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Emergence of local geometric laws of step flow in homoepitaxial growth
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Below the roughening transition, crystal surfaces exhibit nanoscale line defects, steps, that move by ex-
changing atoms with their environment. In homoepitaxy, we analytically show how the motion of a step train
in vacuum under strong desorption can be approximately described by nonlinear laws that depend on local
geometric features such as the curvature of each step, as well as suitably defined effective terrace widths. We
assume that each step edge, a free boundary, can be represented by a smooth curve in a fixed reference plane for
sufficiently long times. Besides surface diffusion and evaporation, the processes under consideration include
kinetic step-step interactions in slowly varying geometries, material deposition on the surface from above,
attachment and detachment of atoms at steps, step edge diffusion, and step permeability. Our methodology
relies on boundary integral equations for the adatom fluxes responsible for step flow. By applying asymptotics,
which effectively treat the diffusive term of the free boundary problem as a singular perturbation, we describe an
intimate connection of universal character between step kinetics and local geometry.
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I. INTRODUCTION

Epitaxial growth comprises a multitude of kinetic pro-
cesses and thermodynamic effects such as atom hopping and
elastic effects on crystal surfaces [1–3]. In homoepitaxial
growth, in particular, the deposited material is the same as
the one of the substrate, in contrast to heteroepitaxy. At tem-
peratures below the roughening transition, the crystal surface
morphological evolution at the nanoscale is driven by the
motion of line defects which resemble steps and have atomic
height [3,4]. This step flow regime is evident in numerous
experimental observations of crystal growth in vacuum or
in solution (see, e.g., Refs. [5–14]). The reliable description
of step dynamics is essential in the predictive modeling of
nanostructure evolution, with applications that span micro-
electronics, energy storage, catalysis and drug design.

A widely known theory of step motion is the Burton-
Cabrera-Frank (BCF) model [15]; see also the earlier works
by Kossel and Stranski [16,17] and an important extension by
Chernov [18]. The BCF model has been successfully applied
to many epitaxial phenomena [4,19], including relaxation and
coarsening [20–24], bunching instabilities [3,25–27], stochas-
tic nanoscale fluctuations [3,28–33], and evolution of crystal
facets [22,34–37]. By the BCF theory, each step moves by
exchanging atoms with its environment as adsorbed atoms
(adatoms) diffuse on the adjacent terraces. The projection
of the step edge onto a fixed crystal plane of reference is
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viewed as a free boundary. In surface relaxation, the energy of
the whole step configuration decreases with time [1,2]. This
picture has been enriched with step free-energy anisotropy,
material deposition from above, evaporation, step edge dif-
fusion and step permeability; for reviews, see Refs. [1–4].
Notably, the normal step velocity, v⊥, at every point of the
step free boundary is dictated by mass conservation; v⊥ is
proportional to the total mass flux into the step. Because of
adatom diffusion on terraces, the step velocity at each point
thus depends on the entire step configuration. In this paper,
we show how in homoepitaxy v⊥ can be expressed in terms
of local geometric features of the step curve under certain
physically motivated assumptions.

Geometric models for the motion of free boundaries are not
uncommon, and are physically transparent and computation-
ally appealing [38–44]. Such equations are usually speculated
via thermodynamics and mass conservation. Regarding the
step flow regime, the connection of geometric motion laws
to the BCF model [15] is largely unexplored. If the density
as well as the mobility of kinks along the step edge are
high enough, then the normal step velocity v⊥ is allowed to
be pointwise regulated by a geometric Gibbs-Thomson-type
relation; see, e.g., Refs. [13,43]. The plausible emergence of
such a view in the two-dimensional (2D) setting from the BCF
theory, by which the diffusion of adatoms on terraces couples
v⊥ to the global geometry, is the subject of our study here.

In this paper, we analytically derive simplified, geometric-
type laws for the motion of a step train in vacuum by use
of a BCF-type model in 2D. Our analysis indicates how the
competition of adatom diffusion and evaporation can dramat-
ically affect the form of the step velocity law. We obtain
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effective parameters that enter this law in the limit of strong
desorption, in the presence of several other kinetic processes.
The emergence of such parameters as an asymptotic limit of
the BCF theory has apparently not been described before.

We assume that the step curves are smooth and the step ge-
ometry is slowly varying for long enough times. We also posit
that the desorption rate, τ−1, is sufficiently large so that the
associated diffusion length, Lev = √

Dsτ , is small compared
to the linear size and radius of curvature of the step and the
widths of the neighboring terraces, where Ds is the terrace
diffusivity. We employ an asymptotic method that is justified
by the length scale separation of this system.

In particular, we show how a geometric-type step velocity
law can emerge as an asymptotic limit from terrace diffusion,
desorption, and atom attachment and detachment at the step
edge, in the step configuration. Our result illustrates how this
velocity is coupled to effective widths of adjacent terraces.
In the special case of a single step, our finding reduces to
a version of motion by curvature. We enrich this asymptotic
result with kinetic effects such as the Ehrlich-Schwoebel bar-
rier [45,46], step permeability [47], and step edge diffusion
[25,48].

Our approach relies on the conversion of the BCF-type
motion laws to a system of boundary integral equations for
the adatom mass fluxes perpendicular to the two sides of each
step edge. An ingredient of this formalism is Green’s function
for terrace diffusion with desorption, in the quasi-steady ap-
proximation. Because of desorption, Green’s function decays
with a length scale equal to Lev. Integral formalisms for epi-
taxy can also be found in Refs. [29,49], but their underlying
settings involve the full diffusion equation (in spacetime) with
objectives different from ours. In these works, as well as in
this paper, the spatial nonlocality due to surface diffusion is
captured by the boundary integral terms. However, desorption
is treated differently in these works. In Ref. [49] desorption is
not considered. In Ref. [29] desorption is taken into account
through the suitable time scale of the associated propagator,
but the strong-desorption limit (which is of interest here) is
not studied.

The role of evaporation in the kinetics of stepped surfaces
has been pointed out by BCF [15]. By explicitly solving a
version of their model, these authors demonstrated that the
lateral speed of a single circular step becomes linear with
curvature for sufficiently strong desorption [15]. Since then,
step motion laws of similar character in more complicated
geometries are often speculated physically, yet without direct
recourse to desorption; see, e.g., Ref. [39].

For strong desorption, the diffusion length Lev roughly
expresses the width of a curved strip in the terraces adjacent
to the step as a boundary layer of adatom diffusion; see
Fig. 1. The adatom density varies appreciably in the direction
normal to the step inside this layer, according to the boundary
condition of atom attachment and detachment at the step edge.
Away from this layer, the adatom density approaches some
constant value fixed by the material deposition from above,
except for points close to another step. In this vein, for each
point of the step edge, Lev defines the linear size of a “domain
of influence” (circular disk in Fig. 1) for the local step veloc-
ity. The smallness of this domain in comparison to the linear
size and radius of curvature of the step shape and the widths

FIG. 1. Schematic of geometry and the role of strong desorption.
Solid curves: Step edges, �(i) (top view); i = 1, 2, . . .. Interior of
dashed curves: Boundary layer of width Li for adatom diffusion along
entire step i; Li is of the order of Lev = √

Dsτ . This layer is formed
by much smaller regions, shown as circular disks of centers x on step
i, e.g., x = x1, x2, x3. The normal step velocity v⊥(x) = vi,⊥(x) of
step i is affected by parameters of kinetic boundary conditions at this
step in each respective disk.

of the neighboring terraces, enables the reduction of the BCF-
type equations to a geometric motion law. The step velocity
determined in this way is only affected by parameters of the
boundary condition on the step curve inside this domain, in
the vicinity of the respective step edge point.

More precisely, the full BCF-type step velocity equals [4]

v⊥(x) = M[c̄(x) − (eμs (x)/T − 1)]

at every point x of the step curve, in the absence of step edge
diffusion. In this relation, c̄(x) is the adatom supersaturation at
the step edge, defined as a suitable kinetic average of the local
adatom density relative to an equilibrium concentration of a
straight step; M is the step mobility; μs(x) is the step chemical
potential which comes from the variation of the total step
free energy; and T is the absolute temperature (in units with
kB = 1). The supersaturation c̄(x) is determined from solving
the adatom diffusion equation, which includes desorption, on
terraces; thus, c̄(x) should depend on the whole geometry.
Our analysis shows how, for strong enough desorption and
sufficiently wide terraces, v⊥(x) approximately reduces to a
form that only depends on μs(x) and combinations of kinetic
lengths and effective terrace widths.

Hence, a highlight of our approach is the replacement of
the adatom supersaturation at the step by a simple expression
involving the step chemical potential via asymptotics. A geo-
metric law for the step velocity emerges if the step chemical
potential is dominated by step stiffness. The parameters of this
effective description are obtained explicitly, and can be useful
in the modeling of step flow in various settings.

Our treatment points to open problems. The presence or
formation of corners in the step curve cannot be treated by
our asymptotics. Another interesting issue is the effect of
stochastic step fluctuations. In the case of heteroepitaxy, not
addressed here, one might expect that even in the strong
desorption limit of that setting the step velocity law would
retain a nonlocal term due to long-range elasticity (see, e.g.,
Ref. [50]). Since we invoke elements of the BCF theory, we
do not directly address the connection of geometric motion

034802-2



EMERGENCE OF LOCAL GEOMETRIC LAWS OF STEP … PHYSICAL REVIEW E 105, 034802 (2022)

laws for steps to the atomistic dynamics on the lattice. Crystal
growth in aqueous solutions lies beyond our scope.

The remainder of this paper is organized as follows. In
Sec. II we review the BCF theory, particularly the joint effect
of adatom diffusion and desorption. In Sec. III, we focus on
the case with strong desorption for concentric circular steps,
as an extension of the BCF study [15]. Section IV intro-
duces the boundary integral formalism of step flow and the
derivation of a basic asymptotic formula for the step velocity
in 2D. This formula accounts for kinetic step-step interac-
tions. In Sec. V, we provide extensions of these results to
include step edge diffusion and step permeability. Section VI
presents numerical simulations for validation of our method,
and discussion of predictions and limitations. In Sec. VII, we
conclude the paper with a summary of results.

II. REVIEW OF BCF MODEL

In this section, we review elements of the BCF model by
including desorption and step permeability. We assume that
the terraces between steps are much wider than the diffusion
length Lev. This setting favors the localization of the terrace
adatom density and flux near each step edge. Aspects of this
localization are outlined via boundary layer theory in the end
of this section; see also Sec. III.

We note in passing that, from an atomistic view, the BCF
theory relies on the diluteness of the adatom system on the
crystal lattice. Hence, a necessary condition for using the BCF
model in our treatment is that the Péclet number Pe = FA2/Ds

is small, where A is the atomic area [51].

A. Adatom diffusion and step energy

We consider a monotone step train in 2D. For a top view of
the configuration, see Fig. 1. The projections of the terraces
on a fixed crystallographic plane, say, the xy plane, are the
regions �(i) where i = 0, 1, . . . N ; �(N ) is unbounded and
corresponds to the material substrate. The terrace region �(i)

is bounded by the smooth step curves �(i) and �(i+1); �(0)

reduces to the origin and �(N+1) denotes a curve approaching
infinity. For definiteness, suppose that the steps are descend-
ing with increasing i. The total number of the actual steps is
not necessarily conserved. We assume that this number is an
arbitrary constant N in the time interval of interest.

Let ci(x, t ) denote the density of adatoms on the ith terrace,
�(i), at time t . This ci(x, t ) satisfies

∂ci

∂t
= F + Ds

(
� − L−2

ev

)
ci, x in �(i). (1)

In the above, Ds is the terrace diffusion constant, F is the
deposition flux (number of atoms per unit area per time),
and the term proportional to L−2

ev amounts to evaporation or
desorption with constant rate τ−1; Lev = √

Dsτ and � denotes
the 2D Laplacian. We assume that the adatom diffusion is
isotropic, and atoms are deposited on the surface from above
at a constant rate.

In the spirit of BCF [15], we employ the quasisteady ap-
proximation for the concentration field ci(x, t ). Accordingly,
we set ∂ci/∂t � 0 in Eq. (1), and determine the step veloc-
ity through the adatom fluxes at the step. In other words,
we assume that terrace diffusion is fast compared to other

kinetic processes. In this vein, the solution of the diffusion
equation on each terrace is replaced by a steady state. At each
point x, the density ci(x, t ) evolves with time only through the
location of steps at time t . Hence, the velocity of each step
is determined by the instantaneous geometry of all steps (and
not its history). For ease of notation, we will suppress the time
(t-) dependence of ci and related variables.

