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Relaxation times, rheology, and finite size effects for non-Brownian disks in two dimensions
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We carry out overdamped simulations in a simple model of jamming—a collection of bidisperse soft core
frictionless disks in two dimensions—with the aim to explore the finite size dependence of different quantities,
both the relaxation time obtained from the relaxation of the energy and the pressure equivalent of the shear
viscosity. The motivation for the paper is the observation [Nishikawa et al., J. Stat. Phys. 182, 37 (2021)] that
there are finite size effects in the relaxation time, τ , that give problems in the determination of the critical
divergence, and the claim that this is due to a finite size dependence, τ ∼ ln N , which makes τ an ill-defined
quantity. Beside analyses to determine the relaxation time for the whole system we determine particle relaxation
times which allow us to determine both histograms of particle relaxation times and the average particle relaxation
times—two quantities that are very useful for the analyses. The starting configurations for the relaxation
simulations are of two different kinds—completely random or taken from steady shearing simulations—and
we find that the difference between these two cases are bigger than previously noted and that the observed
problems in the determination of the critical divergence obtained when starting from random configurations are
not present when instead starting the relaxations from shearing configurations. We also argue that the the effect
that causes the ln N dependence is not as problematic as asserted. When it comes to the finite size dependence of
the pressure equivalent of the shear viscosity we find that our data don’t give support for the claimed strong finite
size dependence, but also that the finite size dependence is at odds with what one would normally expect for a
system with a diverging correlation length, and that this calls for an alternative understanding of the phenomenon
of shear-driven jamming.
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I. INTRODUCTION

The jamming transition is a zero-temperature phase tran-
sition from a fluid at low density to a disordered solid at a
larger density [1]. Much work on the jamming transition has
centered on static packings produced by starting from random
configurations and moving the particles to relax the energy
related to the particle overlaps and thus generate packings
with vanishing overlap [2]. Another path towards jamming is
through shearing simulations [3], which are usually done at
constant (low) shear rates, and one then finds that the shear
viscosity exhibits a critical divergence as the jamming density
is approached from below [4,5].

The determination of the critical exponent of this
transition—the shear-driven jamming transition—has, how-
ever, turned out to be a difficult task, both in experiments
and in simulations [4–12], and that is for two reasons: first,
because of the difficulty to get reliable values of the viscosity,
η(φ) at densities φ close to jamming and, second, because
the jamming density, φJ , is not known and the value of the
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exponent depends sensitively on φJ . A way to circumvent this
second difficulty and determine a critical divergence—albeit
a different one—is by instead examining the dependence on
the average number of contacts, z, which is advantageous
since its value at jamming is known to be zc = 2d . This kind
of approach was pioneered by Lerner et al. [13] in a work
where they determined the pressure of sheared hard disks
below φJ with an innovative simulation method. They were
then able to determine a critical exponent from the slope of
ηp ≡ p/γ̇ where p is pressure and γ̇ is the shear strain rate
(ηp is just p in their notation) vs δz ≡ zc − z. By furthermore
examining the vibrational modes it was clear that there is a
unique lowest vibrational mode with frequency ωmin, which
is directly related to ηp. It turns out that this mode spans the
whole system and is closely related to the shearing.

A limitation of the method of Ref. [13] is that a matrix
equation has to be solved every time the contact network is
changing, which is something that happens more frequently as
the simulations are performed closer to jamming. A different
way to get similar nonoverlapping configurations is by doing
two-step simulations [14]: first, running ordinary shearing
simulations of soft particles and, second, performing relax-
ation simulations from such starting configurations. For each
such simulation the relaxation time was determined from the
exponential decay of energy (or pressure, as in Ref. [14]) to
the nonoverlapping limit. This relaxation time τ , determined
in overdamped dynamics, turns out to be directly related to
1/ω2

min in a Newtonian dynamics [13,14]. These quantities are
also found to behave the same as ηp [13–15]. To be clear,
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the determination of the relaxation time τ also suffers from
problems at the approach to φJ , as the simulation times are
proportional to the relaxation times, which grow rapidly as
jamming is approached.

Another way to determine the critical behavior is through
a scaling analysis of ηp that generalizes the behavior ηp ∼
(φJ − φ)−β , valid for hard disks—or, equivalently, for soft
disks in the limit γ̇ → 0—to finite shear rates [4,16]. There
do, however, seem to be weaknesses with all methods, and for
these scaling analyses it is the presence of large corrections to
scaling that badly complicates the analyses. A related method
that handles the correction to scaling term differently was used
in [17].

The first two of these methods were used in the recent,
unexpected, finding of different critical behaviors in two
and three dimensions [18]. This result has, however, been
questioned since it is difficult to reconcile with other results
that suggest that the upper critical dimension should be equal
to two [19,20]—implying that the critical exponents should
be the same for all D � 2, but possibly complicated by log
corrections for D = 2.

With the above two methods in different ways determining
the divergence by making use of shearing simulations, the
report of similar results when instead relaxing from random
configurations [21] was quite unexpected as it suggested that
the shearing is not a prerequisite for getting a configuration
with a well-defined relaxation time. The picture was, however,
complicated even more when another paper from the same
group [22] argued for problems with the analyses due to
the neglect of a finite size effect. The main complaint was
that there is a finite size dependence in the relaxation time,
τ ∼ ln N , which makes τ an ill-defined quantity which cannot
be used for determining the critical behavior. This finite size
effect—which we here call the NIB effect for Nishikawa,
Ikeda, and Berthier—is that systems with linear size L bigger
than a certain characteristic length, L > ξforce (see below or
in Ref. [22] for the definition of ξforce) split into islands that
relax independently. The final relaxation of the total energy
is then governed by the island with the largest relaxation time
and the fact that a bigger system tends to have a bigger “largest
relaxation time” leads to the system size dependence τ ∼ ln N
[22].

Of relevance for the determination of the critical behavior
from a scaling analysis of ηp, is a further claim in Ref. [22]
that ηp is plagued by severe finite size effects and that only
values of ηp for systems with L > ξforce, are to be trusted.
Since this length is a rapidly growing function of φ, the claim
casts doubts on all attempts made hitherto to determine the
critical divergence from ηp, as well as the feasibility of such
attempts for the future.

The present paper is a critical reexamination of Ref. [22] to
see to what extent the conclusions presented there hold for a
closer analysis. The conclusions in Ref. [22] of relevance for
the present work are (1) that the relaxation time is ill-defined
and cannot be used for studying the transition and (2) that the
viscosity obtained from accessible system sizes are not useful
since they suffer from severe finite size effects. We find these
conclusions to be unnecessarily pessimistic.

