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Thermal transport mechanism at a solid-liquid interface based on the heat flux detected
at a subatomic spatial resolution
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Heat flux is a fundamental quantity in thermal science and engineering and is essential for understanding
thermal transport phenomena. In this study, the heat flux in a solid-liquid interfacial region is obtained in
a three-dimensional (3D) space at a subatomic spatial resolution based on classical molecular dynamics,
yielding a 3D structure of the heat flux between the solid and liquid layers in contact. The results using the
Lennard-Jones potential reveal the directional qualities of the heat flux, which are significantly dependent
on the subatomic stresses in the structures of condensed phase systems. The heat flux and stress at the
subatomic scale are related to the macroscopic transport quantities, which can be obtained using distribution
functions; the stress and energy flux properties at the subatomic scale are comprehensively investigated using
a single-interaction-based stress and energy flux to determine the origin of the thermal transport mechanism
at the solid-liquid interface. The findings reveal that the density of states due to the stress caused by a single
interaction exhibits a bandlike behavior. The net energy transport comprises positive and negative energy
transport inside and outside the band. In addition, this is related to the intrinsic transport property of the
atoms and molecules at the solid-liquid interface at the subatomic scale. The difference between the energy
transport rates when a solid atom in the vicinity of the interface is near to or far from the liquid phase
is the origin of the energy transport mechanism at the solid-liquid interface. 3D analysis of the heat flux
and stress is carried out by varying the interaction strengths between the liquid molecules and solid atoms
at the solid-liquid interface. This reveals that the directional quality of transport quantities is high at strong
interaction strengths, thus indicating enhanced thermal transport. Furthermore, the influence of the temperature
gradient in the system suggests that the energy transport imbalance between inside and outside the stress
band in a high-stress field at the subatomic scale induces the net thermal transport across the interface in the
nonequilibrium state.
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I. INTRODUCTION

The conservation laws of mass, momentum, and energy
are fundamental physical principles. Moreover, the derived
transport equations (i.e., the continuity, momentum, and en-
ergy equations) with the constitutive equations provide a
general and effective approach to quantitatively predict trans-
port phenomena based on macroscopic physical properties,
such as viscosity, thermal conductivity, and heat capacity.
With respect to conservation laws, the mass, momentum,
and energy in a volume element are balanced by the sum
of the input and output fluxes through the boundary of the
volume element where time-varying external forces do not
act [1]. Macroscopic quantities, such as the density, pressure,
and temperature in a unit volume, allow for an intuitive un-
derstanding of macroscopic transport phenomena. Moreover,
microscopic expressions corresponding to the macroscopic
transport equations were derived and have been used ex-
tensively in recent numerical analyses to explore transport
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phenomena at the nanoscale, or to relate macroscopic trans-
port phenomena to atomic and molecular properties [2,3].
The physical quantities obtained from the microscopic ex-
pression are consistent with the macroscopic quantities for
a homogeneous system considering a sufficient average over
time and space. However, for an inhomogeneous system, the
quantities are different from the macroscopic quantities (e.g.,
interfacial pressure components tangential to the interface)
[4,5]. The field quantities of the mass, stress, and energy flux
in the microscopic expression reflect the atomic and molecular
influences and can be used to examine microscopic transport
phenomena at an atomic and molecular scale. However, for
significantly smaller spatial and temporal scales, e.g., less
than the order of Å and femtoseconds, respectively, where
macroscopic thermodynamic quantities cannot be accurately
defined, a physically significant interpretation of field quan-
tities in terms of the stress tensor and energy flux becomes
extremely difficult. A more straightforward method to de-
termine the underlying physics behind the observed field
quantities is therefore required.

Thermal transport across a solid-liquid interface is an
important phenomenon in the fields of nanoscience and
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nanotechnology. Moreover, thermal transport across solid-
liquid interfaces has attracted significant research attention,
because such transport is critical for several applications,
including functional surfaces [6,7], nanofluids [8,9], and
nanofluidic devices [10]. To fundamentally understand ther-
mal transport through a solid-liquid interface, the transport
properties of atoms and molecules are essential. Therefore,
the microscopic theory of such atomic and molecular trans-
port is necessary to better understand this phenomenon. In
previous studies on thermal transport across solid-liquid inter-
faces, the interfacial thermal conductance (ITC) was evaluated
using theoretical [11], numerical [12–21], and experimental
[22] methods. In these studies, the classical molecular dy-
namics (CMD) approach has been used to understand the
thermal transport properties at an atomic or molecular scale,
and CMD is becoming a standard tool used to evaluate
the ITC. To elucidate the thermal transport mechanism, the
kinetic and configurational components in the microscopic
transport equations were evaluated to elucidate their con-
tributions to the thermal conductivity or the net heat flux
based on nonequilibrium simulations [23]. Another method
involves the calculation of the longitudinal and transverse
modes of the heat flux across the interface [24], which is
important for phonon-based interpretation using the vibra-
tions of atoms and molecules at the interface region. Thus,
the microscopic transport equations have contributed to un-
derstanding of the heat flux from atomic and molecular
perspectives.

In recent studies [25,26] based on CMD simulations, two-
dimensional (2D) heat flux maps were obtained at a subatomic
spatial resolution. This revealed that the heat flux across a
solid-liquid interface is not uniform along a macroscopic tem-
perature gradient at the single-atom scale. Such local physical
quantities detected at an extremely small spatial resolution
(subatomic scale: less than 1 Å) allow for the visualization
of the heat flow at the nanometer scale and provide critical
information to better understand the transport phenomena in
such a system. However, quantitative evaluations of the true
heat flux (not averaged in space) have not been made, and
detecting heat flux in three dimensions remains an issue.
Three-dimensional (3D) detection of the heat flux is necessary
for a general interpretation of the heat flux as a field transport
quantity, which is related to the fundamental energy transfer
mechanism at the subatomic scale. Moreover, the relation-
ship between the field transport quantities at the macroscopic
and subatomic scale has not been previously determined us-
ing the basic Lennard-Jones potential (LJ) model. This is
important for the advancement of nanoscience based on an ex-
tension of the conservation laws in a specific volume element
that is generally used to model the macroscopic dynamics
of fluids.

In this study, we investigate the properties of the stress and
heat flux at the subatomic scale to determine the mechanism of
thermal transport through a solid-liquid interface in the frame-
work of classical molecular dynamics. A numerical technique
based on microscopic transport equations is developed to ob-
tain local physical quantities, which is employed to determine
the 3D stress and heat flux at the subatomic scale in a solid-
liquid interfacial region for a system modeled using the LJ
potential. The relationship between the stress and heat flux at

the subatomic scale is investigated based on the 3D stress and
heat flux structures. Further, a method based on distribution
functions is proposed to relate the local physical quantities
at the subatomic scale to the physical quantities influenced
by a single interaction between particles. Using the method,
the properties of the stress and heat flux at the subatomic
scale are examined and related to those of the macroscopic
stress and heat flux at the solid-liquid interface. Furthermore,
the influence of the solid-liquid interaction strength and tem-
perature gradient in the system on the interfacial thermal
transport is examined using the single-interaction-based stress
and energy flux, and the result provides an explanation of
the origin of the thermal transport mechanism at the solid-
liquid interface. The remainder of this paper is organized
as follows.

In Sec. II, the microscopic expression of the conservation
law is considered, and a distribution function considering the
influence of the movement of a single particle and single
interaction between particles is introduced and related to the
local field quantities.

In Sec. III, the numerical details of the simulation are
presented. The required calculation time is discussed to un-
derstand whether a significant heat flux can be generated at
the subatomic scale using classical molecular dynamics.

In Sec. IV, a 2D transport field at a solid-liquid interface
is presented, and its difference in comparison with a one-
dimensional (1D) transport is discussed.

In Sec. V, a 3D transport field at a solid-liquid interface
is presented for various wetting conditions between solid and
liquid layers in contact, thus revealing the differences in the
stress and heat flux between the macro- and subatomic scales.
The results are compared quantitatively with the 1D and 2D
results, and the relationship between the stress and heat flux
at the subatomic scale is presented.

In Sec. VI, the properties of the density distribution, which
depend on the single-interaction-based stress and energy flux,
are examined in detail, and the field quantities of the stress
and heat flux at macroscopic and subatomic scales are related
through the single-interaction-based stress and energy flux.

In Sec. VII, the mechanism of thermal transport across
a solid-liquid interface is detailed based on the relationship
between the single-interaction-based stress or energy flux and
the behavior of the related particle. The thermal transport
mechanism at the macroscopic and subatomic scales is pre-
sented.

In Sec. VIII, an investigation of the thermal transport
mechanism from the single-interaction-based energy flux is
presented with respect to various temperature gradients in the
system.

In Sec. IX, the conclusions are presented.
In Appendix A, a discussion is presented about the influ-

ences of the calculation conditions (i.e., cutoff distance and
simulation model size).

In Appendix B, an investigation of thermal transport based
on the single-interaction-based energy flux using the velocity
of a solid atom and the force acting on the solid atom is
presented, and the result is compared with that presented in
the main body of the paper, where the velocities of the solid
atom and liquid molecule are considered for the heat flux
calculation.
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II. LOCAL AND INSTANTANEOUS TRANSPORT BASED
ON MICROSCOPIC TRANSPORT EQUATIONS AND

RELATIONSHIP WITH DENSITY OF STATES
DISTRIBUTION BASED ON SINGLE INTERACTIONS AND

SINGLE-PARTICLE MOVEMENT

The derivation of the local and instantaneous physical
quantities is common knowledge [2,3,27–29]. First, we re-
consider the essential points from a phenomenological point
of view. We then introduce the density-of-states distribution
based on the variables related to the single-particle movement
and single interaction between particles. The microscopic
field quantities are related to the density-of-states distribution.
We start with the general formulation, which is applicable to
not only interfaces but also bulk phases.