Equation (1) is supplemented with suitable boundary con-
ditions, which account for kinetic processes at the steps. BCF
require that the adatom density have a local equilibrium value
at the step edge (Dirichlet condition) [15]. Typical extensions
of this condition dictate that the adatom flux normal to each
side of the step curve be linear with the respective limiting val-
ues of the adatom concentration. Hence, at the steps (labeled
by index j = i, i + 1) bounding the ith terrace we impose the
Robin-type conditions [1,18,45–47]

±ν( j)(x) · ∇ci(x)· = 1

L±
ad

[
ci(x) − ceq

j (x)
]

± 1

Lp
[c j (x) − c j−1(x)], (2a)

where x lies in curve �( j); j = i (+ sign) or j = i + 1 (−
sign), and ν( j) is the unit normal vector on �( j) that points
toward lower terraces, outward from the whole structure.
The left-hand side of Eq. (2a) displays a quantity equal to
1/Ds times the adatom flux normal to �( j) outward from
terrace �(i). On the right-hand side of Eq. (2a), the first term
expresses the deviation of ci(x) from the local equilibrium
adatom density, ceq

j (x); while the second term accounts for
step permeability [47]. The quantity L±

ad denotes the (kinetic)
attachment-detachment length L±

ad = Ds/k± where k± is the
kinetic parameter with units of velocity for atom exchange be-
tween a step edge and the lower (+) or upper (−) terrace. The
asymmetry of this exchange expresses the Ehrlich-Schwoebel
barrier [45,46]. For a positive Ehrlich-Schwoebel barrier, we
have k+ > k− and thus L+

ad < L−
ad. We include step permeabil-

ity via the length Lp = Ds/kp, where kp is a kinetic parameter
for the direct hopping of atoms from the vicinity of a step to
the adjacent terrace.

Because the outermost terrace, �(N ), is an unbounded re-
gion we need to include a boundary condition for the adatom
density as |x| → ∞. This condition accounts for the balance,
or equilibration, between deposition and desorption, viz.,

lim
|x|→∞

cN (x) = FL2
ev/Ds = Fτ (x in �(N ) ). (2b)

More generally, the adatom density ci(x) with i < N should
approach this limit away from steps, if the width of the terrace
�(i) is much larger than Lev; see Sec. II B.

Next, we describe the velocity law of the free boundary.
By mass conservation, the (normal) ith step velocity vi,⊥(x)
in the direction of ν(i)(x) on curve �(i) is driven by the total
flux of adatoms from the neighboring terraces to the step. In
the absence of step edge diffusion, vi,⊥(x) is given by [15]

vi,⊥(x) = DsA{∇ci(x) − ∇ci−1(x)} · ν(i)(x),

where x lies in �(i). Recall that A denotes the atomic area.
At this stage, we need to specify the local equilibrium

adatom concentration ceq
i which enters Eq. (2a). This quantity
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expresses thermodynamic effects, which may include the step
stiffness as well as elastic-dipole and entropic repulsive inter-
actions between steps [1,4]. By invoking the Gibbs-Thomson
relation [4], we write (in units with kB = 1)

ceq
i (x) = cs exp

(
μi(x)

T

)
, x in �(i). (3a)

Here, μi(x) is the chemical potential of the ith step and cs is
the (fixed) equilibrium adatom density of an isolated straight
step. The step chemical potential, μi(x), a thermodynamic
force, is given by the variation with respect to the step shape
of the total step free energy, Est, which depends on the overall
geometry of the system (at any given time t). For example,
suppose that the step curve �(i) can be described by r = ri(θ )
in polar coordinates (r, θ ) with −π < θ � π . Accordingly,
μ = μi equals [25]

μ = A
δEst

δr
, (3b)

where all step curves other than r = ri are frozen. This for-
mula expresses the variational derivative of Est with respect to
the polar-distance function r = ri(θ ). Therefore, in principle
μ = μi is a function of the polar angle, θ . If the contribution
of the step stiffness, γ̃ , which comes from the line tension of
step i, dominates in μi, then μi � Aγ̃ κi where κi is the (local)
step curvature. Our analysis in this paper does not rely on the
precise dependence of ceq

i on x. In Sec. VI A, however, we use
a particular choice of γ̃ to carry out numerical simulations and
validate our approach.

In addition, we shift the adatom concentration field, ci(x),
by a constant to transform the BCF-type equations into a
form independent of the deposition flux, F . Recall that Pe =
FA2/Ds � 1. We define the variables

Ci(x) = ci(x) − Fτ, Ceq
i (x) = ceq

i (x) − Fτ, all i,

which leaves invariant the adatom flux, Ji = −Ds∇ci. The
governing equations for the shifted concentration Ci(x) read

�Ci(x) = L−2
ev Ci, x in �(i), (4a)

±ν( j)(x) · ∇Ci(x) = 1

L±
ad

[
Ci(x) − Ceq

j (x)
]

± 1

Lp
[Cj (x) − Cj−1(x)], x in �( j),

(4b)

lim
|x|→∞

CN (x) = 0. (4c)

In Eq. (4b), we set j = i (+ sign) or j = i + 1 (− sign), in
correspondence to Eq. (2a). Of course, Ci(x) must be bounded.
We recognize Eq. (4a) as the modified Helmholtz equation.
The form of the step velocity law in the transformed variables
remains intact, viz.,

vi,⊥(x) = DsA{∇Ci(x) − ∇Ci−1(x)} · ν(i)(x). (4d)

We now comment on the validity of the quasisteady
approximation from the perspective of continuous adatom dif-
fusion. This simplification is expected to hold for sufficiently
long times, t . In particular, we are interested in the regime
where t � τ and the length Lev = √

Dsτ is small compared

to the linear size of the step curve. Regarding the external
deposition flux F , the Péclet number Pe = FA2/Ds must be
small (as mentioned above) [51]. We should also add the
assumption that e−t/τ Fτ , which signifies the effect of deposi-
tion in the time domain, is small compared to typical adatom
concentration values on either side of the step edge.

B. Strong desorption and scale separation

Next, we delineate the role of strong desorption by direct
recourse to the system of Eqs. (4a)–(4d). Let us neglect step
permeability for simplicity, taking Lp = ∞.

For strong desorption, it is tempting to directly take the
limit Lev → 0 (τ → 0) in Eq. (4a). The naive approach of
eliminating the diffusive term (�Ci) everywhere in the ith
terrace would not allow Ci to satisfy the boundary conditions
at the bounding steps, labeled by i and i + 1; cf. Eq. (4b). This
observation calls for treating the diffusive term as a singular
perturbation of the (free) boundary value problem [52].

Therefore, the enforcement of the boundary conditions for
atom attachment and detachment upon the shifted adatom
density Ci(x) motivates the use of relatively thin boundary
layers around the step edges. Each layer lies in the vicinity of
the whole step curve, and has a width of the order of Lev (see
Fig. 1). Let us briefly consider local curvilinear coordinates
in the directions perpendicular and tangential to a step edge.
Adopting the language of boundary layer theory [52], we
can assert that Ci(x) changes rapidly, at the scale of Lev, in
the perpendicular direction but varies slowly in the tangential
direction inside the inner region. This density decays to zero
in the outer region.

This view suggests that the normal step velocity vi,⊥(x)
of the ith step at point x is only affected by parameters such
as the shifted equilibrium adatom concentration Ceq

i (y) of the
boundary condition for atom attachment and detachment at
points y of the step in the vicinity of x. Consequently, a
geometric motion law for the step can emerge if the step
chemical potential μi(x) has a dominant contribution from the
step stiffness; see also Sec. III.

We will describe this reduction via asymptotics on integral
equations for the adatom flux normal to steps. The alternate
approach of applying boundary layer theory, or separation of
the spatial variables into fast and slow [53], to the free bound-
ary problem for the diffusion equation on terraces is feasible
but lies beyond the scope of this paper (see Sec. VI C 3).

III. THE PARADIGM OF RADIAL GEOMETRY

In this section, we study the geometry with concentric
circular steps as an example of how step motion can be
approximately reduced to local geometric laws. The radial
setting is prototypical since it allows us to explicitly solve
the multi-step boundary value problem of adatom diffusion
formulated in Sec. II A, which forms an extension of the one-
step case studied in Ref. [15]. We formally apply asymptotics
to the explicit solution by assuming that the diffusion length
Lev is small enough. Our leading-order asymptotic result has
a generic form, which offers insight into the more general
2D setting. We also discuss the idea of the shifted adatom
density localization near step edges as a way of motivating
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the boundary integral formalism of Sec. IV. For simplicity,
in this section we neglect step permeability, taking Lp = ∞
in Eq. (4b). Step permeability is studied in some detail in
Sec. V B.

A. Explicit solution and asymptotics

Consider the setting in which the step curves �(i) are
concentric circles with center at the origin and radii ri(t )
(i = 1, 2, . . . , N); cf. Fig. 1. The nonextremal ith terrace
�(i) is the annulus bounded by circles �(i) and �(i+1) for
i = 1, 2, . . . , N − 1. The extremal terrace �(0) is the circular
disk of radius r1(t ) while the terrace �(N ) is unbounded,
containing the points at distance r > rN (t ) from the origin.
Similar formulations without desorption can be found in
Refs. [22,54,55]. Notably, equations of motion for circular
steps under desorption are described in Ref. [56], with em-
phasis on connections between simplified versions of these
equations and their full continuum limits.

First, we explicitly solve the boundary value problem im-
plied by Eqs. (4a)–(4c), in regard to the modified Helmholtz
equation for the shifted concentration Ci(x). We seek a rota-
tionally symmetric solution for Ci(x), which we denote Ci(r)
by abusing notation. This density satisfies the problem

1

r
∂r (r∂rCi ) = L−2

ev Ci, ri(t ) < r < ri+1(t ),

±∂rCi(r)
∣∣
r=r j

= 1

L±
ad

[
Ci(r j ) − Ceq

j

]
for j = i (+ sign) and j = i + 1 (− sign) where i =
0, 1, . . . , N . Here, we take r0 = 0 and rN+1 = ∞; and use
the symbol ∂r = ∂/∂r. Regarding the terraces �(0) and �(N ),
the same boundary condition is applied at r = r1 (for �(0),
with the − sign), and at r = rN (for �(N ), with the + sign).
In addition, the density C0(r) must be bounded at the origin
while CN (r) → 0 as r → ∞.

By solving the equation for Ci(r), we find (i = 0, . . . , N)

Ci(r) = ai I0(r/Lev) + bi K0(r/Lev), ri(t ) < r < ri+1(t ),

where In and Kn are the nth order modified Bessel functions
of the first and second kind, respectively [57]. We need to
take b0 = 0 and aN = 0, since K0(R) → ∞ (logarithmically)
as R → 0 and I0(R) → ∞ (exponentially) as R → ∞.

The coefficients ai and bi can be determined explicitly
by use of the atom attachment and detachment (Robin-type)
condition at the steps �(i) and �(i+1) which bound the terrace
�(i). After some algebra, we obtain (i = 1, 2, . . . , N − 1)

ai = 1

�i

[(
K1(Ri )

Lev
+ K0(Ri )

L+
ad

)
Ceq

i+1

L−
ad

+
(

K1(Ri+1)

Lev
− K0(Ri+1)

L−
ad

)
Ceq

i

L+
ad

]
, (5a)

bi = 1

�i

[(
I1(Ri+1)

Lev
+ I0(Ri+1)

L−
ad

)
Ceq

i

L+
ad

+
(

I1(Ri )

Lev
− I0(Ri )

L+
ad

)
Ceq

i+1

L−
ad

]
(i 	= 0, N ). (5b)

Furthermore, for i = 0, we have b0 = 0 and

a0 =
[

I0(R1)

L−
ad

+ I1(R1)

Lev

]−1 Ceq
1

L−
ad

; (5c)

while, for i = N , we have aN = 0 and

bN =
[

K0(RN )

L+
ad

+ K1(RN )

Lev

]−1 Ceq
N

L+
ad

. (5d)

In the above, we introduce the nondimensional step radii Ri =
ri/Lev (i = 1, 2, . . . , N), and also define the quantities

�i =
(

K1(Ri )

Lev
+ K0(Ri )

L+
ad

)(
I1(Ri+1)

Lev
+ I0(Ri+1)

L−
ad

)
−

(
I1(Ri )

Lev
− I0(Ri )

L+
ad

)(
K1(Ri+1)

Lev
− K0(Ri+1)

L−
ad

)
,

for i = 1, . . . , N − 1.
To determine the step velocities in terms of the step radii,

we should compute the total (radial) adatom flux into each
curve �(i). This flux is defined by J tot

i = −Ds[∂rCi−1(r) −
∂rCi(r)] at r = ri, and is given by the formula (i = 1, . . . , N)

J tot
i = Ds

Lev
[(ai − ai−1)I1(Ri ) + (bi−1 − bi )K1(Ri )]. (6)

The ith step velocity in the radial direction is vi,⊥ = AJ tot
i .

By Eq. (6), J tot
i is a sum of contributions each of which is

proportional to Ceq
j for j = i, i ± 1. Hence, we can write

J tot
i = Ds

Lev

(
AiC

eq
i + Bi+Ceq

i+1 + Bi−Ceq
i−1

)
; i = 2, . . . , N − 1.

