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Nonlinear dynamics in micellar surfactant solutions. I. Kinetics
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This is the first of a pair of articles that present the theory of kinetic and transport phenomena in micelle-
forming surfactant solutions in a form that facilitates discussion of large deviations from equilibrium. Our goal
is to construct approximate but robust reduced models for both homogeneous and inhomogeneous systems as
differential equations for unimer concentration c1, micelle number concentration cm, average micelle aggregation
number q and (optionally) aggregation number variance σ 2

m. This first article discusses kinetics in homogeneous
solutions. We focus particularly on developing models that can describe both weakly perturbed states and states
in which c1 is suppressed significantly below the critical micelle concentration, which leads to rapid shrinkage
and dissociation of any remaining micelles. This focus is motivated by the strong local suppression of c1 that
is predicted to occur near interfaces during some adsorption processes that are considered in the second article.
Toward this end, we develop a general nonlinear theory of fast stepwise processes for systems that may be
subjected to large changes in q and c1. This is combined with the existing nonlinear theory of slow association
and dissociation processes to construct a general model for systems governed by stepwise reaction kinetics. We
also consider situations in which the slow process of micelle creation and destruction instead occurs primarily by
micelle fission and fusion, and analyze the dependencies of micelle lifetime and the slow relaxation time upon
surfactant concentration in systems controlled by either association-dissociation or fission-fusion mechanisms.
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I. INTRODUCTION

In a micellar surfactant solution, surfactant clusters of
varying aggregation number coexist with dissolved single
molecules or “unimers.” The dynamical evolution of a ho-
mogeneous system is controlled by a set of reactions that
redistribute molecules among clusters of different aggregation
number and between clusters and a reservoir of unimers.
Transport phenomena in inhomogeneous systems, such as
diffusion to an interface, involve an interplay between these
reactions and diffusion of both unimers and clusters. Reduced
models that describe the evolution of a polydisperse system
in terms a small set of statistical properties (e.g., average mi-
celle aggregation number, micelle concentration, and unimer
concentration) are useful both as a guide to qualitative un-
derstanding and as a potential basis for development of more
efficient computational models of complex phenomena.

Early theoretical work on kinetics in surfactant solution,
prior to approximately the year 2000, focused primarily on
analysis of linearized models of small perturbations from
equilibrium [1–4]. The resulting theories allow analysis of
linear response experiments that track relaxation of small
perturbations of homogeneous systems caused by sudden
changes in temperature, pressure, or concentration [3,4]. Re-
lated work on linearized models of dynamics in weakly
perturbed inhomogeneous systems has also allowed analysis
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of dynamic interfacial tension measurements in systems sub-
ject to small changes in interfacial area [5].

The present work is the first of a pair of articles that give
a self-contained analysis of dynamical phenomena in micel-
lar solutions in a form that facilitates analysis of strongly
nonequilibrium states. This first article discusses reaction ki-
netics in spatially homogeneous systems. A second article
discusses the combined effects of reaction and diffusion in
inhomogeneous systems. The resulting analysis yields a set
of reduced models that, in favorable cases, can describe the
evolution of strongly nonequilibrium states as a closed set of
differential equations for a small number of variables.

The analysis in these two papers was motivated in part
by an interest in nonlinear dynamics of surfactant adsorption
from a micellar solution to an initially bare or rapidly ex-
panding interface. A simple example of this type of process
is discussed in the accompanying paper. As shown there, such
processes are characterized by strong depression of unimer
concentration near the interface, which can lead to rapid local
shrinkage and complete destruction of micelles in a nearby
region. Previous work on nonlinear kinetics in homogeneous
micellar surfactant solutions has focused primarily on situa-
tions that involve much smaller changes in average micelle
aggregation number. Interest in transport phenomena thus mo-
tivated us, as a prerequisite, to develop a nonlinear theory for
fast stepwise changes in average micelle aggregation number
that allows for the possibility of large deviations from equilib-
rium.

The work presented here builds on a substantial body of
prior work on nonlinear micelle kinetics in homogeneous
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micellar solutions. See Refs. [6,7] for reviews. The remainder
of this section outlines key ideas from prior theoretical work
and introduces some distinctive themes of the present work.