The mass, momentum, and energy densities at position r
and time t are expressed microscopically using the Dirac δ

function for a system that contains Nξ particles for the species
ξ , as follows:

ρ(r, t ) =
∑

ξ

Nξ∑
i=1

mξ,iδ(r − ri ), (1)

ρv(r, t ) =
∑

ξ

Nξ∑
i=1

mξ,ivξ,iδ(r − ri ), (2)

ρe(r, t ) =
∑

ξ

Nξ∑
i=1

eξ,iδ(r − ri ), (3)

where m is the mass of the particle, ρ is the density, v is the
velocity vector, and e is the total energy of the particle, which
is defined as follows: eξ,i = (1/2)mξ,iv2

ξ,i + (1/2)�ζ� jφξ i,ζ j .
In particular, φξ i,ζ j is the potential energy between the ith
particle of species ξ and jth particle of species ζ . By substitut-
ing Eqs. (1)–(3) into the balance equations where no external
force is considered,

∂ρ

∂t
= −∇ · (ρv), (4)

∂ (ρv)

∂t
= −∇ · (P + ρvv), (5)

∂ (ρe)

∂t
= −∇ · (J + ρev + P · v), (6)

we obtain the microscopic expression of the mass flux M,
pressure tensor P, and heat flux J for the ξ -component system
using the pair-potential function [29,30]:

M(r, t ) =
∑

ξ

Nξ∑
i

mξ,i[vξ,i − v(rξ,i, t )]δ(r − rξ,i ), (7)

P(r, t ) =
∑

ξ

Nξ∑
i

mξ,i[vξ,i − v(rξ,i, t )][vξ,i − v(rξ,i, t )]δ(r − rξ,i )

− 1

2

∑
ξ

∑
ζ

Nξ∑
i

Nζ∑
j �=i

rξ i,ζ jFξ i,ζ j

∫ 1

0
δ(r − rξ,i − srξ i,ζ j ) ds, (8)

J(r, t ) =
∑

ξ

Nξ∑
i

uξ,i[vξ,i − v(rξ,i, t )]δ(r − rξ,i ) − 1

2

∑
ξ

∑
ζ

Nξ∑
i

Nζ∑
j �=i

rξ i,ζ jFξ i,ζ j · [vξ,i − v(r, t )]
∫ 1

0
δ(r − rξ,i − srξ i,ζ j ) ds,

(9)

with rξ i,ζ j = rζ , j − rξ,i and uξ,i = (1/2)mξ,i[vξ,i − v(rξ,i )]2 + (1/2)�ζ� jφξ i,ζ j . The averaged velocities at r and rξ,i are defined
as v(r, t ) and v(rξ,i, t ), respectively. The integrations of Eqs. (8) and (9) determine whether the point r is on the line segment
between the ith particle of species ξ and jth particle of species ζ , using the variable s (0 � s � 1).

We consider a system with particles that consists of the local volume 	 at the local point r (x, y, z) within the finite area Aα (r)
(α = x, y, or z), as shown in Fig. 1, where Az(r) is the plane normal to the z axis, and is situated at the middle of the local volume
	. Integrating Eqs. (7)–(9) over the area Aα (r) at the point r provides the mass flux Mα , pressure tensor Pαβ , and heat flux Jα , as
follows:

Mα (r, t ) = 1

Aα

∑
ξ

Nξ∑
i

mξ,i[vξ,i,α − vα (rξ,i, t )]δ(αξ,i − α)�

(
βξ,i − β

β

)
�

(
γξ,i − γ

γ

)
, (10)

Pαβ (r, t ) = 1

Aα

∑
ξ

Nξ∑
i

mξ,i[vξ,i,α − vα (rξ,i, t )][vξ,i,β − vβ (rξ,i, t )]δ(αξ,i − α)�

(
βξ,i − β

β

)
�

(
γξ,i − γ

γ

)

− 1

4Aα

∑
ξ

∑
ζ

Nξ∑
i

Nζ∑
j �=i

Fξ i,ζ j,β [sgn(α − αξ,i ) − sgn(α − αζ, j )]�

(
βα − β

β

)
�

(
γα − γ

γ

)
, (11)
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Jα (r, t ) = 1

Aα

∑
ξ

Nξ∑
i

eξ,i[vξ,i,α − v̄α (rξ,i, t )]δ(αξ,i − α)�

(
βξ,i − β

β

)
�

(
γξ,i − γ

γ

)

− 1

4Aα

∑
ξ

∑
ζ

Nξ∑
i

Nζ∑
j �=i

Fξ i,ζ j · [vξ,i − v̄(r, t )][sgn(α − αξ,i ) − sgn(α − αζ, j )]�

(
βα − β

β

)
�

(
γα − γ

γ

)
, (12)

where α, β, and γ (α �= β �= γ ) denote the x, y, or z component, respectively; v̄(r, t ) is the averaged velocity at r with an area
of Aα . In Eqs. (10)–(12), sgn and � are the sign function and rectangle function, respectively, and the definition of the 1D (x′)
rectangle function: �[(x′ − x)/x] = {H[x′ − (x−x/2)]− H[x′ − (x + x/2)]} is used with the Heaviside step function H .
In the rectangle functions of Eqs. (11) and (12), βα is defined as the β coordinate of the point where the line segment of particles
i and j intersects the plane at α. The diagonal component αα of the pressure tensor can then be expressed as the same form:

Pαα (r, t ) = 1

Aα

∑
ξ

Nξ∑
i

mξ,i[vξ,i,α − vα (rξ,i, t )][vξ,i,α − vα (rξ,i, t )]δ(αξ,i − α)�

(
βξ,i − β

β

)
�

(
γξ,i − γ

γ

)

− 1

4Aα

∑
ξ

∑
ζ

Nξ∑
i

Nζ∑
j �=i

Fξ i,ζ j,α[sgn(α − αξ,i ) − sgn(α − αζ, j )]�

(
βα − β

β

)
�

(
γα − γ

γ

)
, (13)

with the relation (α �= β �= γ ).
The microscopic transport Eqs. (10)–(13) can allow for the

derivation of the transport quantities required for atomic and
molecular hydrodynamics, thus yielding the kinetic and con-
figurational contributions of the atoms and molecules based
on the first and second terms of Eqs. (11)–(13), respectively.
The determination of the atomic and molecular influences on
the transport quantities is critical, and the first and second
terms are generally evaluated as the ensemble-averaged values
of 〈Pαβ〉 and 〈Jα〉 in molecular dynamics simulations, respec-
tively [2,3,14]. The pressure tensor and heat flux in Eqs. (11)
and (12) represent the local and instantaneous values of the
field quantity. However, the influences of the single-particle
movement and the single interaction between particles are
included in the summation at the point r, which does not
allow for the separate influences of a single particle or a single
interaction in a condensed phase to be obtained. Relating the
field quantities at the atomic scale to the influence of the
single-particle movement and the single interaction between
particles is necessary for the interpretation of the microscopic
field quantities from a more fundamental aspect.

To more precisely examine a set of the microscopic field
quantities of the mass flux, pressure tensor, and heat flux at

FIG. 1. Definition of the local volume element. The atomic-
molecular system is divided into small volume elements (left), and
the plane components in the local volume are defined (right).

(r, t ) in the system, namely, (Mα (r, t ), Pαβ (r, t ), Jα (r, t )), the
density-of-states distribution is considered:

χ (r,t )(Xn), (14)

where the density distribution χ (r,t ) is defined at the space of
the variables, and Xn indicates a set of all variables related to
the transport quantities at (r, t ), described as

Xn =
n︷ ︸︸ ︷

(�̂; r̂, v̂, ê, . . .), (15)

with

�̂ = (m̂α, σ̂αβ,1, σ̂αβ,2, ĵα,1, ĵα,2). (16)

In Eq. (16), m̂α , σ̂αβ,1, σ̂αβ,2, ĵα,1, and ĵα,2 are the quantities
detected at (r, t ) by the single-particle movement and single
interaction between particles, which are related via the kinetic
and configurational parts in Eqs. (10)–(12) as follows:

Mα (r, t ) =
∑

ξ

∑
i(λ1 �=0)

m̂α, (17)

Pαβ (r, t ) = Pαβ,1(r, t ) + Pαβ,2(r, t )

=
∑

ξ

∑
i

(λ1 �=0)

σ̂αβ,1 +
∑

ξ

∑
ζ

∑
i, j( �=i)
(λ2 �=0)

σ̂αβ,2, (18)

Jα (r, t ) = Jα,1(r, t ) + Jα,2(r, t )

=
∑

ξ

∑
i

(λ1 �=0)

ĵα,1 +
∑

ξ

∑
ζ

∑
i, j( �=i)
(λ2 �=0)

ĵα,2, (19)

where

m̂α = 1

Aα

mξ,i[v̂ξ,i,α − vα (rξ,i, t )]λ1, (20)

σ̂αβ,1 = 1

Aα

mξ,i[v̂ξ,i,α − vα (rξ,i, t )][v̂ξ,i,β − vβ (rξ,i, t )]λ1,

(21)
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σ̂αβ,2 = − 1

4Aα

F̂ξ i,ζ j,βλ2, (22)

ĵα,1 = 1

Aα

êξ,i[v̂ξ,i,α − v̄α (rξ,i, t )]λ1, (23)

ĵα,2 = − 1

4Aα

F̂ξ i,ζ j · [v̂ξ − v̄(r, t )]λ2. (24)

In Eqs. (20)–(24), λ1 and λ2 are defined respectively as

λ1 = δ(αξ,i − α)�((βξ,i − β )/β )�((γξ,i − γ )/γ )

and

λ2 = [sgn(α − αξ,i ) − sgn(α − αζ, j )]

× �((βα − β )/β )�((γα − γ )/γ ).

In Eq. (15), we consider �̂ as a set of the fundamental
variables, and r̂, v̂ , and ê are the quantities used to obtain
m̂α , σ̂αβ,1, σ̂αβ,2, ĵα,1, and ĵα,2 in Eqs. (20)–(24). Assuming
the n-dimensional small volume dXn, the number of states in
the range of Xn∼Xn + dXn is defined as χ (r,t )(Xn) dXn. Then
the sum of the states at (r, t ) can be obtained as∫ ∞

−∞
· · ·

∫ ∞

−∞
χ (r,t )(Xn) dXn,

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
χ (r,t )(�̂; r, . . .) d�̂ dr . . . (25)

with

d�̂ = dm̂α d σ̂αβ,1 d σ̂αβ,2 d ĵα,1 d ĵα,2. (26)

Integrating the other n − n�̂ variables yields the following:∫ ∞

−∞
· · ·

∫ ∞

−∞
χ (r,t )(�̂; Xn−n�̂ ) dXn−n�̂ = �(r,t )(�̂ ). (27)

Here �(r,t ) is used as a distribution function when selecting
specific variables, and �(r,t )(�̂ ) is the density distribution
in the space of variables m̂α , σ̂αβ,1, σ̂αβ,2, ĵα,1, and ĵα,2. To
relate this to the microscopic field quantities, the following
expression is used for convenience:

�
(r,t )
Ŷ

(�̂ ) ≡ Ŷ (�̂ )�(r,t )(�̂ ),

Ŷ = m̂α, σ̂αβ,1, σ̂αβ,2, ĵα,1, or ĵα,2. (28)

The transport quantity at (r, t ) is obtained in the general
form

Y =
∫ ∞

−∞
· · ·

∫ ∞

−∞
�

(r,t )
Ŷ

(�̂ ) d�̂. (29)

Equation (29) can then be expressed using the specific
variables, as follows:

Mα (r, t ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
�

(r,t )
m̂α

(�̂ ) d�̂,

Pαβ (r, t ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
�

(r,t )
σ̂αβ,1

(�̂ ) d�̂

+
∫ ∞

−∞
· · ·

∫ ∞

−∞
�

(r,t )
σ̂αβ,2

(�̂ ) d�̂, (30)

Jα (r, t ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
�

(r,t )
ĵα,1

(�̂ ) d�̂

+
∫ ∞

−∞
· · ·

∫ ∞

−∞
�

(r,t )
ĵα,2

(�̂ ) d�̂.

