact forces

In the following, we analyze the network of contact forces
and the behavior of individual grains within specific con-
tact chains. For that, we fixed the mean particle fraction to
φ = 0.76 and the intruder velocity to V0 = 2.7 mm/s. From
images of the force chains, such as Fig. 1(c), we observe
that forces from the intruder propagate through contact net-
works whose anisotropy and size depend on the force level
and region within the system. In what follows, we investigate
the anisotropy of the system (i) as a whole, (ii) for different
force levels (below and above an average value), and (iii) for
different regions within the domain. For that, we computed
the fabric tensor R̂ [12]:

R̂ = 1

N

∑

i �= j

ri j

|ri j | ⊗ ri j

|ri j | , (6)

where N is the number of nonrattler particles (particles with
at least two contacts), ri j is the contact vector from the center
of particle i to the contact between particles i and j, and ⊗
denotes the vector outer product. With the eigenvalues R1

and R2 of the tensor R̂, we computed the average number of
contacts per particle Z = R1 + R2 and the anisotropy of the
contact network ρ = R1 − R2 [12].

Figures 3(a) and 3(b) present the contact anisotropy ρ and
average number of contacts per particle Z , respectively, for
the entire domain as functions of time (the time evolution of
the number of nonrattler particles N is available in the Sup-
plemental Material [26]). We observe that Z increases and ρ

decreases during the first 20 s. The strong initial variations of
Z and ρ are mainly due to adaptations of the initial conditions
of the system as the intruder starts moving, with more grains
being put into contact and a general decrease in anisotropy.
After this time interval, mean values present lower variations.
At the stable intervals (t > 30 s), time averages computed for
the ROI are 〈ρ〉 = 0.041 and 〈Z〉 = 2.903, showing that, when
considered as a whole in terms of regions and force magni-
tudes, the contact network has a low degree of anisotropy.
However, since the intruder moves in one direction, we expect
load-bearing chains aligned in preferential directions in order
to resist the intruder’s motion [9,11,12]. Load-bearing chains
that transmit strong forces have been shown to exist in com-
pressed 2D granular systems [8,13], to be more anisotropic
than the dissipative chains, and, in addition, to be related to
jamming by shear [12]. We investigate next if this is also the
case for a 2D system displaced by an intruder, and, in addition,
if anisotropy varies in space.

1. Force levels

Following the same idea of Radjai et al. [8], we divided the
network of contact forces into a bearing network, for which
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FIG. 8. Displacements of each labeled grain for different instants during the breaking of a bearing chain (a) transverse and (c) parallel to
the intruder’s motion, normalized by the mean grain diameter dg = 4.5 mm. Panel (a) corresponds to the same chain shown in Fig. 7. (b, d)
Magnitude of the drag force on the intruder FD along time during the formation and breaking of the (b) transverse and (d) longitudinal bearing
chains. The dashed line indicates the instant when the chain is present for the last time, i.e., just before its rupture.

transmitted forces are higher than the average value (ensemble
average at each considered instant), and a dissipative network,
with values lower than the average. Once we identified the
type of network, we computed R̂, ρ, and Z for each network
(all chains), which are shown in this subsection. We also
followed the evolution of specific chains and the motion of
their grains, which are shown in Sec. IV B 3.

Figures 4(a) and 4(b) present the time evolution of the con-
tact anisotropy ρ and average number of contacts per particle
Z , respectively, for the bearing (strong) and dissipative (weak)
networks for the entire domain (the time evolution of N is
available in the Supplemental Material [26]). We observe an
increase in Z during the first 20 s for the dissipative network
while for the bearing network the mean value of Z remains
roughly constant, with values for the dissipative network be-
ing 5% higher than those for the bearing network. During
the first 10–20 s for both networks, ρ decreases, with values
80% higher for the bearing network in comparison with the
dissipative network. These values indicate that anisotropy is
maintained mostly by the load-bearing chains. From direct
observations of figures of the network of contact forces, such

as Figs. 1(c) and 10, or from the animation available in the
Supplemental Material [26], we observe that bearing chains
percolate in various directions, but mostly in the front (up-
stream) region of the intruder. This characteristic, which is
similar to the shear jammed state described by Bi et al. [12]
for the case of a sheared cell, explains the higher anisotropy
of the bearing network. This is also in accordance with the
description given by Kolb et al. [4] of a jammed region in
front of the intruder, with load-bearing chains being formed
and collapsing as the intruder moves, making the drag force
fluctuate strongly around a mean value, as shown in Fig. 2(a).
We investigate the bearing chains in detail (at the grain scale)
in Sec. IV B 3.

2. Spatial distribution

In order to investigate if the time evolution of anisotropy
varies in space, we divided the domain in nine different re-
gions as shown in Fig. 1(b). Figure 5 presents the anisotropy
of the contact network ρ for each individual region of Fig. 1(b)
as a function of time (the relative positions of graphics
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FIG. 9. Ensemble average of the displacements of grains �S for
different instants during the breaking of bearing chains transverse to
the intruder’s motion, normalized by the mean grain diameter dg.

correspond to the spatial distribution in the domain). Interest-
ingly, ρ decreases in regions mainly upstream of the intruder
(regions II, III, V, VI, VIII, and IX) as the latter moves from
the left to the right (Fig. 1), while ρ increases in the regions
farther downstream of the intruder (regions I, IV, and VII) as
it approaches the right boundary of the domain. In addition,
values of ρ are much higher in the left regions by the end of
the intruder’s motion (values at least three times greater on the
left than on the right regions). This behavior is corroborated
by the time evolution of Z , shown in Fig. 6 for each region.