The coefficients Ai and Bi± can be explicitly expressed in
terms of step radii; see the Appendix for a matrix formalism.
We omit the respective exact formulas for Ai and Bi± here.

Next, we focus on step configurations in which all terrace
widths are large compared to Lev, viz., ri − ri−1 � Lev for
i = 1, 2, . . . , N (where r0 = 0). We seek the leading-order
asymptotic formula for each step velocity vi,⊥ via the flux J tot

i .
This task calls for the asymptotic evaluation of the coefficients
Ai and Bi± for Ri − Ri−1 � 1.

By invoking the large-argument approximations for In(R)
and Kn(R), i.e., In(R) � eR/

√
2πR and Kn(R) � e−R√

π/(2R)
as R → ∞ [57], we compute

�i = eRi+1−Ri

2
√

RiRi+1

(
1

Lev
+ 1

L+
ad

)(
1

Lev
+ 1

L−
ad

)
{1 + o(1)}

if Ri+1 − Ri � 1 for all i. Here, the the symbol o(1) accounts
for neglected terms which involve negative powers of Ri+1 and
Ri; i = 1, . . . , N − 1. Notably, the approximate formula for
�i is invariant under the interchange of L+

ad and L−
ad. Similarly,

we obtain approximate formulas for Ai and Bi±.
The substitution of these asymptotic formulas into the ex-

pression for the total adatom flux J tot
i in turn furnishes

vi,⊥ � 2ADsLev

(Lev + L+
ad)(Lev + L−

ad)

{
−

(
1 + L+

ad + L−
ad

2Lev

)
Ceq

i

+ e−(Ri+1−Ri )

√
Ri+1

Ri
Ceq

i+1 +e−(Ri−Ri−1 )

√
Ri−1

Ri
Ceq

i−1

}
,

(7)
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if i = 2, . . . , N − 1. Note that the contributions of Ceq
i±1 are

exponentially small in this formula, since |Ri±1 − Ri| � 1.
Equation (7) can be extended to the remaining steps �(i),
namely, the curve �(1) (for i = 1) and curve �(N ) (i = N). We
omit the resulting expressions here.

A special case is the geometry with a single, isolated cir-
cular step. The (radial) velocity of this step becomes

v⊥ � −ADs

(
1

Lev + L−
ad

+ 1

Lev + L+
ad

)
Ceq,

where Ceq = cs exp(μ/T ) − Fτ and the step chemical poten-
tial, μ, comes from the variation of the isotropic step free
energy. The linearization of this exponential for |μ| � T with
L+

ad = L−
ad � Lev yields a formula consistent with the result

by BCF [15]. In particular, suppose that μ is dominated by
the step stiffness, γ̃ , and Fτ > cs. The step velocity is thus
reduced to the form

v⊥ � v∞

(
1 − rc

r

)
,

where v∞ denotes the velocity of an isolated straight step and
rc is the radius of a “critical nucleus” [15]. In our setting, we
must define

v∞ = −ADs

(
1

L+
ad + Lev

+ 1

L−
ad + Lev

)
(cs − Fτ )

and

rc = cs

Fτ − cs

Aγ̃

T
.

Hence, in this limit v⊥ is linear with the step curvature.
A few further remarks on Eq. (7) are in order. First, for

each i the terms proportional to Ceq
j with j = i ± 1 describe

kinetic step-step interactions. Second, in many situations of
interest the condition |Ri±1 − Ri| � Ri holds for some i; thus,
the corresponding factors

√
Ri±1/Ri can be replaced by unity.

Third, the coefficients of Ceq
j for j = i and j = i ± 1 were

computed to the leading order in the scaled terrace widths
|Ri±1 − Ri|. In fact, for the coefficient of Ceq

i we neglected
terms that involve negative powers of Ri and Ri±1 which,
although small compared to the leading-order term of this
coefficient, can be much larger than the displayed coefficients
for Ceq

i±1. Thus, our asymptotic formula is viewed as a formal
description of distinct physical contributions of equilibrium
densities to the step velocity.

A generic feature of Eq. (7) unfolds. Specifically, the con-
tributions of Ceq

i±1 to step velocity vi,⊥ decay exponentially
with |ri±1 − ri|/Lev. This behavior is indicative of the effect
of the diffusion boundary layer in the vicinity of each step
(Sec. II B); the steps i ± 1 lie in the outer region of step i.
Suppose that elastic-dipole and other step-step interactions are
neglected in the step chemical potential μi, which controls
Ceq

i . Consequently, we explicitly verify that steps separated
by terraces (circular annuli) that are large compared to Lev are
decoupled in their motion because of the effect of strong des-
orption. The emerging step velocity is linear in the curvature
(inverse radius) of the step edge.

B. Localization via desorption in nonradial geometry

At the risk of redundancy we now repeat the idea about the
role of strong desorption in the general 2D setting. Our dis-
cussion motivates the boundary integral formalism (Sec. IV).

In the nonradial case, the diffusion equation of the BCF
model cannot be solved exactly even in the quasisteady limit.
However, key physical aspects of desorption underlying the
analysis of the radial geometry persist in the more general
2D setting. Specifically, the diffusive flux connecting any two
points separated by a distance much larger than Lev on each
terrace is negligible. Hence, the dominant contribution to the
step velocity at any given point x of the step curve comes from
a neighborhood of x that has linear size comparable to the
diffusion length Lev (cf. Fig. 1).

This localization of the adatom concentration, and normal
adatom flux, at the step is intimately related to the presence of
a boundary layer in the sense of Sec. II B. Our goal is to derive
a step velocity law analogous to Eq. (7) in the nonradial setting
by exploiting this property.

To this end, we will employ a method that directly extracts
information only about the fluxes normal to the step edges.
This method is described in Sec. IV. The starting point is the
exact conversion of Eqs. (4a)–(4c) into a system of boundary
integral equations for the shifted adatom density on each side
of every step edge.

The joint effect of terrace diffusion and desorption is
expressed through the kernel in the boundary integral equa-
tions. It is worthwhile to describe this kernel, denoted by
G(x, y). This G comes from the fundamental solution, or
Green’s function, of Eq. (4a) in the plane (infinite terrace);
and is rotationally symmetric in x − y. If we define G via
the equation {�x − L−2

ev }G(x, y) = δ(x − y), where �x is the
Laplacian in x, and resort to Bessel functions, then we find

G(x, y) = − 1

2π
K0

( |x − y|
Lev

)
(8)

for all points x, y with x 	= y. Recall that K0(z) is the
zeroth-order modified Bessel function of the second kind
[57]. Evidently,

√|x − y|G(x, y) decays exponentially with
the scaled distance |x − y|/Lev for |x − y| � Lev [57].

IV. BOUNDARY INTEGRAL FORMALISM
AND ASYMPTOTICS

In this section, our task is twofold. First, we exactly convert
the BCF-type free boundary problem of Sec. II for the shifted
adatom concentration field on the terraces into a system of
boundary integral equations for the adatom flux normal to
steps. An advantage of this formalism is that it circumvents
the need to compute the adatom concentration and flux in the
terraces. Second, we apply asymptotic methods to the ensuing
boundary integral equations when the diffusion length Lev is
sufficiently small (thus, desorption is strong). We are able to
obtain analytical expressions for the adatom fluxes normal to
step edges. This approach allows us to derive a local geometric
law for the step velocity. The interested reader may find our
main result for the step velocity in Sec. IV C, skipping the
related derivations.
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FIG. 2. Geometry for derivation of boundary integral equations.
For the ith terrace (�(i)), the fixed observation point x is excluded
from integration by removal of a small circular disk (gray shaded
region) centered at x. The unit normal ν along the terrace boundary,
consisting of curves �(i) and �(i+1), points outward from the whole
structure. The unit normal νout points outward from the punctured ith
terrace. The ± signs on each side of a step indicate the convention,
relative to ν, adopted in Eqs. (11) and (12).

We posit that the step curves are smooth for long enough
times, in the time interval of interest [58]. In our formalism,
we allow for step energy anisotropy; hence, the free energy of
each step may depend on the step orientation in the fixed crys-
tallographic plane of reference. This anisotropy is assumed to
be compatible with our step curve smoothness hypothesis. In
addition, we set Lp = ∞ in Eq. (4b), neglecting permeability.
We will include this effect in Sec. V B.

A. General integral formalism

In this subsection, we derive boundary integral equa-
tions along the step curves by using the BCF model [15]
and elements of potential theory [59,60]. Consider the ith
terrace �(i) which is bounded by curves �(i) and �(i+1) (i =
1, . . . , N). To simplify notation, let C(x) = Ci(x) denote the
shifted adatom density in the fixed terrace �(i), suppressing
the terrace index for the density.

First, we derive an integral representation for the shifted
density C in the ith terrace �(i) in terms of the values of C
and its normal derivative at the bounding steps via Green’s
function G, Eq. (8) [59–61]. Following the standard approach,
let us fix a point x in �(i), multiply both sides of Eq. (4a)
by G(x, y), and suitably integrate over a “punctured region”
�̃(i) which comes from the terrace �(i) by removal of a small
circular disk centered at x; see Fig. 2. Integration by parts in
the resulting equation yields the line integral∫

∂�̃(i)

{
G(x, y)

∂C(y)

∂νout
− ∂G(x, y)

∂νout
C(y)

}
dsy = 0,

which is defined along the boundary (∂�̃(i)) of �̃(i). Hence, the
line integral is carried out along the smooth curves �(i), �(i+1)

and the small circle centered at x. Note that ∂Q/∂νout (Q =
C, G) denotes the derivative of function Q along the boundary
of �̃(i) in the direction of the unit normal vector νout that
points outward from �̃(i). In the line integral, the functions
C and ∂C/∂νout, evaluated at the point y of the boundary,
are the limits of C(z) and νout(y) · ∇C(z), respectively, as z
approaches y from the ith terrace. By contracting the small

circle to the point x, we obtain [60,61]∫
∂�(i)

{
G(x, y)

∂C(y)

∂νout
− ∂G(x, y)

∂νout
C(y)

}
dsy = −C(x).

The integration path is the boundary of terrace �(i), which
consists solely of curves �(i) and �(i+1).

We now introduce operator notation for later algebraic
convenience. To this end, for each step curve we use the unit
normal vector ν pointing outward from the whole structure;
see Fig. 2. Hence, we write ∂Q/∂νout = ∂Q/∂ν on �(i+1) and
∂Q/∂νout = −∂Q/∂ν on �(i) (for Q = C, G). Accordingly,
the equation for C(x) is recast to the form

Ŝi+1

[
∂C

∂ν

]
(x) − Ŝi

[
∂C

∂ν

]
(x)

− D̂i+1[C](x) + D̂i[C](x) = −C(x), (9)

where x lies in �(i). By adopting the formalism of potential
theory [60], we recognize Ŝ j and D̂ j ( j = i, i + 1) as single-
and double-layer potential operators, respectively, along step
curve �( j). For a physically admissible density or normal-flux
function f on step curve �( j), these operators are defined via

Ŝ j[ f ](x) =
∫

�( j)
G(x, y) f (y) dsy, (10a)

D̂ j[g](x) =
∫

�( j)

∂G(x, y)

∂ν(y)
g(y) dsy, (10b)

where x may lie anywhere, with the exception of curve �( j) in
Eq. (10b). In Eq. (9), the operators Ŝ j and D̂ j act on functions
f and g identified with the boundary values of ν · ∇C(z) and
C(z), respectively, as z approaches the curve �( j) from inside
�(i). These one-sided limits are implied by the notation for
the shifted density, C = Ci. Evidently, the single- and double-
layer potentials in Eq. (10) with f = ν · ∇C and g = C have
the dimension of the adatom concentration.

We should add a few comments. First, recall that terraces
�(i) are labeled by i = 0, 1, . . . , N . Equation (9) is derived
for points x in nonextremal terraces, if 1 � i � N − 1. This
description can be extended to extremal terraces �(i) (for i =
0, N) via the convention that Ŝ j and D̂ j are zero for j = 0, N .
Second, the adatom density and its normal derivative can be
discontinuous across step edges. The jump in the adatom flux
normal to a step is needed for a nonzero step velocity. The
one-sided shifted adatom density is related to the respective
normal derivative via Robin-type condition Eq. (4b). Third,
the integrand of the double-layer potential D̂ j[g](x), seen in
Eq. (10b), has a singularity in y as x approaches �( j).