Our study is on simulations using two different protocols:
“shearing,” which means that configurations created during

steady shearing simulations at different constant shear rates
are used as starting points in relaxation simulations, per-
formed with γ̇ = 0 [14], and “random,” which means that the
initial configurations are created by positioning the particles in
random [21,22]. Our findings may be summarized as follows:
(1) There are big differences between the results from the
random case and the results from the shearing case, shown
by the finite size dependence of τ being much more pro-
nounced in the random case. This finite size effect is, however,
often unrelated to the NIB effect mentioned above. (2) We
determine the relaxation time of the individual particles, τp,
and use them first to make histograms H (τp) which allow
for direct studies of the NIB effect and second to determine
the average relaxation time, 〈τp〉. It turns out that this is a
quantity with a well-defined thermodynamic limit which thus
opens up for a determination of the critical behavior. (3) In our
search for the origin of this additional finite size dependence
we then turn to the density fluctuations that are present in
randomly generated configurations before the relaxations, and
we find that the finite size dependence in these fluctuations,
to some extent, survives into the relaxed configurations. We
argue that this is at the root of the finite size dependence in
τ as well as in other quantities. (4) A finite size dependence
of τ was found in Ref. [22] to invalidate the attempts to
determine the critical divergence. We confirm the same kind
of effect also at higher densities and larger system sizes for
the random case but find that it is not present in the shearing
case, and argue that it is the large density fluctuations that
lead to relaxed systems that have problematic properties as
evidenced in several different quantities. (5) We also examine
the relation between island size and relaxation time valid in
the NIB region where the system splits into different islands
and find a direct proportionality between these quantities.
The same kind of relation is also obtained analytically for a
one-dimensional model. Another simple analytical argument
gives a relation between island size and density and suggests
τ ∼ (−δφ)−2, where δφ = φ − φJ , in good agreement with
the behavior of 〈τp〉 well below jamming. (6) We then turn
to determinations of the correlation Cforce and the associated
length ξforce introduced in Ref. [22] and find that even though
the height of the maxima of Cforce differ by more than an order
of magnitude for our two different protocols, the length ξforce

is about the same. (7) We finally consider finite size effects on
ηp and find that the onset of the finite size effect takes place
at the same system size for different densities in the range
φ = 0.830 through 0.838, which is at odds with the general
expectation for finite size effects in critical phenomena, and is
in contrast to the claim in Ref. [22] of very severe finite size
effects in ηp.

The organization of the paper is as follows: In Sec. II we
introduce the simulation methods and the measured quantities,
in Sec. III we give results for the relaxation simulations,
in Sec. IV we present the finite size study of the pressure
equivalent of the viscosity, and in Sec. V we summarize the
results.

II. MODELS AND MEASURED QUANTITIES

For the simulations we follow O’Hern et al. [2] and
use a simple model of bidisperse frictionless disks in two
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dimensions with equal numbers of particles with two dif-
ferent radii in the ratio 1.4. Length is measured in units of
the diameter of the small particles, ds. We use Lees-Edwards
boundary conditions [23] to introduce a time-dependent shear
strain γ = t γ̇ . With ri j the distance between the centers of two
particles and di j the sum of their radii, the relative overlap
is δi j = 1 − ri j/di j , and the interaction between overlapping
particles is V (ri j ) = εδ2

i j/2; we take ε = 1. The force on
particle i from particle j is fel

i j = −∇iV (ri j ), which gives the
magnitude f el

i j = εδi j/di j . The simulations are performed at
zero temperature.

We consider the interaction force fel
i = ∑

j fel
i j where the

sum extends over all particles j in contact with i. The
simulations discussed here have been done with the RD0

(reservoir dissipation) model [24] with the dissipating force
fdis
i = −kd vi where vi ≡ vtot

i − yiγ̇ x̂ is the nonaffine velocity,
i.e., the velocity with respect to a uniformly shearing velocity
field, yiγ̇ x̂. In the overdamped limit the equation of motion
is fel

i + fdis
i = 0, which becomes vi = fel

i /kd . We take kd = 1
and the time unit τ0 = d2

s kd/ε = 1. The equations of mo-
tion were integrated with the Heuns method with time step
�t/τ0 = 0.2. We simulate with N = 256 through 1 048 576 ≈
106 particles to study finite size effects.

To determine the relaxation time we run simulations as
described above at zero temperature and fixed γ which leads
to an energy decreasing down towards zero; the simulations
are aborted when the energy per particle is E < 10−20. The
relaxation time is then determined from the exponential decay
of the energy per particle by fitting E (t ) to

E (t ) ∼ e−t/τ , E (t ) < 10−17. (1)

For each parameter set the data are based on four to typically
100 different relaxations, but sometimes up to 1000. The
lower number is for some of the simulations for systems with
N ≈ 106, where fluctuations are small. The bigger numbers
are for the smaller N .

A key observation in Ref. [22] is that different regions of
the system may exhibit different decay rates. To study this
phenomenon we introduce and examine the relaxation time of
the energy for different particles. The elastic energy related
to particle i is Ei = 1

2

∑
j εδ

2
i j/2, where the sum is over all

particles j in contact with i. The relaxation time for particle i,
τ (i)

p , is then determined from the final stage of the relaxation
of Ei, from configurations stored during the relaxation. These
configurations are stored with a time interval �, from 100 to
10 000 time units. The smaller � are necessary to determine
the shorter relaxation times that are present at lower densities.

Using Ei(t ) ∼ e−t/τ (i)
p and letting t ′ be the largest time for

which Ei(t ) > 10−20, the particle relaxation time is deter-
mined from

τ (i)
p = �

ln[Ei(t ′ − �)/Ei(t ′)]
. (2)

From these relaxation times, calculated for all particles, we
determine histograms H (τp). There is then always a small
fraction of particles with unreasonable relaxation times be-
cause of unstable configurations, e.g., because they have only
a single contact. These particles are skipped in the final calcu-
lation of averages.

For big systems and large relaxation times we have found
that one can get artifacts in the determinations of τ (i)

p due to
the finite precision in the double precision numbers used for
the positions. This is an effect both of the fact that fewer bits
are available for the fraction part when storing larger coor-
dinate values, which leads to a lower precision in the position
variables, and the fact that the net force, fi, is typically a factor
of τ (which may be close to a factor 105) smaller than the
typical interparticle force, fi j , which means that the interpar-
ticle forces need to be obtained with high precision. To handle
that problem the relaxations for the biggest N at the higher
densities were run with a version of the simulation program
which uses two variables—for integer part and fraction—to
store to position coordinates. The artifacts mentioned above
were eliminated in that program version.

