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Combinatorial topology and geometry of fracture networks

A. Roy ,1,2,3 R. A. I. Haque ,2,3 A. J. Mitra ,4 S. Tarafdar ,3 and T. Dutta 2,3,*

1Physics Department, Charuchandra College, Kolkata 700029, India
2Physics Department, St. Xavier’s College, Kolkata 700016, India

3Condensed Matter Physics Research Centre, Jadavpur University, Kolkata 700032, India
4Mathematical Sciences, Montana Tech, Butte, Montana 59701, USA

(Received 1 August 2021; accepted 21 February 2022; published 10 March 2022)

A map is proposed from the space of planar surface fracture networks to a four-parameter mathematical space,
summarizing the average topological connectivity and geometrical properties of a network idealized as a convex
polygonal mesh. The four parameters are identified as the average number of nodes and edges, the angular defect
with respect to regular polygons, and the isoperimetric ratio. The map serves as a low-dimensional signature of
the fracture network and is visually presented as a pair of three-dimensional graphs. A systematic study is made
of a wide collection of real crack networks for various materials, collected from different sources. To identify the
characteristics of the real materials, several well-known mathematical models of convex polygonal networks are
presented and worked out. These geometric models may correspond to different physical fracturing processes.
The proposed map is shown to be discriminative, and the points corresponding to materials of similar properties
are found to form closely spaced groups in the parameter space. Results for the real and simulated systems are
compared in an attempt to identify crack networks of unknown materials.

DOI: 10.1103/PhysRevE.105.034801

I. INTRODUCTION

A large body of literature exists on the formation and
propagation of cracks and the network of structures they form
[1–8]. Fluid transport through a “crack network” [9–12], scal-
ing laws in fracture interfaces [13–16], and mechanisms of
failure [17–20] are certain aspects of fracture systems that
have been widely studied since the early 1980s. Some inter-
esting mathematical aspects of the crack networks, however,
remain inadequately focused. In this paper our concern is not
a single crack but a network of cracks. Cracks often form
networks with distinctive patterns, as seen for example, in
mud cracks besides a dried river bed or in a shattered glass
pane. The patterns consist of solid polygonal shapes separated
by narrow gaps, which are the cracks. Borrowing a term from
geology we may call the solid polygons “peds.” The focus of
our interest is on two aspects: (i) the geometry, that is, the
shapes and relative sizes (size distribution) of the peds and
how they depend on various factors creating the crack pattern,
and (ii) the topology, that is, the connectivity of the pattern—
how the adjacent peds connect with each other and how the
crack network pervades the whole system and related features.
Our goal is to collect experimental results on real systems as
well as crack networks simulated through different algorithms
to finally analyze and classify them using the above concepts
and appropriate measures.

Various statistical measures have often been used to de-
scribe spatial structures in physical systems, porous systems,
complex fluids, and biological and cosmological systems
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[21–26]. The scale-invariant branching structure of the crack
network makes it a natural paradigm for fractal systems and
several such. studies exist [27–32]. Summary statistics such
as distance characteristics, spherical contact distribution func-
tion, and J function, as well as second-order characteristics
such as two-point correlation function, Ripley’s K function
[33], and the L function have generally been utilized [34–39].
Mecke et al. [40] introduced a morphological description of
a triplet function that constituted of normalized values of
integral-geometric quantities of area, boundary length, and
Euler number of patterns of disks centered on the points
of a stationary point distribution, in an approach similar to
Adler [41] and Worsley [42–44]. Andresen et al. [45] have
analyzed the topology of three-dimensional fractured systems
as an abstract map of nodes and links using tools of network
theory. Hope et al. [46] have worked with Poissonian dis-
crete fracture model and a mechanical discrete fracture model
in three dimensions (3D) to study the effect of constrained
fracture growth models on topology. However, a systematic
and comprehensive topology-geometry based study of planar
polygonal crack networks where the physical crack network
is considered as a tessellation of the Euclidean plane seems to
be missing.

As planar polygonal tessellations (also known as mosaics
or tilings) are a vibrant area of geometry, it would be useful to
bring forth established tools and measures from geometry to
the study of physical crack networks, which are often polygo-
nal or nearly polygonal.

In the present paper, we propose a 4-tuple (n, v, D, λ) to
classify planar surface crack networks, including both convex
and nonconvex polygons, as discussed in detail in Sec. II. In
brief, the first two elements of the 4-tuple are the average
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number of nodes and vertices of the network and form a
(n, v) pair, which determines the topological connectivity of
the network. This information encodes connectivity informa-
tion of tessellations, similarly to the idea of the coordination
number in sphere packings [47]. The angular defect D mea-
sures average geometric regularity through the deviation in
polygonal angles comparing with a regular polygon having
same number of sides. Finally, λ the normalized isoperimetric
ratio quantifies the polygonal shape.

One may expect that crack networks on similar mate-
rials, or having similar modes of cracking [48] or similar
underlying mechanisms, will show up as clusters in this
four-dimensionsal space. It is hoped that with sufficient data
on crack networks, a “well-stocked” four-parameter phase
space may be constructed. Ideally, this may act as a cali-
bration space for any crack network which will then find its
place as a point on any one of the classified clusters. This
kind of crack network calibration will immediately provide
insight into material information, crack modes, and mecha-
nisms responsible for an unidentified crack pattern. Any time
evolution of a crack network will draw out a trajectory in
this phase space and shall hold the key to understanding
the underlying principles that are responsible for such tran-
sitions.

In Sec. II after a brief discussion on cracks and mosaic,
the theory for analyzing the topology and geometry of planar
polygonal mosaics is introduced. Section III describes image
processing and analysis on real crack systems followed by
studies on simulated crack mosaics in Sec. IV. In Sec. V the
real and simulated crack mosaics are compared, followed by
discussions on our findings in Sec. VI. Finally, we provide
a conclusion, Sec. VII, summarizing the essential points that
emerge from this study.

II. CRACKS AND MOSAICS

The formal study of cracks began with the well-known
Griffith theory [49], which has developed into a full-fledged
subject with many books and reviews exclusively devoted to
its study [45,48,50–58]. We emphasize once more that our
interest in this paper is the closed two-dimensional networks,
which cracks often form, resembling regular patterns of tiles
and mosaics. In the present paper we restrict ourselves to the
study of crack patterns in a plane only. The field of cracks
in solid media is of course much wider. Usually cracks in
solids are in the form of planes. In three dimensions the planes
intersect each other, breaking up the solid into cuboids of var-
ious shapes. For crystalline materials there may be symmetry
constraints. In this paper, we are effectively looking at a planar
section of such a cracked sample crisscrossed by intersecting
planar cracks at various angles.