For the local transport quantity between the contacting
layers, �(r,t )(�̂ ) is transformed into the following:

�(r,t )(�̂ ) = �(r,t )(σ̂αβ,2, ĵα,2). (31)

The first terms in the transport equations [Eqs. (18) and
(19)] can be ignored when only the transport across the inter-
face is considered, because there exist no atoms or molecules
between the contacting layers. The subscript of the variable is
simplified as follows:

σ̂αβ,2 → σ̂αβ,

ĵα,2 → ĵα, (32)

which yields the expressions

Pαβ (r, t ) =
∫ ∞

−∞
�

(r,t )
σ̂αβ

(�̂ ) d�̂,

Jα (r, t ) =
∫ ∞

−∞
�

(r,t )
ĵα

(�̂ ) d�̂, (33)

where

�(r,t )(�̂ ) = �(r,t )(σ̂αβ, ĵα ). (34)

The microscopic quantity of the stress tensor using the
density distribution of the single-interaction-based energy flux
is

Pαβ (r, t ) =
∫ ∞

−∞

∫ ∞

−∞
σ̂αβ�(r,t )(σ̂αβ, ĵα ) d σ̂αβ d ĵα

=
∫ ∞

−∞

∫ ∞

−∞
�

(r,t )
σ̂αβ

(σ̂αβ, ĵα ) d σ̂αβ d ĵα

=
∫ ∞

−∞
�

(r,t )
σ̂αβ

( ĵα ) d ĵα, (35)

where �
(r,t )
σ̂αβ

( ĵα ) is the 1D density distribution multiplied
by σ̂αβ , which is dependent on the single-interaction-based
energy flux ĵα , indicating the contributions of the single-
interaction-based energy flux to the local and instantaneous
expression of the microscopic quantity Pαβ (r, t ). Similarly,
we obtain

Jα (r, t ) =
∫ ∞

−∞

∫ ∞

−∞
ĵα�(r,t )(σ̂αβ, ĵα ) d ĵα d σ̂αβ

=
∫ ∞

−∞

∫ ∞

−∞
�

(r,t )
ĵα

(σ̂αβ, ĵα ) d ĵα d σ̂αβ

=
∫ ∞

−∞
�

(r,t )
ĵα

(σ̂αβ ) d σ̂αβ, (36)

where �
(r,t )
ĵα

(σ̂αβ ) is the density distribution multiplied by ĵα ,
which is dependent on the single-interaction-based stress ten-
sor σ̂αβ . Equations (35) and (36) are based on the relationships
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Pαβ (r, t ) = � Pαβ,2 and Jα (r, t ) = � Jα,2, which hold for the
interface between the contacting regions.

In the 2D distribution, the energy flux in the σ̂αβ− Ẑ plane
can be obtained as

�
(r,t )
ĵα

(σ̂αβ, Ẑ )

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
�

(r,t )
ĵα

(σ̂αβ, Ẑ, Xn−nσ̂αβ ,Ẑ ) dXn−nσ̂αβ ,Ẑ , (37)

where

�
(r,t )
ĵα

(σ̂αβ, Ẑ, Xn−nσ̂αβ ,Ẑ ) = Ĵα�(r,t )(σ̂αβ, Ẑ, Xn−nσ̂αβ ,Ẑ ). (38)

In Eqs. (37) and (38), a variable Ẑ is chosen—which
corresponds, for instance, to the position, velocity, energy,
or temperature of the particle—to understand the transport
quantities with respect to the single interaction. In Eq. (15) we
defined a set of variables composed of the fundamental trans-
port quantities using the single-particle movement and single
interaction between particles in addition to related quantities.
For clear interpretation, it should be noted that the variables
(e.g., v̂) in Eq. (15) are defined as the quantities when σ̂αβ or
ĵα are observed at (r, t ) in the system and do not signify the
field quantity itself at (r, t ).

For a solid-liquid interface, the second term on the right-
hand side of Eq. (24) is equal to the heat flux as expressed by
Eq. (32). In a steady state without a streaming velocity, it is
known that the following relationship can be obtained [24]:

1

2

∑
j∈l

∑
i∈s

〈Fi j · (vi + v j )〉 =
∑
j∈l

∑
i∈s

〈Fi j · vi〉, (39)

which holds for the energy transport across the interface,
where l and s represent the liquid and solid, respectively. In
the above relation, <> denotes the ensemble average. For
the single-interaction-based energy flux across the interface,
we used the following expression to evaluate the single-
interaction-based energy flux in this study:

ĵα,2 = − 1

2Aα

F̂sl · (v̂s + v̂l ), (40)

with the corresponding stress,

σ̂αβ,2 = − 1

Aα

Fβ,sl . (41)

In Appendix B the thermal transport across a solid-liquid
interface is detailed using the expression of Fi j · vi presented
in Eq. (24): ĵα,2 = −(1/Aα )F̂sl · v̂s.

III. NUMERICAL DETAILS

To calculate the 3D heat flux in a solid-liquid interfacial
region, we adopt a model in which monatomic molecules are
present in a liquid state between two planar solid walls. As
detection of the 3D heat flux requires significant computa-
tion resources, we use relatively small system dimensions of
Lx × Ly × Lz = 3.23 × 3.23 × 4.20 nm3. The two walls are

located at the lower and upper sides in the z direction of
the system, and a temperature gradient is imposed between
the two walls. Periodic boundary conditions are imposed in
the x and y directions. The interactions between the liquid-
liquid and solid-solid particles are assumed to be described
by the 12-6 Lennard-Jones (LJ) potential function. The form
of the liquid-liquid interaction is described as φ f f (ri j ) =
4ε f f [(σ f f /ri j )12 − (σ f f /ri j )6] with the subscript f f . Here ri j

is the distance between the ith and jth particles, and σ f f

and ε f f are 3.405 Å and 1.67 × 10–21 J, respectively, as the
parameters of argon (Ar) molecules. Hereafter, the normalized
values based on the standard LJ parameters of Ar molecules
are used. The values of σss = 0.746 and εss = 65.39 are
selected as the parameters of platinum (Pt) atoms for the
solid-solid atom interactions [31]. For the solid-liquid inter-
actions, an LJ potential function is used, namely, φ f s(ri j ) =
4ε f s[(σ f s/ri j )12 − (σ f s/ri j )6] with the parameter ε f s, where
σ f s is obtained using the Lorentz-Berthelot rule, and ε f s is
varied within the range of 0.5 � ε f s � 2.0 [32]. The cut-
off distance is set as 2.5. Each solid wall consists of five
layers with the (100) plane facing the liquid phase, and the
temperature of the walls is controlled using the Langevin
method at the second layer facing the outermost fixed layers
in the system. With the objective of detecting the 3D heat
flux at the single-atom scale in the solid-liquid interfacial
region, the temperatures of the upper and lower solids are
set to T ∗ = T/(ε f f /kB) = 0.41 and 1.24, respectively, where
kB is the Boltzmann constant; this generates a large temper-
ature gradient. The average pressure [P∗ = P/(ε f f /σ f f

3)] is
1.18 in the simulations. The simulations are conducted with
a time step of t∗ = t/[σ f f (m f /ε f f )1/2] = 9.3 × 10–4, and
the equation of motion is numerically integrated using the
velocity Verlet method. For simplicity, the asterisk superscript
is omitted hereafter. The validation of the simulation con-
ditions (i.e., model size and cutoff distance) is presented in
Appendix A.

With respect to the initial conditions, the temperature of
the liquid is set to 0.82 using the velocity-scaling method,
and the simulation is conducted for 1.0 × 105 time steps.
Then the relaxation calculation without controlling the liquid
temperature is conducted for 0.1 × 109 time steps. There-
after, the physical quantities are calculated at a resolution of
dx × dz = 0.03 × 0.03 in the x-z plane to obtain the 2D heat
flux distribution, whereas dx × dy = 0.059 × 0.059 in the x-y
plane is adopted to obtain the 3D heat flux distribution. The
values obtained are averaged over 5.0 × 109 time steps in the
absence of specific description.

In general, detecting the heat flux as a meaningful value
at the subatomic scale is difficult owing to the high compu-
tational load. To estimate the required time, let us introduce
τ̃�(q) as the characteristic time to observe the 1D heat flux at
the steady state in the system with the macroscopic heat flux
q, where the area of the system normal to the q is defined as
�. In common molecular dynamics simulations of condensed
matter, τ̃�(q) can be estimated as several nanoseconds under a
large temperature gradient for a system where � has an area of
several square nanometers. The characteristic time τ̃A required
to detect the heat flux at the local area A in the system is then
proportional to the ratio of the overall area � to the local area
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FIG. 2. Two-dimensional heat flux at a solid-liquid surface: (a) 〈Jz〉 (ε f s = 2.0), (b) 〈Jx〉 (ε f s = 2.0), (c) 〈Jz〉 (ε f s = 0.5), and (d) 〈Jx〉
(ε f s = 0.5); where 〈Jz〉 and 〈Jx〉 represent the z and x components of the heat flux, respectively. The upper (z >∼ 0.7) and lower (z � −0.09)
regions are the liquid and solid phases, respectively. (e) Values of ρ: 1D density distribution of the fluid molecules in the z direction, for
ε f s = 0.5, 1.0, 1.5, and 2.0, where the values are calculated in the slab with a width of dz = 0.03. The values are normalized using LJ
parameters.

A, and can be obtained as

τ̃A = χ
�

A
τ̃�(q), (42)

where χ is the parameter that reflects the properties of the
heat flux at the local area. In a homogeneous system at the
atomic scale, such as a bulk gas or liquid, χ can be assumed
to be equal to 1.0. Contrarily, the influence of the resolution
�/A adopted in our calculation exceeded 104, which indicates
that more than 10 μs is required to detect the heat flux at
the subatomic scale in molecular simulations. Furthermore,
the influence of the algorithm with respect to obtaining the
3D heat flux and the number of the local volumes needs
to be considered to estimate the actual computational costs.
These factors increase the difficulty of detecting the heat flux.
However, in this study, we focused on a liquid-solid interface
(an inhomogeneous system) and detected strong heat fluxes
as the time-averaged values over several microseconds, as
the parameter χ is less than 1.0 for strong heat fluxes at the
subatomic scale in the interfacial region. In the present study,
the 3D stress and heat flux are obtained by simulations carried
out for 5.0 × 109 time steps (10 μs), which is acceptable for
the adopted parameters. However, numerical errors should be
considered for a significantly low heat flux regime.