To examine the different simulation protocols we
study the density fluctuations in both initial and relaxed
configurations—for the different cases of random and
shearing—and how these fluctuations depend on the size of
a circular region R. This is done by measuring A(R), which is
the total amount of particle area that is inside a circle of radius
R, such that the particles on the boundary contribute with only
the fraction of their area which is inside the circle. These areas
are measured for a large number of different configurations
and center points, and the variance is obtained from

σ 2
A = 〈A2(R)〉 − 〈A(R)〉2. (3)

For initial random configurations and R 
 L the quantity
σA/

√
NR, where NR = (πR2/V )N is the average number of

particles inside R, approaches a constant, as discussed in
Appendix B, and we therefore find it convenient to use that
quantity rather than the density fluctuations. The relation to
the density fluctuations, determined in the context of hype-
runiformity [25], is var(φR) = σ 2

A/(NR〈a〉πR2), where 〈a〉 =
π (d2

s + d2
b )/8 (db is the diameter of the big disk) is the average

particle area.
We also determine the correlation function Cforce [22]

which measures to what extent the net particle forces in the
relaxed configurations are correlated [26],

Cforce(r) =
〈

1
N

∑
i< j fi · f jδ(r − ri j )

〉
〈

1
N

∑
i fi · fi

〉 . (4)

III. RESULTS

A. Comparison of random and shearing

Figure 1 shows the relaxation times obtained at different
φ = 0.800 through 0.838 and for a wide range of number
of particles, N . Figure 1(a) shows results after relaxing ran-
dom configurations, whereas Fig. 1(b) is after relaxing from
shearing configurations. For the shearing configurations there
are data for initial shear strain rates γ̇ = 10−7 and 10−6,
connected by solid and dashed lines, respectively. When there
is a shear strain rate dependence the relaxation time decreases
with decreasing initial shear strain rate [14].

Figure 1(a) does indeed underscore the message of
Ref. [22] of significant finite size effects in τ . From a com-
parison of the two panels another clear message is the big
difference between τ from these different initial conditions.
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FIG. 1. Finite size dependence of the relaxation time. The fig-
ures show the relaxation time from the exponential decay of the
energy, Eq. (1), vs number of particles for several different densities.
Panel (a) is the behavior when starting from random configurations,
whereas panel (b) is the behavior when starting from configurations
at steady shearing. The two data sets in panel (b) have been obtained
when starting from configurations obtained with two different shear
rates. Dashed lines connect data obtained starting from configura-
tions generated with shear rate γ̇ = 10−6; solid lines connect data
for γ̇ = 10−7. Note that the finite size dependence is considerably
more pronounced when starting from random configurations. There
are error bars in the figure, but they are mostly not visible since they
are typically smaller than the sizes of the symbols.

The correlation times obtained by relaxing random configura-
tions are consistently larger, and they also show much more
pronounced finite size effects.

The explanation in Ref. [22] of the finite size effect is that
the increase of τ starts when the system is “large enough
to exhibit multiple correlated islands where the relaxation
dynamics can take place independently.” When that is the
case it is the island with the biggest relaxation time that will
dominate the long-time behavior and since a bigger system
will have a larger number of different such islands it will be
expected to have a larger maximum relaxation time which,
after a closer analysis, should be τ ∼ ln N [22].

Though the explanation of this finite size effect—we call
it the NIB effect from the authors’ names—appears to be
correct, we will argue that it cannot be the full story. For more
thorough investigations we determine the particle relaxation
times τp, as described in Eq. (2) and construct histograms

FIG. 2. Histogram of particle relaxation times, τp, produced by
starting from a single random configuration at φ = 0.820 for N ≈
106 particles. Panel (a) gives clear evidence for the system splitting
up in different parts with different relaxation times. The arrow, which
is τ from the decay of the total energy, illustrates that it is the slowest
relaxation time that dominates this decay. As argued in Ref. [22] this
is at the origin of the ln N dependence of τ , here coined the NIB
effect. Panel (b) shows the positions of the particles in the uppermost
peak, which makes clear that that they indeed do belong to a localized
island.

H (τp). The NIB effect is illustrated with the histogram in
Fig. 2(a) for a single relaxation of a system with N = 220 ≈
106 particles at φ = 0.820. The peaks at different τp are
related to islands with different local relaxation times. The
value of τ from the energy relaxation, E ∼ e−t/τ , shown by
the arrow, is close to the peak at the highest τp, which is con-
sistent with the expectation that it is the slowest particles that
dominate the long time relaxation. Checking a large number
of cases we have found that the particles in the uppermost
peak of the histogram always make up a localized island. This
is illustrated in Fig. 2(b) which shows the positions of the
particles with 2100 < τp < 2200, i.e., the particles from the
uppermost peak in Fig. 2(a).

It is however clear that this is not the full explanation of
the finite size effects in Fig. 1. That figure shows that τ (N )
is a monotonously increasing function of N for φ = 0.820,
and in the log-log plot the slope is actually the biggest around
N ≈ 104. Still, the histogram H (τp) from a single relaxation
with N = 16 384 in Fig. 3(a) gives evidence for only a single
peak, and the same is true for all our 16 examined realiza-
tions generated with the same parameters, φ = 0.820 and
N = 16 384. This makes clear that there are also other effects
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FIG. 3. Histograms of particle relaxation times, τp, produced by
starting from random configurations at φ = 0.820 for three different
system sizes. In panel (a), which is for N = 16 384, all particles have
the same relaxation time and there is no NIB effect; nevertheless,
this is in a range of N with a strong finite size dependence. The
conclusion is that there are also other finite size effects beside the
NIB effect. Panel (b) is for an intermediate number of particles,
N = 65 536, and we here see a widening of the peak, but also that
the histogram extends to lower τp, which is a precursor of some
more peaks. Panel (c), finally, shows the presence of several peaks
for N = 262 144, which is thus the same behavior as in Fig. 2(a).

at play in these systems, besides the NIB effect. The his-
togram in Fig. 3(b) is for an intermediate number of particles,
N = 65 536, where the peak of the histogram is not quite as
sharp and one also sees a precursor, below the main peak,
of the behavior in Fig. 2(a). Figure 3(c), finally, shows a
histogram for the even bigger size, N = 262 144, which shows
the presence of several peaks, and is thus very similar to the
behavior of Fig. 2(a).

Though the histograms H (τp) open up potentially new pos-
sibilities for analyzing the systems, some of the conclusions
above may actually be arrived at from the information in
Ref. [22]. Since this relates to results throughout the present
paper, that discussion is relegated to Appendix A.

To illustrate that there are both similarities and differences
between the shearing and the random cases, Fig. 4, which is
the same kind of figure as Fig. 2(a), but for the shearing case,
shows the histogram H (τp) for the same parameters. There
is again a clear signal of the NIB effect, but now as a broad
maximum rather than a number of well-separated peaks.

FIG. 4. Histograms of particle relaxation times, τp, produced by
starting from shearing configurations with N ≈ 106, φ = 0.820, and
γ̇ = 10−6.