There is one case of cracks in three dimensions which is
particularly interesting. This is the formation of “columnar
joints,” which are close-packed nearly parallel basalt columns,
with a mostly regular hexagonal cross section [59–61]. Par-
ticular ambient conditions are required for the formation
of these special class of structures. There is evidence of
three-dimensional crack patterns with rectangular geometry,
evolving toward such hexagonal patterns with time [62].

FIG. 1. (a) Regular nodes on rectangular and triangular lattices.
(b) Irregular nodes on rectangular and triangular lattices. (c) Both
regular and irregular nodes are present. (d) A, B, and C are polygons
in a schematic mosaic, nodes marked by numbers 1—9; tabulation
of nodes and vertices of each polygon; and tabulation of regular and
irregular nodes of the mosaic.

A. Background on planar mosaics: Their topology
and geometry

A two-dimensional mosaic (also called a planar tessellation
or tiling) is a countable set of compact regions that cover
the plane and intersect pairwise only at their boundaries. The
regions considered in this work are idealized to be convex and
polygonal. For the real cracks, natural or experimental, con-
sidered in this work this is not a restrictive assumption, as the
mosaics in such cracks have finitely many regions. However,
this assumption is an important hypothesis in developing the
theory. Mosaics of the Euclidean plane composed of convex
polygons, regular or irregular, have been extensively studied
[63].

1. Quantifying the combinatorial topology of convex polygonal
planar mosaics

Following usual terminology, each zero-dimensional face
of a polygonal region is called a vertex, and each one-
dimensional face is called an edge. The vertices of the cells are
referred to as the nodes or junction points of the mosaic. Every
node (junction point) on the boundary of a given polygon may
not be a vertex on that polygon. If a node is the vertex of n
cells, then the node is said to have degree n. Nodes of degree
0 are not considered. A cell having v vertices, is assigned a
degree v.

A node is termed regular if it is the vertex of each cell on
whose boundary it lies, as is represented in Fig. 1(a) where
all nodes are regular. If a node is not regular, then it is called
an irregular node of the mosaic, as is represented in Fig. 1(b)
where all nodes are irregular. Figure 1(c) displays a lattice
with both regular and irregular nodes. Figure 1(d) illustrates
the differences between nodes and vertices and between regu-
lar and irregular nodes. A schematic of a polygonal mosaic of
which three polygons A, B, and C are highlighted is shown.
The nodes (junction points) are numbered from 1 to 9. Given a
planar convex mosaic, we consider the number average values
of the degrees n and v, n and v, respectively, over the entire
mosaic. If the mosaic is infinite, then we consider the limits
of the averages of these degrees over planar disks with radius
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FIG. 2. (a) (n, v) phase diagram. The range (2,4) to (4,4), i.e.,
bricklayer type to square-tiled type patterns, cluster around “Platonic
attractor.” Hexagonal tiling pattern with (3,6) cluster around the
“Voronoi attractor.” (b) θi for a four-sided polygon and a five-sided
polygon. Corresponding regular polygons are shown in dotted lines.

going to infinity. Finally, the regularity index p of the mosaic
is measured by the ratio of regular nodes to the total number
of nodes in the mosaic.

Any convex polygonal normal mosaic must lie in a com-
pact combinatorial domain in the (n, v) plane.

It can be easily shown that

p + 1

n
+ 2

v
= 1, (1)

where v � 3 is the total number of vertices of a polygon. This
relation gives a natural combinatorial classification of mosaics
by their p regularity, referred to as iso-p lines.

For the values of p = 0 and p = 1, the above gives two
more natural combinatorial curved boundaries for the (n, v)
domain. Moreover, for any regular node n � 3, and for any
irregular node n � 2 (Fig. 1). Thus the average number of
polygons per node of the mosaic must also satisfy the mini-
mum number p · 3 + (1 − p) · 2 = p + 2 or

n � p + 2. (2)

Combining Eq. (1) with the condition Eq. (2), the final bound-
ary of v � 2n is defined. This defines the two-dimensional
(n, v) plane for all convex polygonal normal mosaics,
schematically shown in Fig. 2(a). Domokos et al. [64] carried
out extensive fieldwork on fractured materials and concluded
that there were primarily two regions on the allowed (n, v)
map where patterns generated by natural fragmentation of
rocks and soil tended to cluster.

A group of natural crack mosaics could be classified
as having (n, v) ranging from (2,4) to (4,4). This implied
rectangular patterns, ranging from irregular toward regular.
Domokos et al. considered rectangular or cubic symmetry
as the “Platonic attractor.” Another group of natural crack
mosaics had (n, v) values clustered around (3,6), implying
hexagonal symmetry which is referred to as the “Voronoi
attractor.”

2. Angular defect D and the (n, v, D) space

To further distinguish between cracks occurring in nature,
a measure of geometric regularity of a mosaic in the form
of its nondimensionalized “angular defect” is introduced. The
defect θi is a function of the angular departure of the ith vertex
of a polygon with respect to the internal angle of a regular
polygon of the same number of sides [Fig. 2(b)]. For the N th
polygon, this takes the form

DN = 1
∑vN

i=1

∣
∣θi − (vN −2)π

vN

∣
∣ + 1

, (3)

where vN is the number of vertices of the N th polygon. The
measure of the geometric regularity of the entire mosaic is
given by

D =
∑M

i=1 Di

M
. (4)

where M is the total number of polygons (cells) in the mosaic.
By construction, these measures DN and D are in [0,1]. For
a possible classification of planar mosaics, the combinatorial
and geometric classifications above are combined into a sin-
gle (n, v, D) space. This gives a compact three-dimensional
domain wherein all our convex planar mosaics must lie.

3. Normalized isoperimetric ratio λ and the (n, v, λ) space

The classical isoperimetric inequality [65] says that if a
planar simple closed curve of length L has enclosed area
A, then L2 � 4πA. This motivates another nondimensional-
ized measure, the “normalized isoperimetric ratio” λ = 4πA

L2

(averaged out over the entire mosaic) as a possible way of
distinguishing between cracks occurring in nature. Thus the
isoperimetric ratio may be a convenient dimensionless quan-
tity to describe and classify the shapes of the polygonal peds
that constitute the crack network. A circle has λ = 1, and
a regular n-gon has λ = π

n
tan( π

n ) , which increases with n and
converges to 1. So λ varies from 1 toward 0 as the structure of
the polygons of the network changes from relatively circular
toward more and more elongated shapes. As in the case of
angular defect, for the N th polygon one calculates λN for that
polygon, and then

λ =
∑M

i=1 λi

M
, (5)

where M is the total number of polygons (cells) in the mosaic.
The three-dimensional space (n, v, λ) gives a quantitative

description of the possible crack mosaics, in addition to the
(n, v, D) space described earlier.