IV. TWO-DIMENSIONAL TRANSPORT FIELD AT
SUBATOMIC SCALE

Figure 2 presents the 2D heat flux at a solid-liquid inter-
face, including the solid phase located at the lower side of
the system. This result is critical to understand the subsequent
3D results. In Fig. 2 the z and x components of the heat flux,
namely, 〈Jz〉 = 〈Jz(r, t )〉 and 〈Jx〉 = 〈Jx(r, t )〉, respectively,
are presented for ε f s = 0.5 and 2.0, and the macroscopic heat
transfer direction is from the lower solid phase (z � − 0.09)
to the liquid phase (z >∼ 0.7) in the z direction. Notably, no
molecules or atoms are present in the space between the
contacting solid and liquid layers (0.0 < z � 0.7). In this
study, 〈Jz〉 and 〈Jx〉 at both the solid and liquid phases are
obtained based on Eq. (12) at a subatomic resolution of dx ×
dz = 0.03 × 0.03 and presented as the averaged values over
0.5 × 109 time steps. The representation of 〈Jz〉 without the
solid phase at different thermodynamic states was presented in
a previous study [25] and is consistent with the results calcu-
lated based on the method presented in this study. The results
revealed that the heat flux corresponding to the crystalline
solid could be detected in the solid phase (z � − 0.09), which
is mainly attributed to the strong interactions between the
solid atoms. The x direction is not the macroscopic heat trans-
fer direction, and the averaged value along the x direction
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is equal to zero. However, as shown in Figs. 2(b) and 2(d),
〈Jx〉 exhibits values at the atomic scale, which is important for
more complex interfaces, such as an amorphous surface or a
functional interface with atomic structures [26]. As shown in
Figs. 2(a) and 2(c), at z � − 0.09, the strong heat fluxes (red
lines) intersect the positions of the solid atoms; however, the
heat flux at this position is difficult to detect because of the
high-frequency vibrations of the solid atoms, which requires
an extremely high spatial resolution. Moreover, the heat flux
in the liquid phase (z >∼ 0.7) reflects the structure of the liquid
adsorbed layers in contact with the solid surface. Focusing on
the space between the adjacent solid-liquid layers, a nonuni-
form heat flux along the macroscopic temperature gradient
can be observed, and the influence is significant in the case
of strong interaction strength. This directional quality is a key
factor in enhancing the thermal transport at the single-atom
scale [26].

V. THREE-DIMENSIONAL TRANSPORT FIELD
AT SUBATOMIC SCALE

In this section, 3D field quantities such as the stress and
heat flux at a solid-liquid interface, as obtained at a subatomic
scale resolution, are presented, and nonuniform transport
properties between the contacting liquid-solid layers are ex-
amined. The influence of the solid-liquid interaction strength
on the local transport quantities is investigated, and the 3D
transport field is compared with the 2D transport field. Fur-
thermore, the correlation between the heat flux and stress at
the subatomic scale is investigated.

The 3D heat flux at a solid-liquid interface is calculated
based on Eq. (12) with a subatomic resolution of dx × dy =
0.059 × 0.059 and obtained as the time-averaged value for
5.0 × 109 time steps (10.0 μs). The x, y, and z components
of the heat flux, namely, 〈Jx〉 = 〈Jx(r, t )〉, 〈Jy〉 = 〈Jy(r, t )〉,
and 〈Jz〉 = 〈Jz(r, t )〉, respectively, for ε f s = 2.0 and 0.5, are
shown, respectively, in Figs. 3 and 4, in the x-y plane at each
z position between the adjacent solid-liquid layers (−0.09 <

z � 0.7). In addition, the density distributions at the con-
tacting solid and liquid layers are shown in Figs. 3(d) and
4(d). Based on the results in Fig. 3(c), the directional heat
fluxes from each solid atom comprising the solid surface are
detected, and the fluxes are broadened and decayed closer
to the liquid phase boundary (z ≈ 0.7). The heat flux from
a surface solid atom is composed of four directional heat
fluxes, and under hydrophilic conditions, strong directional
heat fluxes can be detected even in the immediate vicinity
of the liquid phase [Fig. 3(c): ε f s = 2.0 and z = 0.41]. This
is due to the high density of the liquid molecules shown in
Fig. 3(d) (z = 0.7), which can be understood from the re-
sults of 〈Jx〉 and 〈Jy〉 in Figs. 3(a) and 3(b), where the heat
flux directions are toward the high-density sites of the liquid
molecules. These results may be considered as direct evidence
of the thermal transport enhancement of a hydrophilic surface.
Moreover, the directional qualities are weak in the case of
ε f s = 0.5, as shown in Fig. 4, where the thermal conductance
is lower than that of ε f s = 2.0. These results indicate that the
3D heat flux at the atomic scale reflects the structure of the
liquid-adsorbed layer facing the solid surface atoms, which
provides critical information based on atomic-scale transport

properties to determine the thermal transport mechanisms and
modulate thermal conductance at a solid-liquid interface.

Figures 5 and 6 present the stress fields corresponding to
the heat flux in Figs. 3 (ε f s = 2.0) and 4 (ε f s = 0.5), respec-
tively, in which the stress tensors of 〈Pxx〉, 〈Pyy〉, and 〈Pzz〉
are shown. The 3D stress field at a solid-liquid interface is
calculated based on Eq. (11). The stress field exhibits the same
trend as the heat flux; the directional quality weakens when
it approaches the liquid (z = 0.7). However, negative values
can be detected, which are more complex in the x-y plane
compared with the heat flux results in Figs. 3 and 4. As is
clear from the comparison of Figs. 3–6, the thermal transport
properties, including directional qualities, are correlated with
the properties of stress at the subatomic scale, especially in
the z component. The strong heat fluxes correspond to high
stresses in the x-y plane. The details of the heat flux and stress
at y = 3.5 in the x direction are summarized in Figs. 7(a) and
7(b), respectively, for ε f s = 0.5, 1.0, 1.5, and 2.0, from which
we can confirm the relationship between the heat flux and the
stress fields.

Figure 8 presents the maximum value of the 3D heat
flux at each z-component along the macroscopic temperature
gradient (z direction), which is significantly related to the
directional qualities of the detected heat flux. In Fig. 8 the
values are normalized using the values of the 1D heat flux
for each case of ε f s, and the 2D heat flux at x = 3.52 from
Fig. 2(a) is plotted. The results reveal that the 1D, 2D, and
3D heat fluxes are significantly different in the region of the
contacting layers (−0.09 < z < 0.7), which indicates that the
3D heat flux should be evaluated to quantitatively determine
the heat flux properties at the single-atom scale. For example,
at z = 0.41 in the immediate vicinity of the contacting liquid
layer, the maximum value of the 3D heat flux (ε f s = 0.5)
exceeds that of the 1D flux by a factor of three. The maximum
values of the heat flux from the solid atoms decay with an
increase in the distance from the surface, which suggests that
modulating this property is a potential method of modulating
thermal transport across the interface.

The macroscopic heat flux and stress in the z direction
(temperature gradient direction) at the interface are expressed
using the local and instantaneous quantities in Eqs. (11) and
(12), as follows:

Jmacro
z = 1

Ā

∫∫
〈Jz(r, t )〉dA, (43)

Pmacro
zz = 1

Ā

∫∫
〈Pzz(r, t )〉dA, (44)

where Ā and dA = Az(r) represent the overall and local in-
terfacial areas perpendicular to the z direction, respectively
(Fig. 1). Following Eqs. (43) and (44), the interfacial thermal
conductance (ITC) at a macroscopic pressure is

Cmacro|Pmacro
zz

= Jmacro
z

T
, (45)

where the temperature jump at the interface is T . Hence,
we obtain the following operationally defined expression by
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FIG. 3. Three-dimensional heat flux at the solid-liquid interface for ε f s = 2.0. Panels (a)–(c) present the x, y, and z components of the heat
flux, namely, 〈Jx〉, 〈Jy〉, and 〈Jz〉, respectively, which are calculated at z = 0.06, 0.18, 0.29, and 0.41 between the contacting solid and liquid
layers. Panel (d) presents the density distributions of the solid atoms at the solid surface (z = −0.09) and those of the liquid molecules at the
liquid layer (z = 0.7) in the case of ε f s = 2.0. The density distributions are calculated in the x-y plane with the width dz = 0.059. The values
are normalized using the LJ parameters.

assuming that the local ITC as Cmacro = 1
Ā

∫∫ 〈C(r, t )〉dA:

1

Ā

∫∫
〈C(r, t )〉 dA

∣∣∣∣
1
Ā

∫∫ 〈Pzz (r,t )〉 dA

=
1
Ā

∫ ∫ 〈Jz(r, t )〉 dA

T
⇒ C(r)|Pzz (r) = Jz(r)

T
. (46)

We assume that the thermal transport is 1D (z axis), and
the interface is flat, which ensures a 1D temperature gra-
dient in the system. In Eq. (46) we use C(r) = 〈C(r, t )〉,
Pzz(r) = 〈Pzz(r, t )〉, and Jz(r) = 〈Jz(r, t )〉. The local ITC from
the macroscopic concept in Eq. (46) indicates that the local
interfacial thermal conductance should be understood by con-
sidering the condition of the local stress.

To reveal the correlation between the local stress and the
heat flux, Fig. 9 presents the relationship between the heat flux
and stress at z = 0.41, for ε f s = 0.5 [Fig. 9(a)], 1.0 [Fig. 9(b)],

1.5 [Fig. 9(c)], and 2.0 [Fig. 9(d)]. As can be seen in each
figure, the heat flux is proportional to the stress, especially
in the case of positive stress, and the negative stress detected
in Figs. 5 and 6 does not predominantly contribute to the net
heat flux. Several negative heat fluxes are plotted in Fig. 9, the
mechanism of which is discussed in Sec. VI. Hence, based on
this result, the relationship between the time-averaged local
heat flux and stress is obtained using the constant coefficient
L:

〈Jz(r, t )〉/〈Pzz(r, t )〉 = L. (47)

This relation is independent on the location r in the x-y
plane. The results of the gradient obtained from the linearly
fitted line (L) are summarized in Table I. The gradient is
dependent on the solid-liquid interaction strength ε f s and the
z axis between the contacting layers at the interface. Based
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FIG. 4. Three-dimensional heat flux at the solid-liquid interface for ε f s = 0.5. Panels (a)–(c) present the x, y, and z components of the heat
flux, namely, 〈Jx〉, 〈Jy〉, and 〈Jz〉, respectively, which are calculated at z = 0.06, 0.18, 0.29, and 0.41 between the contacting solid and liquid
layers. Panel (d) presents the density distributions of the solid atoms at the solid surface (z = −0.09), and those of the liquid molecules at the
liquid layer (z = 0.7) in the case of ε f s = 0.5.

on Eq. (47), the local ITC, as defined by Eq. (46), can be
interpreted as follows. Under macroscopic thermodynamic
conditions, the ITC reveals the values reflecting the local heat
flux, and the changes in the local ITC are mainly caused by
stress changes in the corresponding subatomic space.

VI. RELATIONSHIP BETWEEN THE TRANSPORT
QUANTITIES AT MACRO- AND SUBATOMIC SCALES

BASED ON SINGLE-INTERACTION-BASED STRESS AND
ENERGY FLUX

So far we have shown the 3D structure of the stress and
heat flux at subatomic resolution in the solid-liquid contacting
layers and revealed the relation between the quantities at the
macro- and subatomic scales. In this section, we focus on
elucidating the thermal transport mechanism from a more
fundamental aspect, i.e., in terms of the single-interaction-
based stress and energy flux, which bridges the quantities at
the macroscopic and subatomic scales. The single-interaction-

based stress and energy flux play an important role in
understanding the origin of the thermal transport mechanism
at the subatomic scale.