B. Average particle relaxation time

With access to the particle relaxation times, τp, for all indi-
vidual particles it becomes possible to determine the average
τp as a different characterization of the system. Since this is
an estimate that gives equal weight to all particles and all
regions of the system, one would expect this quantity not to
be affected by the NIB effect. We use the notation 〈τp〉 though
this quantity (in consistency with τ of [14]) is determined
as the geometric average, 〈x〉geom = exp(〈ln x〉), rather than
an arithmetic average. The different ways to determine the
average do not give any noticeable differences for the larger
systems, but, as discussed in Ref. [14], the geometric average
is a more reasonable quantity for smaller systems.

Figure 5 is 〈τp〉 and τ vs N for both random and shearing
initial configurations. The crosses show 〈τp〉, whereas the
other symbols are τ as in Fig. 1. [To avoid cluttering the figure,
Fig. 5(b) shows only the data for the lowest γ̇ for each φ.]
In both figures 〈τp〉 and τ mostly agree very well, and devia-
tions are found only in the lower right corners of low φ and
big N . The difference between these two quantities is clearly
due to the NIB effect and just as mentioned above, 〈τp〉 for
each φ appears to approach a constant as N → ∞ whereas τ

continues to increase. A dashed line separates the NIB region
from the region where the finite size effect is of a different
origin.

This finding leads to several conclusions. The first is that
〈τp〉, in contrast to τ , is a quantity with a well-defined N → ∞
limit, and that it may therefore actually be used to determine
the exponent of the critical divergence related to the shear-
driven jamming transition.

The second is that it now becomes possible to compare
the relaxation time (in terms of 〈τp〉) for the two cases of
random and shearing initial configurations. In the large-N
limit it appears that 〈τp〉 from random configurations is about
a factor of six bigger than 〈τp〉 from shearing configurations.

A third conclusion regards the use of τ to determine the
critical behavior from shearing configurations. In Ref. [22] it
was argued that τ may not be used to determine the critical
behavior for the jamming transition since it has no N → ∞
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FIG. 5. Finite size dependence of both the relaxation time, shown
by different symbols for different φ, and the average particle relax-
ation time, 〈τp〉, shown by x’s. Just as in Fig. 1 panel (a) is from
random configurations, whereas panel (b) is from shearing configu-
rations. In each figure the dashed line is the approximate boundary
of the NIB region, which is in the lower right part of the figures.
In turns out that 〈τp〉 reaches finite limits for sufficiently large N ,
which is in contrast to τ , which keeps increasing with increasing N .
In both panels the region where τ and 〈τp〉 differ is the NIB region;
the boundary is indicated by the straight dashed line. The solid line in
panel (a) through the data for φ = 0.820 (squares) shows that the data
are well fitted to an ln N dependence even outside the NIB region.
[The dotted line in panel (a) is the relation between τis and Nis from
Fig. 12.]

limit. As argued above, 〈τp〉 may instead be used for this
purpose, but since the determination of 〈τp〉 is considerably
more involved than the determination of τ it is interesting
to note that τ actually may be used for the parameter values
where it may be considered a reliable estimate of 〈τp〉, which
happens to be the case for most of the points in Fig. 5(b) at the
higher densities. This also applies to the analyses in Ref. [14]
which were done with data for higher densities, φ � 0.838,
only. (For comparisons with some of the figures in Ref. [14] it
should be noted that that paper shows τ vs δz, whereas the
figures in Ref. [22] and in Sec. III D, below, instead have
δz/2d on the x axis. There is also a factor of two in difference
in τ since it is there determined from the the decay of pressure
which depends on the overlap through p ∼ δ, whereas τ is
here determined from the energy, which is ∼δ2.)

FIG. 6. Density fluctuations for the random case at φ = 0.820
as measured by σA/

√
NR. Panel (a) shows this quantity for initial

configurations where the behavior is close to σAc/
√

NR, given by
Eq. (5) and shown by solid lines. Panel (b), which is the same
quantity after relaxation, shows that the finite size effects in the
initial configurations to a large extent are present also in the relaxed
configurations. Panel (c) is the N dependence of σA(R) for R = 1,
2. We see increases in σA(r) up to N ≈ 65 536 where the behavior
approaches a constant value, and note that this is similar to the
behavior of 〈τp〉 at φ = 0.820 in Fig. 5(a).

A consequence of the NIB effect is the behavior τ ∼ ln N ,
but this kind of behavior of τ (N ) for φ = 0.820 is—quite
surprisingly—seen all the way down to N = 8192, which is
quite far below the NIB region. This is the solid curve in
Fig. 5(a). Though we cannot offer any real explanation, we
will return to this finding in conjunction with Fig. 6(c) below.

The finding of larger relaxation times from random config-
urations than from shearing configurations leads to questions
about the origin of this difference in 〈τp〉. It then seems that
the lower relaxation time is related to the larger δz and thereby
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a lower contact number, which in turn is a sign of a better
relaxation. We thus believe that it is the difference in the start-
ing configurations—on the one hand random configurations
with huge density fluctuations and on the other configurations
with a long smoothing prehistory—that has enormous conse-
quences for the final configurations. Further evidence for this
difference is given in the next section.

C. Density fluctuations

We argued above that there is another finite size effect in
the random case beside the NIB effect, and we now turn to an
attempt to understand its origin through an examination of the
size dependence of the density fluctuations. We first examine
the density fluctuations in random initial configurations—the
configurations before the relaxation step—and show that they
may be understood from elementary statistics. We then show
that these differences to some extent survive also to the re-
laxed configurations.

The basic mechanism follows from a consideration of NR,
which is the number of randomly positioned particles that
have their centers within a circle of radius R, which is a frac-
tion f = πR2/V of the total volume. This number is trivially
on the average 〈NR〉 = f N , and from the properties of the
binomial distribution it follows that the variance of the same
quantity is σ 2

NR
= f (1 − f )N . Taken together (and simplifying

the notation with 〈NR〉 → NR) this becomes

σ 2
NR

NR
= (1 − f ).

We note that this expression is a constant in the large-N limit
but decreases ∝R2/N for finite N . This is thus the origin of
the N dependence in σA/

√
NR.

For analyzing our packings without overlaps we have
found it convenient to measure A(R), and the related σ 2

A , from
Eq. (3). The area A(R) is the total particle area inside a circle
of radius R, such that the particles at the boundary contribute
with a fraction of their total area, according to definition I
in Ref. [25]. A similar quantity which is related to σNR is
obtained by instead considering the area Ac of the particles
with their centers within this circle, such that they always
contribute with their total area—definition II in Ref. [25].
Compared to σ 2

NR
the variance of Ac gets an extra contribution

from the different particle sizes, and as shown in Appendix B
the expression becomes

σ 2
Ac

NR
= 〈a2〉(1 − f ), (5)

where 〈a2〉 is the average particle area squared,
Figure 6(a) shows the area fluctuations σA/

√
NR vs R,

determined with Eq. (3) from random initial (unrelaxed) con-
figurations for several different N . The lines are for σAc/

√
NR

given by Eq. (5). For the smallest R, the data fall below the
lines, as discussed in Appendix B, but otherwise the data agree
well with the prediction, considering that these are estimates
of fluctuations, which are more difficult to determine with
high precision than are averages.