4. The parameter space of quadruples (n, v, D, λ)

Henceforth in this work every crack mosaic whether real or
simulated will be represented by the quadruples (n, v, D, λ),
which are points in a subset of R4. The discussion in
Sec. II A 1 shows that for a specific mosaic, n and v are
related [by Eq. (1)]; therefore if n and p are known, then v

is determined up to errors coming in due to nonconvexity and
boundary effects.

A primary interest in this work being low-dimensional
classification and visual representation of crack networks
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by their topology and geometry, the crack mosaics shall
be represented as points in two separate three-dimensional
spaces—the space of points (n, v, D) and the space of points
(n, v, λ).

III. DATA EXTRACTION FROM REAL CRACK MOSAICS

In this section, crack mosaics from different physical
systems are examined and classified according to their topo-
logical and geometrical characteristics as representative points
in the (n, v, D, λ) space, the purpose being twofold: (1) to
examine if cracks of similar materials, or having similar
modes of cracking or similar forcing mechanisms, form any
distinctive cluster in the (n, v, D, λ) space and (2) to compare
the position of the mosaic points against representative points
from simulated crack mosaics. If the first quest is positive,
then we shall have a guide to identify the character of an
unknown material from its crack mosaic using its position
in the three-dimensional (n, v, D) and (n, v, λ) spaces. From
the second quest, any favorable comparison between real and
simulated cracks may help to understand crack mechanisms
following the geometric algorithms driving the simulated sys-
tems.

A. Extracting crack skeleton from images

In this section we describe analysis of experimental crack
patterns obtained in our laboratory [66–73] following algo-
rithms developed as required to arrive at (n, v, D, λ) data for
physical systems.

To extract information about the crack-ped network, proper
grayscale thresholding of the images was done through in-
house coding in conjunction with suitable library functions.
As most images of real crack networks considered here
were two-dimensional planar systems, thresholding follow-
ing Otsu’s binarization [74] was sufficient to reduce noise.
A binary bit-map of the image is constructed from which
the skeleton of the crack mosaic is extracted using standard
Python libraries [75] [Figs. 3(a)–3(c)]. As the algorithm of
crack skeleton extraction is based on the idea of joining the
midpoints of crack width, a slight change in the shape of
system boundary may be introduced during the skeletoniza-
tion process. For a large crack mosaic, one may neglect a
boundary layer of polygons to circumvent this problem. The
crack skeleton, painted white, has a thickness of a single pixel,
and effectively constitutes the mosaic for all analysis. If a
pixel on the skeleton is shared with more than two white
pixels in a δ neighborhood, then it is identified as a node or
junction point [Fig. 3(d)]. All the nodes of the skeletonized
mosaic are thus identified and tagged. The mosaic polygons
painted white now are identified using the Hoshen-Kopelman
algorithm1 [76] and tagged [Fig. 3(e)] the cracks are marked
in black.

1This is a variant of the Union-Find class of algorithms commonly
used in computer science.

FIG. 3. Sequential steps toward determination of (n, v, D) data.
(a) Desiccated layer of bentonite clay. (b) Binary image after suitable
filtration of noise with a schematic of crack skeleton extraction
with respect to midpoints of crack width. (c) Skeletonized image.
(d) All nodes (junction points) detected on skeleton. (e) All polygons
identified and labeled. (f) Vertices v determined and marked on each
polygon. (g) Nodes n determined and marked. (h) Superposition of
Voronoi mosaic constructed (red edges) from centroids of real crack
polygons.

B. Identification of nodes in a crack mosaic

As explained earlier, all nodes are not vertices. Identifying
the vertices of any polygon is a nontrivial issue. For this,
angles formed by three consecutive junction points of a poly-
gon are measured. However, crack mosaics of real systems
can contain both convex and nonconvex polygons and the
algorithm for determining the angles at the nodes changes ac-
cordingly. Thus it is important to ascertain the convexity of the
polygon being considered. This is achieved by constructing
the convex hull of all nodes of a polygon through the “gift
wrapping algorithm” [74]. If even one node of the polygon is
not contained on the convex hull, then the polygon is identified
as nonconvex.

1. Characterizing convex polygons in a crack mosaic

For convex polygons, the first challenge lies in tagging
every node to each polygon that contains it. This process
begins with the determination and tagging of the centroid of
every polygon. The polygon is then traversed along its edges
following a fixed direction, either clockwise or anticlockwise.
In this process the angle that the polygon centroid makes at
every junction point is calculated. Our algorithm identifies a
node (junction point) as a vertex of a particular polygon if
the angle θ between two consecutive edges of the polygon is
180◦ ± ε, where ε = 15◦. This process establishes the vertex-
edge connectivity of every polygon. If a node (junction point)
is not a vertex of the polygon, then it is tagged as an irregular
node of the mosaic. This protocol of distinguishing vertices of
polygons fails if the polygons are nonconvex.
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FIG. 4. (n, v) data of real and simulated crack mosaics. The
legend indicates the source of experimental crack mesh. The iso-p
lines at p = 0.3 and p = 0.5 are drawn as a guide to the eye.

2. Characterizing nonconvex polygons in a crack mosaic

The problem of computationally identifying nonconvex
polygons in a mosaic is well known to be messy. If the de-
gree of nonconvexity is small, then most often the problem
of nonconvex polygons is bypassed by replacing them with
the approximately closest convex polygons. In many cases
this problem is avoided by simply neglecting the contribution
of nonconvex polygons to the statistics, especially if the ra-
tio of the number of nonconvex to convex polygons is very
small. However, the experimental crack meshes studied by the
authors in this work are finite sized. Therefore any approxi-
mation or neglect of nonconvexity can be expensive and lead
to poor statistics. Hence contribution of nonconvex polygons
in determining the (n, v, D, λ) point of a crack mosaic is
accounted for in this work. Details of the process are worked
out in the Appendix.

C. Mapping the topology of real cracks on the (n, v) plane

Once all the nodes and vertices of every polygon are cal-
culated, the average n and average v for the entire mosaic can
be determined. Figures 3(f) and 3(g) display, respectively, the
degrees v and n on the crack mosaic on bentonite clay.

