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Topological structures in chiral media: Effects of confined geometry
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We theoretically study orientational structures in chiral magnetics and cholesteric liquid crystal (CLC)
nanosystems confined in the slab geometry. Our analysis is based on the model that, in addition to the exchange
and the Dzyaloshinskii-Moriya interactions, takes into account the bulk and surface anisotropies. In CLC films,
these anisotropies describe the energy of interaction with external magnetic/electric field and the anchoring
energy assuming that magnetic/electric anisotropy is negative and the boundary conditions are homeotropic.
We have computed the phase diagram and found that the ground state of the film is represented by various
delocalized structures depending on the bulk and surface anisotropy parameters, κb and κ s. These include the z
helix and the z cone states, the oblique, and the x helicoids. The minimum energy paths connecting the ground
state and metastable helicoids and the energy barriers separating these states are evaluated. We have shown that
there is a variety of localized topological structures such as the skyrmion tube, the toron, and the bobber that can
be embedded in different ground states including the z cone (conical phase) and tilted fingerprint states. We have
also found the structure called the leech that can be viewed as an intermediate state between the toron and the
skyrmion tube.
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I. INTRODUCTION

In recent years, chiral magnetic and liquid crystal (LC) sys-
tems have attracted considerable attention due to the discovery
in these systems of new localized states with topological
stabilization, such as skyrmions, antiskyrmions, and other
local noncollinear structures [1–3]. Skyrmion states in mag-
netic materials have been observed in a variety of sizes
ranging from nanometers to microns [4]. In these materials,
small skyrmions are stabilized by the Dzyaloshinskii-Moriya
interaction (DMI) caused by spin-orbit coupling. In thin two-
dimensional magnetic films on the surface of heavy metals,
DMI can arise due to the effect of proximity to elements
with a large atomic number [5]. However, small nanosized
skyrmions in few-monolayer-thick ferromagnetic (FM) films
are stable only well below room temperature. For larger struc-
tures that exist at room temperature, magnetic dipole-dipole
interaction turns out to be responsible for the size of the

structures and the stability against thermal fluctuations [6].
In bulk three-dimensional (3D) chiral magnetic systems with
intrinsic DMI, topological magnetic structures were found
in MnSi, FexCo1−xSi, FeGe, and other B20 helimagnet al-
loys [1]. These systems exhibit a diversity of topological
structures including skyrmion tubes, baby skyrmions, mag-
netic bobbers, etc. [7–10].

In LCs, chiral ordering is observed in the so-called
cholesteric liquid crystals (CLCs). Their properties are deter-
mined by the geometric shape and structure of the molecules.
There are even CLC materials whose bulk chirality can
be controlled by UV irradiation [11]. The anchoring en-
ergy characterizing the interaction of LC molecules with
the bounding surfaces of CLC cells is one of the key
factors determining the property of CLCs placed in thin
cells. Localized topological states similar to the structures in
magnetic materials are known to be formed in such chiral
media [12].

2470-0045/2022/105(3)/034701(11) 034701-1 ©2022 American Physical Society

https://orcid.org/0000-0001-9223-8961
https://orcid.org/0000-0001-8789-3267
https://orcid.org/0000-0002-1023-3284
https://orcid.org/0000-0002-9505-0996
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.034701&domain=pdf&date_stamp=2022-03-21
https://doi.org/10.1103/PhysRevE.105.034701


I. M. TAMBOVTSEV et al. PHYSICAL REVIEW E 105, 034701 (2022)

In magnetic systems, new opportunities open up due to the
use of artificial multilayer systems. The properties of such
magnetic structures can be tuned by the layer architecture.
In synthetic antiferromagnets with metallic magnetic layers
separated by nonmagnetic spacers, perpendicular magnetic
anisotropy, antiferromagnetic interlayer coupling, and chiral
order can be controlled simultaneously. In such systems, it
is possible to create small antiferromagnetic skyrmions that
are stable at room temperature. This opportunity is promising
for new magnetic memory technologies and other spintronic
applications [13].

The feature shared by all the above systems is that
the localized topological structures can be formed in chiral
magnetic/LC media in confined geometry. In a planar slab
structure, the boundary (anchoring) conditions together with
the thickness significantly influence magnetic/orientational
ordering of the ground state. As a result, stability and other
characteristics of the localized topological structures in the
medium will depend on these conditions. Therefore, it is
important to understand the phase diagram of chiral media
depending on the conditions at the bounding surfaces. The
possibility of adjusting the properties by changing interactions
at the boundary is also of great interest for both fundamental
and technological reasons.

Another aspect that makes the problem of studying the
phase diagram of chiral materials in confined geometry topical
is related to the interaction between the localized topological
states mediated by the polarization of the surrounding medium
leading to a change in its energy. For example, the interaction
between vertical and horizontal skyrmion tubes found in bulk
magnetic and liquid crystal systems [14] can be explained
taking into account the change in the state of the cone ordered
media in which these structures are embedded [15]. Therefore,
in order to understand the principles of formation of super-
structures consisting of separate localized topological objects,
it is also necessary to know about the ground (“vacuum”)
state, that is, the chiral material in which these systems are
embedded.

