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Nonlinear dynamics in micellar surfactant solutions. II. Diffusion
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We discuss diffusion in micellar surfactant solutions in a form appropriate for analyzing experiments that
involve large deviations from equilibrium. A general nonlinear dynamical model for inhomogeneous systems
is developed that describes the effects of diffusion and micelle kinetics as a set of coupled partial differential
equations for unimer concentration, micelle number concentration, average micelle aggregation number, and,
optionally, the variance of the micelle aggregation number. More specialized models are developed to describe
slow dynamics in situations in which the system stays in a state of partial local equilibrium or full local
equilibrium. As an illustrative example of a nonlinear transport phenomenon, we discuss a simple model of
diffusion from an initially homogeneous micellar solution to a rapidly created absorbing interface with fast
unimer adsorption.
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I. INTRODUCTION

This is the second of two papers that present a discussion of
dynamics in micelle-forming surfactant in a form that allows
analysis of large deviations from equilibrium. The first arti-
cle [1], hereafter referred to as “article I,” discusses reaction
kinetics and dynamical phenomena in spatially homogeneous
solutions. The present article instead discusses the additional
effects of diffusion in inhomogeneous systems. The first sev-
eral sections after this introduction present a very general
nonlinear model of dynamics in inhomogeneous systems, and
reduced models to describe situations in which the system
has reached partial or full equilibrium. The penultimate sec-
tion presents a qualitative discussion of a simplified model of
interfacial adsorption that exhibits several nonlinear phenom-
ena characteristic of experiments involving transport from a
micellar solution to a rapidly generated interface.

Several authors have previously constructed linearized
models of surfactant transport in weakly inhomogeneous mi-
cellar solutions, using a variety of simplifying assumptions
[2–11]. Such models allow analysis of linear tensiometry ex-
periments that measure changes in interfacial tension caused
by small amplitude step or oscillatory changes in interfacial
area. In early work, Lucassen [2] introduced and solved a
simple model that describes the solution as a binary mixture
of unimers and monodisperse micelles, while treating micelle
dissociation and association as pseudo-elementary reactions.
Subsequently, Noskov [4–7] and Dushkin et al. [8,9] indepen-
dently constructed closely related linear models that are based
on the stepwise reaction model, and that reduce to the kinetic
theory of Aniansson and Wall when applied to homogeneous
systems.

*Corresponding author: morse012@umn.edu

The nonlinear analysis of diffusion presented here was
motivated primarily by the authors’ interest in processes that
involve surfactant diffusion to an initially bare or rapidly ex-
panded interface. During early stages of such a process, rapid
adsorption of unimers tends to strongly suppress the unimer
concentration near the interface. If the subsurface unimer con-
centration remains suppressed below the CMC long enough
for micelles to dissolve, this can lead to formation of a
micelle-free region near the interface. Several authors have
discussed the resulting appearance and growth of micelle-free
regions during interfacial adsorption within the context of a
relatively simple “two-zone” model [12–17]. The two-zone
model assumes the existence of a micelle-free region near
the interface that is separated by a moving boundary from a
region in which micelles are still present. All of the variants of
this model discussed in previous work have assumed for sim-
plicity that micelle creation and destruction is rapid enough
to maintain full local reaction equilibrium between unimer
and micelle species. In Sec. V we discuss the formation and
evolution of micelle-free zones during interfacial adsorption
within the context of a more general nonlinear transport theory
that allows for effects of limitations on the rate of micelle
destruction.

The contents of the remainder of this article are as follows:
Sec. II presents a general analysis of diffusion in polydisperse
micellar solutions governed by stepwise reaction kinetics.
This analysis yields an approximate reduced model that can
be formulated as a set of partial differential equations for the
unimer concentration c1, micelle number concentration cm,
average aggregation number q, and (optionally) the variance
σ 2

m of the micelle aggregation number. Section III presents a
nonlinear model for slow dynamics systems that have reached
a state of partial local equilibrium, in which q has reached
local equilibrium with c1, but in which cm and c1 have
not yet reached local reaction equilibrium. This analysis is
shown to recover the corresponding linear transport model
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of Dushkin et al. [8,9] when applied to weakly perturbed
systems. Section IV presents a further simplified model to
describe inhomogeneous systems that have reached full local
equilibrium, in which both cm and q have reached equilibrium
with the local unimer concentration c1. Section V presents a
qualitative discussion of the dynamics of systems that contain
a micelle-free region and a micellar region separated by a
moving boundary, using a simple model of diffusion to an
absorbing boundary as an example. Section VI summarizes
our conclusions.

Throughout this article, equations in article I are referenced
by equation number preceded by “I.,” so that, e.g., Eq. (I.32)
denotes Eq. (32) of article I.

II. DIFFUSION

We consider diffusion in inhomogeneous micellar solu-
tions. For simplicity, we assume the validity of a stepwise
reaction model. Let cn(r, t ) denote the concentration of n-
mers at position r and time t . The evolution of cn(r, t ) by
diffusion and reaction in a stationary fluid is governed for each
n � 1 by a reaction-diffusion equation

∂cn

∂t
= Dn∇2cn + Gn, (1)

in which Dn is the diffusivity of n-mers and Gn is the local
rate of generation of n-mers by stepwise reactions. Explicit
expressions for Gn are given in Eq. (I.33) for n > 1 and in
Eq. (I.34) for n = 1.

To simplify our notation, we only explicitly consider dif-
fusion in a stationary fluid. Corresponding equations for
situations involving advection of surfactant by an known sol-
vent velocity field v(r, t ) can, however, be obtained by simply
replacing partial derivatives with respect to time by corre-
sponding material derivatives, by making the substitution

∂

∂t
→ ∂

∂t
+ v · ∇ (2)

throughout the analysis.

A. Micelle statistical properties

Consider the time derivatives of the micelle number con-
centration cm(r, t ) defined in Eq. (I.16) and the micellar
surfactant concentration ρm(r, t ) defined in Eq. (I.17). Exact
expressions for partial derivatives of these quantities with
respect to time may be computed by combining the definitions
of these quantities as summations over species concentrations,
as given in Eqs. (I.16) and (I.17), with the transport equa-
tion for each species, Eq. (1). Using Eq. (I.33) for Gn, for
n � b, we obtain

∂cm

∂t
= ∇2

∞∑
n=b

Dncn +
∞∑

n=b

(In−1 − In), (3)

∂ρm

∂t
= ∇2

∞∑
n=b

Dnncn +
∞∑

n=b

n(In−1 − In). (4)

The diffusive terms in Eqs. (3) and (4) may be written more
compactly by defining a power-law averaged micelle diffusiv-
ity D(k)

m for arbitrary non-negative integer k as a ratio

D(k)
m ≡

∑∞
n=b Dnnkcn∑∞

n=b nkcn
. (5)

The quantity D(0)
m = 〈Dn〉m is the number averaged micelle

diffusivity, while D(1)
m is a “mass” averaged diffusivity. By

using these definitions and repeating the summations by parts
used in article I to simplify the remaining sums in Eqs. (3) and
(4), we obtain

∂cm

∂t
= ∇2

(
D(0)

m cm
) +

(
dcm

dt

)
rxn

, (6)

∂ρm

∂t
= ∇2

(
D(1)

m ρm
) +

(
dρm

dt

)
rxn

, (7)

in which we have introduced the symbols(
dcm

dt

)
rxn

≡ Ib−1 , (8)

(
dρm

dt

)
rxn

≡
∞∑

n=b

In + Ib−1b (9)

to denote the contributions to ∂cm/∂t and ∂ρm/∂t that arise
directly from stepwise reactions, rather than diffusion. These
reactive contributions are identical to the expressions given in
Eqs. (I.43) and (I.44) for dcm/dt and dρm/dt in homogeneous
systems.

