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Wrinkling pattern formation with periodic nematic orientation:
From egg cartons to corrugated surfaces
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Egg cartons, known as doubly sinusoidal surfaces, display a rich variety of saddles-cylinder-spherical patches
organized with different spatial symmetries and connectivities. Egg carton surfaces, rich in functionalities, are
observed in synthetic and biological materials, as well as across atomic and macroscopic scales. In this work
we use the liquid crystal shape equation in the absence of elastic effects and normal stress jumps to predict and
classify a family of uniaxial, equibiaxial, and biaxial egg cartons, according to the periodicities of the surface
director field in nematic (N) and cholesteric (N*) liquid crystals under the presence of anisotropic surface tension
(anchoring). Egg carton surface shape periodic solutions to the nonlinear and linearized liquid crystal shape
equations predict that the mean curvature is a linear function of the orthogonal (along the surface normal) splay
and bend contributions. Mixtures of egg carton surfaces (uniaxial, equibiaxial, and biaxial) emerge according to
the symmetries of the nonsingular director field, and the spatial distributions of the director escape into the third
dimension; pure uniaxial egg cartons emerge when the director escape has linelike geometries and mixtures of
egg cartons arise under source or sink orientation lattices. Orientation symmetry and permutation analysis are
incorporated into a full curvature (Casorati, shape parameter, mean curvature, and Gaussian curvature) char-
acterization. Under a fixed anchoring parameter, conditions for maximal nanoscale curvedness and microscale
maximal shape gradient diversity are identified. The present results contribute to various pathways to surface
pattern formation using intrinsic anisotropic interfacial tension.
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I. INTRODUCTION

Nematic (N) and chiral nematic (N* or cholesteric CLC)
liquid crystals are anisotropic viscoelastic soft matter mul-
tifunctional materials. Surface and bulk functionalities are
ubiquitous in nature’s fibrous composites known as liquid
crystal analogs, where the liquid crystal orientational order
is frozen-in in the solid state. Biological cholesteric liquid
crystal analogs displaying the Bouligand plywood architec-
ture include chitins in the beetle’s exoskeleton [1,2], cellulose
in tulips [3–5], rose petals [6], collagen in human compact
bone [7], and many others [8–10]. The Bouligand’s twisted
plywood structure [11–13] is responsible for multifunction-
alities such as iridescence in scarab beetles [14] and stress
wave filtering within the dactyl club of the stomatopod [15].
Surface functionalities in liquid crystal analogs, such as tri-
bological, and wetting, are closely associated with surface
wrinkling patterns [16]. Biological wrinkling patterns serve
as biomimetic inspiration for other metallic materials [17].
Besides submicron and micron wrinkling, geological struc-
tures also display geometrically similar wrinkling at large
macroscopic scales, but due to different processes [18]. Hence
wrinkling-based pattern formation offers pathways to embed
functionalities to soft and hard materials and characterize the
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geometry of biological and geological structures across length
scales. This paper focuses only on wrinkling patterns in N and
N* surfaces. To establish the scope of the paper and introduce
the main focus and objectives of this work we briefly describe
the geometric classification of common wrinkling patterns
in terms of dimensionality and then describe driving forces
behind these patterns.

There are three primitive wrinkling modes that will be
considered in this paper, according to the spatial functionality
of the surface height function h(x, y); here we use the Monge
surface parametrization [x, y, h(x, y)] [19].

(i) Uniaxial wrinkling huni: the surface shows a periodic
wrinkling pattern along one spatial direction and remains flat
on the other direction (vanishing Gaussian curvature). This
is a corrugated surface; it has zero Gaussian curvature and
is composed of cylindrical patches. This wrinkling group
encloses the morphology of tulip Queen of the Night [20].
Uniaxial wrinkling is only depending on one spatial coordi-
nate, where huni = f (x) or huni = f (y).

(ii) Equibiaxial wrinkling heq: this type of surface exhibits
regular sinusoidal patterns along both spatial coordinates,
which are sometimes also called concave or convex [21], sinu-
soidal [22], or ideal equibiaxial egg carton surface [23]. For an
equibiaxial doubly periodic wrinkling surface, the spatial co-
ordinates play a symmetric role such that heq(x, y) = heq(y, x).

(iii) Biaxial wrinkling hbi(x, y): the two spatial coordinates
do not play a symmetric role. This pattern is denoted as
biaxial egg carton. This mode includes electropolished metal
surfaces [17] and erosion-driven rocks [18]. The periodicity
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along the x coordinate is different than the periodicity along
the y coordinate.

We expect a regular wrinkling surface h(x, y) can be
decomposed as a linear combination of the three modes
mentioned above h(x, y) = a1huni + a2heq + a3hbi, which is a
result that we prove below.

Next we briefly discuss connections between the wrinkling
geometry and driving forces acting on a N or N* surface,
defined by its geometry (unit normal k and curvature tensor B)
and structure (director n and its surface gradient ∇(σ )n) [24].
Given the dual characteristics of these surfaces, in the absence
of convection, characterizing an N or N* surface requires
satisfying the bulk and surface torque balance equations for n
and a scalar shape equation [25]. According to the generalized
liquid crystal shape equation, the various terms include the
bulk elastic normal stress jump, the Laplace pressure, the
Herrings (surface rotation) pressure, and the director pres-
sure from its surface gradients [24,26]. Hence the source of
potential surface pattern formation mechanisms in nematics
is extremely rich and varied even for a single component
material.

In the absence of the bulk elastic normal stress jump,
nematic surface pattern formation is the balance of all three
above-mentioned pressures or, equivalently, the vanishing of
the total capillary pressure. The condition of zero capillary
pressure corresponds to a special shape known as easy shape
[25,27], which involves couplings between geometric and
structural variables and contrary to isotropic material surfaces
does not need to be a flat surface or a minimal surface.
The couplings involve the anchoring coefficient which intro-
duces the anisotropic interfacial energy component into the
interfacial energy. Given these facts, we expect that doubly
periodic director orientation fields will coexist with periodic
wrinkling surface patterns and determine the nature and mag-
nitude of the coefficients {ai, i = 1, 2, 3} introducing the
primitive modes in the generalized wrinkling surface h(x, y)
discussed above. Both nematic N and cholesteric N* liquid
crystal can exhibit complex two-dimensional (2D) director
fields, either due to external fields (flow [28,29] and electro-
magnetics [30]), phase transition or separation [31–33], and
more [34–36]. Hence exploring these orientation landscapes

of soft matter materials in the context of surface pattern for-
mation such as wrinkling is a potentially fruitful addition to
other routes using high temperature–metal based systems as
well as providing insights into natures’ patterns.