Figure 4 displays the (n, v) points of all experimental crack
mosaics studied. The iso-p lines at 0.5 and 0.3 are drawn to
guide the eye to the fraction of regular nodes in these crack
mosaics. As natural crack mosaics are mostly irregular, there
is a clustering of data points between p = 0.3 to p = 0.5. At
the scales displayed in the figure, another notable point is that
most of the data points are clustered around a small region
in space, though the crack mosaics studied, included different
types of materials—natural mud, natural clay as in bentonite,
synthetic clay as in laponite, corn starch, resin, glass, and
metal oxide films. It appears that the (n, v) measures may not

be sufficient to indicate clustering of similar materials through
crack analysis as the materials which these points represent
have widely different physical and chemical properties. There
is also the suggestion that one needs to look at finer scales of
measures to identify distinct crack clusters.

D. Refining by geometric measures: The (n, v, D, λ) space

Having realized that combinatorial topology alone is not
sufficient to distinguish crack patterns of different materials,
the next logical step is to measure the geometrical charac-
teristics. The parameter D, already defined in Eq. (3), which
measures the average angular defect, may serve as one ap-
propriate measure. However, the angles alone do not fully
specify the polygon, as a polygon having same angles, can
be constructed with larger or smaller area and perimeter. The
parameter λ [defined in Eq. (5)] provides a prescription for
varying the shape of a polygon keeping the angles constant.
That is, varying λ can make the polygon wider or thinner,
relatively tending toward a circular or elongated shape.

The average angular defect of the entire mosaic is evaluated
using Eqs. (3) and (4). The regularity index p and the isoperi-
metric ratio λ [Eq. (5)], for the mosaic is also determined.
Finally, the mosaic can be now represented as a point in the
(n, v, D) and (n, v, λ) spaces.

E. Features of real crack mosaics on the (n, v, D, λ) space

For all real cracks studied experimentally or from field
work, the average topological and geometrical features may
be represented as points in the (n, v, D, λ) space. To show
the results pictorially we plot three-dimensional (n, v, D) and
(n, v, λ) graphs where results for experiments on different
materials can be compared as in Fig. 5. Almost all the data
points are contained inside the allowed space defined analyt-
ically. Real cracks are inhomogeneous and disordered and a
good measure of n, v requires a large polygonal mesh. The
experimental cracks reported in this paper have not always
been measured on large-enough systems, thereby bringing in
unwarranted boundary effects. While boundary effects cannot
be avoided in real systems, it is desirable that the ratio of the
number of boundary polygons to inner polygons, be as small
as possible, and the number of polygons in the mesh be as
large as possible to give robust statistics. In the cases where
these conditions were not satisfied, the (n, v, D) representa-
tive data point appeared outside the analytical (n, v, D) space
[Figs. 5(a1 and a2)]. The real crack mosaics examined here
throw up points that are clustered around n = 2 and v between
3.5 and 4 and D values between 0.38 to 0.46. Figure 4 shows
that for n = 2, only allowed v is 4, whatever D and λ.

An insight into the shape of the polygonal meshes is pro-
vided by the isoperimetric ratio λ. The parameter λ for the
mosaic is the average λ over all the polygons of the mesh.
Table I displays the average geometrical measures for 22
experimental crack mosaics studied.

The (n, v, λ) data for the crack mosaics are dis-
played in Figs. 5(c1 and c2). Similar systems appear
to have their (n, v, λ) data in clusters, distinguished
by their colors. Figures 5(b) and 5(d) are zoomed-
in versions of Figs. 5(a) and 5(c), respectively, to

034801-5



ROY, HAQUE, MITRA, TARAFDAR, AND DUTTA PHYSICAL REVIEW E 105, 034801 (2022)

TABLE I. Measures of real crack mosaics.

Sample n v dH DN Average DN λ Average λ

Bentonite 2.442 4.479 30.36 0.463 0.463 0.739 0.739
Laponite (pH 10) [66] 2.333 4.136 16.12 0.483 — 0.579 —
Laponite (pH 13.05) 2.048 4.0 42.48 0.415 0.446 0.618 0.6179
Laponite (pH 13.45) 2.410 4.093 33.61 0.484 — 0.625 —
Laponite (pH 6.73) 2.411 4.353 14.86 0.467 — 0.647 —
Corn starch [67] 2.5 4.166 16.40 0.466 0.446 0.674 0.614
Potato starch [67] 2.606 4.411 22.36 0.425 — 0.554 —
PDMS [68] 2.731 4.569 19.41 0.428 — 0.618 —
PDMS [68] 2.644 4.438 20.25 0.445 0.454 0.587 0.609
PDMS [68] 2.477 4.212 21.37 0.453 — 0.612 —
PDMS [68] 2.207 4.047 33.3 0.490 — 0.619 —
TiO2 (primary) [69] 2.025 3.9 46.87 0.415 — 0.513 —
TiO2 (secondary) [69] 2.419 3.794 17.88 0.461 0.438 0.497 0.505
Tempered glass [70] 2.208 4.276 31.95 0.416 — 0.547 —
Tempered glass [70] 2.309 4.141 29.15 0.428 0.422 0.548 0.547
Simulated glass [71] 2.318 4.136 31.76 0.414 — 0.456 —
Simulated glass [71] 2.415 4.236 31.78 0.407 0.411 0.498 0.477
Resin [72] 2.284 4.868 29.83 0.410 — 0.789 —
Resin [72] 2.063 4.482 32.52 0.370 0.398 0.657 0.724
Resin [72] 2.236 4.472 38.6 0.393 — 0.675 —
Resin[72] 2.071 4.35 42.72 0.418 — 0.775 —
Mud [73] 2.271 5.088 28.17 0.379 0.379 0.633 0.633

FIG. 5. (a1) (n, v, D) space of real and simulated crack mosaics.
(a2) Zoomed-in view of (n, v, D) data. (c1) (n, v, λ) space of real and
simulated crack mosaics. (c2) Zoomed-in view of (n, v, λ) data for
experimental and simulated crack mosaics. Description of data points
provided in the legend. (b) Legends for (a1) and (a2) and (d) legends
for (c1) and (c2).

highlight that crack mosaics of different materials are
distinctly differentiable by the different values of their
(n, v, D) and (n, v, λ) data in the four-parameter phase
space.

IV. GEOMETRIC SIMULATIONS OF CRACKS

There are two well-known algorithms which create nonpe-
riodic tiling patterns from simple stochastic rules: The Gilbert
tessellation and the Voronoi tessellation. The patterns gen-
erated from these are both nonperiodic, but their structural
differences are quite prominent and visually evident.

In the Gilbert tessellation, first a set of points are chosen
which act as seeds. Lines are drawn through the points, ex-
tending on both sides, until they reach a wall or another Line.
Many variants are possible, as discussed below. Treating the
lines as cracks. However all of these yield elongated, angular,
polygonal peds, similarly to those typically seen in shattered
glass patterns.