The quantities cm and ρm are the zeroth and first moments
of the micelle number concentration cn. A general expression
for the time derivative of the kth moment is given in the Ap-
pendix for arbitrary integer k. The expression for the second
moment (k = 2) is used to compute the time derivative of
the variance σ 2

m. The resulting general expressions for deriva-
tives of the zeroth, first, and second moments, given here in
Eqs. (6), (7), and (A3), have all been given previously by
Danov et al. [10,11]. Because Danov et al. considered a model
in which Dn was assumed to be independent of n within the
micellar range, however, they did not distinguish among D(0)

m ,
D(1)

m , and D(2)
m .

Expressions for time derivatives of cm and ρm may be com-
bined to obtain a corresponding time derivative of q = ρm/cm.
A straightforward calculation yields

∂q

∂t
= D(1)

m ∇2q + 2

cm
∇q · ∇(

D(1)
m cm

) +
(

dq

dt

)
rxn

+ q

cm
∇2

[(
D(1)

m − D(0)
m

)
cm

]
, (10)

in which we have introduced the notation(
dq

dt

)
rxn

≡ 1

cm

[(
dρm

dt

)
rxn

− q

(
dcm

dt

)
rxn

]

= 1

cm

[ ∞∑
n=b

In + Ib−1(b − q)

]
(11)

for the contribution to ∂q/∂t that arises directly from stepwise
reactions. The second line of Eq. (11) is identical to the
expression given in Eq. (I.45) for dq/dt in a homogeneous
solution. The contribution to Eq. (10) that contains a factor
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of the difference D(1)
m − D(0)

m is generally small and will be
neglected in subsequent discussion.

An analogous calculation of the derivative ∂σ 2
m/∂t is given

in the Appendix, where we obtain

∂σ 2
m

∂t
≡ D(2)

m ∇2σ 2
m + 2

cm
∇(

D(2)
m cm

) · ∇σ 2
m

+ σ 2
m

cm
∇2

[(
D(2)

m − D(0)
m

)
cm

] +
(

dσ 2
m

dt

)
rxn

, (12)

in which (
dσ 2

m

dt

)
rxn

= 1

cm

∞∑
n=b

(2n + 1 − 2q)In

+ 1

cm

[
(q − b)2 − σ 2

m

]
Ib−1. (13)

The above expression for (dσ 2
m/dt )rxn is identical to the ex-

pression given in Eq. (I.46) for dσ 2
m/dt in a homogeneous

solution.
The diffusive term in Eq. (7) for ∂ρm/∂t can be expressed

as a divergence −∇ · Jm, in which

Jm ≡ −∇
( ∞∑

n=b

Dnncn

)
= −∇(

D(1)
m ρm

)
(14)

is the flux of surfactant arising from micelle diffusion. Using
the fact that ρm = cmq, the micellar flux Jm may also be
expressed as a sum

Jm = −D(1)
m (q∇cm + cm∇q) − ρm∇D(1)

m . (15)

The existence of a term proportional to ∇q in Eq. (15) makes
it clear that surfactant flux can arise from a gradient in q,
as well as from a gradient in number concentration cm. To
see why, consider a hypothetical situation with an inhomo-
geneous field q(r, t ) but homogeneous number concentration
cm. In this case, inhomogeneity in q causes a corresponding
inhomogeneity in ρm = cmq. For simplicity, consider the case
in which the cluster diffusivity Dn is independent of n, for
which ∇D(1)

m = 0. In such a system, cm would remain homo-
geneous, but interdiffusion of large and small micelles would
tend to homogenize q(r, t ). In the case of homogeneous cm,
this would also homogenize ρm(r, t ) = cmq(r, t ), implying
the existence of a diffusive mass flux. The resulting flux for
a system with ∇cm = ∇D(1)

m = 0 is given by Eq. (15) as Jm =
−D(1)

m cm∇q. This flux arising from mixing of micelles of
different aggregation number is also the origin of the diffusive
term Dm∇2q in Eq. (10) for ∂q/∂t .

B. Reduced model

A slightly simplified model for the evolution of c1, cm, and
ρm may be obtained by introducing the following physically
motivated approximations:

(1) We assume the existence of a bimodal aggregate size
distribution in which ρ is dominated by contributions of
unimers and proper micelles, with negligible concentrations
for n ∈ [2, b − 1], so that ρ = c1 + cmq.

(2) We assume that D(0)
m 	 D(1)

m 	 D(2)
m as a result of the

existence of a rather weak dependence of Dn on n within the

width of the micelle peak. We thus use the symbol Dm to refer
to any of D(0)

m , D(1)
m , or D(2)

m , interchangeably.
(3) We approximate Dm(r, t ) as a function of the local

average aggregation number,

Dm(r, t ) = D(q(r, t )), (16)

where D(q(r, t )) denotes the value of micelle diffusivity Dn at
the average aggregation number n = q(r, t ).

With these assumptions, we obtain the simplified transport
equations

∂cm

∂t
= ∇2(Dmcm ) +

(
dcm

dt

)
rxn

, (17)

∂ρm

∂t
= ∇2(Dmρm ) + cm

(
dq

dt

)
rxn

+ q

(
dcm

dt

)
rxn

, (18)

∂c1

∂t
= D1∇2c1 − cm

(
dq

dt

)
rxn

− q

(
dcm

dt

)
rxn

. (19)

The corresponding auxiliary equations for ∂q/∂t and ∂σ 2
m/∂t

are given by

∂q

∂t
= Dm∇2q + 2

cm
∇(Dmcm ) · ∇q +

(
dq

dt

)
rxn

, (20)

∂σ 2
m

∂t
= Dm∇2σ 2

m + 2

cm
∇(Dmcm ) · ∇σ 2

m +
(

dσ 2
m

dt

)
rxn

.

(21)

Equations (20) and (21) can be obtained from Eqs. (10) and
(12), respectively, simply by neglecting the differences be-
tween D(2)

m , D(1)
m , and D(0)

m , and denoting all of these quantities
interchangeably by Dm.

It is straightforward to confirm, by adding Eqs. (18) and
(19), that this model yields a total surfactant concentration
ρ = c1 + ρm that satisfies a diffusion equation

∂ρ

∂t
= −∇ · J (22)

with a total surfactant flux

J = −D1∇c1 − ∇(Dmρm ) (23)

given by the sum of unimer and micellar flux contributions.
To obtain a complete dynamical model, we must supple-

ment Eqs. (17)–(21) by approximate expressions developed in
article I for the reactive contributions (dcm/dt )rxn, (dq/dt )rxn,
and (optionally) (dσ 2

m/dt )rxn. We are in a position to construct
either of two types of model. The more complex option, which
we will refer to as model A, can be expressed using c1(r, t ),
cm(r, t ), q(r, t ) and σ 2

m(r, t ) as primary variables. The simpler
option, which we will refer to as model B, uses c1(r, t ),
cm(r, t ), and q(r, t ) as primary variables, but does not keep
track of the variance σ 2

m(r, t ).
Models A and B require the use of different expressions

for the evolution of variables q and σ 2
m that change during

fast processes. In model A, (dq/dt )rxn may be approximated
by Eq. (I.65), which gives an expression that depends on σ 2

m,
q and c1, while (dσ 2

m/dt )rxn is approximated by Eq. (I.67).
In model B, (dq/dt )rxn may be approximated by Eq. (I.66),
which gives an expression that depends only on q and c1.
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The choice of an approximation for the rate (dcm/dt )rxn

of the slow process involves the same considerations in ei-
ther model. In situations involving modest deviations from
a micellar equilibrium state, for which c1 > cd and q > nt

throughout the region of interest, the net rate of micelle cre-
ation (dcm/dt )rxn may be approximated by Eq. (I.93). To
describe more general situations, we must use an approxima-
tion for (dcm/dt )rxn of the type given in Eq. (I.132), which
allows for micelle destruction either by activated processes or
by shrinkage of q to nearly zero.