Uniaxial surface wrinkling huni (cylinders with zero
Gaussian curvature) has been previously discussed with a
simple quadratic [37–42] or quartic [43] anisotropic surface
tension, where the energy is minimized by the fact that surface
unit normal k tends to adjust its relative angle with respect
to the director field n. We also found that complex surface
cylindrical surface patterns can be obtained by including
higher-order terms in the Rapini-Papoular equation.

Biaxial wrinkling hbi has been successfully modeled by
elastic theory [44] and mean-field theory [45]. Anchoring-
driven biaxial wrinkling was briefly studied by generalizing
and linearizing the uniaxial wrinkling model in [46], using
a driven wave-propagation method and sequential wrinkling.
However, for spontaneous self-selected pattern formation the
wave-propagation mechanism is incomplete since the rotation
effect is neglected. Here we formulate and solve an integrated
model using both global (physical coordinates) and local (sur-
face coordinates) perspectives, consistent with experimental
results [16,47–49].

Figure 1 summarizes the scope and objectives of this pa-
per that includes both cholesteric N* and nematic N liquid
crystals’ free surfaces in the total absence of bulk elastic
effects. For a given distorted director nonplanar director field
(b), capillary pressure will create surface wrinkling patterns
(b) according to the specific symmetry of director splay
and bend deformations’ modes. The surface modes include
uniaxial, equibiaxial, and biaxial wrinkling and the corre-
sponding wavelengths’ magnitudes are indicated by P0. The
key objective of this work is to establish the connection and
dependence of the egg carton surface pattern formation pro-
cess on the director n deformation modes of cholesteric and
achiral nematic liquid crystals.

The outline of this paper is as follows. The general
methodology is introduced in Sec. II. The physical back-
ground of liquid crystals is given in Sec. II A [surface and
bulk properties in Fig. 1(a)]. The general frameworks on
director field and geometry are given in Sec. II B [Fig. 1(a)]

FIG. 1. Distorted chiral nematic liquid crystals generally do not have a stable flat surface (a); the capillary pressures [in Eq. (7)] drive the
surface relaxation process to a corrugated pattern (b), which can be decomposed by three primitive egg carton modes: equibiaxial, biaxial, and
uniaxial wrinkling (c). Here P0 denotes the scale of the pattern.
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and Sec. II C, respectively. Combining the two frame-
works we are able to formulate the governing equation in
Sec. II D [driving forces from Fig. 1(a) to Fig. 1(b)], with
a full director model (Sec. II D 1), a decomposition model
(Sec. II D 2), and a linear approximation model (Sec. II D 3).
The highly accurate and validated numerical methods are
introduced in Sec. II E. The results are evaluated in Sec. III
[Fig. 1(b)], which includes surface reliefs (Sec. III A) and
curvature profiles (Sec. III B). The important conclusions and
significance are summarized in Sec. IV. The Appendixes pro-
vide details of all mathematical derivations and numerical
techniques.

II. METHODOLOGY

A. Interfacial energy and bulk deformation modes

The surface energy density can be described by the second
order Rapini-Papoular equation [50,51]

γ = γ0 + W

2
nn : kk, (1)

where γ0 is the isotropic surface tension and W is the an-
choring coefficient. We denote the dimensionless anchoring
coefficient as ε = W/γ0, restricted to ε > −2.

In the Oseen-Frank elastic theory [51,52], three indepen-
dent elastic modes are defined by

S = ∇ · n, T = n · ∇ × n, B = n × ∇ × n, (2)

which capture splay, twist, and bending distortions of the
director field n, respectively.

B. Director field general framework

In this paper, the surface director field n is known and is
the generator of the various egg carton surface patterns men-
tioned above and hence we use a framework that has intrinsic
diversity that matches the geometric diversity. The director
is defined as a unit vector on the unit sphere n ∈ S2, where
n ∼ −n. Hence it is natural to express the three components
in a spherical coordinate system. Without losing generality, a
reference director field n̄ is defined by

n̄ =
⎡
⎣sin φ̄ cos θ̄

cos φ̄ cos θ̄

sin θ̄

⎤
⎦. (3)

The director field n is a 3D vector parametrized by (θ̄ , φ̄).
The relationship between (θ̄ , φ̄) coordinate to a usual spheri-
cal coordinate system with polar angle θ and azimuthal angle
φ is given by the following transformations:

φ̄ = −φ − π

2
, θ̄ = θ + π

2
. (4)

For a perfect cholesteric N* liquid crystal, we expect φ̄ and θ̄

to be linearly dependent on x and y or vice versa. To discuss
all possibilities that include nematics and cholesterics, we
assume without loss of generality φ̄ = ax, θ̄ = by for a linear
and spatially decoupled director field and apply the permuta-
tion group to obtain all possibilities. Here aP0x = bP0y = 2π ,
where P0x and P0y are the helix pitches along the x and y axes,
respectively.

Figure 2 shows the director field tangential projections
for the six possible permutations of n [see Eq. (3)] on a
[0, 1] × [0, 1] square in the physical (x, y) space. This im-
portant projection plot reveals the spatial distribution of splay
and bend deformations [see Eq. (2)] on the (x, y)-surface

FIG. 2. Projection (I − δ̂z δ̂z ) · n is a 2D vector field under which for different permutations (second row) n and −n are expected to represent
the same average molecular orientation; hence no arrows are shown in the figure. Positions with green dots or lines indicate that the z component
of the director is ±1 (the other two components vanish). Similarly, red color and blue color denotes the x or y component is ±1, respectively. In
Eq. (14), the projections of the bending term (c) and splay term (d) under different permutations (a) demonstrate equivalence up to a translation,
which leads to the same mean curvature profile (c). Each square (x∗, y∗) is [0, 1] × [0, 1] where x∗ = x/P0 and y∗ = y/P0. We use different
color bar limits to preserve all details of each permutation. The color bar limits are ±0.7 (blue) for (321) and (231), ±1 (green) for (213) and
(123), and ±1.4 (yellow) for (132) and (312). The anchoring coefficient is ε = −0.2, in accordance with Fig. 7.
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FIG. 3. Limit cases a = 0 and b = 0 of splay S, twist T , bend B, and the splay-bend combinations [Eq. (14)] for three reflection
permutations.

lattice corresponding to each of the six permutations. The
color associated with each permutation defines equivalence;
for example, yellow on the top row corresponds to permuta-
tions (132) and (312).