A. Equilibrium

Throughout this and the accompanying article, we consider
dilute surfactant solutions containing clusters of all positive
integer values of the cluster aggregation number n. Through-
out, we refer to clusters of aggregation number n (i.e., clusters
of n molecules) as n-mers, and to free surfactant molecules as
unimers. Let cn denote the number concentration of n-mers,
so that c1 is the unimer concentration. Let ρ denote the total
surfactant concentration,

ρ ≡
∞∑

n=1

ncn. (1)

Let cm denote the number concentration of micelles, defined
as the total concentration of clusters with aggregation num-
bers greater than or equal to some cutoff value b. Let q denote
the number average micelle aggregation number of these mi-
cellar clusters.

Let Wn(c1) denote the free energy to form an n-mer from
unimers in a solution with a unimer concentration c1. This is
defined here as a difference

Wn(c1) ≡ μ◦
n − nμ1(c1), (2)

in which μ◦
n = μn(c◦) is the standard chemical potential of

n-mers in a hypothetical state in which cn is equal to a stan-
dard concentration c◦, and μ1(c1) is the chemical potential of
unimers in a state with specified unimer concentration c1.

Let c∗
n (c1) denote the value of cn in an equilibrium state

characterized by a unimer concentration c1. We show in Sec. II
that

c∗
n (c1) = c◦ exp [−βWn(c1)], (3)

where β ≡ 1/(kBT ), kB is Boltzmann’s constant, and T is
absolute temperature.

In a micelle-forming surfactant solution, the functions
Wn(c1) and c∗

n (c1) exhibit qualitatively different dependences
on n at values of c1 above or below a characteristic value that
we refer to as the critical dissociation concentration, denoted
by cd. At concentrations c1 < cd, Wn(c1) is a monotonically
increasing function of n, so c∗

n (c1) is a monotonically de-
creasing function. At concentrations c1 > cd, Wn(c1) exhibits
a local maximum at a value denoted by nt (c1) and a local min-
imum at a value denoted by ne(c1). The quantity ne(c1) is the
most probable micelle aggregation number in an equilibrated
solution with unimer concentration c1. The maximum in
Wn(c1) at n = nt (c1) acts as a transition state for stepwise cre-
ation (association) or destruction (dissociation) of micelles.

The critical micelle concentration (CMC), denoted here
by cc, is somewhat greater than cd. The CMC is, roughly
speaking, the concentration above which a non-negligible
concentration of micelles appear in an equilibrated solution,
and above which the unimer concentration becomes nearly
independent of total concentration. We use an operational
definition of cc as the value of c1 in an equilibrated solution in
which half of the total concentration ρ defined in Eq. (1) is in
clusters with n > nt (c1).
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FIG. 1. Dependence of cluster formation free energy Wn(c1) vs
aggregation number n as obtained in Ref. [8] for a bead-spring
simulation model of a diblock copolymer surfactant, for the case
α = 14. The solid line shows results for c1 = cc, and the dashed
line shows c1 = cd. Values of Wn shown here are defined using a
standard concentration c◦ chosen to be equal to the critical micelle
concentration cc.

As an example of the typical behavior of Wn(c1), Fig. 1
shows the measured dependence of Wn(c1) was obtained from
simulations of a simple model of micelles formed by diblock
copolymers in a polymeric solvent [8–11]. Results for Wn are
shown here for c1 = cc (solid line) and c1 = cd (dashed line).
These results were inferred from simulations of a bead spring
model of AB diblock copolymer surfactants that each contain
28 beads of type A and four beads of type B that are dissolved
in a liquid of A homopolymer solvent molecules that each
contain 32 beads of type A. The dependence of free energy
upon n has been measured using semigrand canonical Monte
Carlo sampling [8]. The degree of segregation is controlled by
the value of a parameter α = (εAB − αBB)/kBT , in which εi j

is an energy that controls the strength of repulsive interactions
between monomers of types i and j. The results shown here
used α = 14. For this particular model cd/cc = 0.81.