In the Voronoi tessellation, a set of random seeds are cho-
sen and the lines which bisect imaginary lines joining pairs
of nearest-neighboring seeds are drawn. These lines form a
set of close packed convex cells, where all points in a cell are
closest to the seed of that particular cell. This enhances the
“roundness” of the cells, i.e., makes λ closer to 1 than 0.

Another simple simulation algorithm the iterative cell di-
vision has also been employed with interesting results: This
algorithm starts with outlining a square area. Two points are
randomly chosen on any two sides taken randomly and joined
by a straight line, producing two daughter cells. The process
is repeated on each daughter cell to get four cells, and so on,
as long as desired.

Crack networks have been simulated following these three
tiling algorithms and several variations of each of these. Every
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FIG. 6. The 4 × 5 matrix representation of Gilbert tessellation with uniform seed distribution. The rows 1–4 represent information on
four choices of crack slopes: (1) random choice between 0◦ and 180◦; (2) slopes parallel to reference axes, i.e., 0◦ or 90◦; (3) slopes chosen
randomly from 0◦, 45◦, and 90◦; and (4) slope determined randomly between 0 ± 10◦ and 90 ± 10◦. Columns 1–5 show (1) the crack mosaic,(2)
histogram of the angular defect DN , (3) histogram of the number of vertices for the polygons in the mosaic, (4) histogram of the crack lengths
in arbitary unit, and (5) histogram of polygon or tile area in arbitary unit, respectively.

crack mosaic is examined for determination of the average
n, v, D, and λ over 50 configurations of each mosaic. The
average mosaic characteristic is then plotted as a representa-
tive point in the (n, v, D) and (n, v, λ) spaces and analyzed
and compared in terms of their features. The statistics on the
simulated crack networks can then be compared to the statis-
tics obtained from “real” cracks with respect to their position
in the four-parameter phase space. Such comparative studies
may act as pointers to the understanding of crack systems in
nature. The simulated crack networks generated and studied
are presented here.

A. Gilbert tessellation and its variations

Several variations of the Gilbert tessallation have been
generated, the variations being (1) in the distribution function
of the random seeds on the plane and (2) in the choice of crack
slope with respect to reference axes. For each distribution of
seeds, four choices of crack slopes were studied: (a) random
choice between 0◦ and 180◦; (b) slopes parallel to reference
axes, i.e., 0◦ or 90◦; (c) slopes chosen randomly from 0◦, 45◦,
and 90◦; and (d) slope determined randomly between 0 ± 10◦
and 90 ± 10◦. The choice of slopes taken were not guided by
any particular logic.

1. Uniform distribution of crack seeds

Figure 6 displays the results for a uniform distribution of
crack seeds on a two-dimensional 30 × 30 plane in a 4 × 5
matrix. The rows of the matrix give information on each of the
four combinations of slopes taken for the Gilbert tessellated
crack mosaics having uniform seed distribution. For each

of the four crack mosaics, columns 1–5 show (1) the crack
mosaic, (2) histogram of the angular defect DN , (3) histogram
of the number of vertices for the polygons in the mosaic, (4)
histogram of the crack lengths, and (5) histogram of polygon
or tile area, respectively. Examination of column 2 of the
matrix figure shows very distinct changes in the histogram of
DN for the four mosaics: (a) Cracks with random slopes show
a log-normal distribution of DN , the mean centered around
0.325, indicative of mostly irregular polygons; (b) cracks at ei-
ther 0◦ or 90◦ slopes are all perfect rectangles; (c) introduction
of just one-third fraction of slope orientation of 45◦ introduces
significant number of irregular polygons in the mosaic; and (d)
slopes between 0 ± 10◦ and 90 ± 10◦ split the histogram into
two distinct peaks: one around 0.36 and another around 0.7
that is roughly normal in its distribution.

The histogram of the vertices, column 3 of the matrix in
Fig. 6, shows that apart from choice (b) of slopes, though
most of the polygons are quadrilaterals, there are significant
numbers of triangles, as well as pentagons and few hexagons,
too. The histogram of crack lengths, column 4 in Fig. 6,
shows a log-normal distribution for all combinations of slopes
studied with the almost identical standard deviation σ ∼ 0.49
and with ∼7% variation in the median value of 2.82. The areas
of the polygons in column 5 for the four mosaics in Fig. 6
follow an exponential decaying distribution of the form ae−bx,
with a ∼ 600 and b ∼ 0.65.

Examination of the elements of Fig. 6 indicate that
variation in the slope of cracks for Gilbert tessellation is
most manifest in the shape of the polygons as indicated
by DN histogram rather than their other characteristic his-
tograms.
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FIG. 7. The 4 × 5 matrix representation of Gilbert tessellation with normal seed distribution. The rows 1–4 represent information on four
choices of crack slopes: (1) random choice between 0◦ and 180◦; (2) slopes parallel to reference axes, i.e., 0 or 90◦; (3) slopes chosen randomly
from 0◦, 45◦, and 90◦; and (4) slope determined randomly between 0 ± 10◦ and 90 ± 10◦. Columns 1–5 show (1) the crack mosaic, (2)
histogram of the angular defect DN , (3) histogram of the number of vertices for the polygons in the mosaic, (4) histogram of the crack lengths
in arbitary unit, and (5) histogram of polygon or tile area in arbitary unit, respectively.

2. Normal distribution of seeds

Figure 7 displays the results for a normal distribution of
crack seeds on a two-dimensional 30 × 30 plane in a 4 × 5
matrix. All characteristics of the mosaics studied for normal
distribution are crystallized in the matrix elements following
the same format as in Figure 6.

Column 1 of the matrix figure (Fig. 7) shows a clus-
tering of numerous polygons of decreasing sizes around
the central field of the system as expected. Examination
of the other matrix elements of the figure indicate that chang-
ing the distribution of the seeds of cracks on the plane shows
no significant changes in the histogram pattern of the angular
defect, polygon vertices, crack length, or polygon area. The
crack length and polygonal area distributions display log-
normal and exponential decaying behavior as in the case of
uniform distribution of seeds; only the angular defect DN and
median values of crack lengths indicate narrower distribu-
tions. This is also reflected by the sharper exponential decay
of area histogram. Another variation of the Gilbert tessellation
was carried out where crack initiation at different seeds was
staggered by a constant time lag. Figure 8 displays the mosaic
pattern obtained for both uniform and normal distribution of
crack seeds for random crack orientation. Comparison of the
images with the [11] elements of the figure matrices of Figs. 6
and 7, show no discernible difference in the pattern.