To obtain the desired boundary integral equations, we need
to separate the contribution of the aforementioned singularity.
Hence, in Eq. (9) we let x approach any point x̃ of step curve
�( j) ( j = i, i + 1) from terrace �(i). We invoke the limit [60]

lim
x→x̃

D̂ j[g](x) = ∓ 1
2 g(x̃) + /̂D j[g](x̃), x̃ in �( j),

for j = i (− sign) or j = i + 1 (+ sign) [62]. The first term of
the limit represents the contribution of the singularity. In the
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second term, we introduce the operator /̂D j defined by

/̂D j[g](x̃) =
∫

�( j)

∂G(x̃, y)

∂ν(y)
g(y) dsy, x̃ in �( j). (10c)

This integral is well defined along a smooth curve �( j).
Thus, Eq. (9) yields two distinct relations, depending

on the step curve in which x̃ lies. Dropping the tilde,
we obtain

Ŝi+1

[(
∂C

∂ν

)−]
(x) − Ŝi

[(
∂C

∂ν

)+]
(x)

− D̂i+1[C−](x) + /̂Di[C
+](x) = −1

2
C+(x) (11a)

for x lying in curve �(i); and

Ŝi+1

[(
∂C

∂ν

)−]
(x) − Ŝi

[(
∂C

∂ν

)+]
(x)

− /̂Di+1[C−](x) + D̂i[C
+](x) = −1

2
C−(x) (11b)

for x in curve �(i+1). The symbol Q± (Q = C, ∂C/∂ν) for the
shifted density and its normal derivative along a step edge
denotes the boundary value of Q on each side of the step
edge relative to the unit normal ν (see Fig. 2). Recall that the
vector ν points outward from the whole structure. Although
we currently focus on the steps bounding terrace �(i), our
choice of notation will be useful later, when we compute the
step velocity by an asymptotic method.

Equation (11) is not in the desired form as yet, since both
the shifted adatom density and normal flux are used. However,
the step velocity is driven by the total flux into the step edge.
Hence, it is advantageous to eliminate C± by use of Robin-
type boundary conditions (4b). After some algebra, we recast
Eq. (11) to the following relations:

(Ŝi+1 + L−
adD̂i+1)

[(
∂C

∂ν

)−]
(x)

+
(

− Ŝi + 1

2
L+

adÎ + L+
ad

/̂Di

)[(
∂C

∂ν

)+]
(x)

=
(

− 1

2
Î − /̂Di

)[
Ceq

i

]
(x) + D̂i+1

[
Ceq

i+1

]
(x) (12a)

for points x in �(i); and(
Ŝi+1 − 1

2
L−

adÎ + L−
ad

/̂Di+1

)[(
∂C

∂ν

)−]
(x̆)

+ (−Ŝi + L+
adD̂i )

[(
∂C

∂ν

)+]
(x̆)

=
(

−1

2
Î + /̂Di+1

)[
Ceq

i+1

]
(x̆) − D̂i

[
Ceq

i

]
(x̆) (12b)

for x̆ in �(i+1). In the above, Î is the identity operator. In
these equations, the unknown functions (of y) are the normal
derivatives (∂C/∂ν)± on the sides of the steps bounding the
ith terrace. These functions are integrated along step curves
�(i) and �(i+1).

By integral equations (12a) and (12b), one can in principle
determine the fluxes from terrace �(i) into the bounding step

FIG. 3. Schematic on manipulations for Eqs. (13) and (14).
Points in steps �(i) and �(i+1), which bound the ith terrace �(i),
are mapped to points of minimal distance along �(i+1) and �(i),
respectively. The point x lying in �(i) is mapped to the point y(i+1)(x)
of �(i+1) that minimizes the distance from x to the points of �(i+1).
Similarly, the point x̆ of �(i+1) is mapped to y(i)(x̆) in �(i). We let x̆
be y(i+1)(x). Each mapping is assumed to be one-to-one.

edges in terms of the equilibrium concentrations Ceq
i and Ceq

i+1.
This formalism is an exact consequence of the BCF-type free
boundary problem of Sec. II in the quasisteady approach.
Hence, by complementing these integral relations with the
respective equations for terrace �(i−1), one can obtain the step
velocity of the ith step edge, �(i). The local step velocity
law will eventually emerge via asymptotics in the limit of
sufficiently small Lev.

B. Leading-order asymptotics

Next, we simplify Eq. (12) when the diffusion length Lev

is small compared to the linear size and radius of curvature
of each step curve. We focus on the leading-order formulas
of this limit. The core idea is that for strong desorption the
system is characterized by a length scale separation, namely,
the adatom flux along the step varies slowly in the scale of
Lev. The step geometry is also assumed to be slowly varying,
which means that step edges bounding a terrace are treated
as almost locally parallel to each other. We repeat that the
interested reader may directly seek the main result for the step
velocity in Sec. IV C, skipping details of our scheme.

The ideas of strong desorption and slowly varying step
geometry are used for the derivation of asymptotic formulas
for the normal derivatives (∂C/∂ν)± along a step curve, in
the spirit of the radial case (Sec. III). The step velocity law
can be obtained accordingly. The procedure has two main
ingredients. First, for fixed yet arbitrary points lying in the
step edges bounding the ith terrace, in Eq. (12) we replace the
spatially varying functions (∂C/∂ν)± and Ceq

j ( j = i, i + 1)
by suitably chosen constants in the integrals for the single- and
double-layer potentials. This approximation can be justified,
because the integration kernels decay exponentially with the
distance |x − y| scaled by the diffusion length Lev. Second,
for slowly varying step geometry we develop a scheme that
yields a closed system of equations for (∂C/∂ν)±. To this end,
we invoke the distance of a point from a curve, as shown in
Fig. 3, which leads to the notion of the effective terrace width.
Our resulting asymptotic formula for the velocity vi,⊥ of the
ith step forms a nontrivial extension of Eq. (7) of the radial
setting.
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1. Approximation scheme

Consider the integrals of Eq. (12) in regard to the steps
bounding the ith terrace. By asymptotics for Laplace-type
integrals [63], we need to single out the values y∗ of the
integration variable y (along any step edge) that minimize the
distance |y − x| from a given point x in the same or a neigh-
boring step. This task calls for distinguishing the following
cases. If the observation point x and integration variable y lie
in the same step, then y∗ = x. Otherwise, y∗ is the point of the
step that minimizes the distance of all points of this step from
x. In this case, |y∗ − x| is defined as the distance of x from the
respective step curve. More generally, for any point x of the
plane we employ the notation (Fig. 3)

y∗ = y∗(x) = y( j)(x) for y∗ in �( j),

assuming that y∗ is uniquely defined. In the special case with
both x and y lying in �( j), we must set y( j)(x) = x.

Accordingly, in Eq. (12) we apply the approximation

K̂ j[ f ](x) � K̂ j[1](x) f [y∗(x)]; K̂ = Ŝ, D̂, /̂D ( j = i, i + 1).

Here, f stands for (∂C/∂ν)±, Ceq
i or Ceq

i+1. Hence, Eq. (12) is
approximately reduced to the following system:

[Ŝi+1[1](x) + L−
adD̂i+1[1](x)]

(
∂C

∂ν

)−
[y(i+1)(x)]

+
[
−Ŝi[1](x) + 1

2
L+

ad + L+
ad

/̂Di[1](x)

](
∂C

∂ν

)+
(x)

�
[
−1

2
− /̂Di[1](x)

]
Ceq

i (x) + {D̂i+1[1](x)}Ceq
i+1[y(i+1)(x)]

(13a)

for any point x in curve �(i); and[
Ŝi+1[1](x̆) − 1

2
L−

ad + L−
ad

/̂Di+1[1](x̆)

](
∂C

∂ν

)−
(x̆)

+ [−Ŝi[1](x̆) + L+
adD̂i[1](x̆)

](∂C

∂ν

)+
[y(i)(x̆)]

�
[
−1

2
+ /̂Di+1[1](x̆)

]
Ceq

i+1(x̆) − {D̂i[1](x̆)}Ceq
i [y(i)(x̆)]

(13b)

for any point x̆ in �(i+1). Equations (13) do not provide
a closed system as yet, since the one-sided derivatives
(∂C/∂ν)± are evaluated at a total of four points of the two
steps. The system of equations appears under-determined.

To achieve closure, we assume that the step geometry is
slowly varying, inspired by the radial case (Sec. III A). First,
we choose x̆ to be the point y∗(x) = y(i+1)(x), along curve
�(i+1) (Fig. 3). Second, we approximate y(i)(x̆) (in �(i)) by

y(i)(x̆) = y(i)[y(i+1)(x)] � x

in the arguments of (∂C/∂ν)+ and Ceq
i in Eq. (13b), since steps

bounding a terrace are treated as nearly parallel to each other.
This simplifying assumption permeates our analysis.

Accordingly, we obtain a system of linear equations for
(∂C/∂ν)+ at point x of step curve �(i), and (∂C/∂ν)− at point

y∗(x) = y(i+1)(x) of curve �(i+1). The system reads

[Ŝi+1[1](x) + L−
adD̂i+1[1](x)]

(
∂C

∂ν

)−
[y∗(x)]

+
[
−Ŝi[1](x) + 1

2
L+

ad + L+
ad

/̂Di[1](x)

](
∂C

∂ν

)+
(x)

�
[
−1

2
− /̂Di[1](x)

]
Ceq

i (x) + {D̂i+1[1](x)}Ceq
i+1[y∗(x)],

(14a){
Ŝi+1[1][y∗(x)]−1

2
L−

ad+L−
ad

/̂Di+1[1][y∗(x)]

}(
∂C

∂ν

)−
[y∗(x)]

+{−Ŝi[1][y∗(x)] + L+
adD̂i[1][y∗(x)]

}(∂C

∂ν

)+
(x)

�
[
−1

2
+ /̂Di+1[1](y∗)

]
Ceq

i+1(y∗(x))−{D̂i[1](y∗(x))}Ceq
i (x).

(14b)

This system pertains to terrace �(i). Recall that the velocity of
the ith step is determined by the total mass flux into the step.
Thus, the above equations should be supplemented with their
counterparts for (∂C/∂ν)+ at point x of step curve �(i−1), and
(∂C/∂ν)− at point y(i)(x) of curve �(i). Notably, in the radial
setting, when the step line tension is isotropic and each step
curve �(i) is a circle, Eq. (14) reduces to the exact result of
Sec. III A. In this case, the single- and double-layer potential
terms can be evaluated by use of modified Bessel functions;
see the Appendix.

2. Simplified formulas for adatom flux

Next, we derive the step velocity law through asymptotic
formulas for the fluxes normal to steps. We apply the ap-
proximations for strong desorption and slowly varying step
geometry introduced in Sec. IVB1.

Consider Eq. (14), in regard to the steps bounding the ith
terrace �(i), keeping also in mind its counterpart for terrace
�(i−1). By analogy with the radial setting (Sec. III A), we
explicitly solve Eq. (14) by retaining terms that express kinetic
interactions between adjacent steps to the leading order for
strong desorption. In this sense, we keep terms of the order of
exp[−w j (x)/Lev], where x lies in �(i) and

w j (x) = |y( j)(x) − x|, j = i ± 1. (15)
The length w j (x) is an effective terrace width measuring
the distance of point x on �(i) from step j. Our labeling of
effective terrace widths here is algebraically convenient, and
differs from the labeling of terraces. We restore the standard
labeling in Sec. IV C. For fixed step i, we neglect terms that
scale as exp[−lwi±1(x)/Lev], l > 1. The definition of length
w j (x) can be extended to any point x of the step configuration,
where index j refers to a neighboring step.