A variety of simplified molecular models and simulation
models have been studied in order to characterize the behavior
of Wn(c1) for a common surfactant system. Most phenomeno-
logical models of spherical micelles are variants of the droplet
model introduced by Tanford [12–14]. Droplet models for a
spherical micelle generally contain a cohesive contribution
proportional to the core volume, an interfacial contribution,
and an additional repulsive contribution that limits micelle
growth. The repulsive contribution can be used to represent
some combination of short-range head-group interactions,
electrostatic double layer energy in ionic systems, and chain
stretching [12,13,15–19]. Predictive models of cluster free
energies for block copolymer surfactant micelles have also
been obtained from numerical or approximate treatments of
self-consistent field theory [20–24], and from recent coarse-
grained molecular simulations [8,25].

Analyses of droplet models, self-consistent field theory and
simulations have consistently predicted that experimentally
studied systems (i.e., systems with non-negligible CMCs that
equilibrate over experimentally accessible timescales) typi-
cally exhibit values of cd and cc that differ by only a few tens
of percent. Note, for example, the value of cd/cc = 0.81 for
the model shown in Fig. 1. This implies that suppression of c1
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below cc by a rather modest amount can make micelles unsta-
ble with respect to rapid shrinkage and dissociation, even in
systems in which micelles exhibit long equilibrium lifetimes
in systems with ρ > cc. This predicted fragility of micelles
with respect to decreases in c1 is relevant to experiments that
subject a homogeneous solution to rapid dilution by a suffi-
ciently large amount, and to dynamic adsorption phenomena
in which c1 is depressed near an interface.

Surfactants solutions can exhibit rodlike as well as spheri-
cal micelles. Shchekin, Kshevetskiy, Kuni and coworkers have
extensively discussed dynamical properties of systems that
can exhibit coexisting spherical and rodlike micelles [26–31].
Their work is based on a model for Wn(c1) that, at some
concentrations, can exhibit two local minima corresponding
to different types of micelles [26]. We focus throughout this
work on systems that only form spherical micelles, for which
Wn(c1) exhibits no more than one local minimum at n > 1.

B. Fast vs slow processes

Experimental studies of the relaxation dynamics of weakly
perturbed micellar solutions [32–39] and ultrasonic spec-
troscopy [39–42] long ago established the existence of “fast”
and “slow” relaxation processes with widely disparate re-
laxation times. The “fast” process, with a relaxation time
denoted here by τ1, involves repartitioning of surfactant be-
tween micelles and a reservoir of free unimers by insertion
and expulsion of individual unimers, with negligible change
in the total number of micelles. This process leads to a change
in both average micelle aggregation number and umimer con-
centration. The fast process ends when the system reaches
a state of partial or quasi-equilibrium in which the free en-
ergy has reached a minimum subject to a constraint on the
number of micelles. The “slow” process, with relaxation time
τ2, involves a change in the total number of micelles by rare
processes that create or destroy entire micelles.

The stepwise reaction model introduced by Aniansson and
Wall [1,2] assumes that both the fast and slow processes occur
solely via stepwise elementary reactions in which individual
surfactant molecules are inserted into or expelled from a sur-
factant cluster [1–4,6,43–47]. The fast process observed in
experiments is assumed to occur via expulsion and insertion
of a few molecules per micelle with negligible change in the
number of micelles. The slow process is assumed to occur via
rare events that lead to formation of a new micelle by stepwise
association of unimers or destruction of an existing micelle by
stepwise dissociation.

In systems with c1 > cd, the existence of a maximum in
Wn(c1) creates barriers to stepwise association and dissocia-
tion. When these barriers are much greater than kBT , micelle
association and dissociation become very rare thermally acti-
vated events, creating a separation of timescales between fast
and slow processes. This separation of timescales thus exists,
however, only in systems with c1 > cd and substantial barriers
to both processes.