B. Voronoi tessellation

Simulation of Voronoi tessellation was done following the
Python class “Voronoi” [77].

The Voronoi mosaic effectively tessellates the system into
polygonal regions that are closest to the seed responsible for

the crack polygon. Figure 9 is a matrix representation of the
Voronoi tessellation done with crack seeds distributed uni-
formly following a normal distribution, represented by rows 1
and 2, respectively. The normal distribution of the crack seeds
result in smaller and smaller crack tiles crowding in at the
system center as expected, (column 1). Voronoi tessellation
shows significant difference from Gilbert tessellation as in the
latter, an exponential decaying distribution was obtained for
polygonal area statistics.

The elements [14] and [24] of the figure matrix in Fig. 9
show histograms of a number of vertices per polygon of the
two Voronoi mosaics. The distribution curve of vN is log-
normal and very similar for both mosaics. Though the nature
of distribution of vN in case of Gilbert tessellation was similar,
there is significant difference in the parameters defining the
distribution. In Voronoi tessellation, there is a maximum of
hexagons with significant number of pentagons and heptagons

(a () b)

FIG. 8. Gilbert tessellation with crack initiation with time stag-
ger. (a) Uniform distribution of crack seeds. (b) Normal distribution
of crack seeds.
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FIG. 9. The 2 × 4 matrix representation of Voronoi tessellation. The rows 1 and 2 represent uniform and normal seed distribution on the
plane. Columns 1–4 show (1) the crack mosaic, (2) histogram of the angular defect DN , (3) histogram of polygon or tile area in arbitary unit,
and (4) histogram of the number of vertices for the polygons in the mosaic, respectively.

unlike that of Gilbert tessellation where the peak of the distri-
bution was at 4 with significant number of triangles and less
pentagons.

C. Iterative cell division

Figures 10(a), 10(b), and 10(c) display the crack mosaic
development after the first, fourth, and eight iterative steps,
respectively, following the algorithm described above, and
the newest crack lines are indicated by broken lines. The
histograms of angular defect, area of polygons, vertices per
polygon, and crack length are displayed in Figs. 11(a), 11(b)
11(c), and 11(d), respectively. These are calculated on pattern
generated at the 10th iteration.

The histogram of the angular defects show a sharp dou-
ble peak with the polygons highly irregular. The polygon
area histogram is highly peaked at a small value of the
area. This implies very narrow crack polygons are generated
using this algorithm, also evident from Fig. 10(c). The his-
togram of the number of vertices per polygon shows that
most polygons are triangles with an almost equal contribution
coming from quadrilaterals. The contribution of pentagons
and hexagons decreases rapidly in the distribution. The crack
length histogram is a sharply decaying curve, though not
exactly exponential in nature.

FIG. 10. Crack mosaic using iterative cell division. Panels (a),
(b), and (c) are images at the end of first, fourth, and eighth iterations,
respectively. The newest cracks are indicated by broken lines.

D. Features of simulated crack mosaics on the (n, v, D, λ) space

The different simulations of crack mosaic show very dis-
tinctive variations in their geometry. In order to compare their
features with the geometry of the experimental real cracks
studied earlier, the average geometrical features are plotted
in the (n, v, D) space as shown in Fig. 5(a).

All data points are contained inside the allowed space de-
fined analytically. The simulated crack mosaics studied here
show a clustering around n = 2 and v = 3.5 for all the mo-
saics except for the Voronoi mosaic. For Voronoi tessellation
n = 3 and v = 5.9. The Voronoi and iterative cell division
yield D values ∼0.2 implying high degree of irregular poly-
gons which is also consistent with small value of p. The
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FIG. 11. Measures of crack mosaic using iterative cell division
after the 10th iteration. (a) Histogram of the angular defect DN .
(b) Histogram of polygon or tile area in arbitary unit. (c) Histogram
of the number of vertices per polygon in the mosaic. (d) Histogram
of crack length in arbitary unit.
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FIG. 12. Histogram of isoperimetric ratio λ for simulated crack
mosaics: Gilbert tessellations with slopes (a) random; (b) 0◦ and
90◦; (c) 0◦, 45◦, and 90◦; (d) 0 ± 10◦ and 90 ± 10◦; and Voronoi
tessellation for (e) uniform and (f) normal seed distribution. The
average values of the parameter λ displayed in Table II.

variants of Gilbert tessellation show a clustering of D around
0.5.

A histogram of λ for all the Gilbert and Voronoi type
tessellations is displayed in Fig. 12, the histogram distribution
is quite starkly different for the simulation variants. An idea
of the shape distribution of the polygons of the mosaic may
be derived from such a display. For Gilbert tessellation, the
shapes of the polygons in the mosaic depend largely on the
slope that a growing crack makes with respect to a reference
line [Figs. 12(a)–12(d)] and show a broad dispersion.

The isoperimetric ratio λ for the iterative cell division algo-
rithm, estimated at different stages showed that the polygons
became more needle shaped at higher stages, λ decreasing lin-
early with order number [Fig. 13(a)]. To illustrate this point,
a histogram of λ was plotted at the 10th order [Fig. 13(b)].
Most polygons show a highly elongated shape. As all the
simulation points are crowded around the n ∼ 3 and v ∼ 4
region except for the Voronoi tessellation which has n ∼ 3
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FIG. 13. (a) Variation of isoperimetric ratio λ with iteration
stages in cell division method. (b) Histogram of λ at the 10th iterative
step.

and v ∼ 6, a two-dimensional variation of the four-parameter
phase-space architecture is constructed using ((n, v), D) and
((n, v), λ) data in Figs. 5(b) and 5(d), respectively. Here the
zoomed-in data points of Figs. 5(a) and 5(c) are spaced out
along the vertical axis that displays variation in D and λ values
prominently. Table II lists the topological combinatorics and
geometrical information of the simulated crack systems.

Our studies show that both the (n, v, D) and (n, v, λ)
spaces are not uniformly dense with data points, Gilbert and
iterative cell division yield points roughly in one cluster, and
Voronoi tessellation yields another cluster in the domains.

V. COMPARING EXPERIMENTAL AND SIMULATED
CRACK MOSAICS

It is worth examining how the simulated cracks compare
with the real-world “experimental” cracks. Figure 5 displays
(n, v, D) and (n, v, λ) data for all the experimental crack
mosaics studied in Sec. III, along with all the simulated crack
mosaics in a common frame. The (n, v) values of all the simu-
lated cracks except Voronoi are ∼(2,4), which approximately
matches the (n, v) data of all experimental crack mosaics
except mud. The (n, v) data for mud ∼(3,6) that matches

TABLE II. Measures of simulated crack mosaics.