The effects of confined geometry are most clearly man-
ifested when the size of the system is comparable to the
characteristic lengths corresponding to the order parameters
of the chiral medium. In chiral magnetic and LC films and lay-
ered structures, one can expect the formation of helical states
with differently oriented helix twisting axes with respect to
the plane of the film. The competition between different inter-
actions may also result in the formation of multiple metastable
helical states. In particular, this is the case when the equilib-
rium (bulk) helix pitch is comparable to the thickness of the
layers. Transitions between these states can be induced either
by applying external fields or by changing other governing pa-
rameters. In addition, the field-induced transition from planar
helical states to the states with out-of-plane director deforma-
tions in CLCs—the so-called Fréedericksz transition—leads
to strong modification of the optical properties of CLCs used
in many applications.

The stability of various states and scenarios of the tran-
sitions between them can be studied by investigating the
multidimensional energy surface as a function of all variables
that determine the magnetic/LC state of the [16,17] system.
Local minima on the energy surface correspond to the ground

and various metastable states, saddle points determine the
energy barriers between these states, and the minimum energy
paths that connect different states give the most probable sce-
narios of the transitions between them [18]. Interactions at the
boundary of the system associated with spatial confinement
or the presence of interfaces in multilayers change the energy
surface of the system and may affect the loci and even the
number of the local minima.

In this paper, we are primarily concerned with the phase
diagram and the localized topological structures in chiral
magnetic/LC films with negative easy-plane anisotropy in the
bulk of the film and with positive easy-axis anisotropy at the
boundaries. We compute a phase diagram for ground states of
chiral magnetic/LC film in surface-bulk anisotropies space,
and we reveal domains of stability of various localized topo-
logical structures (skyrmion tubes, bobbers, torons [19–22])
inside the distinct phases. We consider both the continuous
and the lattice models where the exchange coupling, DMI,
and interaction with an external magnetic field are taken into
account. The model also describes LC systems in the one-
constant approximation where differences between the Frank
modules are assumed to be negligible. In this case, easy-axis
anisotropy at the surface will model the homeotropic anchor-
ing conditions at the substrates of the CLC cell.

II. MODEL

We consider a film of a chiral either magnetic or nematic
liquid crystal medium. The continuum model of such film is
described by the energy density ω(r):

ω(r) = A(∇ · m)2 − Dm · [∇ × m] − K(r)(m · z)2, (1)

where m(r) is the vector field representing either the magne-
tization or the LC director, and z is the unit vector along the
anisotropy axis z.

For magnetic systems, the first term describes the exchange
interaction determined by the exchange stiffness A, which
is assumed to be homogeneous in the bulk of the film. The
second term corresponds to chiral DMI with the interaction
constant D. The third contribution is the density of magnetic
anisotropy described by the parameter K whose values inside
the film and at its boundaries may differ. This difference can
be caused by the proximity of another material or surface
effects.

For LC systems, the value of A and the chiral interaction
constant D are expressed in terms of the Oseen-Frank moduli
in the one-constant approximation where all the elastic con-
stants are assumed to be equal. In this case, the bulk value
of the anisotropy constant K plays the role of the coupling
constant for interaction with external magnetic field, whereas
its value at the substrates corresponds to the anchoring energy
strength.

For simulation purposes, it is a common practice to in-
troduce discretization of the continuous model using the
well-known finite-difference method. On the other hand, the
magnetic moments at the nanoscale are localized on atoms at
the sites of the crystallographic lattice. Then the continuous
model is considered as the limiting case of a real discrete
model, when the lattice constant is small compared to the
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FIG. 1. Cell of a chiral medium. The top picture shows a 3D
system with a rectangular grid. The bottom picture shows one layer
of the 3D grid in the xz plane. The top and bottom surfaces corre-
spond to the boundaries of the cell where additional anisotropy is
added to simulate the orientationally dependent part of the surface
energy (in CLCs, it is known as the anchoring energy). The color
palette describes x and y projections of magnetic moments. Periodic
boundary conditions (BCs) are assumed in the xy plane.

characteristic sizes of the magnetic structures. Note that dif-
ferent lattice models may coincide in the continuum limit.

We will consider the simplest lattice model with magnetic
moments localized at the sites of a simple cubic lattice inside
the rectangular cell shown in Fig. 1. This figure shows the
state of an oblique spiral in a magnetic film, which will be
discussed below. As discussed above, the model also describes
the CLC film in the one-constant approximation. The expres-
sion for the energy of the system now reads

E = −
∑

〈i, j〉
[Jmi · m j + Di j · (mi × m j )] −

∑

i

Ki(mi · z)2,

(2)

where mi is the unit vector along either the magnetic moment
or the CLC director at the site i. Summation 〈i, j〉 is performed
over nearest neighbors, and the exchange parameter J is as-
sumed to be constant.