In Secs. III and IV, we use the general model discussed
above as a starting point for the development of more special-
ized models of slow dynamics in regions that are assumed to
have reached either partial or full local equilibrium. Both of
these simplifying assumptions allow us to avoid some of the
conceptual difficulties encountered when we attempt to con-
struct a generally valid approximation for (dcm/dt )rxn. In the
discussion of partial local equilibrium states, no expression is
needed for (dq/dt )rxn because q(r, t ) is determined by a par-
tial equilibrium condition, while Eq. (I.93) may safely be used
for (dcm/dt )rxn because the definition of partial equilibrium
requires that c1 > cd and q 	 ne(c1) > nt (c1) throughout the
region of interest. In the discussion of full local equilib-
rium states, no expression is needed for either (dq/dt )rxn or
(dcm/dt )rxn, because in this limit dynamics is entirely con-
trolled by diffusion rather than by reaction rate limitations.

III. PARTIAL LOCAL EQUILIBRIUM

In a system that is in partial local equilibrium, the average
micelle aggregation number q at each point in space remains
equal to the equilibrium value q∗(c1) corresponding to the
local unimer concentration c1, but the number concentration
cm of micelles is generally not equal to the corresponding
local equilibrium value c∗

m(c1). Partial equilibrium can be
reached only in regions of stable or metastable micelles where
c1(r, t ) > cd and where q(r, t ) is greater than the local transi-
tion state value nt (c1(r, t )). Imposing a constraint of partial
local equilibrium on the reduced model yields a model in
which the only independent dynamical variables are the fields
c1(r, t ) and cm(r, t ), with a finite rate for the slow process, but
an effectively infinite rate for the fast process.

A. Nonlinear model

The total surfactant concentration in the partial equilibrium
state is given by a sum ρ = c1 + cmq∗(c1). The partial deriva-
tive of ρ(r, t ) with respect to time thus obeys

∂ρ

∂t
= ∂ (c1 + q∗cm )

∂t

= (1 + κp)
∂c1

∂t
+ q∗ ∂cm

∂t
, (24)

in which we have used the relation cm(∂q∗/∂t ) = κp(∂c1/∂t ),
where κp = cmdq∗(c1)/dc1 is defined in Eq. (I.27). The over-
all surfactant flux J defined in Eq. (23) for a system in partial
equilibrium may be expressed in the same notation as a sum

J = −D1∇c1 − ∇(Dmcmq∗)

= −(D1 + Dmκp)∇c1 − q∗∇(Dmcm ) (25)

in which we have used the relation cm∇q∗ = κp∇c1. A partial
differential equation for c1 can then be obtained by combining
the balance equations for ρm and cm. By using Eq. (24) in the
left-hand side of surfactant balance Eq. (22), using Eq. (25)
for J in the right-hand side, and using Eq. (17) for ∂cm/∂t , we
find that

(1 + κp)
∂c1

∂t
= ∇ · [(D1 + Dmκp)∇c1]

+∇q∗ · ∇(Dmcm ) − q∗
(

dcm

dt

)
rxn

, (26)

in which ∇q∗ = (κp/cm )∇c1.
A complete nonlinear model for the evolution of c1 and

cm for systems that remain in partial local equilibrium within
some region of time and space is defined by Eq. (26) for
∂c1/∂t , Eq. (17) for ∂cm/∂t , and Eq. (I.93) for the rate
(dcm/dt )rxn of the slow reaction.

B. Linear model

In experiments that induce only small deviations from a
homogeneous equilibrium, the intermediate and late stages of
relaxation can be described by a linear model of a system that
remains in partial local equilibrium. Specifically, such a model
is sufficient to describe linear tensiometry experiments involv-
ing changes over times much greater than the fast relaxation
time τ1. The required linear model of slow processes model
was developed independently but in slightly different forms
by Noskov [4–7] and Dushkin et al. [8,9], as discussed below.

We consider small deviations from some homogeneous
equilibrium state in which c1 > cd. Let δc1, δcm, and δq∗
represent small deviations of c1, cm, and q∗ from their val-
ues in this reference state. The corresponding deviation δρ =
δc1 + δ(q∗cm ) in the total surfactant concentration can be
expanded to linear order as δρ = δc1 + cmδq∗ + q∗δcm. It is
convenient to express this as a sum

δρ = ψ1 + ψm, (27)

in which we have defined contributions

ψ1 ≡ δc1 + cmδq∗ , (28)

ψm ≡ qδcm (29)

that are proportional to δc1(r, t ) and δcm(r, t ), respectively.
By expanding δq∗ to linear order in δc1 as δq∗ = (σ 2

m/c1)δc1,
and using Eq. (I.27) for κp = cmσ 2

m/c1, we find that

ψ1 = (1 + κp)δc1, (30)

where κp denotes a value evaluated in the final equilibrium
state.

A pair of coupled linear PDEs for ψ1 and ψm may be
obtained by linearizing both Eq. (26) for ∂c1/∂t and Eq. (17)
for ∂cm/∂t and then rewriting the results in terms of ψ1 and
ψm. For simplicity, we will follow previous work by both
Noskov and Dushkin et al. by treating Dm as a constant in
the linearized model, and thus dropping a contribution to the
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linearized equation for dcm/∂t that is proportional to ∇Dm.
This yields the coupled PDEs

∂ψ1

∂t
= Dp∇2ψ1 − q

(
dcm

dt

)
rxn

, (31)

∂ψm

∂t
= Dm∇2ψm + q

(
dcm

dt

)
rxn

, (32)

in which

Dp ≡ D1 + κpDm

1 + κp
(33)

is an effective diffusivity for ψ1, i.e., for the coupled evolution
of c1 and q∗(c1).

Equation (33) yields an expression for Dp that interpolates
between D1 and Dm with increasing concentration. Recall that
κp ∼ ρm/c1 in typical systems with σ 2

m ∼ q, and that typical
surfactant systems have D1/Dm ∼ 10. With these estimates,
Eq. (33), implies that Dp 	 D1 at concentrations that exceed
the CMC by less than approximately one order of magnitude,
for which κp < D1/Dm, while Dp ∼ Dm at higher concentra-
tion for which κp > D1/Dm. In the high concentration limit,
the dependence of q(c1) upon c1 in partial equilibrium thus
causes the diffusion of unimers to be controlled by the micelle
diffusivity.

We next consider the micelle reaction rate (dcm/dt )rxn.
Linearizing Eq. (I.93) for (dcm/dt )rxn yields(

dcm

dt

)
rxn

= − 1

τd
(δcm − δc∗

m ) (34)

in which δc∗
m = (cmq/c1)δc1 and τd is the equilibrium micelle

dissociation lifetime defined in Eq. (I.96). Rewriting the prod-
uct q(dcm/dt )rxn that appears in Eqs. (31) and (32) in terms
of ψm and ψ1 then yields

q

(
dcm

dt

)
rxn

= − 1

τd
(ψm − αψ1), (35)

in which we have introduced the symbol

α ≡ cmq2

c1(1 + κp)
= κe − κp

1 + κp
. (36)

Substitution of Eq. (35) into Eqs. (31) and (32) yields a pair
of coupled linear PDEs for ψ1 and ψm.

Aside from differences in notation, Eqs. (31)–(36) are
equivalent to the linear transport equations obtained by
Dushkin et al. [8,9] to describe slow processes in which the
system remains in partial equilibrium. They are also nearly
equivalent to those obtained somewhat earlier by Noskov
[4–7]. The only essential difference between the theories of
slow processes presented by Noskov and by Dushkin et al.
appears to be that Noskov incorrectly used the bare unimer
diffusivity D1 to describe the diffusion of the component
proportional to δc1 in the analog of Eq. (31), rather than the
diffusivity Dp defined in Eq. (33), which was first identified by
Dushkin et al. See, for example, Eq. (1.8) of Noskov’s 1989
article [4] or Eqs. (75) and (76) of his 2002 review article [7].
This oversight appears to be a result of a failure to explicitly
analyze the balance equation for total surfactant concentration
ρ(r, t ), rather than considering only c1(r, t ) and cm(r, t ), and

a resulting failure to include the effect of surfactant flux that
arise from gradients in average aggregation q(r, t ).