Figure 10 presents the time-averaged density-of-states dis-
tribution in the plane of the stress and the energy flux due to
a single interaction. The results in Fig. 10 are presented for
the cases of ε f s = (a) 0.5 and (b) 2.0, in which the vertical
and horizontal axes denote the single-interaction-based stress
σ̂zz and energy flux ĵz calculated using Eqs. (41) and (40),
respectively. The zz and z components of the stress and energy
flux are calculated for the integrated area in the xy plane (Ā;
2.6 < x < 4.7, and 2.6 < y < 4.7), which reflects the prop-
erty of the entire interfacial area along the z axis between the
contacting solid-liquid layers:

�(σ̂zz, ĵz ) = 〈�(t )(σ̂zz, ĵz )〉 =
〈∑

r∈Ā

�(r,t )(σ̂zz, ĵz )

〉
. (48)
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FIG. 5. Three-dimensional stress at the solid-liquid interface for ε f s = 2.0. Panels (a)–(c) present the xx, yy, and zz components of the
stress, namely, 〈Pxx〉, 〈Pyy〉, and 〈Pzz〉, respectively, which are calculated at z = 0.06, 0.18, 0.29, and 0.41 between the contacting solid and
liquid layers. The values are normalized using the LJ parameters.

Here �(r,t )(σ̂zz, ĵz ) is defined in Eq. (34), and the value is
calculated at r with Az(r) = dx × dy = 0.059 × 0.059. No-
tably, �(σ̂zz, ĵz ) is not dependent on the z position between
the contacting solid-liquid layers because the heat flux is 1D
(z axis). Based on the results, a symmetric profile is observed
for ĵz = 0 in the horizontal axis. Moreover, we cannot identify
a symmetric profile in the stress (σ̂zz) direction; the density
within the negative stress range is higher, and it decreases
in the positive stress direction over a wider range of ĵz. As
can be seen from Fig. 10, the density within the entire range
of �(σ̂zz, ĵz ) increases with an increase in the solid-liquid
interaction strength ε f s. The figure presents an image of the
macroscopic quantities of the stress tensor and heat flux with
respect to the single interaction between liquid molecules
and solid atoms, which is critical for relating the transport
quantities at the macroscopic and subatomic scales.

To better understand the behavior of �(σ̂zz, ĵz ) in Fig. 10,
the density distributions of �(σ̂zz, v̂z,+) = 〈�(t )(σ̂zz, v̂z,+)〉 and
� ĵz (σ̂zz, v̂z,+) = 〈�(t )

ĵz
(σ̂zz, v̂z,+)〉 for ε f s = 2.0 are presented

in Figs. 11(a) and 11(b) respectively, where v̂z,+ is the sum
of the z components of the solid-atom and liquid-molecule
velocities, and is defined as v̂z,+ = v̂z,s + v̂z,l . The results are
calculated as the spatially and temporally averaged values
over the entire interface, in the same manner as in Eq. (48).
Furthermore, the values are presented also in the σ̂zz − |v̂z,+|
plane in Figs. 11(c) and 11(d). The values in the σ̂zz − v̂z,+
plane are directly related to the energy flux as described in
Eq. (40) and provide fundamental information about the prop-
erties of the energy flux. Figure 11(a) reveals that �(σ̂zz, v̂z,+)
exhibits a higher density of states in the negative stress range,
which is referred to as the “stress band” in this paper. A high
density of states is observed inside the stress band, and it
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FIG. 6. Three-dimensional stress at the solid-liquid interface for ε f s = 0.5. Panels (a)–(c) present the xx, yy, and zz component of the
stress, namely, 〈Pxx〉, 〈Pyy〉, and 〈Pzz〉, respectively, which are calculated at z = 0.06, 0.18, 0.29, and 0.41 between the contacting solid and
liquid layers.

decays in the positive stress direction outside the band. This
band property allows for a better understanding of the field
quantities determined from single-interaction-based physical
quantities. The energy flux result in Fig. 11(b) is reason-
able, where the signs (positive or negative) of σ̂zz and v̂z,+
determine the sign of the energy flux. Figures 11(b) and
11(d) present the energy flux density distribution, which is
dependent on the single-interaction-based stress σ̂zz, where
the regions with positive and negative values are detected
inside and outside the stress band. This single-interaction-
based stress σ̂zz can be understood based on the distance
between the solid atom and liquid molecule r̂sl , as expressed
by �r̂sl (σ̂zz )/�(σ̂zz ) in Fig. 12. An intrinsic property of the
intermolecular force reveals that the energy transfers inside
and outside the stress bands correspond to the influences of the
stress at long and short intermolecular distances, respectively.
More fundamental mechanisms are discussed in the following

section. Notably, an insightful result based on the intermolec-
ular distance was reported by Ohara [33,34], who conducted a
study focusing on the energy transfer rate between molecules
in the liquid and between solid atoms and liquid molecules
at a solid-liquid interface. Ohara presented a relationship be-
tween the molecular structure in the liquid (radial distribution
function) and the instantaneous energy transport, which is
dependent on the distance between the molecules.

Figure 13(a) presents the time-averaged density distri-
bution �(σ̂zz ) = 〈∫ ∞

−∞ �(t )(σ̂zz, v̂z,+) d v̂z,+〉 and energy flux
density distribution � ĵz (σ̂zz ) = 〈∫ ∞

−∞ ĵz�(t )(σ̂zz, v̂z,+) d v̂z,+〉
as functions of the single-interaction-based stress σ̂zz for ε f s =
0.5, 1.0, 1.5, and 2.0. With respect to the result outside the
stress band (σ̂zz > 0), �(σ̂zz ) decays exponentially in the pos-
itive σ̂zz direction, and there are critical � ĵz (σ̂zz ) values that
represent the maximum and minimum values (σ̂zz > 0). The
value of σ̂zz corresponding to the critical maximum � ĵz (σ̂zz )
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FIG. 7. (a) The z component of the local heat flux and (b) zz component of the stress along the x axis for ε f s = 0.5, 1.0, 1.5, and 2.0. The
heat fluxes and stresses at y = 3.5 are calculated at z = 0.06, 0.18, 0.29, and 0.41 for all the cases.

is the most dominant intermolecular stress at the single-
interaction level and contributes to the macroscopic energy
flux Jz. Several negative energy fluxes are observed inside
the stress band (σ̂zz<0); however, the integration of � ĵz (σ̂zz )
over σ̂zz reveals that the predominant contribution of σ̂zz to
the macroscopic heat flux is around the critical � ĵz value. The
critical � ĵz (σ̂zz ) shifts in the positive σ̂zz direction, and the
corresponding energy flux is enhanced with an increase in
ε f s. The positive and negative values of � ĵz (σ̂zz ) correspond
to the regions detected at σ̂zz > 0, as shown in Fig. 11(d).
An enlarged image is shown in Fig. 13(b). In the stress band
(σ̂zz<0), a higher value of �(σ̂zz ) is observed when compared
with the outside of the band, and the peak value is within

the immediate vicinity of σ̂zz = 0. The peak value reflects the
intermolecular force when the particles are interacting under
the condition wherein the distance between the particles is
relatively long. As predicted, the peak value in the stress band
structure is dependent on the cutoff distance, as discussed
in Appendix A. The energy flux inside the band exhibits a
negative value due to the high density of states in the negative
stress region. The mechanism is detailed in the next section.

Figure 14 presents the time-averaged energy flux density
distribution per single interaction � ĵα (σ̂zz )/�(σ̂zz ) under the
single-interaction-based stress σ̂zz. The value outside the stress
band indicates that the energy flux per single interaction is
higher when ε f s is low. In particular, the influence of the
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FIG. 8. Properties of the 3D heat flux between the contacting
solid-liquid layers; the 2D heat flux at x = 3.55 from Fig. 2(a) is
included for comparison. The maximum values of the 3D heat flux at
each z axis are adopted, and the results are normalized using the 1D
heat flux j1D

z for each case of ε f s.

solid-liquid strength based on the single-interaction level can
be described as follows. The high interaction strength allows
for the density of states outside the band to be high, which
leads to a high energy flux outside the band. This contributes
predominantly to the macroscopic energy flux. For the low
interaction strength, the energy flux per single interaction is
higher, as shown in Fig. 14. However, it does not fully com-
pensate for the macroscopic heat flux owing to the low density
of states outside the band.

TABLE I. Ratio of local heat flux to local stress, 〈Jz〉/〈Pzz〉, in
the contacting solid and liquid layers for various wetting parameters
of ε f s. The values are obtained in the same manner as the results
presented in Fig. 9.

z

ε f s 0.06 0.18 0.29 0.41

0.5 0.0116 0.0104 0.0096 0.0090
1.0 0.0146 0.0123 0.0123 0.0119
1.5 0.0157 0.0126 0.0136 0.0125
2.0 0.0147 0.0122 0.0132 0.0118

To clarify the results in Fig. 11 based on the 1D distribu-
tion, Fig. 15 presents the time-averaged density-of-states dis-
tribution �(v̂+) = 〈∫ ∞

−∞ �(t )(σ̂zz, v̂z,+) d σ̂zz〉 and energy flux
density distribution � ĵz (v̂+) = 〈∫ ∞

−∞ ĵz�(t )(σ̂zz, v̂z,+) d σ̂zz〉 for
ε f s = 0.5, 1.0, 1.5, and 2.0. The results are obtained for
the entire (inside and outside) region [Fig. 15(a)], inside
region [Fig. 15(b)], and outside region [Fig. 15(c)] of the
stress band. Based on the results, �(v̂z,+) inside the band is
predominant. Moreover, the orders of � ĵz (v̂z,+) inside and
outside the band are almost the same. The result for the
entire region [Fig. 15(a)] reveals that � ĵz (v̂z,+) is less than
a tenth of the value inside and outside the band. Figure 16
presents the time-averaged energy flux rate per single interac-
tion � ĵz (v̂z,+)/�(v̂z,+) for the entire region [Fig. 16(a)], inside
region [Fig. 16(b)], and outside region [Fig. 16(c)] of the
stress band. The profiles inside and outside the band exhibit

FIG. 9. Relationship between the local heat flux and local stress at z = 0.41, for ε f s = (a) 0.5, (b) 1.0, (c) 1.5, and (d) 2.0. The red line
indicates the linear fitted line at 〈Pzz(r, t )〉>0.
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FIG. 10. Time-averaged density-of-states distribution �(σ̂zz, ĵz ) = 〈�(t )(σ̂zz, ĵz )〉 in the plane of the single-interaction-based stress σ̂zz and
energy-flux ĵz, where each value is calculated within an area of d σ̂zz × d ĵz = 5.2 × 102 × 2.7 × 102, and 5.0 × 109 time steps are considered
for the time average. The results are presented for the cases of ε f s = (a) 0.5 and (b) 2.0.

linear relationships between � ĵz (v̂z,+)/�(v̂z,+) and v̂z,+.
Outside the band, the energy flux rate � ĵz (v̂z,+)/�(v̂z,+) is
high and exhibits a positive gradient in the positive v̂z,+ direc-

tion due to the positive stress value. Moreover, the energy flux
rate inside the band is low and exhibits a negative gradient due
to the negative stress value. As a result of the sum of the values

FIG. 11. (a) Time-averaged density distribution �(σ̂zz, v̂z,+) = 〈�(t )(σ̂zz, v̂z,+)〉 and (b) energy flux density distribution � ĵz (σ̂zz, v̂z,+) =
〈 ĵz�

(t )(σ̂zz, v̂z,+)〉 in the plane of the single-interaction-based stress σ̂zz and velocity v̂z,+ = v̂z,s + v̂z,l for ε f s = 2.0. Each value is calculated
within an area of d σ̂zz × d v̂z,+ = 2.3 × 102 × 1.0 × 10–1, and 5.0 × 109 time steps are considered for the time average. The results of
�(σ̂zz, v̂z,+) and � ĵz (σ̂zz, v̂z,+) in the σ̂zz-|v̂z,+| plane are presented in (c) and (d), respectively.