These random initial configurations with high energies and
big particle overlaps are then relaxed as discussed above,
and the area fluctuations from the relaxed configurations are

FIG. 7. Density fluctuations for the shearing case at φ = 0.820
as measured by σA/

√
NR. This shows that the density fluctuations are

always small in configurations obtained with the shearing protocol.
For system sizes N � 65 536, σA/

√
NR is essentially independent

of N , but for N � 262 144—well into the NIB region—this quan-
tity increases with increasing N , presumably because the system
there splits into different islands. For comparison the dashed line is
∼1/

√
R, predicted from hyperuniversality, suggested at φJ .

shown in Fig. 6(b). We note that the density fluctuations for
small R are reduced the most, but also that the finite size
dependence from the initial configurations to some extent
survives into the relaxed configurations such that the area
fluctuations are smaller in the smaller systems.

The density fluctuations for the shearing case are shown in
Fig. 7. In this case the fluctuations are considerably smaller—
note the different scale. The reason is clearly that the long
shearing simulations before the relaxations give homogeneous
systems with small density fluctuations even in the unrelaxed
systems. For N � 262 144, in the NIB region, the density
fluctuations are however somewhat bigger which is related
to the system splitting up into different islands with dif-
ferent local relaxation times and presumably also different
densities. We also note that hyperuniformity, suggested to be
present in jammed packings at φJ [27] would give var(φR) ∼
(a + b ln R)/R3 [25] which translates to σ 2

A = (a + b ln R)/R.
Though our data are far below jamming we find a similar
behavior, shown by the dashed line in Fig. 7, which is σA ∼
1/

√
R, for the data below the NIB region. (We also remark that

the density fluctuations, in the shearing case, are essentially
the same before and after the relaxation, since there are no big
particle displacements during the relaxation.)

Since the density fluctuations are so wildly different for our
two different simulation protocols, we believe that they are at
the root of the different finite size dependencies of τ in the
two panels of Fig. 5, and the effect that gives a large finite size
dependence for the random case will now be called the density
fluctuation (DF) effect.

A further link between the N dependence of 〈τp〉 in
Fig. 5(a) and the density fluctuations is given by Fig. 6(c)
which shows the small R behavior of σA(R) for R = 1, 2.
Similarly to the behavior of 〈τp〉 we find that σA increases
at low N and approaches constants at large N . The initial
increase is σA ∼ ln R, which is similar to the ln N behavior
of τ (N ) at φ = 0.820, which was there found to extend far
below the NIB region.
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FIG. 8. Relaxation time vs contact deficiency, δ, for the shearing
case and different system sizes, N = 1024 through ≈106. Panel
(a) shows individual measurements together with the line with slope
−b, where b = 2.36. Panel (b) shows τ vs δz, which are the geomet-
ric averages of the same quantities. This panel shows clearly that the
finite size effects are small and unproblematic for the shearing case.

D. Finite size effects in determinations of the critical exponent

After introducing the particle relaxation times which gives
methods for analyzing the NIB effect, and identifying the DF
effect, we are now ready to turn to examinations of the critical
divergence. From the relation τ ∼ (δz)−β/uz it follows that the
exponent β/uz may be determined from the slope of τ vs δz
on a double log plot [14], but a test of this approach for the
random case in Fig. 1 of Ref. [22] revealed a problematic finite
size dependence.

We will now argue that this is a problem for the random
case only, and not for the shearing case.

For the shearing case a close look at τ vs N at φ = 0.838 in
Fig. 5(b) shows that there is indeed a finite size dependence,
and this observation could seem to cast doubt on the use of
τ for the determination of the critical divergence. However, as
already noted in Ref. [14] it turns out that the finite size depen-
dence of τ is accompanied by a similar finite size dependence
of δz, which makes the points (τ, δz) for different N fall on a
common curve.

To illustrate this Fig. 8(a) shows τ1 vs δz1/2d for φ =
0.838 and several different sizes on a double-log scale. The
subscript “1” signifies that each point is from a single energy
relaxation. The points for the bigger sizes are close together,
whereas the points for smaller sizes spread considerably more
[14]. The data are suggestive of an algebraic behavior, and a
fit gives the line governed by the exponent −b, with b = 2.36.
(For data closer to criticality, i.e., smaller δz and larger τ , this

FIG. 9. Relaxation time vs contact deficiency, as δz/2d , for the
random case and different system sizes, N = 1024 through ≈106.
Panel (a) shows individual measurements. Also shown is the line
from Fig. 8(a), which is included to illustrate the “universality” sug-
gested in Ref. [21]. To show the results in more detail panel (b) are
the geometric averages of τ1 and δz1. For sizes up to N = 16 384
seem to agree with the solid line [from Fig. 8(a)], whereas the data
for N � 32 768, connected by the dashed line, deviate clearly.

exponent b → β/uz ≈ 2.7 [14]; the value b = 2.36 is only an
effective exponent.) The finite size dependence is too small to
be clearly visible in Fig. 8(a), and we therefore calculate τ and
δz for the different N as geometric averages of τ1 and δz1 and
plot τ vs δz/2d in Fig. 8(b). It then turns out that the obtained
points indeed do fall on the line in the figure, obtained from
the fit to the data in Fig. 8(a), and this shows clearly that the
observed finite size effect doesn’t cause any problems for the
determination of the divergence.

For comparison, Fig. 9(a) shows the same kind of data for
random starting configurations as in Fig. 8(a), and the first
observation is that two data sets are very similar, especially
since the solid line, which is taken from Fig. 8(a), fits well to
the data. Figure 9(b) which gives the geometric averages, τ

and δz, however, shows that there are also some differences.
Whereas data for N � 16384 fit nicely to the line, the data for
N � 524288 and ≈106 are clearly off the line, and it could
be that there are deviations from the expected behavior for all
the data with N � 32 768, the points connected by the dashed
line. That this is not due to the NIB effect is clear since each
of the histograms of τp for our six different relaxations with
N ≈ 106 and φ = 0.838 has only a single peak.