If one component of the director field is ±1, then the other
two must vanish due to the constraint n2 = 1. Specially, if
the z component of the director is ±1 [green dots and lines
in Fig. 2(b)], director escape occurs, which is an important
concept to study the liquid crystal nonsingular defects. The
red (average orientation aligns horizontally) or blue (average
orientation aligns vertically) dots or lines represent x or y
component is ±1, respectively. The coordinates for the dots
are x∗ = 0, 1/4, 1/2, 3/4, and 1, while y∗ = 0, 1/2, and 1.
The lines are y∗ = 1/4 and 3/4. The difference between (132)
and (312) is that the red and blue dots switch their roles. The
other equivalent permutations behave in a similar way.

In this paper the director field is nonsingular but director
escape (nz = ±1) is always present. The permutations (213)
and (123) show a pattern of splay-bend walls interrupted by
horizontal bandlike regions of director escape (nz = ±1) into
the third dimension (here along the surface normal). The other
permutations show patterns with localized director escape and
a balance of centers and saddles [(132) and (312)], or a bal-
ance of saddles and sinks or sources [(321) and (231)]. Below
we show how these clearly different director deformation
patterns result in a rich diversity of egg cartons, contain-
ing mixtures of uniaxial, equibiaxial, and biaxial wrinkling
patterns.

Figures 2(c) and 2(d) are the projected bending term and
projected splay term, respectively. Figure 2 reveals that, for a
given reflection permutation, there is always a rotation permu-
tation which generates the same results. Crucially important,
we show below that those two equivalent permutations share
the same z component, showing the impact of orientation
along the escape direction. The translational symmetries be-
tween (132) and (312), (321) and (231), and (213) and (123)

imply that they represent an equivalent molecular field due
to their periodicity. Thus they should generate the same sur-
face wrinkling profiles, which will be proven below while
discussing Fig. 7. The translational invariance between a re-
flection permutation and a rotation permutation presented in
Fig. 2 is given in Eq. (15).

By comparing (c) and (d) in Fig. 2, we observe that the
maxima and minima in (321) and (231) are in phase such
that higher values (red area) in (c) also correspond to higher
values in (d) and the same for lower values. While in (213)
and (123), (132) and (312) the phenomenon is out of phase
such that higher or lower values in (c) correspond to zero
(green area) in (d).

The permutations of the nonsingular director are cat-
egorized by reflection permutations (Fig. 3) and rotation
permutations (Fig. 4), shown in the first and second col-
umn on both figures. The next four columns show the splay,

FIG. 4. Limit cases a = 0 and b = 0 of splay S, twist T , bend
B, and the splay-bend combinations [Eq. (14)] for three rotation
permutations.
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FIG. 5. Schematic of basic parameters on surface geometry. rα

(α = y1, y2) are the local tangent vectors at point r ∈ R3 and Tr(	)

is the tangent surface span{rα}. k is the surface unit normal.
←−
∂	

is the oriented boundary, with unit tangent vector t and outward
normal μ.

twist, bend, and splay-bend combination (−B + Sn) · δ̂z un-
der wave-vector extrema: pink for a = 0 and blue for b = 0.
As will be shown below in the linear regime the effective
capillary pressure is (−B + Sn) · δ̂z and hence its extrema
provides a reference to discuss and classify the results (see
Figs. 6 and 7).

In partial summary, in this section we have introduced
a generic and versatile method to describe various surface
director fields with the potential to generate a range of egg
carton surfaces (uniaxial, equibiaxial, and biaxial). Further-
more, symmetry relations in the material surface space were
identified and will be used below.

C. Intrinsic geometric approach

An intrinsic differential geometric approach is applied to
study egg carton surface wrinkling patterns. Figure 5 is an
intuitive schematic showing the basic geometric parameters.
The formal parameter definitions are provided in Appendix A.
The adopted notations follow [53]. In Fig. 5, we define (σ )
as the surface being studied and 	 as a small surface patch
with oriented boundary

←−
∂	. k is the surface unit normal on

a local surface patch and rα are the two local tangent vectors
on the curvilinear coordinate system yα . (k, rα ) form a local
coordinate system with k ⊥ rα .

∇(σ ) is the surface gradient operator ∇(σ ) = rαrα · ∇,
where rα is the dual vector of rα . The curvature tensor B =
−∇(σ )k has real eigenvalues κ1 and κ2. Mean H , Gaussian
K , deviatoric D, and Casorati C curvatures, along with the
dimensionless shape parameter S [54], are summarized in
Table I, together with their physical significance and special
cases for zero curvatures and special cases for the shape
parameter S. For example, the shape parameter S is a scalar
whose magnitude and sign defines the shape of the surface
patch, while the Casorati curvature C is a non-negative scalar
that indicates deviation from a flat surface.

t and μ are the unit vectors on the boundary
←−
∂	, such that

both t and μ are in the tangent space Tr(	) and (t, k,μ) is a
local orthonormal vector triad.

Finally we define the tensor index notation as ∇iA j =
(∇A)i j , (Ai j )T = Aji, and A : B = Ai jB ji. The Einstein nota-
tion is used throughout the research.

D. Governing shape equation

The solution to the governing equation generates differ-
ent surface wrinkling patterns. In this section, two different
models are proposed based on the director field n. The full
director model separates the information of geometry (k, ∇(σ ))
and material physics (n, ε). The 3D Cahn-Hoffman capillary
vector is defined by the spatial derivative of the product of
the position and local surface tension [55,56], which can be
decomposed into the surface normal direction k and the plane
defined by the two tangent vectors r1 and r2 [Eq. (A1)]:

ξ = ∇(|r|γ (k)) = γ k︸︷︷︸
ξ⊥

+ I(σ ) · ∂γ

∂k︸ ︷︷ ︸
ξ‖

. (5)

The Cahn-Hoffman capillary vector considers the anisotropic
effect brought by ∇γ , whose value vanishes for an isotropic
surface (ξ‖ = 0) and ξ = γ0k. The Cahn-Hoffman vector
serves as the anisotropic surface normal vector, related to
weighted mean curvature pc [57], which is also the pressure
jump on the surface

∇σ · ξ = pc. (6)

The capillary pressure pc is balanced by the bulk stress jump
SJ = SJ( fb, k,∇(σ )n,∇⊥n), which is dependent on both sur-
face gradient ∇(σ ) and normal gradient ∇⊥. However, it has
been computed that stress jump SJ contributes less than 2%
to the governing equation for a biological cholesteric liquid

TABLE I. Principal curvatures contain various information to characterize the surface geometry.