034803-15



KUNIO FUJIWARA AND MASAHIKO SHIBAHARA PHYSICAL REVIEW E 105, 034803 (2022)

FIG. 12. Distance between the solid atom and liquid molecule in
the z component of the single-interaction-based stress σ̂zz for ε f s =
0.5, 1.0, 1.5, and 2.0. The time-averaged density-of-states distri-
bution �(σ̂zz ) = 〈∫ ∞

−∞ �(t )(σ̂zz, v̂z,+) d v̂z,+〉 and the distance density
distribution �r̂sl (σ̂zz ) = 〈∫ ∞

−∞ r̂sl�
(t )(σ̂zz, v̂z,+) d v̂z,+〉 are calculated

and expressed in terms of the ratio �r̂sl (σ̂zz )/�(σ̂zz ).

inside and outside the band, the result presented in Fig. 16(a)
is obtained.

Figure 17 presents the time-averaged density distribu-
tion �( ĵz ) = 〈∫ ∞

−∞ �(t )(σ̂zz, ĵz ) d σ̂zz〉 and stress density dis-
tribution �σ̂zz ( ĵz ) = 〈∫ ∞

−∞ σ̂zz�
(t )(σ̂zz, ĵz ) d σ̂zz〉 in the single-

interaction-based energy flux ĵz for ε f s = 0.5, 1.0, 1.5, and
2.0. The result in Fig. 17(a), which is obtained from the entire
stress range (inside and outside of the stress band), reveals that
the contribution of ĵz to �σ̂zz ( ĵz ) is significant around ĵzz = 0.
Moreover, �σ̂zz ( ĵz ) exhibits positive and negative values in the
immediate vicinity of ĵz = 0, although the values become pos-
itive along the positive and negative ĵz directions and decay to
zero. The results for the inside [Fig. 17(b)] and outside regions
of the stress band [Fig. 17(c)] are necessary for understanding
�σ̂zz ( ĵz ) in Fig. 17(a). Inside the stress band, the density of
states is found within the narrow ranges of ĵz, with the highest
value at ĵz = 0, where the stress density distribution �σ̂zz ( ĵz )
exhibits a high negative value that is satisfactory inside the
band. On the other hand, �( ĵz ) outside the band [Fig. 17(c)]
occupies a wide range of ĵz, with the highest value at ĵz = 0,
where �σ̂zz ( ĵz ) shows high values in the wide range of ĵz. Due
to these properties, �σ̂zz ( ĵz ) exhibits two critical values in the
positive and negative ĵz directions [see Fig. 17(a)].

Thus, the macroscopic transport quantities of the heat flux
and stress across a solid-liquid interface are related to the 2D
density distribution of the single-interaction-based stress and
energy flux �(σ̂zz, ĵz ) (Fig. 10), and the 1D density distribu-
tions of �(σ̂zz ) (Fig. 13) and �( ĵz ) (Fig. 17).

The results for the single-interaction-based energy flux at
the subatomic scale are presented in Fig. 18 as the [Fig. 18(a)]
time-averaged density distribution �(r1 )(σ̂zz, v̂z,+) =
〈�(r1,t )(σ̂zz, v̂z,+)〉 and [Fig. 18(b)] energy flux density
distribution �

(r1 )
ĵz

(σ̂zz, v̂z,+) = 〈 ĵz�(r1,t )(σ̂zz, v̂z,+)〉 in the

FIG. 13. (a) Time-averaged density-of-states distribution
�(σ̂zz ) = 〈∫ ∞

−∞ �(t )(σ̂zz, v̂z,+) d v̂z,+〉 and energy flux density
distribution � ĵz (σ̂zz ) = 〈∫ ∞

−∞ ĵz�
(t )(σ̂zz, v̂z,+) d v̂z,+〉 in the

single-interaction-based stress σ̂zz for ε f s = 0.5, 1.0, 1.5, and
2.0. (b) Enlarged view of the stress band region.

FIG. 14. Time-averaged energy flux density distribution per sin-
gle interaction � ĵz (σ̂zz )/�(σ̂zz ) in the single-interaction-based stress
σ̂zz with an enlarged view.
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FIG. 15. Time-averaged density-of-states distribution �(v̂z,+) =
〈∫ ∞

−∞ �(t )(σ̂zz, v̂z,+) d σ̂zz〉 and energy flux density distribution
� ĵz (v̂z,+) = 〈∫ ∞

−∞ ĵz�
(t )(σ̂zz, v̂z,+) d σ̂zz〉 for ε f s = 0.5, 1.0, 1.5, and

2.0, where v̂z,+ is defined as v̂z,+ = v̂z,s + v̂z,l for (a) entire (inside
and outside) region, (b) inside region, and (c) outside region, of the
stress band.

plane of the single-interaction-based stress σ̂zz and velocity
v̂z,+ = (v̂z,s + v̂z,l ). The results are calculated at r1 =
(3.8, 3.5, 0.41) within an area of dx × dy = 0.059 × 0.059,
where a strong heat flux is detected, as shown in Fig. 3(c).
The comparison between the results in Figs. 11 and 18
reveals that the strong heat flux detected at the subatomic

FIG. 16. Time-averaged energy flux density distribution per
single-interaction � ĵz (v̂z,+)/�(v̂z,+) for (a) entire (inside and outside)
region, (b) inside region, and (c) outside region, of the stress band.

scale exhibits a similar trend for the overall interfacial thermal
transport, thus suggesting that it is the source of the interfacial
thermal transport. Figure 19(a) presents the time-averaged
density distribution �(r1 )(σ̂zz ) = 〈∫ ∞

−∞ �(r1,t )(σ̂zz, v̂z,+) d v̂z,+〉
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FIG. 17. Time-averaged density distribution �( ĵz ) =
〈∫ ∞

−∞ �(t )(σ̂zz, ĵz ) d σ̂zz〉 and stress density distribution
�σ̂zz ( ĵz ) = 〈∫ ∞

−∞ σ̂zz�
(t )(σ̂zz, ĵz ) d σ̂zz〉 for ε f s = 0.5, 1.0, 1.5,

and 2.0. The results are presented for (a) entire region, (b) inside the
band, and (c) outside the band.

and energy flux density distribution �(r1 )
ĵz

(σ̂zz ) =
〈∫ ∞

−∞ ĵz�(r1,t )(σ̂zz, v̂z,+) d v̂z,+〉 for ε f s = 0.5, 1.0, 1.5, and 2.0.
Figure 19(b) presents an enlarged view of the stress band. The
comparison of Figs. 13 and 19 reveals that the macroscopic
energy transfer reflected the energy flux at the subatomic
scale, where the strong energy flux is detected.

FIG. 18. (a) Time-averaged density distribution
�(r1 )(σ̂zz, v̂z,+) = 〈�(r1,t )(σ̂zz, v̂z,+)〉 and (b) energy flux density
distribution �

(r1 )
ĵz

(σ̂zz, v̂z,+) = 〈 ĵz�
(r1,t )(σ̂zz, v̂z,+)〉 in the

plane of the single-interaction-based stress σ̂zz and velocity
v̂z,+ = (v̂z,s + v̂z,l ). Each value is calculated in the area of
d σ̂zz × d v̂z,+ = 2.3 × 102 × 1.0 × 10–1, and 5 × 109 time steps
are considered for the time average. The values are obtained at
r1 = (3.8, 3.5, 0.41) with the area of dx × dy = 0.059 × 0.059. The
position r1 is represented for the result of the heat flux distribution
at z = 0.41, as shown in Fig. 3(c).

Thereafter, we focus on r2 = (4.1, 3.5, 0.41), where the
strong energy flux is not detected, as shown in Fig. 3(c). The
2D results of �(r2 )(σ̂zz, v̂z,+) and �

(r2 )
ĵz

(σ̂zz, v̂z,+) are shown in

Fig. 20, whereas �(r2 )(σ̂zz ) and �
(r2 )
ĵz

(σ̂zz ) are shown in Fig. 21.
As shown in Fig. 20, the density of states and the correspond-
ing energy flux density at r2 are lower than those in Fig. 18.
The energy flux density for the single-interaction-based stress
σ̂zz shown in Fig. 21 reveals that the energy transfer in the
stress band is dominant at r2; �

(r2 )
ĵz

(σ̂zz ) ≈ 0 at σ̂zz > 0. This is
the cause of the negative stress and heat flux at the subatomic
scale, as shown in Fig. 9.

In Sec. V the linear relationship between the stress and
heat flux at the subatomic scale is presented. In this section,
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FIG. 19. (a) Time-averaged density distribution �(r1 )(σ̂zz ) =
〈∫ ∞

−∞ �(r1,t )(σ̂zz, v̂z,+) d v̂z,+〉 and energy flux density distribution
�

r1
ĵz

(σ̂zz ) = 〈∫ ∞
−∞ ĵz�

(r1,t )(σ̂zz, v̂z,+) d v̂z,+〉 for ε f s = 0.5, 1.0, 1.5, and
2.0. (b) Enlarged view of the stress band. The values are obtained at
r1 = (3.8, 3.5, 0.41).

the transport quantities of the stress and heat flux at the
macroscopic and subatomic scales are related to the single-
interaction-based stress and energy flux. The properties of the
single-interaction-based energy flux at the macroscopic and
subatomic scales indicate that the thermal transport property
at the macroscopic scale can be explained by the single-
interaction-based energy flux at the subatomic scale, where
a strong heat flux is detected as a time-averaged value.