Antisymmetric exchange (DMI) is also taken into account
only between the nearest-neighbor magnetic moments. The
DMI vector Di j is directed along the line connecting the
lattice sites i and j, and its length is constant, |Di j | = D.
The parameter Ki defines anisotropy on the site i. The con-
tinuous parameters and the discrete ones for cubic lattice are
connected as follows:

2aA = J, a2D = D, a3K(r) = Ki,

where a is the lattice constant.
In the case of vanishing anisotropy with Ki = 0, the ground

state corresponds to the helical structure with the period [23]

p0 = 2π/ arctan
D

J
. (3)

In what follows, we consider the film of the thickness d =
p0 = 20a, unless otherwise specified.

In the xy plane, we shall use the periodic boundary con-
ditions (BCs) and restrict our analysis to the case of states
invariant with respect to translations along the y axis (this
assumption will be relaxed in Sec. IV). The value of the period
lx along the x axis will be selected for each state to minimize
its energy. Free BCs are applied for the top and bottom layers
representing the cell substrates. The anisotropy Ki at the site i
is different for the substrate layers and for internal sites of the
sample. In the bulk of the sample, the easy-plane anisotropy
Ki = Kb � 0 is kept fixed for all layers of the film. In LC
with negative magnetic susceptibility, �χ < 0, the easy-plane
anisotropy naturally appears as the energy of interaction of LC
with the magnetic field.

Additional surface anisotropy Ks � 0 at the boundaries de-
scribes the surface effects that either arise from the anchoring
energy of CLCs or are due to the interface with other magnetic
material. Thus the total surface anisotropy is Ki = Kb + Ks

and the axis of the anisotropy is normal to the substrates. Posi-
tive values of Ki, Ki > 0, correspond to the easy axis, whereas
the easy pane is described by Ki < 0. In what follows, the
anisotropies will be expressed in terms of the dimensionless
parameters: κb and κs, where Kb = κbD2/J , Ks = κsD2/J .

We find metastable states by minimizing the functional (2).
The functional naturally appears as the energy of magnetic
systems in the atomistic model, whereas the same functional
gives a finite-difference discretization of the liquid crystal free
energy in the continuum model (1). To find local minima
of the energy, we use the direct energy minimization by the
nonlinear conjugate gradient method in Cartesian coordinates
mk with constraints m2

k = 1 [24,25].

III. DELOCALIZED PERIODICALLY MODULATED
CHIRAL STRUCTURES IN THE SLAB GEOMETRY

Chiral systems may have, in addition to the ground state,
several metastable states including extended structures like
either helix states or chiral domain walls, and localized
structures such as skyrmions, torons, hopfions, etc. [23,26].
Depending on the parameters of the system and external con-
ditions, metastable states may change their stability or even
disappear. In confined geometries, the presence of bounding
surfaces and interfaces is among the factors that affect the
ground and metastable states and may lead to the formation
of new states that are absent in unbounded materials.

In the bulk of a chiral medium, when the uniaxial
anisotropy parameter κb decreases, the ferromagnetic (FM)
state, which is the ground state at sufficiently large positive
κb, transforms into the helical state with the twisting axis
orthogonal to the anisotropy axis at a certain threshold value
of κb > 0. When κb changes its sign and κb < 0, the helix
axis is reoriented in the direction of the axis of the easy-plane
anisotropy. Similar behavior was found to occur for skyrmion
tubes in an external magnetic field: a crossover of the lower
energy state occurs from tubes oriented along the field to
the tubes perpendicular to the field when the magnetic field
decreases [26]. Note that, in all of the above helix states, the
projection of the spin onto the axis of the helix is zero.
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FIG. 2. z-projection of the normalized magnetization mz for various values of surface anisotropy κ s and volume anisotropy κb = 0. The
left and right panels show the solutions cone-I and cone-II, respectively. The insets depict the average modulus mz for the entire film (blue
solid line) and the middle layer (red dashed line) in dependence on the κ s. For κ s < 1.4, the magnetization lies in the plane of the film for both
cone-I and cone-II. The dashed line represents the analytical solution for semi-infinite space and κ s = ∞.

In a film of finite thickness, the presence of bounding
surfaces introduces an additional preferred direction along the
normal to the surfaces that supplements the symmetry axes
of the bulk material. The ground state of the confined system
shown in Fig. 1 is determined by a number of factors, such
as the film thickness, the anisotropy inside the film, and the
surface anisotropy effects.

In a subsequent section, we shall present the phase dia-
gram computed in the κb-κs parameter space. In particular,
our analysis shows that there is a new ground state formed
in certain regions of the parameters. In what follows, this
state will be referred to as the oblique helicoid (cone) state.
Such a cone state can be viewed as an intermediate state
between the spiral states with the twisting axes either parallel
or normal to the film substrate (the x-helicoid and the z-helix,
respectively). The formation of an inclined cone state is a
direct consequence of confined geometry. Note that, in bulk
materials, the competition between local cubic and exchange
anisotropies may also lead to inclined spiral states [27].