Curvature Notation Significance Expressiona Special case (= 0)

Mean H Average value κ1+κ2
2 Saddle

Gaussian K Intrinsic κ1κ2 Cylinder

Deviatoric D Sphericity κ1−κ2
2 > 0 Sphere

Casorati C Magnitude
√

κ2
1 +κ2

2
2 > 0 Flat

Shape parameter S Shape 2
π

arctan ( κ1+κ2
κ1−κ2

)

{= 0, saddle
= ±0.5, cylinder
= ±1, sphere

aAssume κ1 > κ2.
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crystal system with typical pitch P0 > 1 µm [58]. In this re-
search, we study the periodic solution to the easy shape such
that pc = 0. Equation (6) also minimizes the surface free
energy with detailed derivations given in [59,60].

The expansion to Eq. (6) results in

−pc = − ∇(σ ) · ξ = −∂ξ⊥
∂k

: (∇(σ )k)T︸ ︷︷ ︸
dilation pressure

−∂ξ‖
∂n

: (∇(σ )n)T︸ ︷︷ ︸
director pressure

−∂ξ‖
∂k

: (∇(σ )k)T︸ ︷︷ ︸
rotation pressure

. (7)

The molecular orientation of liquid crystal does not have a
preference on n or −n, i.e., n and −n should generate the
same result. This can be verified by performing a reflection in
Eqs. (1), (2), (5), (6), and (7).

1. Full director model (global)

Replacing ξ‖ and ξ⊥ [from Eq. (5) to Eq. (7)], we obtain
the full director model (full derivation in Appendix B)

pc

γ0
= [ε(n · k)2 − 2]H + ε[kn : ∇(σ )n

+ (n · k) tr(∇(σ )n) − nn : B]. (8)

If we apply the Monge parametrization [19] in Eq. (8) such
that the surface relief is h = h(x, y), where (x, y, z) is the
common fixed laboratory coordinate system and h is along
the z axis, the complete governing equation (8) takes the form
of Eq. (B13), given in Appendix B. In this paper we study
only the case of pc = 0. Taking into account hydrodynamic
mode, elastic Frank elasticity corrections, Marangoni flows,
and active stresses may yield higher complexity, but these
effects are beyond the scope of this work.

2. Local director field decomposition

In Sec. II D 1, the components ni of the director field n
is described in a global orthonormal coordinate system {ei}.
There also exists a moving coordinate system {rα, k} on the
wrinkled surface, which induces a decomposition along the
tangent plane and the surface normal direction:

n = I · n = I(σ ) · n + kk · n = nα
‖ rα + n⊥k (9)

and generates a special term in director pressure that precisely
cancels the rotation pressure such that the governing shape
equation reduces to (derivation in Appendix C)

−pc = 2Hγ − εγ0∇(σ ) · N , (10)

where N = n⊥n‖ is a tangential vector field on the surface.
Applying 2H = −∇(σ ) · k to Eq. (10) gives

pc = γ∇(σ ) · k + εγ0∇(σ ) · N (11)

= ∇(σ ) · (γ k + εγ0N ) − k · ∇(σ )γ︸ ︷︷ ︸
0

, (12)

which is equivalent to pc = ∇(σ ) · ξ by replacing ξ⊥ = γ k and
ξ‖ = εγ0N . Equation (10) has a simpler form than Eq. (8),
since the geometry-physics information are entangled in the
N vector. In a moving coordinate system {rα, k}, the rotation

information (∂k) naturally disappears. The anisotropic effect
is absorbed in the director term (dependent on ∇(σ )n only)
and becomes an effective director pressure (dependent on both
∇(σ )n and ∇(σ )k).

In partial summary, our goal is to find the relationship
between the geometry (k) and the director field (n). We solve
Eq. (8) in a forward problem (n → k). We note that Eq. (10)
is an inverse problem to find director orientation given the
geometry (k → n).

3. Linear shape equation model

Weak anchoring (ε → 0) results in small wrinkling (∇h ≈
0). We keep the curvature information (∇∇h) and neglect the
surface gradient term (∇h = 0) to obtain a linearized model.
In Monge parametrization h(x, y) the linearized governing
equation takes the form (pc = 0)

hxx + hyy = ε
[
n1n3

x + n2n3
y + n3(n1

x + n2
y )

]
, (13)

which is a Poisson equation. In this work we seek periodic so-
lutions (that can be analytically solved by Fourier transform)
to Eq. (13). We recall that Eq. (13) is the linearized version
of the easy shape equation, and demonstrates that nontrivial
shapes in N/N* interfaces arise whenever ε[n1n3

x + n2n3
y +

n3(n1
x + n2

y )] is not zero.
Notably, Eq. (13) can also be written in terms of the splay

and bend contributions appearing in Eq. (2):

2H = ε(−B + Sn) · δ̂z. (14)

Equation (14) shows that the mean curvature H is independent
of the twist deformation and is linear in (−B + Sn) · δ̂z. A
minimal surface will be generated if the vector −B + Sn is
completely on the (x, y) plane.

Equation (13) demonstrates the unique role the n3 com-
ponent plays in wrinkling phenomenon. Permutations sharing
the same n3 component generate the same result due to the
fact that other terms in Eq. (13) are also the same up to a
trivial translation, which was previously confirmed by Fig. 2.

E. Numerical methods

We formulate and implement a numerical solution to
Eq. (8) [see Eq. (B13) in the Monge parametrization]. The
input variables are the director field [Eq. (3)] and the anchor-
ing coefficient ε. We use a pseudotransient method [61–63]
to compute the steady state solution and the EPS approach
[61] to treat the implicit Euler step. The advantage of using
a pseudotransient method is that it avoids evaluating a singu-
lar Jacobian (det J = 0) when h = 0 is a trivial solution [or
(−B + Sn) · δ̂z vanishes].

We use the periodic boundary condition to compute the
first and second spatial derivatives for each time step. The
helix pitch P0 = 1 (units: length) and a = b = 2π (units:
1/length) for N* or lattice size for N. A 500 × 500 evenly
distributed mesh and time step dt = 10−8 � dx = dy ≈ 2 ×
10−3 are applied to fulfill the standard von Neumann stability.
The initial condition for the governing nonlinear shape PDE
is assumed to be 10−3 rand(0, 1). The EPS parameter [61]
is ε0 = 10−5, with tolerance τ ∼ 10−6 and the time param-
eter ω = dt/(dt + ε0). Quantitative validation at the steady
state of the numerical solution are established by systematic
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TABLE II. Splay-bend combination of each permutation.