Model n v D λ

Uniform Randomly oriented cracks 1.962 3.984 0.363 0.482
seed Parallel cracks 1.941 4.0 1.0 0.403

distribution Cracks at 0◦, 45◦ and 90◦ 1.958 3.99 0.420 0.476
Gilbert Cracks orientations in between (−10◦−10◦) and (80◦−100◦) 1.954 3.987 0.542 0.422

Normal Randomly oriented cracks 1.946 3.968 0.361 0.477
seed Parallel cracks 1.891 4.0 1.0 0.405

distribution Cracks at 0◦, 45◦ and 90◦ 1.929 3.976 0.419 0.476
Cracks orientations between (−10◦− + 10◦) and (80◦−100◦) 1.918 3.965 0.524 0.402

Voronoi Uniform seed distribution 3.0 5.884 0.319 0.683
Normal seed distribution 3.0 5.935 0.325 0.714

Iteration order
6 2.0 4.0 0.246 0.235
7 2.0 4.0 0.230 0.207

Iterative 8 2.0 4.0 0.218 0.167
Cell Division 9 2.0 4.0 0.211 0.146

10 2.0 4.0 0.202 0.128
11 2.0 4.0 0.200 0.124
12 2.0 4.0 0.192 0.103

034801-10



COMBINATORIAL TOPOLOGY AND GEOMETRY OF … PHYSICAL REVIEW E 105, 034801 (2022)

FIG. 14. Histogram of isoperimetric ratio λ for real crack mosaics of (a) TiO2, (b) PDMS, (c) laponite (pH 6.73), (d) laponite (pH 13.45),
(e) tempered glass, (f) resin, (g) corn starch, and (h) mud crack.

Voronoi cracks. To explore further, Figs. 5(b) and 5(d) display
the geometric measures D and λ, respectively, for all experi-
mental and simulated cracks prominently. The data for similar
materials have been averaged and represented as single data
point in these figures. This has two effects: (i) The apparent
degeneracy in the characteristic measure (n, v) is lifted im-
mediately with data points of different types of materials, now
finding finitely different positions in the four-parameter phase
space and (ii) experimental cracks may now be matched by the
appropriate Gilbert tessellation. Between the two geometric
measures angular defect D and isoperimetric ratio λ, the latter
seems more efficient in distinguishing between crack mosaics.

Comparison between the topology-geometry measures of
real crack systems and simulated crack mosaics is hoped to

FIG. 15. (a) Image of crack mosaic on laponite clay of pH
6.73. (b) Image of crack mosaic on laponite clay of pH 13.05.
(c) Hausdorff distance dH (sv) estimated between the real crack mosaic
(labelled with blue line) and its corresponding Voronoi tessellation
(labelled with black broken line) for (a). (d) Hausdorff distance dH (vs)

estimated between the real crack mosaic (labelled with blue line) and
its corresponding Voronoi tessellation (labelled with black broken
line) for (b).

provide insight into the mechanism of crack formation in
natural systems. Figure 14 displays the isoperimetric ratio of
a few crack mosaics of real systems examined here. Compar-
ison with λ values of simulated cracks in Fig. 12 reveals that
TiO2, PDMS, and laponite at pH 6.73 follow similar distri-
bution as in Fig. 12(a), i.e., Gilbert tessellation with random
slopes. However, laponite at pH 13.45 has a λ distribution
similar to Gilbert distribution with crack slopes tilted at 45◦
and 90◦ only [Fig. 12(c)], of course making allowance for
the dispersion in data for natural systems. Again, tempered
glass [Fig. 14(e)] has a close resemblance to the bimodal dis-
tribution of Gilbert tessellation with slopes oriented at 0 ± 10◦
and 90 ± 10◦ [Fig. 12(d)]. Similarly, one may identify the λ

distribution of crack mosaics of resin, corn starch, and mud of
Figs. 12(f), 12(g), and 12(h) with the distribution observed in
Voronoi mosaics of Figs 12(e) and 12(f). One may infer that
development of these real crack mosaics may have followed a
mechanism similar to their simulated counterparts.

The centroids of the the polygons in any real mosaic act
as the seeds of the Voronoi lattice to be constructed. Simu-
lation of Voronoi tessellation was done following the method
discussed in Sec. IV B. Comparison between original image
mosaics and their corresponding Voronoi mosaics can be mea-
sured in terms of the Hausdorff distance dH , which defines
the greatest of all the distances from a point in one set to the
closest point in the other set.2 The nodes of the two lattices
form the metric sets between which the Hausdorff distance
dH is calculated using modified Python library functions. Fig-
ure 15 illustrates how any real crack mosaic is skeletonized
and its Voronoi mosaic constructed from the centroids of the
polygons. The Hausdorff distance from “skeleton to Voronoi”
dH (sv), is the distance between the two points indicated in
Fig. 15(c). These are the pair of corresponding points of the

2For compact subsets A, B ⊂ R2, the Hausdorff distance dH (A, B)
is defined as dH (A, B) = max{max

a∈A
d (a, B), max

b∈B
d (b, A)}, where

d (x,C) = inf{‖x − c‖ : c ∈ C}.
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two mosaics that are farthest apart. The Hausdorff distance
between “Voronoi to skeleton,” dH (vs), is the distance between
the pair of points indicated in Fig. 15(d). The final measure of
dH is the bigger of the two values.

The fourth column in Table I displays the Hausdorff dis-
tance of the the crack mosaics studied with respect to their
corresponding Voronoi mosaics.

VI. DISCUSSION

In this work, crack mosaics formed on widely different ma-
terials (natural mud, clays like laponite and bentonite, starch
extracts of corn and potato, polymers such as PDMS, metal
oxide films, and glass and resins) have been examined, and
an attempt has been made to sort them out on the basis of
their topological and geometrical similarity. The goal is to
classify crack patterns according to some prominent common
characteristics, correlate them with the associated materials,
and identify physical or chemical or geological processes
responsible for their formation. The objective has been to see
whether materials having common features in some respects,
for example, the nature of molecular bonding and physical or
rheological properties, show similarity in the crack patterns
formed. Toward this end, ideas of planar convex tiling and
combinatorial topology have been utilized to describe and
classify the different crack mosaics. Ideally, a huge amount
of data on crack patterns covering a wider array of materials
with multiple data sets, would provide a more robust four-
parameter phase space. The statistics of which then can be
used to identify unknown materials from crack patterns.