A. z-helix and z-cone states

Let us consider the film shown in Fig. 1 with the easy-
plane anisotropy in the bulk of the film with κb � 0. At
negligibly small κb, the ground state is the z-helix with the
period p0 (3). In a semi-infinite space, z � 0, with the strong
easy-axis anisotropy at the boundary, where all the moments
are kept normal to the bounding plane, z = 0, the ground state
for a chiral medium can be found analytically. To this end,
it is enough to find the minimizer for the functional (1) that
meets the corresponding boundary conditions at z = 0. The
ground-state configuration is uniform in the xy plane and can
be described by the polar and the azimuthal angles θ (z) and
φ(z), where θ (z) is the angle between the magnetic moment
(director) and the z-axis. The boundary conditions for θ are as
follows:

θ (z)|z=0 = 0, θ (z)|z=∞ = π

2

and the solution reads

θ (z) = 2 arctan exp

∣∣∣∣
D

2A z

∣∣∣∣ − π

2
, φ(z) = φ0 + D

2A z,

where φ0 is the value of the angle φ at z = 0. This solution
represents the magnetic moments (director field vector) that
uniformly rotate about the z axis whereas their z-projection
decreases with z.

In the film of finite thickness with arbitrary anisotropy κs,
the solution can be obtained numerically. Figure 2 shows the
z dependence of the z-projection of the magnetic moment on
z (the distance from the lower boundary along its normal) and
the corresponding magnetic configurations.

The left (right) panel depicts the symmetric (antisymmet-
ric) conical solution that will be referred to as cone-I (cone-II).
For cone-II, the z-projection of the moment vanishes in the
middle of the film and, in thin films, is characterized by
pronounced variations in mz so that its energy is typically
larger as compared to cone-I. However, similar to the stability
of one-dimensional domain walls, this configuration can be
stable due to topological reasons.

In thick films, where the z-projection of the moment is
close to zero in the middle layer for both the symmetric and
antisymmetric solutions, the energies of cone-I and cone-II are
the same. Note that the sign of the z-projection of the director
has no physical meaning for LC systems, and the director
configurations on both surfaces are the same for cone-II in the
strong anchoring limit κs → ∞. However, the solutions exist
and represent topologically different orientational structures
in LC systems as well.

At nonvanishing plane anisotropy with κb < 0, the tran-
sition from the z-helix state (the state without z projection)
to the z-cone state takes place at a certain surface anisotropy
κs which is an increasing function of |κb|. The z-helix and
z-cone structures bear close resemblance to those involved in
the Fréedericksz transition that occurs in LC under the action
of electric or magnetic fields. Note that both the z-helix and
the z-cone exist at least as metastable states in the entire range
of the parameters κb and κs. As will be shown later on, the
transition from the z-helix to the cone-I state, which occurs
as κs increases, involves the transition to a new ground state,
which might be called the oblique helicoid state.

B. x-helicoid

In an unbounded sample with small anisotropy κb > 0
along the z-axis, the ground state is the x-helix with the pitch

034701-4



TOPOLOGICAL STRUCTURES IN CHIRAL MEDIA: … PHYSICAL REVIEW E 105, 034701 (2022)

FIG. 3. x-helicoid state for vanishing bulk anisotropy κb = 0 and different values of the surface anisotropy κ s: 0 (left), 10 (middle), and 20
(right). One pitch of x-helicoid in the magnetic film is shown between the red lines. For LC, the pitch is twice as small.

p slightly larger than p0. At κb < 0, this is no longer the case.
However, in thin films it turns out that the boundary condi-
tions with κs > 0 have a stabilizing effect on the x-helicoidal
structure provided the magnitude of the negative anisotropy
κb is sufficiently small.

For the system shown in Fig. 1, calculations were carried
out using the periodic boundary conditions along the x and y
axes. We shall assume that the states are invariant with respect
to the translations along the y axis (nonhomogeneous states
corresponding to fingerprint patterns that will be considered
in the section dealing with localized topological structures).

Given the value of lx, the calculations were performed
to compute the local minimum of energy (2). This energy
minimum depends on the period lx, and the corresponding
structure is characterized by the pitch px = lx/n, where n is
the spiral pitch number per period lx. Minimizing the energy
with respect to the pitch px gives the metastable state corre-
sponding to the specified anisotropies κb and κs.

The helix pitch px depends on the surface anisotropy and
is an increasing function of κs. This can be seen from Fig. 3,
which shows the orientational structures in the x-z plane
computed for three values of κs ∈ {0, 10, 20} in the absence
of bulk anisotropy κb = 0. Referring to Fig. 3, the pitch is
increased by more than one and a half times.

Figure 4 presents the dependence of the pitch ratio λ ≡
p/p0 on the surface anisotropy κs computed at different values
of the ratio (the so-called confinement ratio) of the film thick-
ness d and the equilibrium pitch p0, d/p0, and κb = 0. It can
be seen that, for small anisotropy κs, the pitch is close to p0 for
all thicknesses. In thick films with a sufficiently large confine-
ment ratio, the helix pitch grows with the surface anisotropy

FIG. 4. The ratio of the pitch px of the x-helicoid in the film and
in the bulk medium λ = px/p0 as a function of the surface anisotropy
κ s for films of different thickness d . Volume anisotropy κb = 0.

approaching the constant value in the limit of strong anchoring
where κs → ∞. By contrast, in thin films with d < p0, the
helix pitch diverges with surface anisotropy, which leads to an
unwinding of the x-helicoid. Our findings agree quantitatively
with the results of [28] on equilibrium configurations and the
phase diagram of thin LC films with homeotropic boundary
conditions.