VII. THERMAL TRANSPORT MECHANISM BASED ON
SINGLE-INTERACTION-BASED STRESS

AND ENERGY FLUX

In the previous section, the macroscopic thermal transport
property at the interface is associated with the time-averaged
energy flux at the subatomic scale using the single-interaction-
based energy flux. The results indicate that the density states
of the field transport quantities have a “stress band” in the
plane of the single-interaction-based stress and other vari-
ables. The energy flux is composed of the positive and
negative energy fluxes inside and outside the band, which

FIG. 20. (a) Time-averaged density distribution
�(r2 )(σ̂zz, v̂z,+) = 〈�(r2,t )(σ̂zz, v̂z,+)〉 and (b) energy flux density
distribution �

(r2 )
ĵz

(σ̂zz, v̂z,+) = 〈 ĵz�
(r2,t )(σ̂zz, v̂z,+)〉 in the

plane of the single-interaction-based stress σ̂zz and velocity
v̂z,+ = (v̂z,s + v̂z,l ), where each value is calculated in the area of
d σ̂zz × d v̂z,+ = 2.3 × 102 × 1.0 × 10–1, and 5 × 109 time steps
are considered for the time average. The values are obtained at
r2 = (4.1, 3.5, 0.41) with the area of dx × dy = 0.059 × 0.059. The
position r2 is represented for the result of the heat flux distribution
at z = 0.41, as shown in Fig. 3(c).

contribute specifically to the net energy flux. The contribution
outside the band to the net energy flux is dominant. This
section details the mechanism of the positive and negative
energy transport inside and outside the stress bands by the
density distribution using the variables related to the physical
quantities of the atom or molecule, which are based on the
single-interaction-based stress and energy flux at the sub-
atomic scale.

The time-averaged density-of-states and energy flux den-
sity distributions in the σ̂zz − ẑs plane are presented, which
are calculated by a single interaction between a solid atom
and a liquid molecule for the overall interface [Fig. 22(a)]
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FIG. 21. Time-averaged density distribution �(r2 )(σ̂zz ) =
〈∫ ∞

−∞ �(r2,t )(σ̂zz, v̂z,+) d v̂z,+〉 and energy flux density distribution

�
(r2 )
ĵz

(σ̂zz ) = 〈∫ ∞
−∞ ĵz�

(r2,t )(σ̂zz, v̂z,+) d v̂z,+〉 for ε f s = 0.5, 1.0, 1.5,
and 2.0. The values are obtained at r2 = (4.1, 3.5, 0.41).

at r = r1 [Fig. 22(b)] and r = r2 [Fig. 22(c)] for ε f s = 2.0.
The positions of r1 and r2 are shown in Figs. 18(a) and 20(a),
respectively. The density-of-states distribution in Fig. 22(a)
indicates that the solid-atom density is highest at ẑs = −0.09,
which contains the first solid layer facing the liquid layer.
Compared with the density-of-states distribution of the solid
atoms in the first layer, the energy-flux distribution � ĵz in

Fig. 22(a) can be interpreted as the occurrence of positive
and negative energy transport when the solid atom in the con-
tacting layer moves in positive (towards the liquid layer) and
negative directions (away from the liquid layer), respectively,
outside the stress band (σ̂zz > 0). Moreover, the positive and
negative energy transports inside the band (σ̂zz < 0) corre-
spond to the negative and positive directions of the solid-atom
movement, respectively. The same property is detected at the
subatomic scale [Fig. 22(b)]. Especially outside of the band,
the distribution is not symmetric about ẑs = −0.09. Positive
energy transport can occur in the higher single-interaction
stress region, even when the solid atom moves against the
liquid layer (ẑs< − 0.09). The result at r2 [Fig. 22(c)], where
a strong heat flux is not detected, exhibits a weak energy
transfer outside the band, which suggests that the macroscopic
energy transfer in Fig. 22(a) reflects the strong heat flux at the
subatomic scale [Fig. 22(b)].

The thermal transport mechanism based on the 1D distri-
butions along the positions of the solid atoms contributing to
the local heat flux is detailed below. Figure 23 presents the
time-averaged density distribution of the physical quantities
in the z direction. Figure 23(a) shows the density of states
�(ẑs), energy flux � ĵz (ẑs), velocity of the liquid molecule
�v̂z,l (ẑs), and sum of the velocities of the solid atom and liquid
molecules �v̂z,+ (ẑs). Figure 23(b) presents the density of states
�(ẑs), stress per single interaction �σ̂zz (ẑs)/�(ẑs), and sum of
the velocities of the solid atom and liquid molecule per single
interaction �v̂z,+ (ẑs)/�(ẑs). Each result is presented for the
regions inside and outside the stress band and for the entire

FIG. 22. Time-averaged density-of-states and energy flux density distributions in the plane of the single-interaction-based stress σ̂zz and
position ẑs for (a) the overall interface, (b) at r = r1, and (c) at r = r2, where each value is calculated within an area of d σ̂zz × d ẑs = 2.3 ×
102 × 1.4 × 10–3.
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FIG. 23. Time-averaged density distribution of the physical quantities in the z direction for the overall interface: (a) density of states �(ẑs),
energy flux � ĵz (ẑs ), velocity of the liquid molecule �v̂z,l (ẑs), and sum of the velocities of the solid atom and liquid molecule �v̂z,+ (ẑs); and
(b) density of states �(ẑs), stress per single interaction �σ̂zz (ẑs )/�(ẑs), and sum of the velocities of the solid atom and liquid molecule per
single-interaction �v̂z,+ (ẑs)/�(ẑs). The values for each case are obtained for the entire region (inside and outside), inside region, and outside
region, of the stress band.

region (inside and outside the stress band). The density of
states �(ẑs) exhibits a peak at ẑs = −0.09, where the first
solid layer exists as shown in Fig. 22. Calculating � ĵz (ẑs)
outside the stress band reveals that positive and negative en-
ergy transports occur when the solid atom is near to and far
from the liquid layer, respectively, from the most probable

position. The amount of integration of the positive heat flux
exceeds that of the negative heat flux, which implies that the
sum of the positive and negative energy fluxes (net flux) is
positive. The velocity distribution of the liquid �v̂z,l (ẑs) and
distribution of the sum of the velocities of the solid atom
and liquid molecule �v̂z,+ (ẑs) are detected as highly similar
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FIG. 24. Time-averaged density distribution of the physical quantities in the z direction at (r = r1): (a) density of states �(r1 )(ẑs ), energy
flux �

(r1 )
ĵz

(ẑs), velocity of the liquid molecule �
(r1 )
v̂z,l

(ẑs), and sum of the velocities of the solid atom and liquid molecule �
(r1 )
v̂z,+ (ẑs); and (b)

density of states �(r1 )(ẑs ), stress per single-interaction �
(r1 )
σ̂zz

(ẑs )/�(r1 )(ẑs ), and sum of the velocities of the solid atom and liquid molecule

per single-interaction �
(r1 )
v̂z,+ (ẑs )/�(r1 )(ẑs ). The values for each case are obtained over the entire region (inside and outside), inside region, and

outside region, of the stress band.

values, thus suggesting that the energy flux property is de-
pendent on the liquid molecule velocity. Notably, the energy
flux density distribution � ĵz (ẑs) inside the band exhibits an
inverse trend to that outside the band; however, the influence
is limited. These characteristics can be understood with ref-
erence to the results for the stress and liquid velocity per

single interaction, as shown in Fig. 23(b). Outside the stress
band, �σ̂zz (ẑs)/�(ẑs) exhibits a positive value with a positive
gradient in the z direction, although �v̂z,+ (ẑs)/�(ẑs) intersects
the zero value at approximately ẑs = −0.09 with a positive
gradient. The energy flux in Eq. (40) implies that this char-
acteristic of �σ̂zz (ẑs)/�(ẑs) and �v̂z,+ (ẑs)/�(ẑs) determines the
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FIG. 25. Time-averaged density distribution and energy flux density distribution in the plane of the solid atom position ẑs and the liquid
molecule position ẑl in the contacting solid-liquid layers in the case of ε f s = 2.0 for the overall interface; (a) �(ẑs, ẑl ) = 〈�(t )(ẑs, ẑl )〉 and (b)
� ĵz (ẑs, ẑl ) = 〈�(t )

ĵz
(ẑs, ẑl )〉. Similarly, for the subatomic scale (r = r1): (c) �(r1 )(ẑs, ẑl ) = 〈�(r1,t )(ẑs, ẑl )〉 and (d) �

(r1 )
ĵz

(ẑs, ẑl ) = 〈�(r1,t )
ĵz

(ẑs, ẑl )〉.
The values are calculated within an area of d ẑl × d ẑs = 2.1 × 10–3 × 1.1 × 10–3.

energy flux profile in Fig. 23(a). The inside region of the band,
�σ̂zz (ẑs)/�(ẑs) exhibits a negative value in the z direction; thus,
the energy flux inside the band exhibits an inverse result. As
can be seen from Fig. 13, the contribution outside the band is
dominant for the net energy flux, regardless of the low density
of states. This is confirmed by the results shown in Fig. 23(a).

The results obtained at r = r1 (Fig. 18) are presented
in Figs. 24(a) and 24(b), which display the results at the
subatomic scale. The macroscopic thermal transport is in ac-
cordance with the properties of the local transport quantities
at the subatomic scale. In Sec. V we demonstrate that the heat
flux is linearly proportional to the stress at a subatomic spatial
resolution. From the results in Fig. 24, the characteristics of
the local stress and its role in energy transfer are clarified
when evaluated considering the solid-atom position. A high-
stress field indicates that the stress acting on the solid atom is
high, which allows for the solid atom to transfer energy and
be influenced by large stress changes when moving in space.
The large stress change generates a large difference between
the positive and negative energy fluxes, which are dependent

on the position of the solid atom in the temperature gradient
direction.

Figure 25 reveals the influence of the positions of solid
atoms and liquid molecules on the density-of-states and cor-
responding energy flux density distributions for the overall
interface [Figs. 25(a) and 25(b)] and at r = r1 [Figs. 25(c)
and 25(d)]. In Fig. 25, ẑs and ẑl denote the z components
of the solid atoms and liquid molecules, respectively. The
results reveal that the thermal transport mechanism, as shown
in Figs. 23 and 24, is not dependent on the liquid molecule
positions. These influence only the range of positive and neg-
ative energy fluxes.

VIII. MECHANISM OF THERMAL TRANSPORT ACROSS
SOLID-LIQUID INTERFACE BASED ON

SINGLE-INTERACTION-BASED ENERGY FLUX:
INFLUENCE OF TEMPERATURE GRADIENT

The influence of the temperature gradient in the system
based on the single-interaction-based energy flux, which is
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FIG. 26. Time-averaged density distribution �(σ̂zz ) and energy
flux density distribution � ĵz (σ̂zz ) in the single-interaction-based
stress σ̂zz for the temperature differences T = 0.08, 0.21, 0.41, and
0.61.

related to the origin of the thermal transport mechanism in the
nonequilibrium state, is investigated in this section. Figure 26
presents the distribution functions of �(σ̂zz ) and � ĵz (σ̂zz ) for
the various temperature differences (dT = 0.08, 0.21, 0.41,
and 0.61), where the result is obtained for the overall solid-
liquid interface. Based on the results, almost the same profile
as shown in Fig. 13 is confirmed, where positive and negative
energy transport are detected outside the stress band (σ̂zz >

0), and the energy transport outside the band contributes
dominantly to the net heat flux. The difference between the
influences of the solid-liquid interaction strength (ε f s) and
the temperature gradient is reflected in the density-of-states
distribution �(σ̂zz ). The solid-liquid interaction strength in-
fluences the density change of the liquid molecules in the
vicinity of the solid surface, which increases �(σ̂zz ) outside
the band for a higher interaction strength, as shown in Fig. 13.
However, the change in �(σ̂zz ) due to the temperature change
in Fig. 26 is not evident, given that the density change is small,
even under a large temperature gradient, in the nonequilibrium
molecular dynamics simulation. This suggests that the energy
transport per single interaction is enhanced by the influence of
the velocity v̂z,+. With a decrease in the temperature gradient
in the system, the energy transport outside the band decreases,
which indicates a low thermal transport across the solid-liquid
interface. Based on the results, it is concluded that the origin
of the thermal transport across a solid-liquid interface with
respect to the transport quantities at the subatomic scale is
due to an imbalance between the energy transfer outside and
inside the bands. This leads to a temperature gradient and net
thermal transport across the interface, due to the high-stress
field at the subatomic scale.