This procedure can be illustrated by the determinant D of
the matrix coefficients of Eq. (14), viz.,

D = {Ŝi+1[1](x) + L−
adD̂i+1[1](x)}{−Ŝi[1](y∗)

+ L+
adD̂i[1](y∗)} − {Ŝi+1[1](y∗) − 1

2 L−
ad + L−

ad

× /̂Di+1[1](y∗)}{−Ŝi[1](x) + 1
2 L+

ad + L+
ad

/̂Di[1](x)
}
.
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Here, x lies in step curve �(i) and y∗ = y∗(x) = y(i+1)(x) is
the point of curve �(i+1) with minimal distance from x. A key
observation is that the term Ŝ j[1](z) is of the order of Lev if z is
in �( j) but behaves as Lev exp[−w j (x)/Lev] otherwise, while

D̂ j[1](z) scales as exp[−w j (x)/Lev]; z = x, y∗(x). However,
/̂D j[1](z) is of the order of Lev times the local curvature, as we
show below. Accordingly, we approximate

D � −{
Ŝi+1[1](y∗) − 1

2 L−
ad + L−

ad
/̂Di+1[1](y∗)

}{−Ŝi[1](x) + 1
2 L+

ad + L+
ad

/̂Di[1](x)
}
,

neglecting terms of the order of exp[−2wi±1(x)/Lev]. We solve system Eq. (14) for (∂C/∂ν)+, approximating the remaining
determinant in a fashion similar to the calculation for D. Thus, we find(

∂C

∂ν

)+
(x) �

{
1

2
L+

ad − Ŝi[1](x) + L+
ad

/̂Di[1](x)

}−1{
−1

2
L−

ad + Ŝi+1[1][y(i+1)(x)] + L−
ad

/̂Di+1[1][y(i+1)(x)]

}−1

×
(

−Ceq
i (x)

{
1

2
+ /̂Di[1](x)

}{
−1

2
L−

ad + Ŝi+1[1][y(i+1)(x)] + L−
ad

/̂Di+1[1][y(i+1)(x)]

}

+Ceq
i+1[y(i+1)(x)]

{
Ŝi+1[1][y(i+1)(x)] D̂i+1[1](x) + 1

2
Ŝi+1[1](x) − /̂Di+1[1][y(i+1)(x)] Ŝi+1[1](x)

})
, (16a)

where x lies in the ith step, �(i); see Fig. 2.
The next task is to find an expression for (∂C/∂ν)− on the ith step. This task can be carried out without much effort by using

the formula for (∂C/∂ν)−(y∗) from the solution of Eq. (14) under suitable replacements. To this end, we assume a one-to-one
correspondence of every point x in a step to the minimal-distance points y∗ = y∗(x) in an adjacent step. Hence, we solve for
(∂C/∂ν)− at point y∗ and then replace i by i − 1 and y∗ = y(i)(x) by x; thus, y∗ becomes y(i−1)(x) in our formula eventually. The
result of this manipulation is(

∂C

∂ν

)−
(x) �

{
1

2
L+

ad − Ŝi−1[1][y(i−1)(x)] + L+
ad

/̂Di−1[1][y(i−1)(x)]

}−1{
−1

2
L−

ad + Ŝi[1](x) + L−
ad

/̂Di[1](x)

}−1

×
(

Ceq
i (x)

{
−1

2
+ /̂Di[1](x)

}{
1

2
L+

ad − Ŝi−1[1][y(i−1)(x)] + L+
ad

/̂Di−1[1][y(i−1)(x)]

}

−Ceq
i−1[y(i−1)(x)]

{
−Ŝi−1[1][y(i−1)(x)]D̂i−1[1](x) + 1

2
Ŝi−1[1](x) + /̂Di−1[1][y(i−1)(x)]Ŝi−1[1](x)

})
, (16b)

where x lies in �(i). By Eqs. (16a) and (16b), we can compute
the velocity of the ith step in terms of single- and double-layer
potentials applied to unity; recall Eq. (4d).

3. Asymptotics for single- and double-layer potentials

Next, we evaluate the single- and double-layer potential
contributions in Eq. (16), where the point x lies in �(i);
cf. Eq. (10). Regarding integration with respect to y along
step edge �( j) ( j = i, i ± 1), we employ the signed arclength
parametrization of curve �( j). Thus, we set

y = y j (ς ); y j (0) =
{

y( j)(x), j = i ± 1
x, j = i

.

In the above, ς is a (dimensionless) signed arclength that is
scaled by Lev. This ς ranges from −Lj/(2Lev) to Lj/(2Lev)
where Lj is the length of curve �( j). Our goal is to develop
asymptotic formulas when Lev is small compared to the step
edge linear size and radius of curvature.

We start with the potentials in which both the evaluation
point y j (0) and the integration variable y lie in the same
step edge �( j) ( j = i, i ± 1). For the single-layer potential
Ŝ j[1], in particular, we need an approximation for the distance
between two points on the step edge as ς → 0. The de-

sired approximation is |y j (ς ) − y j (0)| � |ς |Lev, by neglect of
terms of the order of |ς |3. Hence, a change of the integration
variable from y to ς (y) yields

Ŝ j[1][y j (0)] � −Lev

2π

∫ L j
2Lev

− L j
2Lev

K0(|ς |) dς.

We have dropped terms of the order of Lev[Levκ j (y j (0)]2

where κ j (y) is the curvature of �( j) at y. For Lj/Lev � 1, we
obtain

Ŝ j[1][y j (0)] � −Lev

2π

∫ ∞

−∞
K0(|ς |) dς = −Lev

2
, (17a)

neglecting terms of the order of
√

Lev/Lj exp[−Lj/(2Lev)].
In this vein, regarding the double-layer potential, we

have

/̂D j[1][y j (0)] = 1

2π

∫ L j
2Lev

− L j
2Lev

dς K1

( |y j (ς ) − y j (0)|
Lev

)

× [y j (ς ) − y j (0)] · ν j (ς )

|y j (ς ) − y j (0)| .

034802-10



EMERGENCE OF LOCAL GEOMETRIC LAWS OF STEP … PHYSICAL REVIEW E 105, 034802 (2022)

We approximate |y j (ς ) − y j (0)| in the kernel argument in a
way similar to the single-layer potential case. In addition,
we need an approximation of [y j (ς ) − y j (0)] · ν j (ς ), as ς

approaches 0. The Taylor expansion of this function yields

[y j (ς ) − y j (0)] · ν j (ς )

|y j (ς ) − y j (0)| � 1

2
|ς | Levκ j[y j (0)], as ς → 0,

where the local curvature κ j of step j is evaluated at point
y j (0). In the spirit of the derivation of Eq. (17a), we obtain

/̂D j[1][y j (0)] � Lev

2π

∫ ∞

−∞
|ς |K1(|ς |)κ j[y j (0)]

2
dς

= 1

4
Levκ j[y j (0)]. (17b)

Next, in regard to Eq. (16) let us consider the potentials
Ŝ j±1[1](y j ) and D̂ j±1[1](y j ) for which the evaluation point
y j = y j (0) in �( j) and the respective integration variable y
lie in different steps, separated by a terrace. In Eq. (16), this
situation arises for j = i. We will address this problem more
generally, considering the step j coupled with a neighboring
step k (k = j ± 1). Hence, for each j we carry out the in-
tegration in y = yk (ς ) along the curve �(k) adjacent to �( j).
Recall that yi(0) = x. The effective terrace widths wk[y j (0)]
are involved in this calculation; cf. Eq. (15). We assume that
each wk is larger than Lev.

First, we have the approximation

|yk (ς ) − y j (0)| �
√

w2
k − (−1 ± wk κk )L2

evς
2, k = j ± 1,

where wk = wk[y j (0)] and κk = κk[y j (0)]. Note that (1 ∓
wkκk ) > 0, since |ς | is let to become arbitrarily large even-
tually in our asymptotics. This implies that the terrace width
should not exceed the local radius of curvature. Without fur-
ther ado, for the single-layer potential we obtain

Ŝk[1][y j (0)] � −Lev

2π
(1 ∓ wkκk )−1/2

×
∫ ∞

−∞
K0

(√
w2

k

L2
ev

+ ς2

)
dς

= −Lev

2
(1 ∓ wkκk )−1/2e− wk

Lev . (18a)

The key feature of this formula is the exponential decay with
the scaled terrace width, wk/Lev. This result is consistent with

the findings for the radial setting via an exact solution; cf.
Eq. (7). The factor (1 ∓ wkκk )−1/2 here reduces to

√
Ri±1/Ri

which appears in the radial case, if k = i ± 1.
Finally, we consider the terms involving D̂k , viz.,

D̂k[1][y j (0)] = 1

2π

∫ Lk
2Lev

− Lk
2Lev

dς K1

[ |yk (ς ) − y j (0)|
Lev

]

× [yk (ς ) − y j (0)] · νk (ς )

|yk (ς ) − y j (0)| .

Thus, we need an approximation for [yk (ς ) − y j (0)] · νk (ς ).
To incorporate the approximations for the Ŝk and D̂k terms
into the overall result consistently, we seek a two-term asymp-
totic formula for D̂k[1][y j (0)]. By a Taylor expansion, we find

[yk (ς ) − y j (0)] · νk (ς ) � ±wk + 1
2 (1 ∓ wkκk ) (Levκk )Levς

2,

where the upper (lower) sign corresponds to k = j+1 ( j − 1).
Consequently, our computation yields

D̂k[1][y j (0)]

� 1

π

∫ ∞

wk
Lev

dς K1(ς )

⎛⎝ ±wk/Lev
√

1 ∓ wkκk

√
ς2 − w2

k/L2
ev

+1

2

Levκk

√
ς2 − w2

k/L2
ev√

1 ∓ wkκk

⎞⎠
= 1

2
(±1 + Levκk/2)(1 ∓ wkκk )−1/2e− wk

Lev . (18b)

So far, we replaced the single- and double-layer potentials
by simplified formulas. The remaining task is to express the
step velocity in terms of the approximate normal fluxes.

C. Emerging step velocity law

Next, we combine the ingredients of our approximation
to express the step velocity in terms of the local curvature.
The substitution of the formulas from Eqs. (17) and (18)
into Eq. (16), and the subsequent use of mass conservation
statement (4d), yield

vi,⊥ � DsA

[
−Ceq

i

(
1 + 1

2 Levκi

L+
ad + Lev + 1

2 L+
adLevκi

+ 1 − 1
2 Levκi

L−
ad + Lev − 1

2 L−
adLevκi

)
+ Ceq

i+1 (1 − w̄iκi+1)−1/2 2Lev(
L+

ad + Lev + 1
2 L+

adLevκi
)(

L−
ad + Lev + 1

2 L−
adLevκi+1

) e− w̄i
Lev

+Ceq
i−1 (1 + w̄i−1κi−1)−1/2 2Lev(

L+
ad + Lev + 1

2 L+
adLevκi−1

)(
L−

ad + Lev + 1
2 L−

adLevκi
)e− w̄i−1

Lev

]
. (19a)

The velocity vi,⊥ is evaluated at point x of the ith step edge.
In the above, the labeling of effective terrace widths w̄ j is

the same as the one for terraces �( j). We employ the no-
tation w̄i = wi+1(x) = |y(i+1)(x) − x| and w̄i−1 = wi−1(x) =
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|y(i−1)(x) − x| where y( j)(x) is the point on step j with mini-
mal distance from x ( j = i ± 1). In a similar vein, the local
curvature κ j and equilibrium density Ceq

j of the jth step
are evaluated at the point y( j)(x) ( j = i, i ± 1); recall that
y(i)(x) = x.

We consider Eq. (19a) as a highlight of our results. This
formula can be readily extended to the extremal steps �(1) and
�(N ) by removing the i − 1 and i + 1 terms, respectively. For
an isolated step (if N = 1), Eq. (19a) readily becomes

v⊥ � −DsACeq

{
1 + 1

2 Levκ

L+
ad + Lev + 1

2 L+
adLevκ

+ 1 − 1
2 Levκ

L−
ad + Lev − 1

2 L−
adLevκ

}
; (19b)

κ = κi and Ceq = Ceq
i for i = 1. For a comparison of step

motion by this formula with neglect of the Levκ term to the
boundary integral formulation of Eq. (12), the reader is re-
ferred to Sec. VI A.

A few remarks on Eqs. (19a) and (19b) are in order. First,
the local step curvature enters these approximations in the
following two distinct ways: (i) thermodynamically, by the
equilibrium step edge (shifted) concentration Ceq

j ( j = i, i±1)
which depends on the step stiffness through the step chemical
potential; and (ii) kinetically, through the terms of the form
Levκ j and (1 ∓ w̄κ j )−1/2. We emphasize that there is no ap-
proximation in our use of Ceq

j with the exception of its slow
variation along the step edge. A noteworthy feature of our
analysis is that it singles out the above kinetic contributions
naturally, by relating them to the asymptotic regime of strong
desorption. Second, as is expected by mere inspection, the
scaled step velocity vi,⊥/Ceq

i of an isolated step in Eq. (19b)
is invariant under the interchange of L±

ad provided the sign of
curvature κi is reversed.

Third, it is tempting to compare the results of this section to
Eq. (7) of the radial case. We realize that the step velocity
vi,⊥(x) here reduces to the one obtained for the radial ge-
ometry if the (nondimensional) quantity Levκ j in Eq. (19a) is
neglected while L±

ad are kept fixed. In this vein, we obtain

vi,⊥ � DsA

{
−Ceq

i

(
1

L+
ad + Lev

+ 1

L−
ad + Lev

)
+ Ceq

i+1 (1 − w̄iκi+1)−1/2 2Lev

(L+
ad + Lev)(L−

ad + Lev)
e− w̄i

Lev

+Ceq
i−1 (1 + w̄i−1κi−1)−1/2 2Lev

(L+
ad + Lev)(L−

ad + Lev)
e− w̄i−1

Lev

}
, (19c)

which forms a generalization of the step velocity law of the
radial setting (Sec. III A). This formula reduces to Eq. (7) if
the steps are concentric circles with radii ri = 1/κi = LevRi

in our notation, where w̄i = ri+1 − ri = Lev(Ri+1 − Ri ); see
Sec. III A. Note in passing that the aforementioned discrep-
ancy between the formulas of the two geometries, for nonzero
yet small Levκ j , manifests only in the respective correction
terms. This discrepancy can be remedied if we include more
terms in the expansions used for the Bessel functions in the
radial case.

We stress that our analysis treats each step curve as a
given smooth boundary, and formally produces an asymptotic
formula for the step velocity for small enough diffusive length
Lev. Some aspects of our results, particularly the relevant
kinetic lengths, are discussed in Sec. VI B. The consistency of
this approach with the well-posedness of step motion, when
each step edge is viewed as a free boundary, is not addressed
by our approach. The kinetic role of the step curvature, as
this appears in our asymptotic results, is further discussed in
Sec. VI C.