The finite size dependence in Fig. 9 is the same kind of
effect as was first identified in Fig. 1 of Ref. [22] and was
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FIG. 10. Fraction of rattlers at φ = 0.838, N = 1024 through
N ≈ 106 for both the random case and the shearing case. The failure
of fr (N ) to saturate for protocol random suggests a problem with this
protocol.

there attributed the the NIB effect. From Fig. 5(a) one may,
however, again, conclude that this cannot be explained by the
NIB effect, since the lowest τ for N = 262 144 in Fig. 1 of
Ref. [22] is τ ≈ 5×103, whereas the NIB effect is expected
to be visible only below τ ≈ 3×103. We instead attribute this
problematic finite size dependence to the DF effect, which is
consistent with this effect being visible for the random case
and not for the shearing case.

We have not been able to pinpoint the precise reason for the
deviations from the expected algebraic divergence for the ran-
dom case, but we note that unexpected behaviors are present
in many different quantities. One such quantity that behaves
strangely in the random case is the fraction of rattlers, shown
in Fig. 10 for both the shearing and the random cases. For
the shearing case fr is well behaved and just decreases slowly
towards a constant as N increases, but for the random case fr

increases and fails to saturate for our available system sizes.
(Note that there is no direct relation between fr and the contact
number z; fr is related to the number of particles that are
eliminated before the calculation of z.) This suggests that the
method to relax randomly generated configurations is flawed
as it leads to configurations with big density fluctuations and
spurious finite size dependencies. Surprising behaviors are
indeed also seen in Fig. 5(a) where τ (N ) is nonmonotonic at
φ = 0.838, and where precursors of this nonmonotonicity are
also found at the lower densities.

The conclusion from this section—which is also one of the
main conclusions of the paper—is thus that it is the finite size
dependence caused by the DF effect (density fluctuations) that
causes problems for the determination of the exponent β/uz

in the random case but that there are no such problems in
the shearing case. We stress that the data at high densities
investigated here are not affected by the NIB effect, but we
also point out that one should watch out for this effect for
large systems well below φJ . In the next section we turn to the
NIB region and properties of the individual islands.

E. Sizes of islands in the NIB region

In an attempt to get a better understanding of the NIB
region—the large-N region where the system splits into differ-
ent islands—we now examine the relation between relaxation

FIG. 11. Determination of τis and the size of the island, Nis,
which is the number of particles that belong to the corresponding
peak in the histogram. Panel (a) shows the complete histogram, and
panel (b) is a zoom in on the uppermost peak. Nis is the number of
particles with τp in the interval τis ± 0.5%.

time and island size. It turns out that there is a direct relation
between these quantities such that large correlation times are
possible only for big islands. We stress that the results cannot
be used to understand the properties outside the NIB region
since these systems experience collective relaxations that in-
clude all particles in the system, which is a very different
process from relaxations of isolated islands.

The determination of the key quantities—the number of
particles in an island Nis and its relaxation time τis—is il-
lustrated in Fig. 11, where Fig. 11(a) shows the complete
histogram H (τp) and Fig. 11(b) zooms in on the uppermost
peak. The relaxation time of the corresponding island is read
off from the figure, and Nis, the number of particles in the peak
(and thus also in the corresponding island), is determined from
the interval with ±0.5% around the peak, as illustrated in the
figure. For each configuration we here restrict our analyses to
the peak with the biggest relaxation time, to get the cleanest
possible analysis. For peaks at lower τp there is a higher risk
that a peak could sometimes be made up of data from two
different islands, which would confuse the analysis.

The relation between island size and relaxation time is
shown in Fig. 12 for a number of different configurations with
φ = 0.800 through 0.830, generated from random configura-
tions. Since the data give evidence for a linear behavior on a
double-log plot with slope ≈1, this points to a linear relation,
and we find τis ≈ 0.032Nis.
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FIG. 12. Relaxation time vs island size in the NIB region deter-
mined for the uppermost peaks as shown in Fig. 11(b). The data for
φ = 0.830 have been determined with N ≈ 106 particles, whereas
the other data are obtained with N = 262 144. The slope 1.01(5)
suggests a linear relation which is τis ≈ 0.032Nis.

We now suggest that this linear relation is an effect of
the relaxation of a collection of a set of partially overlapping
particles. The relation between relaxation time and number
of particles in a one-dimensional model with L particles of
unit size, initially compressed to have small overlaps, is found
in Appendix C to be τ ∼ L2. For the two-dimensional case,
with the assumption that it is the lateral size that determines
the relaxation time, this translates into τ ≈ 0.05N , which is
the same conclusion as from Fig. 12, only with a somewhat
bigger prefactor. A difference in prefactor is not surprising
since the disordered two-dimensional relaxed systems, beside
the different dimensionality, are very different from the sim-
ple, perfectly ordered one-dimensional model considered in
Appendix C.

To make contact with the determination of τ in Fig. 5(a)
the relation τis ≈ 0.032Nis is there shown as a dotted line. For
each τ , that line shows the minimum Nis of an island with the
relaxation time equal to τ . The fact that this line falls slightly
to the left of the NIB line is consistent with the fact that a
system may have an island of size Nis only if it consists of
N > Nis particles.

It is also possible to construct a simple argument for the
relation between density and the average Nis, which then also
translates into the φ dependence of 〈τp〉. For sufficiently big N
we expect a system at a density well below φrnd

J to be too dilute
to make up a single well-connected island, and it therefore
breaks up into a set of weakly connected (or disjoint) islands
with on the average Nis(φ) particles. If one simplifies greatly
and considers the islands to be made up of both a dense core
with radius R with φ ≈ φrnd

J and a thin buffer zone of thickness
δ, with no particles, the total area associated with an island
with radius R is given by πR2 + 2πRδ. By relating this area
to the inverse density, and assuming that there is no buffer
zone at φrnd

J , the relevant expression becomes

R2 + 2Rδ

R2
= 1/φ

1/φrnd
J

= φrnd
J

φ
,

and for densities close to φrnd
J we get

R ∼ (
φrnd

J − φ
)−1

, Nis(φ) ∼ (
φrnd

J − φ
)−2

.

FIG. 13. Force correlation function from Eq. (4) for N ≈ 106 and
φ = 0.800 through 0.838. Panel (a) shows Cforce(r) for the random
case, whereas panel (b) is Cforce(r) for the shearing case. The magni-
tude of Cforce is always considerably bigger for the random case than
for the shearing case, which is also why the data for the shearing case
appear noisier. [In order not to clutter the noisier panel (b), we show
only the data for the relevant region in r, somewhat past the crossing
that determines ξforce.] For the random case the height of the curves
increases with increasing φ, whereas for the shearing case the height
appears to saturate or have a maximum at φ = 0.834.

Together with τis ∼ Nis this leads to 〈τp〉 ∼ (φrnd
J − φ)−2. For

comparison we note that the divergence of 〈τp〉 in the NIB
region from Fig. 5(a) for N ≈ 106 and 0.800 � φ � 0.830
gives the similar exponent −2.1. It could thus be that this
simple model captures the behavior well below jamming, but
considering the bold assumptions and simplifications involved
here, there is no wonder that it fails to predict the higher value
of the exponent expected closer to jamming [16].