C. Approach to full local equilibrium

Equation (35) implies that deviations from a reference
equilibrium state of the form ψm = αψ1 do not induce any
net micelle creation. This occurs because (dcm/dt )rxn = 0 in
any equilibrium state, and because a deviation of this form
corresponds to an infinitesimal change from one equilibrium
state to another, induced by an infinitesimal change in c1.
Equation (I.23) implies that the change δc∗

m in equilibrium
micelle concentration induced by a change δc1 in unimer con-
centration is given by δc∗

m = (qcm/c1)δc1. The corresponding
change in ψm = qδcm is thus ψm = (q2cm/c1)δc1. Compar-
ing this to the corresponding change in ψ1 = (1 + κp)δc1, as
given in Eq. (30), we find that ψm = αψ1 for such a change in
equilibrium state.

When applied to the relaxation of a homogeneous pertur-
bation, this linear model reduces to the Aniansson-Wall linear
theory of the slow process; this can be shown as follows. In a
homogeneous system, Eqs. (31) and (32) reduce to a pair of
linear ordinary differential equations that can be expressed in
matrix form as

d

dt

[
ψ1

ψm

]
= 1

τd

[−α 1
α −1

][
ψ1

ψm

]
. (37)

It is straightforward to show that the 2 × 2 matrix on the right-
hand side (r.h.s.) of Eq. (37) has one vanishing eigenvalue
and one negative eigenvalue given by −τ−1

d (1 + α). Using
Eq. (36) for α, one may also show that

τ−1
2 = τ−1

d (1 + α), (38)

where τ2 is the slow relaxation time of Aniannsson and Wall,
given here in Eq. (I.101). The eigenvector with an eigenvalue
−τ−1

2 , or a relaxation time τ2, is a vector [ψ1, ψm] ∝ [1,−1]
that leaves the total concentration δρ = ψ1 + ψm unchanged.
The eigenvector with a vanishing eigenvalue, and thus a
vanishing relaxation rate, is a vector [ψ1, ψm] ∝ [1, α] that
corresponds to an infinitesimal change in equilibrium state.
The model thus predicts a single exponential relaxation of
homogeneous perturbations to a state with the same total
surfactant concentration as the initial state, with a relaxation
time equal to the slow time predicted by Aniansson and Wall.

Inhomogeneous systems are expected to establish a state
of full local equilibrium either when allowed to relax suffi-
ciently long after a temporary perturbation or when subjected
to a sufficiently slowly varying perturbation, e.g., as in a
low-frequency oscillatory perturbation. Such a state is char-
acterized by a relationship

ψm(r, t ) 	 αψ1(r, t ) (39)

for all r, leading to a negligible net micelle creation rate,
(dcm/dt )rxn 	 0. By substituting Eq. (39) for ψm into Eq. (32)
and then adding Eqs. (31) and Eq. (32), one may show that, in
this limit, ψ1 obeys a diffusion equation

∂ψ1

∂t
= De

∂2ψ1

∂z2
(40)
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with an effective diffusivity

De = Dp + αDm

1 + α
(41)

for systems that remain in full local equilibrium. By using
Eq. (33) for Dp and Eq. (36) for α, we obtain an alternative
form

De = D1 + κeDm

1 + κe
. (42)

Because the perturbation fields δc1, δcm, ψm, and ψ1 are all
proportional to one another in this linearized model, each of
these fields obeys an analogous diffusion equation with diffu-
sivity De. Note that De 	 D1 in a submicellar concentration
with ρ < cc, for which κe 
 1, and that De 	 Dm in a micel-
lar solution, for which κe � 1. Micelle diffusion dominates
overall diffusive flux in micellar solutions because the local
equilibrium condition strongly suppresses gradients in unimer
concentration.

Consider relaxation of a system that is subjected to a
small perturbation at time t = 0. The analysis given in this
section assumes partial equilibration, and so is valid only at
times t � τ1. At intermediate times, τ1 
 t 
 τ2, effects of
the micelle reaction rate (dcm/dt )rxn remain negligible. To
describe this time range, we may thus set (dcm/dt )rxn 	 0
in Eqs. (31) and (32) to obtain a pair of uncoupled diffusion
equations for ψ1 and ψm with effective diffusivities Dp and
Dm, respectively. At very late times t � τ2, we expect the
system to reach a state of full local equilibrium in which ψ1

obeys Eq. (40), and in which ψm = αψ1.

IV. FULL LOCAL EQUILIBRIUM

We now consider nonlinear dynamics in systems that have
reached full local equilibrium. A system is in full local equi-
librium when the micelle number concentration cn(r, t ) for all
n is equal to the equilibrium value corresponding to the local
unimer concentration, such that

cn(r, t ) = c∗
n (c1(r, t )) (43)

for all n. This condition implies that both the micelle number
concentration cm and micellar surfactant concentration ρm

obey local equilibrium conditions

cm(r, t ) = c∗
m(c1(r, t )), (44)

ρm(r, t ) = ρ∗
m(c1(r, t )), (45)

as does the average aggregation number q = ρm/cm.
The assumption of full local equilibrium is expected to

be valid during the final stages of relaxation of an inho-
mogeneous system after a transient perturbation, such as an
expansion or contraction of an interface, or in an oscillatory
measurement performed at sufficiently low frequency. Full
local equilibrium requires relaxation of both the fast and slow
processes, and is thus expected to be obtained after a sudden
perturbation when the time since the perturbation becomes
much greater than the slow time τ2, or during an oscillatory
measurement if the oscillation frequency is much less than
τ−1

2 .

In any full local equilibrium state, inhomogeneities in
unimer concentration c1(r, t ) are strongly suppressed in re-
gions with a non-negligible micelle concentration ρm(r, t ).
This is a direct result of the local equilibrium condition, which
requires that ∇c1 = κ−1

e ∇ρm, where κe ∼ (ρm/cc)q. Because
average aggregation number q(r, t ) is related to unimer con-
centration by an equilibrium condition, q(r, t ) = q∗(c1(r, t )),
the average aggregation number must also be nearly homo-
geneous in micellar regions. Because the average micelle
diffusivity Dm is approximated as a function of q, this also
implies that the average micelle diffusivity Dm must be nearly
homogeneous where micelles are present. For simplicity, we
thus assume that ∇Dm 	 0 throughout this section, thus ef-
fectively treating Dm as a constant in the case of full local
equilibrium.

A. Nonlinear model

Consider the evolution of ρ(r, t ) for a system in full local
equilibrium. We assume that ρ is dominated by contributions
of unimers and proper micelles, and that Eq. (I.21) thus ap-
plies. When applied to a local equilibrium state, Eq. (I.21)
implies that ρ = c1 + ρ∗

m(c1) for all r and t . The partial
derivative ∂ρ/∂t in such a state thus satisfies

∂ρ

∂t
= (1 + κe )

∂c1

∂t
, (46)

where κe(c1) ≡ dρ∗
m(c1)/dc1 is the derivative defined in

Eq. (I.26). Using similar notation, the total diffusion current
J defined in Eq. (23) may be expressed as a sum

J = −(D1 + Dmκe )∇c1, (47)

where we have neglected a term proportional to ∇Dm for
reasons discussed above. By using Eqs. (46) and (47) for
the left- and right-hand sides of conservation equation (22),
respectively, we obtain the nonlinear PDE

(1 + κe)
∂c1

∂t
= ∇ · [(D1 + Dmκe)∇c1], (48)

in which κe = κe(c1) is a strongly nonlinear function of local
unimer concentration c1.

Equation (48) can also be expressed equally well as a
nonlinear PDE for ρm, rather than c1. To do so, we simply
treat c1 as a function ρm rather than the reverse, and apply
reasoning closely analogous to that used to obtain Eq. (48).
This yields the alternate form

(
κ−1

e + 1
)∂ρm

∂t
= ∇ · [(D1κ

−1
e + Dm

)∇ρm
]
, (49)

in which κ−1
e (ρm ) = dc1/dρm. Equations (48) and (49) are

completely equivalent.