Consider the predictions of the stepwise reaction model for
the evolution of a strongly perturbed homogeneous system.
Assume an initial condition at t = 0 in which the system
contains a bimodal distribution of clusters that is dominated
by unimers and micelles, for which cn contains a micellar peak

FIG. 2. Schematic of relationship between changes in average
aggregation number q(t ) and the micelle formation free energy
Wn(c1). Arrows show the direction of change of q(t ) in systems
with c1 > cd (solid line) and with c1 � cd (dashed line) via stepwise
processes. In both cases, q(t ) changes so as to cause a monotonic
decrease in the value of Wn(c1) evaluated at n = q(t ).

with values of n clustered around an average value q(t = 0).
The subsequent time dependence of q(t ) can exhibit two qual-
itatively different trajectories, depending on the nature of the
initial values of c1 and q. These two possibilities are shown
schematically in Fig. 2.

Micellar systems with initial values c1 > cd and q > nt (c1)
typically exhibit a two-stage relaxation similar to that ob-
served in experiments on weakly perturbed micellar solutions.
During the initial fast process, q(t ) migrates towards the
local minimum of Wn(c1(t )) at n = ne(c1(t )), as indicated
by arrows on the solid line in Fig. 2. The variables c1(t )
and ne(c1(t )) also change, but cm(t ) remains nearly constant
during this process. During the subsequent slow process,
cm(t ) relaxes more slowly by rare dissociation and associ-
ation events, while q(t ) remains nearly equal to ne(c1(t ))
throughout this process. For a system that starts in a state
with micelles and relaxes to a final equilibrium unimer con-
centration c1 ∈ [cd, cc] (e.g., due to sudden dilution to a
concentration ρ < cc), this can lead to slow destruction of
essentially all micelles with almost no change in the average
aggregation number q(t ) of remaining micelles.

A different scenario is expected either in a system with
an initial value c1 < cd, or one with c1 > cd but q < nt (c1).
In both of these cases, there is no local maximum of Wn(c1)
in the range [0, q] at time t = 0, and thus no barrier to rapid
stepwise dissociation. These situations are expected to yield a
fast single-stage relaxation in which the average aggregation
number q(t ) steadily shrinks by unimer expulsion until mi-
celles finish dissociating into unimers when q(t ) approaches
zero. During the early stages of this process, expulsion of
individual unimers has little effect on cm(t ), which remains
nearly constant until near the end of the process. Micelles can
thus be destroyed by either of two distinct processes that occur
under different conditions.

Physical processes during the single-stage shrinkage of
unstable micelles in the second scenario are very similar to
those which occur in the initial fast relaxation of a two-stage
relaxation. In what follows, we thus refer to both of these pro-
cesses as examples of “fast” stepwise processes and consider
them together.
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C. Fast processes

Fast processes in micellar solutions are characterized by
comparatively rapid changes in q and c1 with negligible
change in the micelle number concentration cm. We assume
here that such processes are adequately described by a step-
wise reaction model.

The seminal theoretical work of Aniansson and Wall con-
sidered predictions of a stepwise reaction model for both
fast and slow relaxation rates [1–3] for systems subjected to
infinitesimal perturbations from equilibrium. Their analysis
of fast processes used a linearized dynamical model with a
constant micelle number concentration cm that they further
simplified by introducing the following physically motivated
approximations:

(a) The cluster free energy Wn in the final equilibrium state
was approximated by a quadratic function of n, yielding a
Gaussian equilibrium distribution.

(b) The expulsion rate constant was taken to be indepen-
dent of n.

(c) A continuum diffusion approximation was introduced
in which n is treated as a continuous variable, and the discrete
reaction equations were approximated by a continuum diffu-
sion equation.
This set of approximations allows the discrete stepwise reac-
tion model for fast processes to be mapped onto a model of
one-dimensional diffusion with constant diffusivity in a har-
monic effective potential. This simplified model was solved
by Aniansson and Wall [1,2] by introducing a basis of Hermite
polynomial eigenfunctions of the associated Fokker-Planck
operator.

An alternative method of characterizing fast processes is
to analyze the time dependence of moments of the size distri-
bution [29,48,49]. The average micelle aggregation number q
and the aggregation number variance σ 2

m are the first moment
and the second central moment of n for proper micelles, re-
spectively. Time derivatives of these and other moments can
be expressed as sums over n in which the summands depend
on cluster free energies, reaction rate constants and cn, as
shown here in Sec. III A. To obtain a closed set of approximate
differential equations (ODEs) for a small set of moments,
however, one generally must introduce approximations that
approximate these sums as functions of the chosen set of
moments.