F. Analyses of Cforce

The correlation function Cforce(r) in Eq. (4), introduced in
Ref. [22], is shown in Fig. 13 for both the random and the
shearing cases. We note that the magnitude of Cforce(r) for
the random case is much higher than for the shearing case
and that the weak signal in the latter case makes it difficult
to get reliable data. Another difference is that the height (the
maximum value) of the curves for the random case keeps
increasing as φ increases, whereas, in the shearing case, the
height appears to saturate, or have a maximum, at φ = 0.834.

The length scale used to interpret the results in Ref. [22]
is ξforce, which is a measure of the distance over which the
net particle forces are correlated and is determined from the
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FIG. 14. The length ξforce for the two different protocols deter-
mined from relaxations with N ≈ 106. Panel (a) shows that ξforce

behaves about the same for the two different protocols but is always
somewhat lower for the shearing case. Panel (b) shows attempted
determinations of the critical exponent ν f for the two cases, giving
ν f = 0.92 for the random case and ν f = 1.3 for the shearing case.
We consider these values to be effective exponents since they de-
scribe the behavior well away from jamming.

distance where Cforce(r) turns negative. Figure 14 shows ξforce

for the two different simulation protocols. The raw data in
Fig. 14(a) show that ξforce is consistently somewhat smaller
in the shearing case than in the random case, but also that
this could possibly change at higher φ. By fitting both sets
of data to algebraic divergences, ξforce ∼ (−δφ)−ν f as shown
in Fig. 14(b) we find differing exponents, ν f = 0.92 for the
random case and ν f = 1.3 for the shearing case. We consider
these values to be only effective exponents since they are
determined from ξforce well away from jamming. (The deter-
minations have been done with δφ = φ − φrnd

J , with φrnd
J =

0.8418 [28] for the random case, and δφ = φ − φJ , with
φJ = 0.8434 [16], for the shearing case.)

It is also possible to determine a length scale in the random
case from the R dependence of the density fluctuations. To that
end we determine σA(R) from the relaxed systems of N ≈ 106

particles for φ = 0.800 through 0.838 and fit data for R � 15
to

σA(R)/
√

NR = A0(φ) + A1e−R/ξA . (6)

The data are shown in Fig. 15(a). The solid lines are the fitted
functions. The physical interpretation of the length scale ξA is
that the relaxation is effective only in reducing the fluctuations
at length scales smaller than ξA. Figure 15(b) is ξA vs φrnd

J − φ.

FIG. 15. Determination of a characteristic length from the den-
sity fluctuations for the random case. Panel (a) shows density
fluctuations for N = 262 144 and φ = 0.800 through 0.838 together
with lines from the fitting to Eq. (6). Panel (b) is ξA from these fits vs
φrnd

J − φ. The fit of ξA for φ � 0.830 based on the assumption of an
algebraic divergence tentatively suggests νA = 0.66.

The assumption of an algebraic divergence, ξA ∼ (φrnd
J −φ)−νA ,

with φrnd
J = 0.8418 [28], gives νA = 0.66.

One could wonder whether our two different lengths, ξforce

and ξA, really measure the same thing but in different ways.
The large difference of the exponents, ν f = 0.92 and νA =
0.66, however, makes us conclude that that is most likely not
the case, especially since the two quantities are determined
from the same sets of relaxed configurations.

IV. FINITE SIZE EFFECTS IN ηp

We now leave the discussion of the relaxation time de-
termined from relaxations of two different sets of initial
configurations and instead turn to ηp ≡ p/γ̇ obtained from
shearing simulations. What is in focus is the claim in Ref. [22]
that ηp may not be used for extracting the critical behavior,
since it is plagued by strong finite size effects and is reliable
only in the—presumably inaccessible—limit L � ξforce. We
do, however, note that there is no strong numerical data in
Ref. [22] in support of their claim and that our own data in
Fig. 16 give no evidence for the existence of any problematic
finite size effect.

Before turning to our numerical data we shortly sketch
what should be expected if the jamming transition were work-
ing as an ordinary continuous transition. (We find below that
it does not.) In shear-driven systems below jamming there
is ample evidence for a correlation length ξ ∼ (φJ − φ)−ν ,
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FIG. 16. Finite size dependence of p at φ = 0.830 through 0.838.
In contrast to the prediction in Ref. [22] that the finite size effect
is governed by the rapidly increasing ξforce (marked by big open
circles on the dashed curves for φ = 0.830, 0.834, and 0.838) the
figure suggests an onset of finite size effects at L ≈ 100, independent
of φ.

with ν ≈ 1 [29], and it is furthermore shown that the pressure
equivalent of the shear viscosity diverges as ηp ∼ ξ−β/ν with
β/ν ≈ 2.7. For quantities such as pressure and shear stress
one would then expect the introduction of a finite (small)
system size L to mean that things should depend on the di-
mensionless quantity ξ/L, and the expectation is then that the
pressure should start increasing as L decreases below some
Lc(φ) ∼ ξ . For the density range φ = 0.830 through 0.838
considered below this Lc should be expected to increase by
a factor of ≈2.5 when the density increases from φ = 0.830
to 0.838.

To examine the finite size dependence Fig. 16 we have
determined p(φ, L) with shear rate γ̇ = 10−7 for φ = 0.830,
0.832, 0.834, 0.836, and 0.838 and N = 1024 through 262 144
particles, corresponding to system sizes L ≈ 37 through
≈600. The data are shown in Fig. 16 as p(φ, L)/p∞(φ) vs
L. Since the data are normalized to unity for large L, the
points for different φ are shifted vertically for clarity. The
extrapolated p∞(φ) are obtained by fitting

p(φ, L) = p∞(φ) + Cp(φ)e−L/Lc , (7)

shown by the dashed curves in Fig. 16.
In the figure we find evidence for a clear finite size effect

setting in below a constant L ≈ 100, for all the different
densities. Likewise, from the fit to Eq. (7) we find Lc ≈ 21
for all the densities without any trend. This is thus at odds
with the expectation that p should depend on L/ξ (φ) and is
difficult to reconcile with the common framework for shear-
driven jamming. The invocation of logarithmic corrections
to scaling—instead suggesting a scaling with L(ln L)1/4/ξ (φ)
[30]—does not resolve the issue. For now we just comment
that this points to the need for a novel picture of shear-driven
jamming. Such work is in progress and will be presented
elsewhere.