B. Linear model

Situations that involve only infinitesimal perturbations
from a homogeneous equilibrium state can be described using
a linearized version of Eq. (48). The resulting linearized the-
ory is sufficient to describe, e.g., linear oscillatory tensiometry
experiments at frequencies much less than τ−1

2 . Let c∞
1 be the

unimer concentration in a homogeneous equilibrium state, and
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let δc1(r, t ) = c1(r, t ) − c∞
1 . Linearization of Eq. (48) yields

a diffusion equation

∂ (δc1)

∂t
= De∇2δc1 (50)

with an effective local equilibrium diffusivity given by
Eq. (42). Note that Eq. (50) is equivalent to Eq. (40), which
we obtained by considering the long time behavior of a linear
model of partial local equilibrium.

Note that Eq. (42) for De implies the dominance of unimer
diffusion in submicellar states with ρ < cc and the domi-
nance of micellar diffusion in micellar states with ρ > cc.
Linearization about a submicellar state in which ρ < cc yields
κe 
 1, giving De 	 D1. Linearization about a micellar state
with ρ > cc instead generally yields κe � 1, giving De 	 Dm.
Micelle diffusion dominates transport in micellar states, giv-
ing De 	 Dm, despite the presence of a non-negligible unimer
concentration c1 	 cc, because the local equilibrium condition
strongly suppresses the unimer concentration gradient ∇c1 =
κ−1

e ∇ρm, and thereby suppresses unimer diffusion.

V. TRANSPORT TO AN INTERFACE

In transport problems that involve diffusion from a micellar
solution to an initially bare or nearly bare interface, rapid
absorption of unimers by the interface often leads to a region
of strongly depressed unimer concentration near the interface.
The resulting destabilization of micelles in that region can
lead to the formation of a micelle-free region that is separated
from a micellar region by a moving boundary. Several au-
thors have considered simplified models for this phenomena
[12–17] that assume the existence of full local equilibrium.
A more complete description must allow for the effects of
limitations on the rates of processes that create and destroy
micelles, and for the possibility of the formation of a partial
equilibrium state in the micellar region.

A. Model: Absorbing boundary

To make the discussion concrete, it is useful to consider
the following model of transport from a micellar solution to
an idealized absorbing interface: Consider a micellar solution
that occupies a half-space z > 0 and that is in contact with an
interface located along the plane z = 0. Far from the interface,
the solution is in an equilibrium state with a bulk unimer
concentration c∞

1 , a micelle number concentration c∞
m and a

total surfactant concentration ρ∞ = c∞
1 + ρ∞

m , with ρ∞ > cc.
We assume that unimers are rapidly and irreversibly adsorbed
at the interface, creating an absorbing boundary condition for
unimers, such that

c1(z = 0, t ) = 0. (51)

We also assume that adsorption is prohibited for all clusters
with n > 1, giving a no-flux boundary condition

∂cn(z, t )

∂z

∣∣∣∣
z=0

= 0 (n > 1) (52)

for all species other than unimers. We consider an idealized
initial condition at t = 0 in which the solution is in a homo-
geneous micellar equilibrium state of concentration ρm(z, t =

0) = ρ∞
m for all z > 0. Diffusion is initiated by instantaneous

creation or introduction of the interface at t = 0.
The model described above is chosen for mathematical

simplicity rather than realism. The absorbing boundary con-
dition used here does not correspond to any easily realizable
experiment. It does provide a reasonable model of the early
time behavior during adsorption to a rapidly generated inter-
face along which surfactant can accumulate, at times before
significant accumulation has had time to occur, in the limit
of fast adsorption and negligible solubility in the second
phase that occupies the region z < 0. More realistic models
of interfacial adsorption would need to consider effects of ac-
cumulation of adsorbed surfactant on the interface, finite rates
of molecular adsorption and desorption, solubility in a second
phase, and possibly flow, among other possible complications.
We have chosen to discuss an idealized absorbing interface
simply because it illustrates the nonlinear phenomena of in-
terest in the simplest possible form.

We show in what follows that the model described above
predicts rapid dissociation of micelles near the interface and
corresponding formation of a micelle-free region along the in-
terface. This occurs because the boundary condition requiring
that c1(z, t ) = 0 along the interface guarantees the existence
of a region in which the unimer concentration c1(z, t ) is de-
pressed below the cd, and in which there is thus no barrier to
dissociation. Along the plane z = 0, unimer insertion is com-
pletely suppressed, and the aggregation numbers of individual
micelles thus shrink at a net average rate controlled by the
bare expulsion constant. More generally, we expect micelles
to shrink at rates comparable to an average expulsion constant
throughout the region in which c1 < cd.

B. Micelle dissociation near the interface

Let τe denote the time at which a micelle-free region first
appears, corresponding to the time at which the micelle con-
centration first becomes negligible at z = 0, i.e., for which
cm(z = 0, t ) 	 0 for all t � τe. We assume in what follows
that this occurs approximately when the average aggregation
number q(z, t ) of micelles near the interface approaches zero.
We focus in this article primarily on describing the behavior
at times, t > τe, after the appearance of a micelle-free region.
We begin in this subsection, however, by briefly discussing
behavior at earlier times, t < τe. Our main purpose in this
discussion is to establish that it is plausible for a micelle-free
region to appear long before the system can establish full local
equilibrium.

A lower bound on the time τe required for micelles to be
cleared out of a region near the interface can be obtained
by considering the fate of a micelle that remains adjacent to
the interface throughout this process. Because the boundary
condition requires that the c1 = 0 along the interface, such a
micelle would experience an environment in which insertion
is completely suppressed, and in which micelles thus expel
unimers and shrink at a rate comparable to the bare expulsion
rate. The characteristic time required for a micelle to com-
pletely dissociate in such a unimer-free environment, denoted
here by τq, is given approximately by the ratio

τq ≡ q∞

k− , (53)
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where q∞ is the bulk value of q and k− denotes an average
expulsion rate constant. For concreteness, let k− denote the
number average expulsion rate constant of micelles in the
initial equilibrium state.

For typically surfactant systems, the timescale τq can be
shown to generally be comparable to or greater than the
fast time τ1 observed in step relaxation experiments. For the
sake of concreteness, consider a system with bulk equilibrium
values of q 	 σ 2

m 	 102 typical of common surfactants. For
such a system, the time τq defined in Eq. (53) is comparable
to the characteristic timescale τσ 	 σ 2

m/k− for equilibrium
fluctuations in aggregation number, as defined in Eq. (I.68).
By Eq. (I.70), the bulk fast time τ1 is always less than or
equal to τσ , with τ1 ∼ τσ at concentration slightly above the
CMC and τ1 
 τσ at concentrations ρ∞

m � cc. For systems
with τq ∼ τσ , τq is thus generally comparable to or greater
than τ1.

In the model considered here, an individual micelle that
remained very near the interface would completely dissoci-
ate in a time of order τq. If we assume that the appearance
of a micelle-free zone occurs when micelles near the inter-
face finish dissociating, this suggests that we should expect
τe ∼ τq.

The above argument is incomplete, however, because it
ignores the effects of micelle diffusion. This simplified argu-
ment focuses on the fate of a hypothetical micelle that remains
stationary near the interface while steadily losing unimers.
Micelles that lie near the interface at some instant are not sta-
tionary, however, but tend to diffuse away from the interface
and be replaced by micelles that diffuse in from more dis-
tant regions where the average micelle aggregation number is
higher. This mixing of micelles of differing aggregation num-
ber causes a diffusive “smearing” of the depression in q(z, t )
that spreads out the region over which q(z, t ) is depressed near
the interface, in a manner described by Eq. (20). The expected
effect of micelle diffusion is thus to decrease the rate at which
q(z = 0, t ) decreases. This thereby delays somewhat the time
at which q(z = 0, t ) approaches zero and a micelle-free region
appears. We thus expect to find τe > τq when the effects of
micelle diffusion are significant, and τe ∼ τq when they are
negligible. Because we have already shown that τe � τ1 even
in the absence of micelle diffusion for typical systems, this
implies that τe � τ1 more generally.