Compact expressions for dq(t )/dt and dσ 2
m(t )/dt were

first derived by Danov et al. [48,49]. These authors used
these exact expressions to derive a close system of ODEs
for the evolution of q(t ) and σ 2

m(t ) during a fast process by
considering only infinitesimal perturbations, approximating
cn(t ) by a Gaussian function of n, and assuming a constant
expulsion rate constant (approximation b). Unlike Aniansson
and Wall, however, these authors analyzed the underlying
discrete rate equations rather than introducing a continuum
diffusion approximation.

Kshevetskiy and Shchekin [29] have derived equations for
moments of the micelle size distribution in a model that
allowed for the coexistence of spherical and longer rodlike
micelles, using an analysis that did not linearize the governing
equations. For simplicity, these authors assumed a quadratic
dependence of Wn(c1) on n for the spherical micelle popula-
tion, and a linear dependence on n for rodlike micelles. These

authors also retained approximations (b) and (c) of the work
of Aniansson and Wall. The use of simple approximations for
the formation free energies and rate constants for both types
of micelle allowed analytic results to be obtained for all of the
integrals with respect to aggregation number that appear in
expressions for the time derivatives of arbitrary moments. In
the cases of rodlike micelles and of coexisting spherical and
rodlike micelles, this approach was found to yield nonlinear
ODEs that predict nonexponential time dependence. In the
case of spherical micelles that we consider here, however,
this combination of approximations was found to yield linear
ODEs for q(t ) and σ 2

m(t ) similar to those obtained in earlier
studies of linearized models. The similarity in results was
primarily the result of continued use of a quadratic approxima-
tion for Wn for spherical micelles, which also limits the range
of validity of this analysis to phenomena involving relatively
small changes in q.

The analysis of fast processes given in this article is de-
signed to avoid several of the limitations of previous work,
and to allow analysis of processes involving large changes in
q and c1. Our analysis starts from the exact expressions for
dq/dt and dσ 2

m/dt obtained by Danov et al. [48,49] from the
discrete stepwise reaction equations. A closed set of ODEs is
obtained here by introducing local (rather than global) Taylor
expansions for the dependence of Wn(c1(t )) and the expulsion
rate constant on n in a small range of values of n near the
instantaneous average value q(t ). This approach is based on
an underlying assumption that cn(t ) always exhibits a bimodal
dependence on n for which the total surfactant concentration
is dominated by unimers and by micelles with a relatively
narrow range of aggregation numbers clustered around q(t ). It
does not, however, restrict either the allowed range of values
of q(t ) or the allowed functional form of the dependence of
Wn on n. The resulting approximation yields predictions that
correctly describe behavior both near a micellar equilibrium
state and under circumstances in which micelles are unstable
to steady shrinkage.

D. Slow processes

Slow processes are characterized by changes cm(t ) in
systems with c1 > cd caused by rare events that create or
destroy micelles. The stepwise reaction model posits that this
change occurs via stepwise association and dissociation. It has
long been recognized, however, that the slow process could
instead occur in some systems by fission and fusion of mi-
celles [50–54]. Early analyses of both association-dissociation
and fission-fusion mechanisms relied on linear dynamical
models of weak perturbations [1–4,54]. Substantial progress
has since been made on analyzing relaxation of large pertur-
bations, particularly for stepwise association and dissociation.