V. SUMMARY

We have performed a thorough study of the relaxation
dynamics in a two-dimensional model of jamming with two
different simulation protocols: relaxation of random config-

uration and relaxation of configurations generated through
steady shearing. The question in focus has been on finite size
effects and the possibility to reliably determine the critical
behavior with two different methods (1) from the relation
between the relaxation time, τ and the contact number defi-
ciency, δz, and (2) from the pressure equivalent of the shear
viscosity.

For the first point we first note that the identification of the
NIB effect in Ref. [22], together with the claim that it works
about the same for both the random case and the shearing case
appears correct. Our crucial observation is, however, that there
is also another finite size effect—the DF (density fluctuations)
effect—which is clearly seen only for the random case and
has profound consequences and adversely affects the data
produced with that protocol. This then gives a rationale for
trusting the analyses obtained with the shearing protocol in
spite of the presence of problematic finite size effects in data
obtained with the other protocol as in Fig. 1 of Ref. [22].

Another key result is that it is possible to determine the
average particle relaxation time 〈τp〉, which is a quantity with
a well-defined thermodynamic limit, which therefore may be
used to define the critical divergence, but also that τ—the en-
ergy relaxation time which has a problematic ln N dependence
for very large N—may be used as a reliable estimate of 〈τp〉
if one just stays clear from the very large N region of the NIB
effect.

When it comes to the second point on the finite size ef-
fect on ηp, our data for 0.800 � φ � 0.838 give evidence
for significant finite size effects for sizes below L ≈ 100,
independent of φ. We note first that this suggests that the
data for N = 65 536 and L ≈ 300 used in scaling analyses of
shear-driven jamming [16] are not too much affected by finite
size effects, but also that this φ-independent finite size effect
is at odds with the expectations from shear-driven jamming
being an ordinary continuous transition.

To summarize we have examined the evidence behind the
criticism of two different methods employed to determine
the critical divergence of shear-driven jamming, and find
that the conclusions were unnecessarily pessimistic. There
do nevertheless remain many questions regarding reliable and
consistent interpretations of such data as well as regarding the
validity of the related theoretical approaches [15,31,32].

ACKNOWLEDGMENTS

I thank Y. Nishikawa, A. Ikeda, and L. Berthier for useful
discussions and S. Teitel for many discussions as well as com-
ments on a previous version of the article. The computations
were enabled by resources provided by the Swedish National
Infrastructure for Computing (SNIC), partially funded by the
Swedish Research Council through Grant Agreement No.
2018-05973.

APPENDIX A: EVIDENCE FOR THIS EXTRA FINITE SIZE
EFFECT FROM DATA IN REF. [22]

We here point out that the conclusion of the existence of
a finite size effect other than the NIB effect, here arrived at
through analyses of H (τp), may actually also be reached from
the information presented in Ref. [22].
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In Sec. III A we argued that N = 16 384 at φ = 0.820
is actually outside the NIB region and that the finite size
dependence there therefore has to have another origin than
the NIB effect. From the statement [22] that the small-N
regime is a regime where “the force correlation is limited by
the system size, so that ξforce(φ, N )/L = O(1),” together with
their Fig. 5(b), which shows that ξforce ∼ N1/2 at least up to
N = 1282, it seems that N = 16 384 ≡ 1282 at φ = 0.820 is
actually in this small-N regime. Furthermore, their Fig. 4(c)
which shows the coarse-grained force field in a big system
at the same density, φ = 0.820, has structures bigger than
L ≈ 150, which is the linear size of a system with N = 16 384.

Similarly, with regard to their Fig. 4(d) they write “a sin-
gle correlated island seems to cover the whole system for
φ = 0.83, despite the fact that the system size is large N =
262 144.” This therefore suggests—in agreement with our
Fig. 5(a)—that this point is outside the NIB region, which also
implies that the N dependence at φ = 0.830 in their Fig. 2(a),
which shows data for N � 262 144, needs an explanation
other than the NIB effect.

APPENDIX B: SIZE DEPENDENCE FROM
THE BINOMIAL DISTRIBUTION

For a detailed comparison of σA with σNR one has to take
two different factors into account. The first is the presence of
two different particle sizes, and the second is the fact that for
particles on the circle, only the fraction of the particles within
the circle contributes to A(R).

We first introduce Ac for which the particles with their
centers inside R are instead included with their total area. With
the areas of the big and small particles denoted by ab and
as, the variance in Ac gets contributions from two different
sources with, on the average NR/2 = f N/2 particles each,
giving

σ 2
Ac

= σ 2
Ac,b + σ 2

Ac,s = (
a2

b + a2
s

)
f (1 − f )

N

2

= 〈a2〉 f (1 − f )N, (B1)

which gives

σ 2
Ac

/NR = 〈a2〉(1 − f ). (B2)

Most of the deviations of σA/
√

NR from the analytically
expected results in Fig. 6(a) are due to the difficulty in getting
good precision in fluctuation quantities. There are, however,
clear deviations from the analytical curves at small R which
cannot be attributed to the limited statistics. It turns out that
this is related to the way the particles that are only partly
inside the region are handled. It is then only the part of the
area that is inside the radius R that is counted. For small R
a bigger fraction of the particles are at the boundaries, and it
appears that this has the effect to reduce the fluctuations.

To compare with expressions for the variance of the density
we note that the density is given by φR = A(R)/(πR2) and that
the variance of the density therefore becomes

var(φR) = σ 2
A

(πR2)2
= 1

〈a〉πR2

σ 2
A

NR
.

APPENDIX C: ONE-DIMENSIONAL MODEL

To understand the relation between Nis and τis we turn to a
one-dimensional model with L particles with diameter equal
to unity. The starting point is the zero-force configuration

xi = i − (L − 1)/2, i = 0, . . . , L − 1,

which is compressed to

ri = xi + ηi,

such that the overlap between neighboring particles becomes

δi,i+1 = 1 − (ri+1 − ri ) = ηi − ηi+1.

With force fi,i+1 = εδi,i+1 the total force on particle i, not at
one of the boundaries, is

fi = εδi−1,i − εδi+1,i = ε(ηi+1 − 2ηi + ηi−1) ≈ ε�2η,

and by assuming overdamped dynamics, dri/dt = fi/kd one
arrives at

∂η

∂t
= ε

kd
�2η.

Going to the continuum this becomes a partial differential
equation

∂η

∂t
= ε

kd

∂2η

∂x2
.

With zero-force boundary conditions at x = 0 and x = L the
solution becomes

η(t, x) = −Ae−t/τη sin(πx/L),

which gives the relaxation time

τη = kd

ε

(
L

π

)2

,

and by finally considering the decay of the energy, with is
∼δ2, one arrives at

τ1d/(kd/ε) = 1

2π2
L2 ≈ 0.05L2.

When the particles are instead arranged in an orderly two-
dimensional array (which is of course very different from the
situation in our simulations) we make use of L = √

N to get
τ2d(N )/(kd/ε) ≈ 0.05N .
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