A micellar region in which c1(z, t ) > cd always exists
further from the interface, outside the region of strongly de-
pressed unimer concentration c1(z, t ) < cd near the interface.
Perturbations in both c1(z, t ) and q(z, t ) extend to some extent
into this region, where fast processes tend to drive the system
towards a state of partial local equilibrium. We expect this
micellar region to reach a state of partial local equilibrium
after a time of order the fast time τ1 after introduction of
an interface. Because τe > τ1, we thus expect this region to
reach partial local equilibrium somewhat before a micelle-free
region appears. We assume in what follows that this remaining
micellar region can then remain in partial local equilibrium as
the micelle-free region expands.

The time required for the micellar region of such a system
to reach full local equilibrium is generally expected to be of
order the bulk slow τ2. The time τ2 exceeds both τσ and τ1 by a
factor proportional to exp(
Wd/kBT ), in which 
Wd denotes

the barrier to dissociation in the bulk equilibrium state. In
systems with weakly soluble surfactants, this Arrhenius factor
can be arbitrarily large. We will assume in what follows that,
in systems that exhibit widely disparate fast and slow times
as the result of the existence of a barrier 
Wd � kBT , τ2 will
often be much greater than τe as well as τ1.

A more complete treatment of the relationship between
τe and τ2 would require a detailed analysis of the effects of
micelle diffusion upon τe, which is beyond the scope of this
article. An analysis of this kind has, however, been given in
the Ph.D. thesis of one of the authors [18] and will also be
presented in a forthcoming journal publication. That analysis
confirms that it is typical to observe τ2 � τe in systems of
sparingly soluble surfactants in which τ2 � τ1. Here, we sim-
ply treat the existence of systems for which τ1 � τe 
 τ2 as
a plausible hypothesis for systems with τ1 
 τ2, and discuss
some qualitative aspects of the behavior expected in this case.

When the assumption that τ1 � τe 
 τ2 is satisfied, one
should expect to observe two different stages of development
at times t > τe, after the appearance of a micelle-free zone.
At intermediate times τe < t 
 τ2, we expect a state with a
growing micelle-free region in which partial equilibrium has
been established in the micellar region but full local equilib-
rium has not yet been reached. At very late times, t � τ2, we
expect the system to reach a state of full local equilibrium,
of the kind whose existence was simply assumed in previous
work on two-zone models. These two stages of development
are discussed in Secs. V D and V C, respectively, We have
chosen to discuss the final stage of full local equilibrium first,
in Sec. V C, simply because this stage is conceptually simpler
and more mathematically tractable.

C. Late times: Full local equilibrium

In this subsection, we consider behavior of a system with
τe 
 τ2 at very late times, t � τ2, after full local equilib-
rium has been established, and long after the appearance of
a micelle-free region at time τe. Behavior in this final time
regime can be discussed either at the level of the nonlinear
model developed in Sec. IV or, more approximately, at the
level of the two-zone model introduced in earlier several stud-
ies. We consider both approaches and the relationship between
them.

1. Nonlinear PDE

Evolution of a system that remains in full local equilibrium
can be described by the nonlinear model developed in Sec. IV,
by starting from either Eq. (48) for c1(z, t ) or, equivalently,
Eq. (49) for ρm(z, t ). In the one-dimensional geometry of
interest here, Eq. (48) reduces to

(1 + κe )
∂c1(z, t )

∂t
= ∂

∂z

[
(D1 + Dmκe)

∂c1(z, t )

∂z

]
. (54)

Equation (49) reduces to a corresponding PDE for ρm(z, t ), in
which terms arising from unimer contributions are multiplied
by κ−1

e . The presence of the strongly nonlinear function κe(c1)
in both these equations leads to behavior in which different
terms dominate at locations with concentrations above and
below the CMC, as discussed in greater detail below.
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It is straightforward to show that Eq. (54) admits a similar-
ity solution of the form

c1(z, t ) = ccF (y1), (55)

in which

y1 = z/
√

4D1t, (56)

and F (y1) is an unspecified function of a single variable. Upon
substituting Eq. (55) into the PDE of Eq. (54), we find that
F (y1) must solve a nonlinear ODE

−2(1 + κe )y1
dF (y1)

dy1
= d

dy1

[
(1 + Rκe )

dF (y1)

dy1

]
, (57)

where R ≡ Dm/D1, with boundary conditions requiring
F (0) = 0 and F (∞) = c∞

1 /cc. Behavior at times t � τ2 is
controlled by this similarity solution, in which all length
scales expand with time as t1/2. If the solution contains a
micelle-free region, the width of this region must thus increase
as t1/2.

Consider the qualitative nature of solutions of Eqs. (48)
or (49) during transport to an absorbing boundary. Assume
that ρ(z, t ) is a monotonically increasing function of z. Let
h(t ) denote the value of z at which ρ(h(t ), t ) = cc, which is
very near the point at which κe(c1(z, t )) = 1. The existence
of a similarity solution of the form given in Eqs. (55) and
(56) implies that h(t ) must increase as h(t ) ∝ t1/2. Because
ρ∗

m and κe are both very sharply increasing function of ρ in
this regime, we expect to find local values of ρ∗

m 	 0 and
κe 
 1 throughout almost all of a region z < h(t ) in which
ρ(z, t ) < cc, which is thus an essentially micelle-free region.
We instead expect to find ρ∗

m 	 ρ − cc and κe � 1 through-
out the region z > h(t ) in which ρ > cc, which is a micellar
region.

Consider the nature of transport within the micelle-free re-
gion z < h(t ), where ρ(z, t ) < cc and ρm(z, t ) 	 0. Wherever
ρ is more than a few percent less than cc, κe 
 1, and so the
contributions to Eqs. (47) and (48) that are proportional to
κe all become negligible. In this case, Eq. (47) yields a one-
dimensional flux J (z, t ) 	 −D1∂c1/∂z given by the unimer
contribution alone, while Eq. (48) reduces to a 1D unimer
diffusion equation,

∂c1

∂t
	 D1

∂2c1

∂z2
. (58)

In the absence of micelles, transport is thus controlled by
unimers.

Next consider the micellar region z > h(t ) in which ρ >

cc and κe � 1. Here, transport can instead be shown to be
dominated by micelle diffusion. To describe this region, it
is convenient to start from the one-dimensional analog of
Eq. (49) for ρm(z, t ). Because κ−1

e 
 1 in this limit, Eq. (49)
may be approximated by dropping terms proportional to κ−1

e
to obtain a micelle diffusion equation

∂ρm

∂t
	 Dm

∂2ρm

∂z2
. (59)

In the same limit, the overall flux J (z, t ) is dominated by
micelle diffusion, giving J (z, t ) 	 −Dm∂ρm/∂z. Micelle con-
tributions dominate in this limit because the local equilibrium
condition strongly suppresses variations in c1, thus yielding

very small values for the time derivative ∂c1/∂t and the
gradient ∇c1 of c1 that appear as unimer contributions to
accumulation and flux, respectively. Micelle diffusion thus
dominates transport in this region, despite the fact that c1 is
itself generally not negligible, because c1 is nearly constant.

This discussion suggests a picture in which a micelle-free
zone in the region z < 0 is separated by a narrow transition re-
gion from a micellar zone occupying z > h(t ). The transition
region corresponds to a region of space in which κe is of order
unity. Because κe ∼ 1 only within a narrow range of values of
ρ near ρ 	 cc, we expect this transition region to correspond
to a correspondingly narrow region of space near the plane
z = h(t ).

The mechanism by which surfactant is transported must
thus rapidly cross over from micelle diffusion in the micellar
region z > h(t ) to unimer diffusion in the micelle-free region
z < h(t ), with negligible flux of micelles into the region z <

h(t ). In order for this to occur without rapid accumulation
of surfactant in the transition region, micelles that enter the
transition region from the micellar region must be destroyed
within the transition region, while the unimers generated by
dissociation form a source for the unimer flux into the micelle-
free region. The model thus implies the existence of a narrow
region with a very high unimer generation rate G1(z, t ) near
the plane z = h(t ).