Permutation (−B + Sn) · δ̂z/π

Reflection (132) 2 cos 4πx∗ cos2 2πy∗ + 2 cos 2πx∗ cos 4πy∗a

Reflection (321) cos 2πx∗ sin 4πy∗ − sin 4πx∗ sin 4πy∗

Reflection (213) 2 sin 2πx∗ cos 4πy∗ + sin 2πx∗ sin 4πy∗

Rotation (231) − sin 2πx∗ sin 4πy∗ − sin 4πx∗ sin 4πy∗

Rotation (312) 2 sin 2πx∗ cos 4πy∗ + 2 cos 4πx∗ cos2 2πy∗

Rotation (123) cos 2πx∗ sin 4πy∗ + 2 cos 2πx∗ cos 4πy∗

aDimensionless spatial variables x∗ = x/P0 and y∗ = y/P0.

agreements with available solutions to the linearized model
(Table III).

III. RESULTS AND DISCUSSION

In this section, we present, characterize, and analyze the
numerical solutions to the governing equation [Eq. (B13)] in
Sec. III A and the curvature profiles in Sec. III B.

A. Surface relief

We summarize the values for all six director permutations
into Table II and Fig. 6. We use an ordered pair (ωx, ωy) to
represent the frequency along the x and y axes, respectively,
and it corresponds to a sinusoidal wave patch ∼e2π i(ωxx+ωyy).
We note that ωx = 0, ωy = 0 implies a translation h = h +
const [a symmetry that arises from Eq. (8)] and it does not
affect the pattern and is not considered further.

Table II and Fig. 6 reveal frequency-related features of
all possible surface relief profiles. The polar angle θ and
azimuthal angle φ from Eq. (3) are taken in different ranges
in the spherical coordinate system with translated dimen-
sionless surface coordinates ax = θ̄ ∈ [0, π ] and by = φ̄ ∈
[0, 2π ]. An asymmetric wave patch ωy = 2ωx naturally arises
by equating a = b = 2π . In Table II, the asymmetry exists for
all permutations and contributes the most for all permutations.

FIG. 6. Summary of surface patterns for the six director permu-
tations and their mode decomposition. The value demonstrates the
contribution of each mode based on Table III. Permutations (left
column) with the same color are equivalent.

If a �= b, then we do not expect to observe any ideal egg carton
surface. Hence, throughout this research, a = b is desired for
revealing the contribution of an ideal egg carton mode to the
surface wrinkling profile.

Figure 6 is the decomposition figure for all director per-
mutations. The surface profile for each permutation group is
shown in the h(x, y) column. Each surface profile can be de-
composed into three fundamental modes: equibiaxial, biaxial,
and uniaxial egg carton patterns. Permutations connected by
the same color demonstrate that they are equivalent up to
a trivial translation. The numerical values on each mode
present the contribution of each fundamental mode (Table III).
Notably, Fig. 6 shows that permutations (123) and (213)
yield a purely biaxial egg carton, while permutations (132)
and (312) yield a ternary mixture of egg cartons, differ-
ences caused by the spatial distribution of splay and bend
deformations. Table II and Eq. (14) provide a tool to solve
the linearized analytical solution [accuracy hexact = hlinear +
O(|∇h|)]. The solutions are summarized in Table III.

There are three frequencies observed in Table II, Table III,
and Fig. 6, related to particular egg cartons, as follows.

(i) (ωx = 2, ωy = 2): equibiaxial egg carton pattern,
which cannot be seen from reflection (213) and
rotation (123).

(ii) (ωx = 1, ωy = 2): biaxial egg carton pattern, which
originates from the asymmetric roles played by the az-
imuthal angle and polar angle in the spherical coordi-
nate system. (ωx = 1, ωy = 2) can be observed in all six
permutations and is a universal wave pattern under the con-
dition of a = b.

(iii) (ωx = 2, ωy = 0): uniaxial (ideal) egg carton pattern
with vanishing Gaussian curvature. This type of 1D wrinkling
comes from the fact that a sine or cosine wave multiplied by
itself (without phase shift), whose net effect is equivalent to a
constant plus a sinuous wave with doubled frequency due to
cos2 θ = (cos 2θ + 1)/2.

Table II and Eq. (14) also show that, as long as (−B +
Sn) · δ̂z is invariant under translation x → x + c and y → y +
c, the surface patterns are equivalent within the linear region.
We can observe that, by performing the following translation,
every reflection group has a corresponding rotation group that
generates a similar pattern,

Ref (132) → Rot (312) : (x∗, y∗) → (x∗ + 1/4, y∗),

h∗ → −h∗,

Ref (321) → Rot (231) : (x∗, y∗) → (x∗ − 1/4, y∗),

h∗ → −h∗,
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TABLE III. Analytic solution of h = hlinear + O(|∇h|) [computed from Eq. (14)].

Permutation −πh∗
linear/ε

Reflection (132) 1
32 cos 4πx∗ cos 4πy∗ + 1

16 cos 4πx∗ + 1
10 cos 2πx∗ cos 4πy∗a

Reflection (321) 1
20 cos 2πx∗ sin 4πy∗ − 1

32 sin 4πx∗ sin 4πy∗

Reflection (213) 1
10 sin 2πx∗ cos 4πy∗ + 1

20 sin 2πx∗ sin 4πy∗

Rotation (231) − 1
20 sin 2πx∗ sin 4πy∗ − 1

32 sin 4πx∗ sin 4πy∗

Rotation (312) 1
10 sin 2πx∗ cos 4πy∗ + 1

16 cos 4πx∗ + 1
32 cos 4πx∗ cos 4πy∗

Rotation (123) 1
20 cos 2πx∗ sin 4πy∗ + 1

10 cos 2πx∗ cos 4πy∗

aDimensionless spatial variables x∗ = x/P0, y∗ = y/P0, and h∗ = h/P0.

Ref (213) → Rot (123) : (x∗, y∗) → (x∗ + 1/4, y∗),

h∗ → +h∗, (15)

from which we verify again that x and y do not play a sym-
metric role.