Note that a similar LC structure was studied in [29], where
the analytical solution was derived in the case of strong sur-
face anisotropy. An important assumption taken in this work
is that the LC director is normal to the x axis. This assumption,
however, cannot be used to describe the x-helicoid structure.
In our calculations, for thick films with κb = 0, the total
magnetization along the x axis initially decreases with κs due
to the ordering of the surface layer moments along the normal
to the boundary. Surprisingly, after reaching the minimum at
κs � 5, the x-projection starts growing due to the tilt of the
moments in the layers closest to the surface layer. Such tilted
structures modulated along the in-plane direction have been
reported in [30].

C. Oblique helicoid state

Now we consider the z-helix and z-cone states in the
range of anisotropy parameters where κb < 0 and κs > 0. The
transition between these states occurs as the anisotropy κs

increases. Note that the Fréedericksz transition in cholesteric
LCs driven by external magnetic or electric fields involves
similar states. Such a transition between in-plane and out-of-
plane director structures in LC can be either continuous or
jumplike depending on the parameters of the system [31].

In contrast to the Fréedericksz transition, in our model
we found that the transition from the z-helix state to the
z-cone state involves the new additional state—the so-called
oblique helicoid state shown in Figs. 1 and 5. Moreover, this
state appears to be a ground state in a certain range of the
anisotropies κs.

This oblique helicoid state is characterized by the spatial
period p of the structure and the inclination angle α from
the z-axis. Both the inclination of the helicoid and its period
along the x axis depend on the anisotropy parameters κb < 0
and κs > 0.

Figure 5 shows the oblique spiral states in the absence of
bulk anisotropy, κb = 0, computed at two different values of
the surface anisotropy κs = 10 and 20. It can be seen that, at
κb = 0, the larger the surface anisotropy is, the smaller is the
inclination angle.
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FIG. 5. Oblique helicoid states at κb = 0 with κ s = 10 (left panel) and κ s = 20 (right panel).

Now we discuss how the inclination angle can be com-
puted. Given the twisting axis q, the spatial dependence of the
magnetic moment (LC director) in the bulk will be determined
by the projection s = r · q/q2 of vector r on the axis q:

m(r) = m(r0 + sq) = m(s)

for all s and any fixed r0. Therefore, the elements of the
gradient matrix of the magnetization can be written in the
following form:

(∇m)i j ≡ ∇im j = qi

q2

dmj

ds
.

In the discrete model with the energy (2), the gradient matrix
is represented by finite differences and has small deviations
from this form. To reduce the errors, q is approximated by
the left-singular vector of the gradient matrix corresponding
to the largest singular value. After computing the helix axis q,
we obtain the inclination angle α in the form

α = arccos
q · z
q2

. (4)

The oblique helicoid is formed as a result of the confined
geometry of the system and exists, as the ground state, only
at certain values of the film thickness d . The inclination angle
α and the lateral period px will also depend on the film thick-
ness. Figure 6 shows the dependence of the angle α and the
dimensionless spatial period λ = px/p0 on the film thickness.
It can be seen that the period is a monotonically increasing
function of the thickness d , whereas the inclination angle

FIG. 6. Inclination angle α and dimensionless period λ = px/p0

(p0 is the equilibrium value of pitch) of the oblique cone as a function
of the film thickness d computed at κb = −0.2 and κ s = 0.

lowers with the thickness so that the oblique cone transforms
into the z-cone in the thick film limit. As the thickness de-
creases, the oblique spiral approaches the x-helicoid formed
at the critical value of the thickness d ≈ 0.65 p0.

Just as in the x-helicoid, metastable configurations of the
oblique helicoid are evaluated in the boxes of different sizes
to obtain an optimal value of px corresponding to the mini-
mum energy. The x-helicoid and the oblique helicoid states
coexist as metastable states and differ in both the period
and the energy. To assess the stability of these states, it is
useful to construct the energy surface of the system and find
the minimum energy path (MEP) between the states. The
maximum along the MEP gives the energy barrier for the
transition between states. The MEP can be found using the
geodesic nudged elastic band method [32] or other special
methods [33,34]. This approach was used to study the stability
of magnetic systems [35–37] as well as LC structures [16–18].

Figure 7 shows the MEPs between the state of the x-
helicoid and the oblique helicoid computed at fixed box
size with the dimensionless period λ = 1.1 and the surface
anisotropy κs = 5. Solid and dashed lines represent the re-
sults evaluated at different values of the bulk anisotropies:
κb = −0.05 and −0.1, respectively. It is illustrated that the
x-helicoid being a ground state at sufficiently small |κb| be-
comes metastable when the magnitude of κb increases.