1. Association and dissociation

A fully nonlinear theory of stepwise association and dis-
sociation in systems with c1 > cd was developed by Grinin,
Kuni, Rusanov, and Shchekin (GKRS) [43–47] in 1999–2001,
25 years after the work of Aniansson and Wall [1–3]. The step-
wise reaction model underlying the GKRS theory is closely
analogous to the Becker-Döring model of stepwise nucleation
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of liquid from a supersaturated vapor. Like the theory of nu-
cleation, it yields an expression for the rate of association that
decreases exponentially with increases in the magnitude of the
local maximum in Wn(c1) at n = nt (c1). The corresponding
rate of micelle dissociation instead depends exponentially on
the difference between this local maximum and the local
minimum at n = ne(c1). The GKRS theory is applicable only
for systems with c1 > cd for which barriers to both processes
remain much greater than kBT . Comparison of the GKRS the-
ory to numerical simulations of the stepwise reaction model
for strongly perturbed systems have confirmed the accuracy
of the theory [55]. A great deal of subsequent work on nonlin-
ear dynamics has been presented by GKRS, their coworkers,
and others on further analysis of the original theory [56–58],
extensions to situations involving rodlike micelles and/or
fission and fusion processes [26,27,30] and numerical stud-
ies of both the stepwise reaction model [31,55,59] and of a
generalized Smoluchowski model that allows for fission and
fusion [60–62].

The association and dissociation rates predicted by the
GKRS theory exhibit a strongly nonlinear dependence on in-
stantaneous unimer concentration c1, as a result of a sensitive
dependence of the values of the extrema of Wn(c1) on c1.
Consequently, the linearized theory of Aniansson and Wall
has been shown to be valid only for very weak deviations from
equilibrium, corresponding to very small initial perturbations
or very late stages of relaxation from a large perturbation [46].
For larger perturbations, there has been shown to exist an in-
termediate regime during which the net rate of change of cm(t )
is dominated by either association or dissociation, depending
on the sign of the initial perturbation, and during which the
deviation of c1 from its final value was shown to exhibit a
power-law dependence on time [46,57].

2. Fission and fusion

Like association and dissociation events, micelle fission
and fusion events each increase (for fission) or decrease (for
fusion) the number of micelles in a system by one micelle.
Kahlweit and coworkers presented evidence that, in ionic sur-
factant systems, association and dissociation dominate at low
surfactant and salt concentrations but that fission and fusion
dominate at higher concentrations [4,50–53]. This conclusion
was based on an analysis of the concentration dependence of
the slow relaxation rate τ−1

2 , for which the stepwise reaction
model predicts a decrease with increasing concentration. In
ionic systems, upon increasing concentration, τ−1

2 is found
to decrease at low concentrations, reach a minimum, and
then increase at higher concentration. Kahlweit and coworkers
argued that this reversal in behavior indicates a change in
mechanism. They hypothesized that fusion is suppressed in
systems of low ionic strength by electrostatic repulsion be-
tween micelles but that fission and fusion dominate at higher
ionic strengths. Herrmann and Kahlweit also found that τ−1

2
increases with concentration at all concentrations in solutions
of Triton X-100 nonionic surfactant [63], suggesting a fission-
fusion mechanism in this case. Recent molecular simulations
of nonionic block copolymer surfactants with an adjustable
parameter that controls surfactant solubility indicate that the
mechanism of slow relaxation changes from an association-

dissociation mechanism to a fission-fusion mechanism with
decreasing surfactant solubility, or decreasing CMC [8,9,11].

The general form of the reaction equations for a system
in which micelles undergo fission and fusion is deter-
mined by the requirement of detailed balance, and is well
understood [30,54]. Early analyses by Kahlweit [53] and
Waton [54] introduced a partial or “quasi”-equilibrium hy-
pothesis, which assumes full relaxation of the fast process,
to obtain expressions that relate the slow time τ2 observed in
linear relaxation experiments to the equilibrium fission life-
time. Shchekin, Kshevetskiy, and Pelevina formulated a very
general set of nonlinear equations to describe slow relaxation
in systems that can contain both spherical and cylindrical mi-
celles, in which the concentrations of both types of micelle can
change via either stepwise or fission-fusion processes [30],
while assuming partial equilibrium conditions for both species
of micelle.

Several studies have presented numerical simulations of
the evolution of cn(t ) after both small and large perturba-
tions of systems in which micelles can undergo fission and
fusion involving clusters of arbitrary size [60–62]. These
simulations have thus far relied on variants of a generalized
Smoluchowski equation in which fusion is either taken to be
diffusion controlled or in which fusion rates are suppressed
relative to diffusion controlled rates by factors that depend on
an empirical parameter. Theoretical progress on clarifying the
importance of fission and fusion has been limited in part by
a lack of reliable information about the magnitude of barriers
to fusion, and thus about the magnitude of the relevant rate
constants.