In partial summary, numerical solutions validated with the
linear solutions shows that the director field n in Eq. (3) gener-
ates all possible egg cartons: uniaxial, biaxial, and equibiaxial
that superpose according to the symmetry of the director field.
The single mode biaxial egg carton pattern arises when n3 is
only periodic in y; otherwise the shape is a superposition of the
three primitive egg cartons (uniaxial, biaxial, and equibiaxial).
The Fourier method was instrumental in mode decoupling.
The linear model (Table III) sheds light on the origin of these
modes. Finally, Eq. (15) reveals the equivalence of rotation or
translation dual modes.

B. Curvature distribution

As noted above the surface curvature tensor is a symmetric
second order tensor B = −∇(σ )k, with real eigenvalues κ1

and κ2 as the two principal curvatures. The B tensor con-
tains the second derivative information on the space. The
tensor invariants tr B and det B determine two independent
curvatures—the mean curvature H and Gaussian curvature
K . Table I summarizes several curvatures and we only need
H and G to determine the rest with D = √

H2 − K , C =√
H2 + D2, and Sπ = 2 arctan(H/D).
The dimensionless curvature P0H , Gaussian curvature

P2
0 K , Casorati curvature P0C, and the dimensionless shape

parameter S for reflection groups are summarized in Fig. 7.
From Eq. (14) and Table II, we can analytically solve the
curve LH along which mean curvature P0H vanishes. P0H = 0
corresponds to a local minimal surface as per calculus of
variation, depicted as white curves in the third column of
Fig. 7. For the (132) permutation, LH are white curves are
defined by

L(132)
H : 2πy∗= arccos

(√
cos 2πx∗

2 cos2 2πx∗+2 cos 2πx∗ − 1

)
.

For (321) and (213) permutation, LH are straight lines and
they are superposed on Fig. 7 as white rectangles. The
green color for (213) permutation does not overlap with
the white rectangles L(213). This result demonstrates that h
and its first derivative ∇h can be linearly approximated;
nevertheless, the second derivative ∇∇h shows a significant
nonlinearity.

Mean curvature H = ∇2h + O(|∇h|2) admits additivity
such that H = ∑

i aiHi if h can be decomposed accord-
ing to different modes h = ∑

i aihi. The mean curvature
plots in Fig. 7 are also the consequence by superpos-
ing the mean curvature plots of its corresponding modes
from Fig. 6.

The Gaussian curvature is an intrinsic curvature. P2
0 K =

0 denotes a local developable surface (uniaxial). (321) sur-
face does not have contributions from a uniaxial patch from
Fig. 6; however, most of the surfaces are developable by
comparing the green area. Gaussian curvature is given by
K = det(∇∇h) + O(|∇h|2) and hence it does not admit ad-
ditivity. (213) is the Gaussian curvature map of a pure biaxial
egg carton surface from Fig. 6.

The Casorati curvature measures the absolute magnitude
of two principal curvatures. The deep blue color represents
the flat surface region and the deep red color represents the
surface with more bending. The extensive developable region
in (321) surface demonstrates P0C = 0; hence they are also
flat, due to the cancellation of equibiaxial egg carton mode
and biaxial egg carton mode from Fig. 6. In general, (132)
is the most curved and (321) is the flattest among the three
reflection groups.

The shape parameter S is by definition dimensionless. Both
deep blue and deep red indicate a spherical patch with the
opposite direction, and they contact with each other in Fig. 7.
The contacting points are locations where principal curvatures
start to change sign, i.e., a local cylindrical patch, and that
is the reason that yellow (cyan) curves (S = ±0.5) exactly
follow the same cyan curve shown in the Gaussian map. The
value of S = 0 indicates a saddle patch. The S results follow
the shape transition rules that when moving from a spherical
cup to a spherical dome we must encounter cylindrical cups,
saddles, and cylindrical domes.

By comparing Fig. 7 and Table III, the following symme-
tries are observed:

Ref (132) :
1

2
− x∗ ∼ 1

2
+ x∗ (reflection symmetry)

1

2
− y∗ ∼ 1

2
+ y∗ (reflection symmetry),

Ref (321) :
1

2
− y∗ ∼ −

(
1

2
+ y∗

)
(centrosymmetry),

Ref (213) :
1

2
− x∗ ∼

(
1

2
+ x∗

)
(centrosymmetry). (16)
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FIG. 7. Dimensionless curvature profile of three reflection groups on the (x∗, y∗) plane. Regions with vanishing curvature are demonstrated
by green color. The analytic results are shown as white curves on the third column.

In partial summary, under the same anchoring conditions,
the curvedness C is maximized for the three-mode surface
[permutation (132)] and the largest spherical (up and down)
patches are found in (213) where the n3 has only y periodicity.
On the other hand, segregated (left and right, right column
middle row) large and small spherical patches are found in
(321) yielding the following relative averaged features: (132):
maximal curvedness, intermediate shape variability; (321):
minimal curvedness, maximal shape variability; (213): inter-
mediate curvedness, minimal shape variability.

Thus control of the director yields targeted patterns with
more or less curvedness and more or less spherical or cylin-
drical or saddle patch transitions.

IV. SUMMARY

In this paper we formulate, solve, and characterize egg-
carton-like solutions to the liquid crystal shape equation,
applicable to nematic N and cholesteric N* interfaces un-
der the absence of bulk stress jumps, a condition known as
the easy shape that arises when the total capillary pressure
vanishes. Complex surface shapes under zero capillary pres-
sure, as opposed to flat or minimal surfaces, are a feature of
anisotropic soft matter. The model is based on the quadratic
anisotropic anchoring energy and the input is a known generic
double-periodic (in x and y coordinates) director field. All
symmetries and permutations of this director field are used to
classify them according to effective splay-bend contributions
and spatial director escape spatial organization. It is found
that director escape with linear spatial organization gives rise
to purely biaxial egg cartons, while latticelike source or sink
orientation fields give rise to various mixtures of uniaxial,
equibiaxial, and biaxial. A thorough curvature characteriza-
tion identifies which director fields generate large curvedness
(higher curvature amplitudes) and which generate more di-
verse shape gradients in terms of the spatial organization of

spherical, cylindrical, and saddle patches. It is found that
maximal curvedness and maximal shape diversity is found
in director fields with latticelike sources and sinks. On the
other hand, director fields with spatial linelike organization
tend to generate lower curvedness and few and larger spherical
patches. These findings contribute to additional pathways to
generate potentially high functionality surfaces using intrinsic
soft matter properties.
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APPENDIX A: INTRINSIC DIFFERENTIAL
GEOMETRY APPROACH