By contrast to the solid and dashed lines, the results rep-
resented by the dash-dotted line in Fig. 7 are obtained by

FIG. 7. The MEPs between the oblique spiral and the x-helicoid
at κb = −0.05 (left axis, solid line) and κb = −0.1 (right axis,
dashed line) for the fixed surface anisotropy κ s = 5 and the fixed
pitch λ = 1.1. The dash-dotted line is a MEP with optimization of
the pitch along the path as shown in Fig. 8. The mean spin energy
〈E〉 is presented in units of J × 10−5 and is counted from the barrier
energy.
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FIG. 8. Energy as a function of the pitch λ and the reaction
coordinate for the transition from the x-helicoid (left border) to the
oblique spiral (right side) at κb = −0.1, κ s = 5. The MEP is marked
by the dashed line, and the cross marker indicates the transition state.
The mean spin energy 〈E〉 is measured in units of J × 10−5 and is
counted from the lowest energy.

minimizing the energy over the in-plane period px. Figure 8
shows a heat map visualizing the energy along the MEP be-
tween the states of the x-helicoid and the oblique helicoid.
Each line at fixed λ on the map represents a MEP com-
puted for the fixed box size enforcing the pitch. The local
coordinates (displacement) for the x-helicoid and the oblique
helicoid on the MEP are zero and unity, respectively. The
pitch corresponding to the minimum energy of the x-helicoid
and the oblique helicoid is λ = 1.10 and 1.12, respectively.
Referring to Fig. 8, it is reasonable to assume that the de-
pendence of MEPs on the pitch is continuous. So, we can
use the two-dimensional surface shown in Fig. 8 to construct
the MEP that takes into account the pitch as an additional
degree of freedom and computed by performing minimization
over the pitch λ. This optimal MEP represents a transition
involving the chiral structures with varying pitch during the
transformation from the x-helicoid to the oblique helix. Both
the initial and the final structures for this transition have the
lowest possible energy at the given system parameters. The
corresponding energy along such a path is shown in Fig. 8
with the dashed line (see also the dash-dotted line in Fig. 7).

The values of the energy barriers obtained from the MEP
connecting the states can be used to assess their stability. Real
transitions between the states can occur through a local trans-
formation of the structure near defects, and the propagation of
the new phase into the bulk, similar to the motion of domain
walls, will take place without energy consumption.

The states associated with an inclined helix in chiral
media have been observed experimentally in liquid crystal
systems [28,38]. They belong to the class of the cholesteric
finger structures.

The behavior of such systems under changing external con-
ditions and transitions between such states can be described
using our model. To this end, note that, in LC systems, the
effective bulk anisotropy parameter κb is controlled by the
external fields such as the electric field. In LCs experimen-
tally studied in [39], the LC configuration transition from an
oblique spiral to a z-cone was observed when the magnitude of
the “easy-plane” anisotropy with κb < 0 gradually increases.
Figure 9 shows the evolution of the LC states when κb changes

FIG. 9. The alteration of the oblique spiral when the bulk
anisotropy κb runs through values 0 (top), −0.2, −0.8, and −2.4
(bottom) assuming constant surface anisotropy κ s = 11.

accordingly. It can be seen that an increase in the angle of in-
clination followed by the transformation into the z-helix found
in our simulation is in excellent agreement with the electric
field dependence of the director distribution experimentally
observed in a cholesteric LC [39].

D. Phase diagram

The phase diagram presented in Fig. 10 shows the ground
states of the confined chiral system in the κb-κs plane. In
the region where κb � 0 and κs � 0 depicted in Fig. 10, the
z-helix and cone-I are generally both metastable (locally sta-
ble). The regions where the z-helix and cone-I correspond to
the ground-state structure are shown in Fig. 10 in light blue

FIG. 10. Phase diagram of a confined chiral medium in the κb-κ s

plane (the bulk anisotropy–surface anisotropy plane) computed at
the film thickness d = p0. The magnetic/LC configurations are il-
lustrated in the insets. The curve of equal energies for the z-helix and
the z-cone is indicated as the dashed line. The black solid line marks
the states with the maximum inclination angle α of the axis of the
oblique helicoid.
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FIG. 11. Inclination angle α (in degrees) for the oblique cone as a function of the bulk anisotropy κb (left) and the surface anisotropy κ s

(right). The limiting cases with α = 0◦ and 90◦ correspond to the z-cone and to the x-helicoid, respectively.

and blue, respectively. The insets illustrate the magnetic (LC)
configurations for each state.

The black dotted line indicates the curve in the κb-κs plane
where the energies of these structures are equal. It can be seen
that, given the value of κb, the transition from the z-helix to
cone-I will take place when the surface anisotropy parameter
κs exceeds its threshold value. This value is an increasing
function of the magnitude |κb|.

An important point is that, as is shown in the phase di-
agram, the above transition involves the oblique helicoid as
an intermediate state that appears to be the ground state in
the yellow region. As a result, referring to Fig. 10, the z-helix
state transforms into the oblique helicoid when κs increases at
fixed bulk anisotropy parameter κb. In this case, the inclination
angle α defined by Eq. (4) first increases from zero up to its
maximum value indicated on the black solid line in Fig. 10.
After that, the angle decreases down to zero at the boundary
of the region where the ground state turns into cone-I. Since
the oblique helicoid exists only in the yellow region, at suffi-
ciently large values of κb (this high field region is not shown
in Fig. 10), the transition from z-helix to cone-I will occur
bypassing the oblique spiral.