(a) (b)

(c) (d)

FIG. 10. Network of contact forces for different values of the
coefficients of basal friction: (a) 100%, (b) 25%, (c) 10%, and
(d) 0.1% of the base values. Clear networks correspond to bear-
ing (stronger) chains and darker networks correspond to dissipative
(weaker) chains, and all panels correspond to t = 53.54 s.

From this figure, we observe that the average number of con-
tacts per particle decreases in the left regions (regions I, IV,
and VII) by the end of motion, compatible with anisotropic
behaviors, while the same does not occur in the other regions.

The explanation for the long-range effects is the size of the
contact network that, by the end of motion of the intruder,
reaches regions far downstream of it (see the Supplemental
Material [26] for an animation showing the instantaneous con-
tact network). Because chains arriving at the farther regions (I,
IV, and VII) by the end of the intruder’s motion follow princi-
pal directions, as if irradiating from the intruder, anisotropy is
larger in those regions. These results corroborate the necessity
of a nonlocal rheology to describe a granular system displaced
by an intruder, even if most grain displacements occur in
the vicinity of the intruder (as shown in Refs. [4,15] and in
Sec. IV B 3).

3. Grains within bearing chains

The experimental results of Kolb et al. [4] and Seguin
et al. [15] showed strong fluctuations of FD around a mean
value that are associated with the formation and breaking of
bearing chains, and the same behavior appears in our simu-
lations. However, previous works did not show how grains
within a bearing chain move or how the chain breaks. We
investigate this problem by choosing some bearing chains,
labeling the grains of each chain, and following these grains
along time. For the labels, the corresponding numbers start
with the grain in contact with the intruder and increase as
grains are farther from it, as shown in Fig. 7(a).

One example of a bearing chain is shown in Fig. 7, where
Fig. 7(a) shows the grains just after the chain was formed and
Fig. 7(b) after the chain broke. We observe that during this
period some chains broke while some others formed, and that
the motions of the considered grains are very small. In order
to inquire into the motions of these grains, we computed their
fluctuations with respect to the ensemble of grains and their
accumulated displacements, and found that chains break due
to creep motion of some grains, with a very small degree of
fluctuations of individual grains. Because the oscillation levels
of load-bearing grains are negligible, we present next only
their displacements.

Figure 8(a) presents the displacements �S of each labeled
grain at different instants for the chain shown in Fig. 7 (trans-
verse to the intruder’s motion), and Fig. 8(c) for a chain
parallel to the intruder’s motion. Each symbol corresponds to
one instant, and the figures represent the strain suffered by the
chain. We observe that while the intruder is forced through
the system the grains closer to it yield and move, while those
farther [labeled 14 or more in Fig. 8(a) and 19 or more in
Fig. 8(c)] do not move. In fact, we can observe from Fig. 7(b)
that the latter remain in contact with each other, so that the part
of the chain that is not in contact with the intruder persists.
The same behavior was observed for all the chains that we
tracked. Figure 9 presents an ensemble average computed for
11 chains, for which we note that, in average, creep during
chain breaking is localized around the intruder, decreasing fast
as grains are farther from the intruder and being nonexistent
from the 15th grain on. The average duration of creeping �t is
of the order of 0.1 s, and normalizing �t by the characteristic
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TABLE III. Coefficients of basal friction: values used in the
simulations.

Coefficients Relative reductions

100% 75% 50% 25% 10% 1% 0.1%
μiw 0.7 0.525 0.35 0.175 0.07 0.007 0.0007
μgw 0.4 0.3 0.2 0.1 0.04 0.004 0.0004
μs,gw 0.7 0.525 0.35 0.175 0.07 0.007 0.0007

time tc = dg/V0, where dg = 4.5 mm is the mean grain diame-
ter, we obtain �t/tc of the order of 0.1 (see the Supplemental
Material [26] for a table showing the duration of each chain).
In terms of drag on the intruder, Figs. 8(b) and 8(d) show the
time evolution of FD as the same bearing chains of Figs. 8(a)
and 8(c), respectively, break. We observe the same behavior
shown by Kolb et al. [4]: an increase in FD while the bearing
chain persists, and a fast decrease when the chain breaks.

In summary, we observe that the formation and breaking of
bearing chains are responsible for the high oscillation levels of
FD, with FD increasing during the lifetime of the bearing chain
as the intruder is forced against it and decreasing as the chain
breaks. In addition, we observe that the breaking occurs due
to creeping of grains closer to the intruder while those farther
from it do not move, and that, once broken, part of the former
chain persists.