In this Appendix, we use an intrinsic geometric approach
to describe the surface. We follow the nomenclature and
approach from [53]. A point r on the physical surface
(parametrized by two parameters y = [y1 y2]

T
) has three

spatial components: r = [x1 x2 x3]
T

. r is a position map:
y �→ x. To simplify our discussion, we require a Euclidean
space x ∈ R3 (with orthonormal basis {δ̂i}) and y remains
in a curvilinear coordinate system (with basis {rα}). In the
following content, we assume Einstein summation and use
Latin letters for physical coordinates (i = 1, 2, 3) and Greek
letters for surface coordinates (α = 1, 2).
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The local tangential vectors are

rα = ∂xi

∂yα
δ̂i. (A1)

The first fundamental form g of the surface and the metric g
are defined by

gαβ = rα · rβ, g = det(g), (A2)

with the inverse and dual vectors

gαβ = g−1
αβ, rα = gαβrβ. (A3)

The unit normal vector k

k = ry1 × ry2

‖ry1 × ry2‖ . (A4)

Denote T n the nth order tensor product space. The surface
gradient operator ∇(σ ) : T n �→ T n+1 is defined by

∇(σ ) = rβ∇(σ )β = rαgαβ∇(σ )β = rα∇α
(σ ) = rαrα · ∇, (A5)

where ∇α
(σ ) is dual to ∇(σ )α .

Therefore, given that n = niei, the surface gradient of the
director yields a 2 × 3 matrix

∇(σ )n = ∇α
(σ )n

irα δ̂i = ∇(σ )βn jrβ δ̂ j . (A6)

Therefore, the trace of a second order tensor tr : T 2 �→ R
is equivalent to the surface divergence ∇(σ )· : T n �→ T n−1

when n = 1:

tr(∇(σ )n) = ∇(σ ) · n = ∇α
(σ )n

i(rα · δ̂i ) = ∇(σ )βn j (rβ · δ̂ j ).

(A7)

The surface curvature tensor B is defined as

B = −∇(σ )k, H = 1

2
tr B, K = det B. (A8)

The normal curvature κλ along the unit tangent λ ∈ TpM is
given by

κλ = λλ : B. (A9)

APPENDIX B: CAHN-HOFFMAN CAPILLARY VECTOR

In this Appendix, we derive the Cahn-Hoffman capil-
lary vector subject to the Rapini-Papoular surface energy
equation [50,51].

The Cahn-Hoffman capillary vector is a map S2 ×
S2 �→ T 1

ξ(n, k) = ξ⊥ + ξ‖ = γ k + I(σ ) · ∂γ

∂k
. (B1)

The surface divergence of ξ

−∇(σ ) · ξ = − tr
[
rαgαβ∇(σ )βξ(n, k)

]
(B2)

= − tr

(
rαgαβ ∂ξ

∂ni
∇(σ )βni + rαgαβ ∂ξ

∂k j
∇(σ )βk j

)
(B3)

= −∂ξ⊥
∂n

: (∇(σ )n)T︸ ︷︷ ︸
0

−∂ξ⊥
∂k

: (∇(σ )k)T︸ ︷︷ ︸
dilation pressure

−∂ξ‖
∂n

: (∇(σ )n)T︸ ︷︷ ︸
director pressure

−∂ξ‖
∂k

: (∇(σ )k)T︸ ︷︷ ︸
rotation pressure

, (B4)

where we use the tensor contraction nomenclature A : B =
Ai jB ji. ∀(a, b) ∈ (T 1 × T 1), and ∀(c, d) ∈ (T 1 × S2); the fol-
lowing identities are true:

ka : (∇(σ )b)T = (k · rα )gαβ (a · ∇(σ )βb) = 0, (B5)

cd : (∇(σ )d)T = (c · rα )gαβ (d · ∇(σ )βd) = 0. (B6)

We compute the derivatives separately:

∂ξ⊥
∂n

: (∇(σ )n)T = ∂γ

∂n
k : (∇(σ )n)rαgαβ = 0 (B7)

and

∂ξ⊥
∂k

: (∇(σ )k)T =
(

∂γ

∂k
k + γ I

)
: (∇(σ )k)T

= γ tr(∇(σ )k) = −2Hγ . (B8)

The tangential component of the Cahn-Hoffman capillary vec-
tor is by definition

ξ‖ = I(σ ) · ∂γ

∂k
= W (n · k)I(σ ) · n. (B9)

The tensor contractions in Eq. (B4) are

∂ξ‖
∂n

: (∇(σ )n)T = W [kn : ∇(σ )n + (n · k) tr(∇(σ )n)],

(B10)
∂ξ‖
∂k

: (∇(σ )k)T = W [nn : ∇(σ )k + 2(n · k)2H]. (B11)

The governing shape equation (ε = W/γ0) is

0 =
(

(n · k)2 − 2

ε

)
H + kn : ∇(σ )n

+ (n · k) tr(∇(σ )n) − nn : B. (B12)

To solve this equation numerically, we adopt the Monge
parametrization such that y = [x y]T and z = h. If the com-
ponent of the director field under orthonormal basis is ni such
that n = niδ̂i, the complete expansion of Eq. (B12) is given by
Eq. (B13):

0 =
(

1

2
(−n1hx − n2hy + n3)2 − g

ε

)[
hxx

(
1 + h2

y

) + hyy
(
1 + h2

x

) − 2hxhyhxy
]

+ g
[
(n1 + hxn3)

[(
1 + h2

y

)( − hxn1
x − hyn2

x + n3
x

) − hxhy
( − hxn1

y − hyn2
y + n3

y

)]
+ (n2 + hyn3)

[(
1 + h2

x

)( − hxn1
y − hyn2

y + n3
y

) − hxhy
( − hxn1

x − hyn2
x + n3

x

)]]
+ g(−n1hx − n2hy + n3)

[[(
1 + h2

y

)(
n1

x + hxn3
x

) − hxhy
(
n1

y − hxn3
y

)] + [(
1 + h2

x

)(
n2

y + hyn3
y

) − hxhy
(
n2

x − hyn3
x

)]]
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+ (n1 + n3hx )

{
n1

[(
1 + h2

y

)( − hxxg + 1

2
hxgx

)
− hxhy

(
− hxyg + 1

2
hxgy

)]

+ n2

[(
1 + h2

y

)( − hxyg + 1

2
hygx

)
− hxhy

(
− hyyg + 1

2
hygy

)]
+ n3

[(
1 + h2

y

)( − 1

2
gx

)
− hxhy

(
− 1

2
gy

)]}

+ (n2 + n3hy)