In the low bulk anisotropy region, which is colored in red
and where the anisotropies κb and κs are both sufficiently
small, it turned out that the ground state is the x-helicoid.
As was previously discussed, this structure can be stabilized
by the boundary conditions provided the magnitude of κb is
sufficiently small. From Fig. 10, an increase in the surface
anisotropy κs leads to the transition from the x-helicoid to the
oblique spiral state.

In Fig. 11 we show how the inclination angle, α, of the
oblique helicoid given by Eq. (4) depends on the anisotropy
parameters. The graphs on the left present dependencies of α

on the bulk anisotropy parameter computed at different values
of the surface anisotropy κs. It can be seen that the angle α is
a decreasing function of the magnitude of the bulk anisotropy
parameter |κb|. Its maximal value is close to π/2 provided the
value of κs is below 10. The angle α vanishes in the high field
limit where |κb| is sufficiently large.

The curves representing the dependencies of the angle α on
the parameter κs at various values of the bulk anisotropy κb are
shown on the right. When |κb| is small, the maximum value
of the angle is 90◦ corresponding to the state of the x-helicoid.
An increase in |κb| results in a reduction of the maximum
value in accordance with the phase diagram in Fig. 10.

IV. LOCALIZED TOPOLOGICAL STRUCTURES

There are a variety of metastable localized structures that
can be formed in different regions of the phase diagram shown
in Fig. 10. We begin with the domains where the ground states
are invariant with respect to in-plane translations. Such states
include the z-helix and the z-cone. In contrast to the above
analysis restricted to the structures that are uniform along the
y-axis, now we consider the states that are nonuniform in
the y-direction giving rise to localized topological structures
embedded in the uniform background.

Figure 12 presents three types of localized magnetic con-
figurations, referred to as the skyrmion tube, the leech, and
the toron. The orientation of the magnetic moments displayed
in Fig. 12 differs from the ground state by an angle larger
than 15◦. Similar structures called “baby skyrmions” have
been experimentally observed in homeotropically oriented LC
cells [19].

The magnetic configuration called the skyrmion tube
is shown in Fig. 12(a). This structure resembles verti-
cal skyrmion tubes in bulk chiral magnets in a magnetic
field [15,26]. In moderate magnetic field, the magnetically
induced conical phase is found to impose a twisting effect on
the tube leading to the crankshaft structure.

Another structure shown in Fig. 12(c) is called the toron
following notation introduced in [20]. It is located in the bulk
of the film touching the boundary surfaces. Just as in the
torons in magnetic systems [21], in such structures magnetic

FIG. 12. Topological structures found in the conical phase:
skyrmion tube (a), leech (b), and toron (c). Spins oriented in the same
way as in the cone are not shown.
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FIG. 13. Bobber in the conical phase, yz projection. Left: all
spins of one layer are shown. Right: level surface of constant mz =
0.85.

moments on the surfaces are kept intact, whereas in the hori-
zontal section at the middle of the film, the structure bears a
close resemblance to the skyrmion tube. Although the toron
in Fig. 12(c) resembles the one described in [20], in our case
the torons are surrounded by the conical phase that, similar to
the skyrmion tube, induces twists of the torons.

The structure depicted in Fig. 12(b) presents the interme-
diate case between the skyrmion tube and the toron: it is
attached only to one of the boundaries and, just as with the
toron, has a tail [Fig. 12(c)]. This structure is called a leech.
Note that the leechlike structures formed in asymmetric LC
cells were previously described in [12,20] as skyrmion/toron
hybrids. In contrast to the hybrids, our structures are formed
in symmetric cells and are twisted due to the presence of the
surrounding conical phase.

In addition, we have found the structures localized near
one of the bounding surfaces. In analogy with magnetic chiral
bobbers in thick magnetic films [21,22], we call them bobbers.
The structure of the bobber is shown in Fig. 13. The level sur-
face for mz is depicted in the right part of Fig. 13. The colors
of this surface, similar to Fig. 1, indicate the orientation of
the spins in the x-y plane, which is specified by the azimuthal
angle.

Figure 14 shows the regions of local stability for differ-
ent localized topological states in the phase diagram. It can

FIG. 14. Domains in which various types of metastable topolog-
ical states exist: skyrmion tubes, vertically shaded area; torons and
leeches, horizontally shaded area; bobbers, obliquely shaded area.

FIG. 15. Energy from z-cone on κb for the skyrmion, toron, and
leech at κ s = 24. With the increase of the absolute value of the
anisotropy, the energy of the localized states grows until the destruc-
tion of the state. The new state with the lower energy forms, and
the moment of the break is shown by an arrow with the new state
deception.

be seen that there is a domain located in the conical phase
where all of the above states coexist simultaneously. The point
marked by the red filled square in Fig. 14 corresponds to the
configurations shown above in Figs. 12 and 13.