2. Two-zone model

The two-zone model provides a slightly simplified version
of the picture discussed above. The version considered here,
which is the same as that used in several previous studies,
combines an assumption of full local equilibrium with an ide-
alized description of the change in equilibrium behavior at the
CMC. This description assumes that micelles are completely
absent (ρm = 0) wherever ρ < cc, and that c1 = cc wherever
ρ > cc.

In the resulting model, at any time t , there exists a micelle-
free region z < h(t ) near the interface and a micellar region
z > h(t ) separated by a moving boundary along the plane z =
h(t ). Throughout the micelle-free region z < h(t ), ρm(z, t ) =
0, c1(z, t ) < cc. In this region, transport occurs only by unimer
diffusion, so that J (z, t ) = −D1(∂c1/∂z) and c1(z, t ) satisfies
Eq. (58). Throughout the micellar region z > h(t ), c1(z, t ) =
cc, and ρm(z, t ) = ρ(z, t ) − cc. Here transport occurs only
by micelle diffusion, so that J (z, t ) = −Dm(∂ρm/∂z) and
ρm(z, t ) satisfies Eq. (59).

The two-zone model does not attempt to resolve the tran-
sition region near the plane z = h(t ) within which micelles
dissociate, treating this as a mathematical surface. Continuity
of unimer and micelle concentrations across the plane z =
h(t ) implies that

c1(h(t ), t ) = cc, ρm(h(t ), t ) = 0 (60)

at any time t . Continuity of surfactant flux across this plane
is imposed by matching the micellar flux in the region z >

h(t ) with the unimer flux in the micelle-free region, giving a
boundary condition

D1
∂c1

∂z

∣∣∣∣
z=h−(t )

= Dm
∂cm

∂z

∣∣∣∣
z=h+(t )

. (61)
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1

FIG. 1. Depiction of the behavior of normalized unimer concen-
tration c1 and micelle concentration cm as a function of distance z
from an interface during adsorption to an absorbing boundary for a
system in full local equilibrium, as predicted by the two-zone model.
Unimer and micelle concentrations normalized by corresponding
bulk concentrations are denoted here by ĉ1 = c1(z, t )/cc (solid line)
and ĉm = cm(z, t )/c∞

m (dashed line), as also indicated by labels. The
boundary between the micelle-free and micellar regions is located at
z = h(t ) and indicated by the dotted vertical line.

Here the notation z = h−(t ) indicates a value evaluated in
the micelle-free region by approaching z = h(t ) from below,
while z = h+(t ) indicates a value evaluated in the micellar
region by approaching z = h from above. The existence of
nonzero micellar flux −D∂cm/dz towards the interface from
the micellar side of the plane z = h(t ) and a vanishing mi-
cellar flux on the micelle-free side implies that all micelles
that diffuse to this boundary are destroyed there and converted
into unimers along this plane. The two-zone model is thus
defined by the unimer diffusion equation of Eq. (58) in the
region z < h(t ), the unimer diffusion equation of Eq. (59) in
the region z > h(t ), the boundary conditions of Eqs. (60) and
(61) along the plane z = h(t ), an absorbing boundary condi-
tion requiring that c1(0, t ) = 0 at z = 0, and a bulk boundary
condition requiring that ρm(z = ∞, t ) = ρ∞

m .
Figure 1 depicts an example of the behavior of the

normalized unimer concentration ˆc1(z, t ) = c1(z, t )c∞
1 and

normalized micelle concentration ˆcm(z, t ) = cm(z, t )/c∞
m as

predicted by the two zone model. This shows a solution of the
two-zone model described above for a system with ρ∞

m /cc = 3
and D1/Dm = 10. A more complete analysis of the solution of
this model, which is analytically solvable, will be presented
elsewhere. The solution of the full nonlinear model, which is
not shown, would differ from the behavior shown here by in-
troducing a slight smearing of the “cusps” (i.e., discontinuities
in slope) of c1(z, t ) and cm(z, t ) along the plane z = h(t ).

D. Intermediate times: Partial local equilibrium

We now consider the intermediate time behavior of a sys-
tem with widely disparate bulk fast and slow times, at times
τe < t < τ2. During this intermediate time regime, we expect
to find a micelle-free region near the interface, as well as a
micellar region further from the interface. These are presum-
ably separated by a narrower transition region within which
micelles dissociate, as in the case of full local equilibrium.

At times t 
 τ2, the micellar region is characterized by
the existence of a state of partial local equilibrium but a

negligible rate (dcm/dt )rxn of the slow process. Within this
region, c1(z, t ) and cm(z, t ) must thus approximately satisfy
Eqs. (26) and (17) with (dcm/dt )rxn = 0, giving

(1 + κp)
∂c1

∂t
= ∂

∂z

[
(D1 + κpDm )

∂c1

∂z

]
+ Dm

∂cm

∂z

∂q∗

∂z

∂cm

∂t
= Dm

∂2cm

∂z2
. (62)

The diffusion equation for c1(z, t ) in Eq. (62) allows for
formation of a significant decrease in unimer concentration
c1(z, t ) with decreasing z within the micellar region. This is a
somewhat subtle but important difference from the case of full
local equilibrium, in which gradients in c1 are almost entirely
suppressed within the micellar region.

The decrease in c1(z, t ) within decreasing z within the
micellar region causes a corresponding decrease in the lo-
cal dissociation barrier 
Wd(c1(z, t )) with decreasing z, and
a corresponding increase in the dissociation rate constant
kd (c1(z, t )). We assume that the micelle dissociation rate ex-
hibits a maximum with respect to z at some plane z = h(t )
along which the c1 has decreased enough to allow relatively
facile dissociation. We assume that dissociation is localized
near this plane, which acts as an effective boundary between
micelle-free and micellar regions. Let cp = c1(z = h, t ) de-
note the local unimer concentration along this plane. Because

Wd(c1) is assumed to be prohibitive at c1 = c∞

1 but vanishes
in the limit c1 = cd, we assume that cd � cp � c∞

1 . In the case
of an extremely large equilibrium barrier 
Wd(c∞

1 ) � kBT
and times t 
 τ2, we expect 
Wd(c1) to remain prohibitive
except for c1 nearly equal to cd, giving cp 	 cd.

The assumptions underlying the above discussion can be
codified as a two-zone model analogous to that constructed
for the case of full-local equilibrium. The model is based on
the following assumptions:

(1) Micelles are excluded from a region z < h(t ) in which
c1 < cp. Within this region, cm = 0 and c1(z, t ) satisfies a
diffusion equation

∂c1

∂t
= D1

∂2c1

∂z2
. (63)

(2) Micelle dissociation occurs only within a narrow re-
gion near the plane z = h(t ).

(3) The micellar region z > h(t ) is in a state of partial
local equilibrium in which q(z, t ) = q∗(c1(z, t )). Within this
region, c1(z, t ) and cm(z, t ) satisfy Eq. (62)

Continuity of c1(z, t ) and cm(z, t ) along the plane z = h(t )
implies that

c1(h(t ), t ) = cp, cm(h(t ), t ) = 0 (64)

at any time t . Mass conservation also requires that the unimer
diffusion current J1(z, t ) = −D∂c1/∂z in the micelle-free re-
gion match the total flux in the micellar region along the
boundary z = h(t ), giving a boundary condition

D1
∂c1

∂z

∣∣∣∣
z=h−(t )

= (D1 + Dmκp)
∂c1

∂z

∣∣∣∣
z=h+(t )

+ q∗ ∂ (Dmcm )

∂z

∣∣∣∣
z=h+(t )

, (65)
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1

FIG. 2. Schematic depiction of c1 and cm for a system with a
micelle-free region at times t 
 τ2, during which the micellar region
is in partial local equilibrium. Unimer and micelle concentrations
normalized by corresponding bulk concentrations are denoted here
by ĉ1 = c1(z, t )/c∞

1 (solid line) and ĉm = cm(z, t )/c∞
m (dashed line),

as also indicated by labels. The boundary between micelle-free and
micellar regions is at z = h(t ) and is indicated by a vertical dotted
line. Behavior shown here is representative of a system with param-
eters similar to those used in Fig. 1, with (σ ∗

m )2 	 q∗ 	 102 in the
bulk state and cp/cc = 0.8.

in which the r.h.s. is −J (z, t ) in the micellar region, as given
by Eq. (25).