V. ADDITIONAL KINETIC EFFECTS

In this section, we outline extensions of our formalism. In
particular, we incorporate the kinetic effects of step edge dif-
fusion and step transparency (permeability) into the boundary
integral equations. We show how these modifications affect
the step velocity law in the limit of strong desorption.

A. Step edge diffusion

In step edge diffusion, atoms that have already attached to
the step may move along its edge with a possibly orientation-
dependent diffusivity, De [25,48,64,65]. This process can be
included in the mass conservation statement for the motion
of steps. Accordingly, the step velocity in the direction of the
local normal vector ν pointing to the lower terrace becomes

v⊥ = AJ⊥ + a

L2
evcs

∂ς (De∂ςCeq). (20)

Here, J⊥ = Dsν · {(∇C)+ − (∇C)−} is the total normal flux
into the step, ∂ς is the dimensionless tangential derivative
along the step edge (where the arclength is scaled by Lev), cs

is the equilibrium adatom density of a straight step, and A is
the atomic area. Evidently, for a given step curve, the normal
flux J⊥ can be determined from the boundary value problem
for adatom diffusion on the adjacent terraces (see Sec. II A).
This problem for J⊥ can be tackled separately from the edge
diffusion process. Of course, in the course of time evolution,
edge diffusion (via De) alters the step shape.

For our purposes, the velocity v⊥ has two distinct contri-
butions. In the limit of strong desorption, the term pertaining
to AJ⊥ comes from the framework of Sec. IV, and is given
by Eq (19a). However, the edge diffusion term of Eq. (20)
involves tangential derivatives of Ceq. If the step chemical
potential μ is dominated by the step stiffness γ̃ with |μ| � T ,
then we can formally approximate ∂ςCeq � AcsT −1∂ς (γ̃ κ ) in
Eq. (20). Hence, the emerging velocity v⊥ depends on the
local curvature κ and the derivative ∂ς [De∂ς (γ̃ κ )].
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FIG. 4. Plots of magnitude of normalized adatom flux δJ defined
by Eq. (23) as a function of Ehrlich-Schwoebel barrier parame-
ter L+

ad/L−
ad. We use distinct values of step permeability parameter

�p = Lp/L+
ad (�p = 10, 1, 0.1, 0.001); and desorption parameter

Lev/L+
ad = 1. Smaller values of �p imply more permeable steps.

Intuitively, we expect that step edge diffusion has a reg-
ularizing effect on the adatom equilibrium density, ceq. In
particular, say, for constant De, this process causes μ and thus
ceq to vary more slowly along the step. This effect should
improve the accuracy of our asymptotic formulas.

B. Step transparency

So far, we have assumed that adatoms are exchanged be-
tween neighboring terraces only via atom attachment and
detachment at steps; see Eq. (2a) with Lp = ∞. In the pres-
ence of step permeability, when the length Lp is finite, we
allow for the direct mass exchange between terraces [47]. In
principle, this mechanism eventually alters the total adatom
flux into the step, and thus the step velocity. Intuitively, we
expect this effect to be pronounced when strong enough step
permeability (small enough length Lp) is combined with suf-
ficiently high step edge barrier asymmetry. This behavior is
simply demonstrated in Fig. 4. Here, we capture this effect in a
prototypical setting by considering only the term that couples
the step velocity with the equilibrium adatom density of the
same step.

The procedure used in Sec. IV B for the setting with im-
permeable steps can be applied when Lp is finite. We will
explicitly show how the length Lp affects the emerging step
velocity law for strong desorption by neglecting kinetic step-
step interactions in the formalism.

Consider the geometry of Fig. 2. By boundary condition
(2a) we obtain

C̃+ = L+
adL−

ad

[(
∂C
∂ν

)+ − (
∂C
∂ν

)−] + L+
adLp

(
∂C
∂ν

)+

L+
ad + L−

ad + Lp
, (21a)

C̃− = L+
adL−

ad

[(
∂C
∂ν

)+ − (
∂C
∂ν

)−] − L−
adLp

(
∂C
∂ν

)−

L+
ad + L−

ad + Lp
, (21b)

where C̃ = C − Ceq denotes the deviation of the shifted
adatom density C from the equilibrium value Ceq at point x
of a step curve. Notice that each of the limiting values C̃±
depends on the fluxes at both sides of the same step. Hence,
the procedure of Sec. IV B implies that the resulting system of
boundary integral equations for the one-sided normal fluxes
couples all steps simultaneously, rather than merely coupling
the step to its nearest neighbors. In other words, in the pres-
ence of step permeability Eq. (14) should be replaced by a
system of equations that couples all steps. Since our focus
here is on local approximations for strong desorption, we omit
writing out the resulting system.

In the aforementioned framework of approximations, we
neglect all terms that produce couplings of the fluxes at a
given step to those of adjacent steps. Thus, the system of
equations for permeable steps becomes local, similar to the
situation described by Eq. (19b).

We further simplify the governing equations by neglecting
the kinetic curvature contributions to the adatom fluxes. Thus,
our asymptotics yield

C± � ∓Lev

(
∂C

∂ν

)±
,

at point x of a step curve. The combination of the last relation
and Eq. (21) furnishes the one-sided fluxes (cf. Fig. 2)

−Ds

(
∂C

∂ν

)+
� Ds

(1 − α+)L+
ad + α+L−

ad + Lev
Ceq, (22a)

−Ds

(
∂C

∂ν

)−
� − Ds

(1 − α−)L−
ad + α−L+

ad + Lev
Ceq, (22b)

where the (nondimensional) kinetic parameters α± are

α± =
(

1 + L∓
ad

L±
ad

+ Lp

L±
ad

+ Lp

Lev

L∓
ad

L±
ad

)−1

. (22c)

Note that 0 < α± < 1, and α± → 0 if Lp → ∞.
We comment on Eq. (22) for fixed Ceq. Evidently, the flux

in each side of the permeable step depends on an effective
attachment-detachment length equal to (1 − α±)L±

ad + α±L∓
ad,

which is a convex-type combination of the original lengths
L+

ad and L−
ad. Our asymptotic formulas reveal that if L−

ad >

L+
ad, which occurs for a positive Ehrlich-Schwoebel barrier

[45,46], the magnitude of the normal flux from the upper
terrace (“−” side of step) increases as Lp decreases, i.e., as
steps become more transparent. In contrast, the normal flux
into the lower terrace (“+” side of step) decreases.

Next, we describe the difference of the total adatom flux
into a permeable step from its counterpart for an impermeable
step. We choose to express this difference in units of J0 =
DsCeq/L+

ad. Therefore, we consider the quantity

δJ = Jper
⊥ − J imp

⊥
J0

, (23)

where JK
⊥ = Ds{(∂νC)+ − (∂νC)−} for permeable (K = “per”)

or impermeable (K = “imp”) steps. In this computation, we
invoke Eqs. (22a) and (22b). In Fig. 4, we display plots of
|δJ| as a function of the parameter L+

ad/L−
ad which signifies

the positive Ehrlich-Schwoebel barrier, for different values
of �p = Lp/L+

ad, which measures step transparency, with fixed
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value of Lev/L+
ad (Lev/L+

ad = 1) which expresses the desorption
strength. Note that small values of L+

ad/L−
ad amount to high step

edge edge barrier asymmetry. Small values of �p with fixed
length L+

ad imply strong step transparency. We conclude that
the effect of step permeability on the (scaled) total flux into
the step is favored by small values of L+

ad/L−
ad, when the barrier

asymmetry is appreciable. In addition, the ratio Lev/L+
ad must

not be too small. These results can be refined analytically by a
close inspection of our approximate formulas for the flux. We
choose not to pursue this task here.

VI. DISCUSSION

In this section, we discuss the validity and implications of
our approach. By use of an ad hoc anisotropic step free energy,
we check numerically the accuracy of our asymptotic formula
for the velocity of a single step (see Sec. VI A). We also
discuss implications of our main results, particularly the sig-
nificance of the kinetic lengths entering the simplified, local
step velocity law (Sec. VI B). Furthermore, we outline limi-
tations of our approach, which inspire other, open problems
(Sec. VI C). For example, we discuss the possible breakdown
of our hypothesis for smooth step curves; the character of
possible correction terms, to higher orders in the length Lev;
and the effect of surface electromigration which can modify
the integral equation formalism.

A. On the numerical validation of our approximations

Next, we carry out numerical simulations to check the
accuracy of Eq. (19b) for an isolated step (if N = 1) by
neglecting the term Levκ . In particular, using suitable coordi-
nates (r, ϑ ) for the step curve, we compare the approximate
prediction for r(ϑ ) at sufficiently long times to the cor-
responding result computed from solving Eq. (12) of the
boundary integral formalism by quadrature. Our numerics
capture the late-time morphological evolution of the step
curve, after any transient effects become negligible.

Let us review briefly the notion of the anisotropic step free
energy [4,25]. For an isolated step �, the total energy is

Est =
∫

�

γ [ν(y)] dsy,

where γ (ν) is the step free energy per unit length (line tension)
at the point y through the local normal vector ν to �. Assuming
that curve � is described locally as the graph of function
x(y), we write μ = A δEst

δx = Aγ̃ κ , where γ̃ is the step stiffness.
Abusing notation, we write γ̃ (ϑ ) = γ (ϑ ) + γ ′′(ϑ ) where ϑ

is the angle between the normal vector to � and the positive
x axis; the prime denotes differentiation with respect to the
argument. Recall that μ enters Ceq via relation Eq. (3a) with
ceq = Ceq + Fτ ; here, we have ceq = ceq

1 (since N = 1).
Motivated by Ref. [43], in numerics we use the following

model of step stiffness as a function of the step orientation
angle ϑ :

Aγ̃ (ϑ )

T
= {1 − 0.99 cos(6ϑ )}L, (24)

where L has the dimension of length. We use small enough
yet nonzero value of Fτ so that adatom diffusion reaches the
quasisteady regime at long times. If we start from a smooth

initial step shape close to a circle, then we expect that the step
curve approaches a limit, which we view as a “kinetic Wulff
shape” of the growth process [66]. By our choice of γ̃ (ϑ ) the
kinetic Wullf shape will resemble a regularized hexagon, with
slightly rounded corners and slightly curved edges.

We proceed to elaborate on our numerical simulations.
We use an initial circular step shape with radius R0 = L;
cf. Eq. (24). Subsequently, we scale all length scales and
spatial coordinates of our system by this R0; alternatively, set
R0 = 1 = L throughout. We assume that the step edge barrier
is symmetric, and thus set L−

ad = L+
ad = Lad with Lad/R0 = 1.

We also take (R0)2Fτ = 3 and cs = (R0)−2. Let us scale time
by t0 where Dst0/[R0(Lad + Lev)] = 0.5.

With our choice of parameters, our goal is to indicate that
desorption may plausibly enable the emergence of local geo-
metric laws during step motion, under suitable conditions. The
physical roles of these parameters can be outlined as follows.
The stiffness γ̃ is modeled phenomenologically to capture the
formation of smoothed corners in the step shape. We allow for
barely enough deposition flux F on the surface from above so
that growth can balance out desorption at intermediate times,
although growth becomes appreciable at long times. We apply
mixed kinetics in the sense that surface diffusion in the inner
terraces is balanced out by the attachment and detachment
of atoms at steps. In this regime, we show numerically that
there exists a time window in which local geometric laws
can occur during step shape evolution. In practice, this time
interval should be controlled by t0, which in principle depends
on the temperature and material, and the initial geometry. We
have not made any effort to implement parameters of specific
materials here.

In our numerical simulations, we let the step shape evolve
with time according to approximate Eq. (19b); or, alterna-
tively, according to the boundary integrals of Eq. (12) for a
few distinct values of the parameter Lev/R0. The respective
step shape, at the same scaled time t/t0, is depicted in Fig. 5.
We observe that in each case the step shape has practically
converged to a steady state. There are no significant differ-
ences between any of the generated shapes for the chosen
values of Lev/R0 (see comment below). Note that Eq. (19b)
for the step velocity, with the kinetic contribution Levκ set
to zero, produces the same late-time shape, regardless of the
value that we use for Lev/R0. This result is shown in the top
left panel of Fig. 5. The independence of this outcome from
Lev/R0 is expected since the simplified step velocity from
Eq. (19b) depends on the parameters Ds, Lad and Lev alone,
through the ratio Ds/(Lad + Lev) which is held fixed in our
numerics.