Referring to Fig. 15, the toron is the state of the lowest
energy. Its energy increases with the magnitude of the bulk
anisotropy κb, whereas its transverse size decreases leading
to elongation of the shape along the z-axis. At κb ≈ −0.6,
the toron becomes unstable and transforms into the conical
phase. Despite the fact that the energy of the skyrmion tube
is larger than that of the toron, it remains locally stable up
to higher values of |κb|. When |κb| increases, its central part
becomes thinner. The tube loses its stability at κb ≈ −1.45
and decays into a pair of bobbers located near the upper
and lower bounding surfaces. (Videos illustrating the above
behavior of the toron and the skyrmion tube depending on the
bulk anisotropy κb computed at κs = 24 can be found in the
Supplemental Material [40]).

The leeches and torons share the same threshold value of
|κb| above which they become unstable. Above the threshold,
the leeches will transform into single bobbers whereas the
torons will disappear.

Note that, as is shown in Fig. 15, the doubled energy of the
single bobber is noticeably less than the energy of the bobber
pair formed during the decay of the skyrmion tube. It can be
shown that the energy of the bobber pair as a function of the
distance separating the bobbers exhibits two local minima.
One of the minima at the cell thickness d corresponds to
the metastable state, whereas the energy minimum at a larger

FIG. 16. Skyrmion in the tilted fingerprint state. The surface
marks spin with constant mz = 0. κb = 0, κ s = 18. The spin orienta-
tion is represented by color.
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FIG. 17. Toron in the tilted fingerprint state. The surface marks
spin with constant mz = −0.1. κb = −0.05, κ s = 24. The spin ori-
entation is represented by color.

distance (it can be estimated at about 3.6d) appears to be less
than the doubled energy of the single bobber (the energy in
the large distance limit).

In the region of the phase diagram where the ground state
is the oblique spiral (indicated by yellow in Fig. 14), the
localized topological structures can be embedded into the
fingerprints structure. Examples of such configurations for the
cases of the skyrmion tube and the toron are shown in Figs. 16
and 17, respectively. The figures present the surface level for
mz (mz ≈ 0.97) colored depending on the azimuthal angle.
When the skyrmion tube and the toron are surrounded by the
ferromagnetic phase, their structure is completely analogous
to the corresponding configurations in the homeotropic LC
cell.

The video in the Supplemental Material [40] shows how
the skyrmion tube and toron states change when the bulk
anisotropy κb varies at the fixed surface anisotropy κs = 24.
The skyrmion tube shrinks as the magnitude of κb increases
and ultimately transforms into a couple of bobbers. The toron
is shrinking with |κb| and eventually disappears.

V. CONCLUSION

In this work, we have analyzed the model describing both a
magnetic nanosystem and the chiral liquid crystals in the one
constant approximation to study how the effects of confined
geometry affect the orientational structures and their stability.
In this model, the surface part of the energy is represented by
the surface anisotropy term proportional to κs that, in liquid
crystal systems, corresponds to the anchoring energy (we have
considered the case of homeotropic boundary conditions). The

bulk anisotropy term is proportional to κb and describes the
energy of interaction with the external magnetic field (for
liquid crystals, this term implies negative anisotropy of the
magnetic susceptibility, �χ < 0).

We have computed the phase diagram (see Fig. 10) and
have found that the ground state can be represented by dif-
ferent types of delocalized structures such as the z-helix, the
z-cone, the x-helicoid, and the oblique helicoid depending on
the values of the surface and bulk anisotropy parameters.

Though the z-helix and z-cone states both exist in any
combinations of the parameters, they represent the ground
state in different regions of the κs-κb plane shown in Fig. 10.
The oblique helicoid is found to be an intermediate state for
the transition from the z-helix to the z-cone induced by an
increase in the surface anisotropy at sufficiently large |κb|.

It is shown that the inclination angle of the oblique spiral
decreases with the magnitude of the bulk anisotropy reaching
either the z-helix or the z-cone states when the angle vanishes.
The inclination angle increases as |κb| approaches zero and, in
the low field region where |κb| is small, the oblique helicoid
transforms into the x-helicoid. In this region, the oblique spiral
and the x-helicoid may coexist having different lateral periods
px. We have studied the MEP connecting these states and
evaluated the barrier energy separating them. Our results for
the transition between the oblique spiral and the z-cone are
found to be in excellent agreement with the director distribu-
tion experimentally observed in a cholesteric LC [39].

We have shown that the known localized topological struc-
tures, such as the toron, the skyrmion tube, and the bobber, can
be formed in the z-cone ground state (the conical phase). In
addition, there is a new state called the leech that is the inter-
mediate state between the toron and the skyrmion tube. When
the magnitude of the bulk anisotropy increases, the skyrmion
tube, the leech, and the toron are transformed into a couple
of bobbers, a single bobber, and the z-cone, respectively. We
have also found that, in the stability region of the oblique
spiral, the skyrmion and the toron can be embedded in the
fingerprint structure by forming the homeotropically oriented
zone around them.
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