{
n1

[
− hxhy

(
− hxxg + 1

2
hxgx

)
+ (

1 + h2
x

)( − hxyg + 1

2
hxgy

)]

+ n2

[
− hxhy

(
− hxyg + 1

2
hygx

)
+ (

1 + h2
x

)( − hyyg + 1

2
hygy

)]
+ n3

[
− hxhy

(
− 1

2
gx

)
+ (

1 + h2
x

)( − 1

2
gy

)]}
,

(B13)

where the determinant of the metric tensor g = 1 + h2
x + h2

y ,
gx = 2hxhxx + 2hyhxy, and gy = 2hxhxy + 2hyhyy. If we con-
sider nanowrinkling solutions such that we neglect hexact =

h + O(||∇(σ )h||2) (10−6 of the whole contribution), we also
replace 0 by −η sgn(ε)ḣ, and then Eq. (B13) reduces to a
special type of Monge-Ampère equation (B14):

−η sgn(ε)
dh

dt
=

(
− 1

ε
+ 1

2
(n3)2 − (n1)2 − 3n1n3hx − n2n3hy

)
hxx +

(
− 1

ε
+ 1

2
(n3)2 − (n2)2 − n1n3hx − 3n2n3hy

)
hyy

− 2(n1n2 + n2n3hx + n1n3hy)hxy + (−2n1n1
x − n2n1

y + 2n3n3
x − n1n2

y )hx

+ ( − n1n2
x − 2n2n2

y + 2n3n3
y − n2n1

x

)
hy + n1n3

x + n2n3
y + n3

(
n1

x + n2
y

)
. (B14)

If we further approximate Eq. (B14) with hexact = h +
O(||∇(σ )h||) and let |ε| � 1, the steady state periodic solution
to Eq. (B14) can be analytically obtained by spectral method.
Denote a and b such that ax ∈ [0, 2π ] and by ∈ [0, 2π ]. The
dimensionless approximated equation to Eq. (B14) degener-
ates to

hxx + hyy = ε
[
n1n3

x + n2n3
y + n3

(
n1

x + n2
y

)] = εP, (B15)

with series solution

h(x, y) =
∑

j,k

− εP̂j,k

( ja)2 + (kb)2
ei(a jx+bky), (B16)

where P̂j,k are the coefficients of the Fourier series P =∑
j,k P̂j,kei(a jx+bky).

APPENDIX C: DECOMPOSITION OF DIRECTOR FIELD

In this section, we decompose the director field on the local
basis {ry1 , ry2 , k} such that n = nα

‖ rα + n⊥k and

nn = nα
‖ nβ

‖ rαrβ + n⊥nβ

‖ krβ + nα
‖ n⊥rαk + n2

⊥kk. (C1)

Since ||k|| = 1, rα ⊥ k, the following identities hold:

krβ : ∇(σ )k = rαk : ∇(σ )k = kk : ∇(σ )k = 0. (C2)

Combined with the fact that 2H = B : I(σ ) = −∇(σ )k : I(σ ),
the rotation pressure [in Eq. (7)] can be rewritten as

Protation = W B : (n‖n‖ − n2
⊥I(σ ) ). (C3)

The surface gradient of director n is decomposed by

∇(σ )n = rβ∇(σ )βn = rβrαDβn
α
‖+(B · n‖)k+∇(σ )n⊥k−n⊥B,

(C4)

where D is the surface covariant derivative defined by

Dβnα
‖ = ∇(σ )βnα

‖ + nμ

‖ (∇(σ )β∇(σ )μxi

+ ∇(σ )βx j∇(σ )μxm�i
jm)gανei · ek∇(σ )νxk (C5)

and �i
jm = ∂ jem · ei are the Christoffel symbols with 33 = 27

components.
The first term in the director pressure is

kn : ∇(σ )n = kn : (rβrαDβn
α
‖ + (B · n‖)k

+∇(σ )n⊥k − n⊥B) (C6)

= (n · rβ ) (k · rα )︸ ︷︷ ︸
0

Dβn
α
‖ + n · (B · n‖)

+ n · ∇(σ )n⊥ − n⊥ kn : (Bαβrαrβ )︸ ︷︷ ︸
0

(C7)

= n⊥n‖ : B︸ ︷︷ ︸
0

+n‖n‖ : B + n⊥ · ∇(σ )n⊥︸ ︷︷ ︸
0

+ n‖ · ∇(σ )n⊥ (C8)

= n‖n‖ : B + n‖ · ∇(σ )n⊥. (C9)

The trace of the surface gradient is decomposed by

tr(∇(σ )n) = Dαnα − n⊥tr(B) = ∇(σ ) · (I(σ ) · n) − 2Hn⊥.

(C10)
The second tensor contraction in director pressure is

(n · k) tr(∇(σ )n) = n⊥∇(σ ) · n‖ − 2Hn2
⊥. (C11)

Therefore, the director pressure [in Eq. (7)] can be written as

−Pdirector = W [kn : ∇(σ )n + (n · k) tr(∇(σ )n)] (C12)
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= W (n‖n‖ : B + n‖ · ∇(σ )n⊥)

+W (n⊥∇(σ ) · n‖ − 2Hn2
⊥) (C13)

= W B : (n‖n‖ − n2
⊥I(σ ) )︸ ︷︷ ︸

+Protation

+ W (n‖ · ∇(σ )n⊥ + n⊥∇(σ ) · n‖)︸ ︷︷ ︸
effective director pressure PE

. (C14)

Equation (C14) implies that the local decomposition of the
director pressure naturally contains the rotation pressure.
Therefore, when we calculate the addition Pdilation + Protation +
Pdirector, only the dilation pressure and an effective director

pressure PE are left. Replacing Eq. (C14) in pc = ∇(σ ) · ξ in a
second order anchoring model gives

−pc = 2Hγ − εγ0∇(σ ) · (n⊥n‖). (C15)

We define a vector N = n⊥n‖ and N is a surface tangential
vector field. The surface balance equation is given by inte-
grating Eq. (C15) over any area 	 enclosed by a boundary
∂	. Notice that the surface divergence term on the right hand
side can be converted to the line integral as follows:∫∫

	

(2Hγ + pc)dA = εγ0

∮
∂	

N · μ ds, (C16)

shedding light on the effective director pressure as an edge
effect on a patch 	.
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