Geometrical and topological features of crack mosaics
have been quantified through several measures and placed
in a four-parameter phase space. This four-parameter tuple
(n, v, D, λ) serves as a low-dimensional signature of any
crack mosaic. The topological parameters v and n describe the
cells of the crack mosaic and their connectivity to neighboring
cells, while the geometric parameters D and λ describe the
shape of the cells constituting the mosaic. The four-parameter
space is represented graphically as two three-dimensional
spaces—the (n, v, D) space and the (n, v, λ) space. This
scheme shows a clear differentiation between crack patterns
on the basis of materials and models. It should be kept in
mind that ambient conditions also have a significant role in
crack formation by adding a certain dispersion in the patterns
of similar materials.

Earlier field studies by Domokos et al. [64] have indicated
that fractures and cracks on geological systems mostly belong
to either the “Platonic” category or to the Voronoi category,
though no clear theoretical basis was indicated. In the present
work, it has been shown that if based only on the combi-
natorial (n, v) topology, crack mosaics from other systems
besides geological, also fall approximately in either of these
categories. We have shown that crack mosaics from different
material classes tend to form clusters in the the four-parameter
phase space. This implies that materials having physical and
chemical similarities tend to have similar geometry of cracks.
Such analysis was also done for the simulated crack mosaics.
The (n, v) data for Gilbert cracks is ∼(2,4) for all the varia-
tions of the algorithm.

Voronoi cracks are deterministic for a given distribution
of seeds. Hence the Voronoi tessellation can be used as a
reference to compare between real crack mosaics. As a step
toward this, deviation of the experimental crack mosaics from
their corresponding Voronoi counterpart generated from the
centroids of the constituent polygons, have been estimated by
the measure of the Hausdorff distance dH between the two.

It may be noted that all data on cracks in real systems,
including experiments done by the authors’ group, were pro-
cessed from crack images, sometimes noisy or of insufficient
resolution. To tackle nonconvex polygons, therefore, in-house
codes needed to be developed by the authors to extract useful
data from the available pictorial records. To compare between
real crack mosaics, the Voronoi tessellation generated by the
centroids of the original network has been used as a reference.
The mathematically robust Hausdorff distance dH between
each crack mosaic and its corresponding Voronoi tessellation
has been estimated for this purpose.

VII. CONCLUSIONS

The conclusions may be summarized as follows:
(1) It is not possible to classify planar mosaics solely on

the basis of the topological combinatoric (n, v), the geometric
features also need to be taken into account.

(2) The four-parameter tuple, (n, v, D, λ) serves as a pos-
sible low-dimensional signature for full description of the
crack mosaic.

(3) Representative points of natural and experimental
crack mosaics, of materials with similar physical and/or
chemical properties, are shown to form closely spaced clusters
in the three-dimensional spaces (n, v, D) and (n, v, λ). This
may aid in identification of an unidentified material from its
crack pattern.

(4) Crack patterns simulated from well-studied models:
Voronoi, Gilbert, and iterative cell division have also been
compared with other crack patterns and included in the dis-
cussion.

(5) In-house codes have been developed to estimate the
topological and geometric measures of nonconvex polygons,
which appeared in the crack patterns.

(6) Finally tracing the trajectory of time-development of
a crack mosaic in the topology-geometry architecture should
be interesting and the authors hope to discuss this issue in a
future communication.
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APPENDIX: NONCONVEX POLYGONS

The process of identifying nonconvex polygons in the mo-
saic and analyzing them to find (n, v, D, λ) data is described
here. The vertex-edge connectivity is based on the idea that
if two neighboring polygons share same nodes or junction
points, then those nodes may be connected via an edge. If the
number of common nodes between two neighboring polygons
are two, then those two nodes are surely connected via an
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FIG. 16. (a) Convex hull constructed on some polygons of the
mesh. Red stars indicate nonconvex polygons determined from the
construction. (b) Schematic guide to the determination of internal an-
gles of nonconvex polygons. Image has been adapted from Ref. [72].

edge but if the number of shared junction points are more
than 2, the vertex-edge connectivity of those shared points
cannot be estimated clearly if either one of them or both are
nonconvex. For example, in Fig. 16(b), polygon 1 is a non-
convex polygon, and hence its vertices (edge vectors) cannot
be sorted in a particular direction (clockwise or anticlockwise)
using the previously used convex hull approach. So to estimate
the angle at each junction point of a nonconvex polygon, the
process described below has been followed. First, its neighbor
polygons and sets of all the points it shares with each of its
neighbors are identified, i.e., (A, B, C) with polygon 2; (C, D)
with polygon 3; (D, E) with polygon 4; (E, F) with polygon
5, (F,G, H) with polygon 6, (H, I) with polygon 7, and (I,
A) with polygon 8. These sets are called “common points”
here. Now, to calculate the angle at a point, another set is
constructed that contains all the points which are likely to be
connected with the point considered via an edge, defined by
the union of the “common points” sets containing that point

as an element. These sets are called the “connectivity set” for
the point. For example, in Fig. 5(b) for point A, this set is
(A, B,C) ∪ (I, A) = (A, B, C, I); for B, it is (A, B, C); for
C, it is (A, B, C, D); for D, it is (C, D, E); for E, it is (E, D,
F); for F, it is (F, E, G, H); for G, it is (F, G, H); for H, it is
(H, G, F, I); and for I, it is (I, H, A). If a “connectivity set”
contains three points, then there is no problem in estimating
vertex-edge connectivity and hence in angle calculation which
is done from the dot product between the corresponding edge
vectors. For example, angle at D is calculated from the dot
product of edge CD and DE (sorted counterclockwise). Same
applies for angle calculation at points E, I, and B. However, if
the connectivity set for a point contains more than 3 elements,
then sorting points simply by orientation would not yield the
right result all the time. For example, to calculate angle at
C, sorting A, B, C, and D in counterclockwise would not
yield the right vertex-edge connectivity. To tackle these cases,
the points of the “connectivity set” are sorted with respect to
their distances from the point considered for angle calculation
(here, distance of C from point A, B, and D) and thus BC and
CD are considered as edge and angle at C is calculated from
∠BCD). In a similar fashion, angles at F and H are calculated
by considering their nearest neighbors in their corresponding
“connectivity sets” and thus by angle ∠EFG and ∠GHI . The
process may be understood in reference to Fig. 16 again.
Surely, this is not a stable fix for defining edge connectivity
in nonconvex polygons but it works for the mosaics used
for analysis here. Angle approximation is a nontrivial step
in the algorithm because it determines whether a junction
point is also a vertex of a polygon or not. If the angle at a
point is 180 ± 15◦, then it is not considered as a vertex of
that polygon. However, the same point can be the vertex of
other neighboring polygon where angle at that point is not
180 ± 15◦. The point then acts as an irregular node of the
network.
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