Early discussions by Kahlweit and coworkers about the
possible relevance of fission and fusion to results of linear
relaxation experiments postulated a mechanism involving fu-
sion of submicellar aggregates, with n < nt , to create clusters
with n ∈ [nt, 2nt]. Griffiths et al. [60] distinguished between
this and another possible mechanism in which clusters with
n ∈ [ne/2, ne] fuse to create rare “super-micelles” with n ∈
[ne, 2ne]. Griffiths et al. used numerical simulations of a gen-
eralized Smoluchowski equation to study the effectiveness of
both hypothesized mechanisms in speeding relaxation after
rapid dilution of a micellar solution to a final concentration
that remains above the CMC. Their simulations used a free
energy model with a rather large dissociation barrier (�Wa �
14kBT ) that was designed to describe the sparingly soluble
nonionic polyoxyethylene glycol alkyl surfactant C10E8. Grif-
fiths et al. found that, for this model, the mechanism proposed
by Kahlweit had a negligible effect on the relaxation rate
of the slow process, but that the mechanism that involves
creation and fission of super-micelles dominated the predicted
slow relaxation rate over a wide range of assumed values of
fusion rate constant. These conclusions are consistent with
results of more recent MD simulations [8,9,11] that showed
that fission and fusion can dominate the slow process in
solutions of sufficiently sparingly soluble surfactants, as the
result of the appearance of a large barrier to the competing
association-dissociation mechanism, and that the dominant
relaxation mechanism in such systems involves fission and
formation of super-micelles.

As emphasized by Kahlweit and coworkers, the con-
centration dependence of the slow relaxation time provides
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important experimental clues about the mechanism of the
slow relaxation. Sections VI and VII present an anal-
ysis of the predicted concentration dependence for both
association-dissociation and fission-fusion mechanisms in
nonionic systems, in a form that takes into account our current
understanding of the relevant fission-fusion mechanism.

E. Overview

The contents of the remainder of this article are as fol-
lows: Sec. II discusses equilibrium statistical mechanics.
Section III reviews governing equations for the stepwise re-
action theory. Section IV and the three Appendixes present a
nonlinear model of fast stepwise process. Section V discusses
the partial equilibrium state that is reached after completion
of a fast relaxation process. Section VI reviews the GKRS
nonlinear theory of slow stepwise processes. Section VII dis-
cusses slow processes for systems in which micelle creation
and destruction occur primarily by fission and fusion. Sec-
tion VIII discusses the construction of nonlinear reduced
models that allow for both fast and slow processes and that
correctly describe behavior for both c1 > cd and c1 < cd. Sec-
tion IX summarizes conclusions.

II. EQUILIBRIUM

The chemical potential of n-mers, denoted by μn, is given
in any dilute solution by

μn(cn) = μ◦
n + kBT ln

(cn

c◦
)
. (4)

Here μ◦
n is a standard state chemical potential for n-mers and

c◦ is a standard number concentration. By convention, we use
the same standard concentration for all species.

A. Equilibrium distribution

Let c∗
n (c1) denote the equilibrium concentration of n-mers

in an equilibrium state with a unimer concentration c1. A
polydisperse solution is in equilibrium when the equilibrium
condition

μn = nμ1 (5)

is satisfied for all n > 1. Equation (3) for c∗
n (c1) may be

obtained by using Eq. (4) for both μn and μ1 in Eq. (5) and
solving for cn as a function of c1.

Using Eq. (4) for μ1(c1), we may write Eq. (2) for Wn(c1)
more explicitly as a difference

Wn(c1) = W ◦
n − nkBT ln

(c1

c◦
)

(6)

in which

W ◦
n ≡ Wn(c◦) = μ◦

n − nμ◦
1 (7)

is the standard Gibbs free energy of formation of an n-mer
from unimers, in which μ◦

n = μn(c◦) and μ◦
1 = μ1(c◦) are

both evaluated at the standard concentration. Substituting
Eq. (6) for Wn(c1) into Eq. (3) for c∗

n (c1) yields an alternate
expression

c∗
n (c1) = Kncn

1, Kn = e−βW ◦
n /(c◦)n−1 (8)

of the form required by the mass-action law.