A few more comments on Fig. 5 are in order. An in-
spection of the plots based on Eq. (12) indicates that larger
values of Lev/R0 cause slightly less growth, as expected intu-
itively. Overall, the comparison of asymptotic and boundary
integral equation predictions is surprisingly favorable even
for values of Lev/R0 close to unity, as we discuss below.
We should point out that the underlying error is expected
to increase significantly for large enough values of Lev/R0.
Presumably, our leading-order asymptotic formula for the
step velocity breaks down if Lev/R0 becomes sufficiently
large.
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FIG. 5. Snapshots of step shape at long time via numerical simulations by use of: asymptotic formula according to Eq. (19b) with Levκ = 0
(top left panel); and boundary integral Eqs. (12a) and (12b) via quadrature. A single isolated step is used. The same scaled time t/t0 is used for
the snapshots. The initial shape is a circle of radius R0. The axes correspond to scaled spatial coordinates (x, y): X = x/R0 and Y = y/R0. Top
left panel: The result is independent of parameter Lev/R0. Remaining plots (boundary integrals by quadrature): Lev/R0 = 0.2, 0.4, 0.6, 0.8, 1.

We now briefly describe the error from the use of Eq. (19b)
with Levκ set to zero, for distinct values of Lev/R0. For this
purpose, we numerically compute the maximum relative error
in r(ϑ ) versus scaled time t/t0, by comparison to the corre-
sponding result of the boundary integral formalism according
to Eq. (12) via quadrature. This relative error is shown in
Fig. 6, for several values of Lev/R0. Our results confirm that
the relative error increases with Lev/R0. A surprising aspect
of this comparison is that even for Lev/R0 = 1 the error does
not exceed about 5%. For our chosen parameter values and
geometry, the step growth is relatively rapid which in turn fa-
vors small relative error. However, a choice of parameters that
causes relatively slow growth would result in larger relative
error.

The plot in Fig. 6 also indicates that the maximum relative
error reaches a minimum at t/t0 � 0.05. We have not been
able to provide a quantitative explanation for this lack of

FIG. 6. Plots of maximum relative error over scaled time in re-
gard to Eq. (19b) with Levκ = 0. Numerical simulations based on
Eq. (19b) are compared to simulations based on quadrature for the
boundary integral formalism of Eq. (12). The following values of
Lev/R0 are used: Lev/R0 = 0.2 (asterisk), 0.4 (cross), 0.6 (square),
0.8 (diamond), and 1 (circle).

monotonicity of the relative error with time. The minimum
appears to be a small effect overall, but tends to be a little
more pronounced for larger values of Lev/R0. We stress that
if Lev/R0 is small, approximately equal to 0.2 or smaller,
the computed maximum relative error is negligible, and its
nonmonotonicity with time is barely evident in our numerics.
This is the asymptotic regime that allows for the emergence
of geometric motion laws.

B. Prediction: Effective kinetic lengths

In this subsection, we review some of our results and
discuss their possible implications. We place emphasis on the
emergence of kinetic lengths in the simplified velocity law of
a single isolated step under strong desorption.

In the absence of step permeability, consider Eq. (19b) for
a single, isolated step. Now set the kinetic contribution Levκ

equal to zero. The step velocity has the form

v⊥ � −ADsL
−1
eff Ceq, (25a)

where Leff is an effective kinetic length defined as

Leff =
(

1

L+
ad + Lev

+ 1

L−
ad + Lev

)−1

. (25b)

In the above, the lengths L±
ad = Ds/k± express the step

edge barrier asymmetry (for k+ 	= k−). Notice that Leff is a
harmonic-type mean of the diffusion lengths L±

ad + Lev. Each
of these two lengths is the average distance that an adatom has
to travel via hopping on the respective terrace adjacent to the
step edge. We stress that Eq. (25) reduces to the classic result
of BCF for a circular step [15] without an Ehrlich-Schwoebel
barrier and if Ceq becomes a linear function of the local step
curvature, κ (see Sec. III A).
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Notably, our analysis provides an extension of Eq. (25)
to the setting with step permeability; cf. Eq. (22). The idea
suggested by this extension is that the step velocity remains of
the same form, Eq. (25a), yet with an effective length Leff that
introduces a ‘renormalization’ of the step edge asymmetry
lengths, L±

ad. Our results show the following related substitu-
tions:

L±
ad −→ (1 − α±)L±

ad + α±L∓
ad, (26)

where the constants α± are defined in Eq. (22c). Recall that
a key assumption in our analysis, which allows for this cor-
respondence, is that kinetic interactions between steps are
negligible because of the effect of strong desorption across
wide enough terraces. As a result, the intrinsically nonlocal
effect of step transparency becomes effectively local. Recall
Fig. 4, in which the settings with permeable and impermeable
steps are compared via the scaled normal flux δJ .

C. Limitations

Next, we outline limitations of our approach. In particu-
lar, we discuss the assumption that the step curve is fixed
and smooth. We also remark on the character of the cor-
rection terms, which would result in modifications of our
leading-order asymptotic formula for the step velocity. Fur-
thermore, we provide the example of an additional kinetic
effect, namely, surface electromigration, which would modify
a part of the integral equation formalism.

1. Smoothness of step curve

A major limitation of our formalism is the underlying
assumption about the geometry: the step is supposed to be
represented by a (given) smooth curve [58]. In fact, to be more
precise, each step curve must be twice continuously differen-
tiable with respect to the arclength on the crystal reference
plane. This hypothesis is questionable in many situations. For
instance, on a crystal surface with strongly anisotropic step
line tension, the step geometry can become singular, e.g., have
facets (straight lines).

We expect that our formalism can still be applied along
such facets on steps with the appropriate modification of
the local curvature [43]; but would presumably break down
near corners between facets. This pathology is partly caused
by the poor resolution of the distance between two points
on the opposite sides of the corner, since this distance is
not differentiable with respect to the step arclength at the
corner. Consequently, the approximation |y j (ς ) − y j (ς0)| �
|ς − ς0|Lev invoked in Sec. IVB3, where now the value ς =
ς0 corresponds to the corner position, becomes inaccurate
when |ς − ς0| is of the order of unity or smaller. Furthermore,
if the step line tension γ has an explicit dependence on the
step orientation then Ceq can be discontinuous at the corner
between two facets. Thus, the replacement of Ceq by a con-
stant, which we applied in our leading-order approximation
scheme (Sec. IV B), is expected to fail near the corner.

A plausible remedy would be to split the integration for
the relevant single- and double-layer potentials at the position
of the corner. We also need to adopt a more sophisticated
approximation for Ceq along the step. The simplest possible

scenario would be to replace Ceq by a different constant on
each side of the corner. This problem is not studied here.

If the step line tension γ (ϑ ), as a function of the orientation
angle ϑ , has corner singularities at each of its local minima
and the step edge is initially faceted at the corresponding
orientations, then the above approximation about Ceq being
piecewise constant becomes an exact property. This situation
is encountered in Ref. [43] where the authors invoke the no-
tion of the weighted mean curvature. Their computation relies
on the properties that the facet is perfectly flat and admissible
perturbations of the step shape preserve the character of this
facet. Our analysis cannot address this setting.

2. Correction terms

Our analysis so far mostly concerns the derivation of
leading-order formulas for step velocities. We have also in-
dicated the kinetic effect of curvature through the term Levκ

as well as the kinetic interactions of a step with its nearest
neighbors via effective terrace widths; see Secs. IV C and V.
This treatment points to at least two questions. One question
is: How can one derive higher-order terms of the asymptotic
expansion for the step velocity, with given smooth step shape?
Another, more challenging question is: Can such higher-order
terms be used reliably to describe the step morphological
evolution? We briefly discuss these issues.

Regarding the first issue, for a smooth step shape, one can
in principle derive correction terms to arbitrary order in the
length Lev via a suitable change of variable in the integrals
for the requisite potentials. We outline the procedure here for
the interested reader. The core idea relies on a standard but
elaborate procedure of classical asymptotics [63]. To convey
this idea, let us restrict attention to the single-layer potential
term Ŝi[ f ](x) when the point x lies in step �(i); f is the
normal flux. Suppose that the step curve is parametrized by
the scaled (signed) arclength ς . For sufficiently small Lev,
we need to expand part of the integrand around some value
ς = ς0, e.g., ς0 = 0. For the derivation of higher-order terms,
the approximation |yi(ς ) − yi(0)| � |ς |Lev, which we applied
previously for the argument of the kernel (Sec. IVB3), is no
longer adequate. Instead, we can handle this case by changing
the integration variable from ς to R according to R(ς ) =
|yi(ς ) − yi(0)|/Lev. This choice requires splitting the starting
integral in way that renders the distance function R(ς ) one-
to-one in each domain of the R-integration.

Subsequently, each integral can produce an expansion in
powers of Lev as follows. We can write the part of each
integrand other than the kernel as a polynomial in R, and
then integrate term by term. This task is carried out via the
approximation of the function f (ς ) as a polynomial in ς via a
Taylor expansion. By inversion of R(ς ), we can determine
the respective polynomial in R for f [63]. This procedure
suggests that, in the case of a single step, our analysis is
reasonable provided that the flux normal to the step does
not vary appreciably over arclengths of the order of Lev. The
details of this procedure are omitted here.

Despite the systematic derivation of higher-order terms in
Lev for the step velocity, as indicated above, their role in the
step morphological evolution is not addressed. For instance,
consider Eq. (19b) by regarding the kinetic contribution Levκ
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as the first correction. A natural question is whether the mo-
tion law for the step in the presence of this correction is well
posed or not. This aspect of our asymptotic results, namely,
the implications of the asymptotic expansion in Lev for the
actual step dynamics, where the geometry evolves with time
and thus forms part of the overall solution, is left unresolved.

3. Another kinetic effect: Surface electromigration

Next, we discuss the kinetic effect of surface electromi-
gration which requires a modification of our formalism. In
the presence of an external electric field E, the positively
charged adatoms are forced to move in its direction. This
motion causes a drift velocity vE which is given by [67–69]

vE = Ds(Z∗e)E
T

.

Here, the constant Z∗e is the effective adatom charge; |Z∗|
is greater than unity for metals but can be quite small for
semiconductors [68]. For simplicity, let us assume that E is
constant; thus, vE is constant. The electric field produces a
convective term in the diffusion equation for adatoms via the
drift velocity. Hence, the shifted adatom concentration C on
terraces satisfies the equation

�C = L−2
ev C + D−1

s vE · ∇C.

In addition, we impose Robin-type boundary conditions (2a)
for attachment and detachment of atoms at the step edges.

If we invoke the Green function G(x, y) (Sec. IV A), then
the standard procedure of the integral equation formalism
yields

−C(x) = vE

Ds
·
∫

�(i)
G(x, y) ∇yC(y) dy

+ Ŝi+1

[(
∂C

∂ν

)−]
(x) − Ŝi

[(
∂C

∂ν

)+]
(x)

− {D̂i+1[C−](x) − D̂i[C
+](x)}, x in �(i); (27)

cf. Eq. (9) in which we omit the ± superscripts. We can now
apply integration by parts to remove the gradient operator ∇y

from C in the integral of the first line in Eq. (27). Note that
the singularity of the ensuing term ∇yG(x, y), when x = y,
does not manifest since x is not let to coincide with y as yet.
We can then pull the gradient operator out of the respective
integral according to

−
∫

�(i)
∇yG(x, y)C(y) dy = ∇x

[∫
�(i)

G(x, y)C(y)dy
]
.

This equation may not be further simplified to yield bound-
ary integrals along steps. Hence, the use of the same Green
function G via Eq. (27) requires computing the shifted con-
centration field C on the whole terrace, in contrast to the spirit
of boundary integral equations in this paper.

Nonetheless, a boundary integral formalism can be derived
for this case by use of a different Green’s function Ǧ(x, y),
which accounts for the drift velocity vE . This Ǧ should
obey the equation {∇x · [ϕ(x)∇x] − L−2

ev }Ǧ(x, y) = δ(x − y),
where ϕ(x) = exp(−D−1

s vE · x) is an integrating factor im-
plied by the diffusion equation with a drift for density C.
This definition leads to a boundary integral formalism under

electromigration analogous to that of Sec. IV A. The analysis
of this problem will be the subject of future work.

VII. CONCLUSION

In this paper, we derived simplified formulas for the ve-
locities of line defects (steps) with fixed shapes on a crystal
surface under growth conditions below the roughening transi-
tion. The starting point is the BCF model in the quasisteady
regime, enriched with kinetic conditions for atom attachment
and detachment at steps as well as step permeability and diffu-
sion along steps. Our main assumptions are that the diffusion
length Lev due to evaporation on terraces is small compared
to the step linear size and radius of curvature, and each step
curve is smooth. We recognize that a narrow boundary layer
of adatom diffusion develops near the step edges. Hence, the
intrinsically nonlocal mechanism of adatom diffusion tends
to become local. The velocity of an isolated step can then
acquire a universal form which depends on the local geometry,
particularly the step curvature.

To describe this situation for a step train, we applied
asymptotics on a boundary integral formalism for the adatom
fluxes. A highlight of our results is the emergence of the free
boundary velocity as a linear superposition of equilibrium
adatom densities in the same as well as adjacent steps. The
contribution from the same step depends on the local curva-
ture both kinetically, through the leading-order behavior of
a double-layer potential, and thermodynamically via the step
chemical potential. By contrast, the kinetic interactions with
neighboring steps are expressed by decaying exponentials of
effective terrace widths. In the language of boundary layer
theory [52], these terms signify effects of the inner and outer
regions associated with the step boundaries.