C. Basal friction

Depending on the surface on which the disks move, the
basal friction can be different. For instance, the friction can
be much smaller over Teflon or ice than over acrylic, glass, or
metal alloys. The diversity of materials found both in nature
and industry has thus motivated investigations of monolayers
of particles sliding with different frictions. Kozlowski et al. [6]
and Carlevaro et al. [7] investigated the effects of the basal
friction of grains (μgw and μs,gw) on the motion of an intruder

with μiw = 0 in a Couette geometry. They found that two
regimes of motion appear depending on the friction coeffi-
cients, and that in the case without basal friction chains occur
only in front of the intruder during stick events. Although they
advanced valuable information about the general behavior of
the system, knowledge on how the chain dynamics varies with
the basal friction is still missing.

In the present subsection, we inquire further into the effect
of the basal friction on the network of contact forces. For
that, we reduced the values of the coefficients of basal friction
for both the intruder and grains by the same proportions,
as indicated in Table III: values of the static and dynamic
coefficients, μiw, μgw, and μs,gw, were reduced to 75, 50, 25,
10, 1, and 0.1% of the original values (shown in Table II).
We analyze next how the density of contact networks, typical
lengths of chains, and behavior of the cavity vary with the
basal friction.

Figure 10 shows the networks of contact forces for dif-
ferent values of the coefficients of basal friction, where
Figs. 10(a)–10(d) correspond to values of 100, 25, 10, and
0.1% of the base value (Table III). The figures show that
the extents of both bearing and dissipative chains decrease
with decreasing the basal friction. In order to quantify that,
we computed the typical length L of the bearing chains by
measuring, along time, the maximum distance from the center
of the intruder reached by bearing chains (see the Supplemen-
tal Material [26] for a diagram showing how it is measured).
Figure 11(a) presents the time-averaged values of the typical
length, 〈L〉, normalized by the mean grain diameter dg for
different values of friction coefficients (in terms of percent-
ages of the base values). We observe that the extent of bearing
chains decreases slightly with reducing the basal friction, the
typical length decreasing by roughly 30% when the basal
friction is reduced from 0.4 and 0.7 to virtually zero (0.0004
and 0.0007, respectively). As a result of the lower extent
of load-bearing chains, the resultant drag on the intruder
also decreases with decreasing the basal friction, Fig. 11(b)
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FIG. 11. (a) Time-averaged length of chains 〈L〉 normalized by dg and (b) time-averaged drag 〈FD〉 for different values of friction
coefficients, in terms of percentages of the base values (see Table III). In panel (a) error bars correspond to standard deviations and in panel
(b) they correspond to standard errors.
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a)

(b)

(c)

(d)

FIG. 12. Cavity for different basal frictions. Panels (a)–(d) cor-
respond to 100, 25, 10, and 0.1% of the base value (Table III).

showing that 〈FD〉 decreases one order of magnitude when
basal frictions are reduced as before (the temporal evolution
of FD for a basal friction of 0.1% of the base value is available
in the Supplemental Material [26], from which we observe a
much lower level of fluctuations when compared with FD for
the base value).

The extent of bearing chains decreases under lower fric-
tion because in this case grains move easier when submitted
to lower forces, breaking thus some of the chains. This is
corroborated by the reductions of the downstream cavity as
the basal friction decreases. Figure 12 shows the cavity for
different basal frictions, Figs. 12(a)–12(d) corresponding to
100, 25, 10, and 0.1% of the base value (Table III). We observe
a continuous reduction of the cavity size as the basal friction is
reduced, with a very slight cavity (and wake) for the smallest
value [Fig. 12(d)], the size of which is comparable to that for

higher packing fractions (φ > 0.80) and 100% of the basal
friction [Fig. 1(d)].

V. CONCLUSIONS

This paper investigated numerically the forces and struc-
tures in a two-dimensional granular system displaced by an
intruder moving continuously. The granular system and the
intruder consisted of 3D disks, all of them settled over a
horizontal wall and confined by vertical walls, and, for the
computations, we made use of the open-source DEM code
LIGGGHTS [21,22] together with the DESIgn toolbox [23].
By varying the intruder’s velocity and the basal friction, we
obtained the resultant force on the intruder and the instanta-
neous network of contact forces, which we analyzed at both
the cell and grain scales. We first validated our numerical
computations by replicating some of the experimental results
obtained by Seguin et al. [15], and we afterward investigated
the motion of particles and force transmission. We found that
there is a bearing network that percolates large forces from
the intruder toward the walls, being responsible for jammed
regions and high values of the drag force, and a dissipative
network that percolates small forces, in agreement with pre-
vious experiments on compressed granular systems. We then
showed that anisotropy levels are higher for the bearing chains
when compared with the dissipative ones, exhibiting some re-
semblance with shear jamming, and that anisotropy increases
more in regions farther downstream of the intruder by the end
of its motion, reaching values three times higher than those in
upstream regions. We also found that the extent of the force
network decreases with decreasing the basal friction, and that
the void region (cavity) that appears downstream of the in-
truder tends to disappear for lower values of basal friction.
Finally, our results show that grains within the bearing chains
creep while the chains break, revealing the mechanism by
which bearing chains collapse, and allowing the intruder to
proceed with its motion.
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