IX. CONCLUSION

In this study, the heat flux and stress at the subatomic
scale are examined using the classical molecular dynamics
method to clarify the origin of thermal transport across a
solid-liquid interface. The system is modeled with the LJ
potential, in which a temperature gradient is imposed, and

a complete picture of the transport field is revealed at the
solid-liquid interface. The heat flux and stress in the three
dimensions are observed at a subatomic resolution between
the contacting solid and liquid layers. The microscopic ex-
pression of the transport equations is extended to a form based
on the density-of-states distributions defined in the variable
space where the contributions of a single-particle movement
and a single interaction between particles are considered.
The transport quantities at the macroscopic and subatomic
scales are related based on the density distributions with
the single-interaction-based stress and energy flux, and the
thermal transport mechanism at the solid-liquid interface is
explained by an intrinsic transport property between a solid
atom and liquid molecule at the interface. Furthermore, the
influences of the solid-liquid interaction strength and the tem-
perature gradient in the system are investigated to elucidate
the properties of the field transport quantities at the subatomic
scale and the origin of thermal transport across a solid-liquid
interface. The conclusions can be summarized as follows.

The 3D structure of the heat flux detected at the sub-
atomic scale exhibits directional qualities between the solid
and liquid contacting layers due to the nonuniformity of the
density of the solid atoms and liquid molecules at the inter-
face. The evaluation of the influence of the interaction strength
between solid atoms and liquid molecules reveals that the
directional quality in the structure directly reflects the energy
transport. With a decrease in the width of the heat-flux branch,
a stronger heat flux is observed at the subatomic scale, which
corresponds to the enhancement of the macroscopic thermal
transport at a flat interface. The energy fluxes perpendicular
to the macroscopic temperature gradient are observed at the
subatomic scale, which are critical for more complex inter-
faces such as amorphous surfaces or functional interfaces with
terminations. A correlation between the energy flux and stress
at the subatomic scale is observed, in that the energy flux
is positively and linearly correlated with the stress. Under
macroscopic thermodynamic conditions, the ITC at the sub-
atomic scale exhibits values reflecting the local heat flux, and
the changes in the local ITC are mainly due to the stress
changes in the corresponding subatomic space. Negative heat
fluxes and stresses are observed at the subatomic scale, even
when the macroscopic heat flux and pressure in the system are
positive.

The density-of-states distribution based on the single-
interaction-based stress and energy flux provides more
detailed information than the microscopic expression of the
transport equations. The transport quantities at the subatomic
scale can be related to the macroscopic quantities based on
the density distribution, in which the contributions of the
single-interaction-based stress and energy flux to the local
stress and energy flux at the subatomic spatial resolution play
an important role in interpreting the local transport quantities.
The density distribution in the plane of the single-interaction-
based stress and other variables exhibits a bandlike behaviour
(referred to as a “stress band” in this paper), where relatively
high and low densities of states are detected inside and out-
side the stress band, respectively. The stress band reflects
the intrinsic properties of the intermolecular force (van der
Waals force in this study), i.e., the relatively short and long
intermolecular distances corresponding to the states outside
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FIG. 27. Influence of the simulation box size in the x-y plane on the heat flux (z component) at the subatomic scale: (a) 8 lattices, (b) 12
lattices, and (c) 16 lattices. The values are calculated at z = 0.18 for ε f s = 2.0. To obtain the time-averaged value, 5.0 × 109, 2.5 × 109, and
2.5 × 109 time steps are used in the cases of (a)–(c), respectively.

and inside the band, respectively. The net energy transport
is composed of positive and negative energy transport inside
and outside the band, where the net heat flux is dominated
by the energy transport outside the band. In addition, the
effect is more significant due to the high density of states
for a strong solid-liquid interaction. The same property is
observed at the subatomic scale with a focus on the strong
directional energy flux in the 3D heat flux structure. When
the effect inside the band is dominant, a negative heat flux
and stress are observed at subatomic scales as time-averaged
values.

The heat flux at the subatomic scale between the contact-
ing solid and liquid layers is examined based on the energy
transport property when the solid atom at the contacting layer
is near to and far from the liquid phase, respectively, from
the most probable position. Outside the stress band, positive
and negative energy transports in the temperature gradient
direction are observed when the solid atom at the contacting
layer is near to and far from the liquid phase, respectively.
Conversely, inside the band, an inverse trend is observed;
however, the contribution to the net energy transport is not sig-
nificant due to the low stress value. The positive and negative
energy transports inside and outside the stress bands allow for
a fundamental understanding of the thermal transport mecha-
nism based on the field transport quantities. In the high-stress
field at the subatomic scale, the energy transport rate is high,
and the gradient of the stress with respect to the solid atom
position at the contacting layer exhibits higher values, which

allows for the solid atom to transfer more energy than that in
the low-stress field.

The evaluation of the influence of the temperature gradient
reveals the origin of the thermal transport across the solid-
liquid interface with respect to the transport quantities at the
subatomic scale. In particular, the energy transfer imbalance
between the inside and outside the regions of the bands is
found to induce the thermal transport mechanism at the solid-
liquid interface, which is due to the nonuniformity of the stress
field at the subatomic scale with a different energy transport
rate. Commonly employed nonequilibrium molecular dynam-
ics simulations impose large temperature gradients to evaluate
the energy transport outside the band. Notably, actual ther-
mal transport occurs under a significantly weak imbalance
between the inside and outside the regions of the stress band.

With current computational resources, obtaining the 3D
transport quantities requires a large computation time; thus,
the representation of the fluctuation [35] is a more practical
method for obtaining the related transport quantities. The vi-
sualization of the transport quantities at the subatomic scale
provides valuable information for elucidating transport phe-
nomena in an intuitive manner, such as computational fluid
dynamics. Although the interpretation of the local transport
quantities at the subatomic scale is described in this paper for
the LJ (van der Waals force) potential, the stress band concept
and the method of using the distribution function should be
applicable to more complex systems, such as those that in-
clude Coulombic forces. Furthermore, the proposed method

FIG. 28. Influence of the cutoff distance on the heat flux (z component) at the subatomic scale in the x-y plane: (a) 2.5, (b) 3.0, and (c) 3.5.
The values are calculated at z = 0.18 for ε f s = 2.0. To obtain the time-averaged value, 5.0 × 109, 2.5 × 109, and 2.5 × 109 time steps are used
for the cases of (a)–(c), respectively.
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is a promising approach for bulk materials at the atomic scale,
in addition to various interfaces such as solid-solid, solid-gas,
and liquid-gas interfaces. Selecting the appropriate variable
in the distribution function is essential for the determination
of the transport mechanism of atoms and molecules based on
local transport quantities. Finally, the extension of this method
to the phenomena that occur within a shorter time frame will
be studied in the future.
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APPENDIX A: INFLUENCES OF SIMULATION
CONDITIONS

The influence of the simulation conditions (i.e., model size
and cutoff distance) on thermal transport across a solid-liquid
interface is investigated. The adopted model is composed of
eight lattices in the x and y directions. The heat flux (z compo-
nent) in the eight-lattice model [Fig. 27(a)] is compared with
those of 12- and 16-lattice models, as shown in Figs. 27(b)
and 27(c), respectively, for z = 0.18 and ε f s = 2.0. The re-
sults reveal that changes in the simulation box size have no
significant influence on the local heat flux in the x-y plane.

As can be seen from Fig. 28, the z component of the heat
flux at the subatomic scale is shown in the x-y plane for
the cutoff distance of rc = 2.5 [Fig. 28(a)], 3.0 [Fig. 28(b)],
and 3.5 [Fig. 28(c)], where the values are obtained in the
cases of z = 0.18 and ε f s = 2.0. The results confirm that the
cutoff distance does not influence the heat flux structure at
the subatomic scale. The influence of the cutoff distance on
the single-interaction-based energy flux is shown in Fig. 29.
The values are obtained for the overall interface. For the
overall stress region, changing the cutoff distance does not
significantly influence the density of states and energy flux
density. However, a slight influence is observed in the im-
mediate vicinity of σ̂zz = 0 (σ̂zz<0). As an inherent property,
a longer cutoff distance provides a higher density of states
immediately below σ̂zz = 0 inside the stress band; however,
there is a slight change in the corresponding heat flux due to
the low-stress value.

APPENDIX B: SINGLE-INTERACTION-BASED ENERGY
FLUX USING THE INNER PRODUCT OF SOLID-ATOM

VELOCITY AND FORCE ACTING ON THE SOLID ATOM

For the heat flux calculation at the interface, we use
Eq. (40), which considers the two types of particle veloci-
ties and provides more information than the inner product of
the solid-atom velocity and force exerted on the solid atom,
as mentioned previously. However, the heat flux at the sub-
atomic scale, which is calculated using Eq. (24), is important.
Figure 30 presents the result of � ĵz (σ̂zz, ẑs) = 〈�(t )

ĵz
(σ̂zz, ẑs)〉

where ĵz is calculated based on Eq. (24). As can be seen from
the figure, the contribution to the net energy flux is dominant
at σ̂zz > 0, and the positive and negative energy fluxes are not
dependent on the solid atom position. Moreover, the negative

FIG. 29. (a) Influence of the cutoff distance on the single-
interaction-based energy density in the cases of rc = 2.5, 3.0, and
3.5 for ε f s = 2.0. To obtain the time-averaged value, 5.0 × 109,
2.5 × 109, and 2.5 × 109 time steps are used for the cases of rc =
2.5, 3.0, and 3.5, respectively. (b) Enlarged view of the negative stress
region.

FIG. 30. Single-interaction-based energy flux distribution in
the plane of the single-interaction stress and the z position of
the solid atom; � ĵz (σ̂zz, ẑs ), for the entire interface in the case
of ε f s = 2.0.
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energy flux is dominant inside the band, because the field
quantity does not contain complete information on the relative
influence of the liquid molecule. The relative effects should

therefore be considered using Eq. (40) to better understand
the thermal transport across the interface based on the single-
interaction-based energy flux.
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