Our analysis explicitly yields effective kinetic lengths that
enter the step velocity law. In particular, step permeability
causes the appearance of length scales that involve Lev and
two convex-type combinations of lengths associated with the
step edge barrier asymmetry.

Our results motivate further studies of crystal growth in the
step flow regime. For example, one can numerically compare
the local geometric laws of our asymptotics to the morpho-
logical evolution of multiple, kinetically interacting steps in
specific crystalline materials. Aspects of the 2D step mor-
phological evolution under strong anisotropy in vacuum are
left unresolved. For some anisotropic step free energies, the
formation of geometric singularities, e.g., microfacets and
corners, on steps poses a challenge. Another direction of
analytical interest concerns the effect of solvents on the step
velocity, when the crystal surface is immersed in a liquid.
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APPENDIX: ON THE CASE OF CONCENTRIC
CIRCULAR STEPS

In this Appendix, we provide details for the radial case that
were omitted in Sec. III A. We also outline how the approxi-
mation scheme of our integral formalism for noncircular steps
(Sec. IVB1) can properly reduce to the equations of motion
for concentric circular steps when rotational symmetry holds
(Sec. III A). In particular, we show that in the radial geometry
the single- and double-layer potential terms are evaluated by
use of modified Bessel functions.

First, let us revisit the radial setting of Sec. III A. We will
express the total adatom flux at a point of a circular step in a
form that will later enable us to make direct comparisons to
the boundary integral formalism. Consider the shifted adatom
concentration on the ith terrace �(i), viz.,

Ci(r) = aiI0(R) + biK0(R), R = r/Lev, ri < r < ri+1.

The values of the normal derivative of C = Ci at the bounding
steps, �(i) and �(i+1), are written in the matrix form[ (

∂C
∂ν

)+
i(

∂C
∂ν

)−
i+1

]
= L−1

ev

[
I1(Ri ) −K1(Ri )

I1(Ri+1) −K1(Ri+1)

][
ai

bi

]
, Ri = ri

Lev
,

where (∂C/∂ν)±j = ∂C/∂r at r = r j with j = i (+ sign) or
j = i + 1 (− sign). The Robin-type conditions (2a) for the
radial adatom flux yield the system

Ai

[
ai

bi

]
=

[
Ceq

i
Ceq

i+1

]
,

where the matrices Ai are defined by

Ai =
[

I0(Ri ) − L+
ad

Lev
I1(Ri ) K0(Ri ) + L+

ad
Lev

K1(Ri )

I0(Ri+1) + L−
ad

Lev
I1(Ri+1) K0(Ri+1) − L−

ad
Lev

K1(Ri+1)

]
.

Evidently, det(Ai ) = −L+
adL−

ad�i; �i is defined in Sec. III A.
Thus, the total flux into step �(i) for i 	= 1, N is

J tot
i = J tot

i,⊥ = Ds

[(
∂Ci

∂ν

)+

i

−
(

∂Ci−1

∂ν

)−

i

]
= Ds

Lev

[
I1(Ri )

−K1(Ri )

]T {
A−1

i

[
Ceq

i
Ceq

i+1

]
− A−1

i−1

[
Ceq

i−1
Ceq

i

]}
, (A1)

where the superscript T here denotes the transpose. This result
serves our purpose of connecting the explicit equations of
motion for the radial case to our boundary integral formalism.
In fact, we will show that Eq. (A1) exactly agrees with the
respective outcome of our boundary integral equations.

Next, we turn our attention to the formalism of Sec. IV,
which we will place in the radial setting. We begin by sub-
stituting the Robin-type boundary conditions (4b) directly
into Eq. (9). It is more algebraically convenient to proceed
this way, instead of invoking limy→x D̂i[ f ](y) = ∓ f (x)/2 +
/̂Di[ f ](x), because in this setting D̂i[1](y) has a simple expres-
sion, as we will see below.

The result of the above substitution for the terrace �(i)

(with Ci = C) reads

(Ŝi+1 + L−
adD̂i+1)

[(
∂C

∂ν

)−]
(x)

+ (−Ŝi + L+
adD̂i )

[(
∂C

∂ν

)+]
(x)

= D̂i+1
[
Ceq

i+1

]
(x) − D̂i

[
Ceq

i

]
(x) − C(x), (A2)

where x lies in �(i). This formalism can be extended to the
extremal terraces, where i = 0 or i = N , by the introduction
of zero terms pertaining to the (nonexistent) steps �(0) and
�(N+1). Accordingly, we can obtain a system of integral equa-
tions on curves �(i) and �(i+1), which bound terrace �(i), by
allowing x to approach each of these steps from inside �(i).

Now let us focus on simplifications due to the radial geom-
etry. We notice that the (assumed isotropic) step free energy,
the fluxes, the layer potentials Ŝ j[1](x) and D̂ j[1](x), and the
shifted density Ceq

j are all constant along the respective side
of a given step edge. Consequently, we can now use the same
replacement that was previously employed for the derivation
of Eq. (13), bearing in mind that in the present setting this
equation is exact. The result is the system

[Ŝi+1[1](x) + L−
adD̂i+1[1](x)]

(
∂C

∂ν

)−
(x)

+ {−Ŝi[1](x) + lim
y→x

[L+
adD̂i[1](y)]}

(
∂C

∂ν

)+
(x)

= D̂i+1[1](x)Ceq
i+1(x) − lim

y→x
[D̂i[1](y)]Ceq

i (x)

− Ceq
i (x) − L+

ad

(
∂C

∂ν

)+
(x), x in �(i); (A3a)

and

{Ŝi+1[1](x) + lim
y→x

[L−
adD̂i+1[1](y)]}

(
∂C

∂ν

)−
(x)

+
[
−Ŝi[1](x) + L+

adD̂i[1](x)

(
∂C

∂ν

)+]
(x)

= lim
y→x

[D̂i+1[1](y)]Ceq
i+1(x) − D̂i[1](x)Ceq

i (x)

− Ceq
i+1(x) + L−

ad

(
∂C

∂ν

)−
(x), x in �(i+1). (A3b)

It remains for us to evaluate the requisite layer potentials
when the steps �(i) are concentric circles with radii ri. First,
consider the single-layer potential terms. By using polar coor-
dinates, for x in �( j) we have

Ŝk[1](x) = −Lev

2π

∫ π

−π

K0
(√

R2
j + R2

k − 2RjRk cos θ
)
Rk dθ.

Consider Graf’s addition formula [57], viz.,

K0(
√

Z2 + �2 − 2Z� cos θ ) =
∞∑

n=−∞
Kn(Z )In(�) einθ ,

where Z > 0, � � 0, and Z � � (for real Z and �). By using
this formula, and interchanging the order of integration and
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summation for Ŝk[1](x), we find (for x in �( j))

Ŝk[1](x)

= − rk

2π

∞∑
n=−∞

∫ π

−π

Kn(max{Rj, Rk})In(min{Rj, Rk})einθ dθ

= −LevRkK0(max{Rj, Rk})I0(min{Rj, Rk}). (A4)

Subsequently, we proceed to evaluate the double-layer po-
tential terms. We distinguish the following cases. We start
with the term D̂i+1[1](x), where the evaluation point x lies
in terrace �(i). In this case, we need the normal derivative

∂

∂ν(y)
G(x − y)

= − 1

2π

∂

∂rk

∞∑
n=−∞

Kn(Rk )In

(
|x|
Lev

)
einθ

= 1

4πLev

∞∑
n=−∞

{Kn+1(Rk ) + Kn−1(Rk )}In

(
|x|
Lev

)
einθ ,

where |y| = rk > |x|. Note that the derivative is taken with
respect to the larger radius. For k = i + 1, we obtain

D̂i+1[1](x) = Ri+1K1(Ri+1) I0

(
|x|
Lev

)
, x in �(i).

The next calculation concerns the double-layer potential
term D̂i[1](x), where x lies in �(i). The requisite normal
derivative involves changing the smaller radius. We compute

∂

∂ν(y)
[G(x − y)] = − 1

4πLev

∞∑
n=−∞

× {In+1(Rk ) + In−1(Rk )}Kn

( |x|
Lev

)
einθ ,

for |y| = RkLev < |x|. Upon integration with k = i, we have

D̂i[1](x) = −RiI1(Ri ) K0

(
|x|
Lev

)
, x in �(i).

At this stage, we comment on the relation between D̂i(y)
and D̂i(z) when y lies in �(i) and z lies in �(i−1), and both

points approach point x in step �(i). We explicitly compute

lim
y→x

D̂i[1](y) − lim
z→x

D̂i[1](z)

= Ri{K1(Ri )I0(Ri ) + K0(Ri )I1(Ri )} = 1, (A5)

where Ri = |x|/Lev. The above formula is a special case
of the limit limy→x D̂i[ f ](y) = ∓ f (x)/2 + /̂Di[ f ](x), used in
Sec. IV. Equation (A5) comes from a Wronskian [57] and is
useful throughout our algebraic manipulations.

With the expressions for the layer potentials at hand, we
can rewrite integral equation system (A3). Thus, we obtain

Ri+1{−LevK0(Ri+1)I0(Ri ) + L−
adK1(Ri+1)I0(Ri )}

(
∂C

∂ν

)−

+ Ri{LevK0(Ri )I0(Ri ) − L+
adI1(Ri )K0(Ri )}

(
∂C

∂ν

)+

= Ri+1K1(Ri+1)I0(Ri )C
eq
i+1 + RiK1(Ri )I0(Ri )C

eq
i

− Ceq
i − L+

ad

(
∂C

∂ν

)+
, (A6a)

Ri+1{−LevK0(Ri+1)I0(Ri+1) + L−
adK1(Ri+1)I0(Ri+1)}

(
∂C

∂ν

)−

+ Ri{LevK0(Ri+1)I0(Ri ) − L+
adI1(Ri )K0(Ri+1)}

(
∂C

∂ν

)+

= Ri+1K1(Ri+1)I0(Ri+1)Ceq
i+1 + RiK1(Ri+1)I0(Ri )C

eq
i

− Ceq
i+1 + L−

ad

(
∂C

∂ν

)−
. (A6b)

Here, C = Ci and (∂C/∂ν)± denotes the normal derivative of
C evaluated at point x of step �(i) (+ sign) or point y of step
�(i+1) (− sign). By solving Eq. (A6), we realize that the total
flux into step �(i) takes the form

J tot
i = Ds

{[
1
0

]T

B−1
i Di

[
Ceq

i
Ceq

i+1

]
−

[
0
1

]T

B−1
i−1Di−1

[
Ceq

i−1
Ceq

i

]}
.

(A7)

The matrices Bi and Di are defined by

Bi =
[

Ri{L+
adI0(Ri )K1(Ri ) + LevK0(Ri )I0(Ri )} Ri+1{L−

adK1(Ri+1)I0(Ri ) − LevK0(Ri+1)I0(Ri )}
Ri{−L+

adI1(Ri)K0(Ri+1) + LevK0(Ri+1)I0(Ri )} −Ri+1{L−
adK0(Ri+1)I1(Ri+1) + LevK0(Ri+1)I0(Ri+1)}

]
,

Di =
[−RiI0(Ri)K1(Ri ) Ri+1K1(Ri+1)I0(Ri )

RiI1(Ri )K0(Ri+1) −Ri+1K0(Ri+1)I1(Ri+1)

]
.

Let us summarize the results of this Appendix so far. On the one hand, the formalism of Sec. III A yields Eq. (A1) for J tot
i in

terms of Ceq
j ( j = i, i ± 1), by use of matrices Ai. On the other hand, the boundary integral equation formalism of Sec. IV, with

the evaluation of the layer potentials via Graf’s addition formula, furnishes Eq. (A7). It remains to compare Eqs. (A1) and (A7).
To this end, we carry out some algebra in which we apply Eq. (A5). We omit further details here. The explicit calculation of J tot

i
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by each formula, Eqs. (A1) and (A7), yields the same expression, viz.,

J tot
i =Ds

(
−

{
[L+

adK1(Ri−1) + LevK0(Ri−1)]I1(Ri ) − [L+
adI1(Ri−1) − LevI0(Ri−1)]K1(Ri )

�̃i−1

+ [L−
adI1(Ri+1) + LevI0(Ri+1)]K1(Ri ) − [L−

adK1(Ri+1) − LevK0(Ri+1)]I1(Ri )

�̃i

}
Ceq

i

+Lev

Ri

(
Ceq

i+1

�̃i
+ Ceq

i−1

�̃i−1

))
(i 	= 1, N ); �̃i = −L2

ev det(Ai ). (A8)

Recall that �̃i is related to the �i introduced in Sec. III A by �̃i = L2
evL+

adL−
ad�i.
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