The model described above is incomplete because we have
not stated a precise criterion for the value cp of the unimer
concentration along the boundary z = h(t ). The quantitative
uncertainty arising from this ambiguity is less than it might at
first appear, as a result of the requirement that cd < cp < cc

and the observation that cd is typically only a few tens of
percent below cc. A mathematically complete but slightly
simplified model, which is correct in the limit of very large
bulk dissociation barriers, is obtained if we assume that the
dissociation barrier remains prohibitive for all c1 greater than
cd, and thus approximate cp = cd.

The behavior of the unimer and micelle concentrations in
the case of partial local equilibrium is depicted schematically
in Fig. 2. The key difference between the cases of partial
and local equilibrium is the existence of a substantial devi-
ation of c1 from c∞

1 within the micellar region. Though this
is not shown explicitly in this figure, this variation in the
unimer concentration also leads to a substantial variation in
average micelle aggregation number q(z, t ), since q this is
related to c1 by a partial equilibrium condition. The result-
ing fractional deviation of q from q∞ is generally somewhat
larger than the fractional deviation of c1 from c∞

1 , and can
cause a variation of q(z, t ) by up to approximately a fac-
tor of 2 within the micellar region for realistic molecular
parameters.

This discussion shows how the two-zone model introduced
in earlier work, which relied on an assumption of full lo-
cal equilibrium, can be extended in slightly modified form
to describe times t 
 τ2 before full local equilibrium is es-
tablished. In this case, in which the barrier to dissociation
remains prohibitive in the bulk solution, the sensitivity of the
dissociation rate constant to changes in unimer concentration
c1 and the existence of a gradient in c1 nonetheless guaran-
tee that there will exist a region near the interface in which

micelle dissociation becomes sufficiently rapid to create a
micelle-free region.

VI. CONCLUSIONS

Sections II–IV of this paper present a self-contained
discussion of the theory of kinetics and transport in micelle-
forming surfactant systems in a form suitable for describing
large deviations from equilibrium. Section V discusses ap-
plication of the theory to a somewhat idealized adsorption
problem.

The general discussion of diffusion in Secs. II–IV focuses
on the development of reduced models that describe the evolu-
tion of a polydisperse system by tracking only a few statistical
properties. The reduced model constructed in Sec. II is for-
mulated as a set of partial differential equations for c1(z, t ),
cm(z, t ), q(z, t ), and, optionally, σ 2

m(z, t ). This relatively gen-
eral model has been used to construct two more specialized
nonlinear models to describe systems that remain in either
partial or full local equilibrium. The resulting model of par-
tial local equilibrium reduces in the limit of small deviations
from equilibrium to the linearized transport model of Dushkin
et al. . We use the discussion of adsorption given in Sec. V to
show by example how the nonlinear PDEs developed in
Secs. II–IV can lead naturally to behavior involving propa-
gation of a front separating micelle-free and micellar regions
within an inhomogeneous system.

Section V presents a qualitative discussion of diffusion
from a micellar solution to an interface that acts as an ab-
sorbing boundary for unimers. The model considered here
is chosen for mathematical simplicity, rather than realism,
because it illustrates several phenomena of interest in their
simplest form. Micelles can dissociate rapidly near an absorb-
ing interface because interfacial adsorption creates a region
near the interface with c1(z, t ) < cd, in which there is no
thermodynamic barrier to dissociation. Nonlinear dependence
of the rate of micelle shrinkage upon local unimer con-
centration thus allows rapid micelle destruction near a bare
interface even in systems that exhibit an extremely long slow
time τ2 in bulk linear relaxation experiments. As a result, a
micelle-free region can appear near a freshly created inter-
face much earlier than the time required for the remaining
micellar region to reach full local equilibrium, which is of
order τ2.

After a micelle-free region appears at some time τe, the
micelle-free region is separated from the remaining micel-
lar region by a moving boundary that moves steadily away
from the interface. Micelles dissociate and are converted into
unimers near this boundary. Behavior at times t > τe is shown
to generally involve an intermediate time regime in which
the micellar region remains in partial but not full equilib-
rium, followed by a final stage after full local equilibrium
is established. We show how the two-zone model introduced
in several previous studies, which assumed the existence of
full local equilibrium, can be modified so as to describe
the intermediate time regime. The most important distinction
between behaviors predicted at intermediate and late times
is the predicted existence of substantial gradients in unimer
concentration and average micelle aggregation number within
the micellar region at intermediate times, in contrast to the
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nearly complete suppression of these gradients after full local
equilibrium is established.
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APPENDIX: TIME DEPENDENCE OF MOMENTS

The derivation of the expressions for ∂cm/∂t and ∂ρm/∂t
given in Eqs. (6) and (7) can be generalized to obtain a more
general expression for the temporal derivative of any moment
of the micelle size distribution. In this Appendix, we first
present this general analysis and then consider the second
moment to obtain expressions for derivatives of 〈n2〉m and σ 2

m.
Let c(k) denote the k-moment of the micelle number con-

centration cn, given by a sum

c(k)
m ≡

∞∑
n=b

cnnk, (A1)

defined such that

〈nk〉m = c(k)
m /cm. (A2)

Note that cm = c(0)
m and ρm = c(1)

m are special cases of c(k)
m with

k = 0 and k = 1, respectively, while q is the first moment of
the normalized distribution.

The derivative ∂c(k)
m /∂t may be computed by evaluating the

derivative of the sum in Eq. (A1), using Eq. (1) for ∂cn/∂t .
This yields

∂c(k)
m

∂t
= ∇2

(
D(k)

m cm〈nk〉m
) + S(k), (A3)

where

S(k) ≡
∞∑

n=b

nk (In−1 − In) (A4)

is a contribution arising from stepwise reactions. Note that
S(0) ≡ (dcm/dt )rxn and S(1) ≡ (dρm/dt )rxn, while S(2) is the
r.h.s. of Eq. (I.A4). Expressions for S(0), S(1) and S(2) that have
been simplified by applying a summation by parts are given in
article I in Eqs. (I.43), (I.44), and (I.A4), respectively.

The corresponding temporal derivative of 〈nk〉m is given by
the difference

∂〈nk〉m

∂t
= ∂

∂t

(
c(k)

m

cm

)

= 1

cm

∂c(k)
m

∂t
− 〈nk〉m

cm

∂cm

∂t
. (A5)

Using Eq. (A3) for ∂c(k)
m /∂t and Eq. (6) for ∂cm/∂t , we obtain

∂〈nk〉m

∂t
≡ D(k)

m ∇2〈nk〉m + 2

cm
∇(

D(k)
m cm

) · ∇〈nk〉m

+ 〈nk〉m

cm
∇2

[(
D(k)

m − D(0)
m

)
cm

]
+ 1

cm
[S(k) − 〈nk〉mIb−1], (A6)

in which we have used the relation S(0) = Ib−1.
The corresponding derivative of σ 2

m is given by a difference

∂σ 2
m

∂t
= ∂ (〈n2〉m − q2)

∂t
. (A7)

Using Eq. (A6) with k = 2 for ∂〈n2〉m/∂t and Eq. (I.45) for
∂q/∂t , we obtain Eq. (12), with a reactive term

(
dσ 2

m

dt

)
rxn

= 1

cm
[S(2) − 2qS(1) − 〈n2〉mIb−1]. (A8)

Equation (13) for (dσ 2
m/dt )rxn is then obtained by repeating

the steps used to obtain Eq. (I.46) in Appendix A of article I,
by combining Eq. (I.A4) for S(2) and Eq. (I.44) for S(1).
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