Some previous studies have defined a “work of aggrega-
tion” [43–47]) that is similar but not completely equivalent
to the quantity Wn(c1) defined here. This work of aggrega-
tion is given by the value of Wn(c1), as defined in Eq. (2),
evaluated with the standard n-mer concentration c◦ set equal
to the unimer concentration c1. Throughout this work, we
instead leave c◦ unspecified and treat it as a constant that is
independent of c1.

1. Critical dissociation concentration

Consider the mathematical criteria for identifying the criti-
cal dissociation concentration cd above which Wn(c1) exhibits
a local maximum and local minimum. For this purpose, it is
convenient to treat W as a continuous function of both n and
c1, denoted by W (n, c1). For c1 < cd, ∂W (n, c1)/∂n > 0 for
all n. At exactly c1 = cd, there exists a unique value of n,
denoted by nd, at which

0 = ∂W

∂n

∣∣∣∣
n=nd

= ∂2W

∂n2

∣∣∣∣
n=nd

, (9)

while ∂W/∂n > 0 for all n �= nd. For c1 > cd, W (n, c1) devel-
ops a local maximum and a local minimum with respect to
n.

In Eq. (6) for W , the only term on the right-hand side
(r.h.s.) that depends on c1 is also linear in n. This implies that
∂2W/∂n2 is independent of c1. We may thus identify nd as the
value of n at which ∂2W/∂n2 = 0, which is independent of c1.

Using Eq. (6), one may show that the value c1 = cd at
which ∂W/∂n = 0 at n = nd must satisfy

ln
(cd

cc

)
= 1

kBT

∂W

∂n

∣∣∣∣
c1=cc,n=nd

. (10)

Typical molecular models with ne ∼ 50–100, nt/ne ∼ 0.2–0.3,
and modest dissociation barriers of less than 20kBT at c1 = cc

normally lead to values of cd/cc > 2/3 [18].

2. Extrema and barriers

For c1 > cd, W (n, c1) exhibits a local maximum at n =
nt (c1) and a local minimum at n = ne(c1). Let

Wt (c1) ≡ Wnt (c1 )(c1), We(c1) ≡ Wne (c1 )(c1) (11)

denote the values of Wn(c1) at these two extrema. The barrier
to micelle formation by stepwise association in such a system,
denoted by �Wa(c1), is given by the difference

�Wa(c1) ≡ Wt (c1) − W1(c1). (12)

The corresponding barrier to micelle destruction by stepwise
dissociation, denoted by �Wd(c1), is given by the difference

�Wd(c1) ≡ Wt (c1) − We(c1) (13)

between the local maximum and local minimum values.
Upon increasing c1, �Wa(c1) decreases while �Wd(c1)

increases, as illustrated in Fig. 1. Using Eq. (6), it is straight-
forward to show that

1

kBT

d�Wa(c1)

d ln c1
= −(nt − 1), (14)

1

kBT

d �Wd(c1)

d ln c1
= ne − nt. (15)
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B. Micelle statistical properties

To define micelle statistical properties, we classify all clus-
ters of aggregation number n greater than or equal to a cutoff
value b as “proper” micelles. The total number concentration
cm of such micelles is given by a sum

cm ≡
∞∑

n=b

cn. (16)

Let ρm denote the corresponding concentration of surfactant
in proper micelles, given by

ρm =
∞∑

n=b

ncn. (17)

Let 〈B〉m denote the number average of some property Bn of
n-mers, defined as an average over the proper micelle range,

〈B〉m ≡ 1

cm

∞∑
n=b

Bncn. (18)

The number average micelle aggregation number, denoted by
q, is given by the ratio

q ≡ 〈n〉m = ρm

cm
. (19)

The variance of the micelle aggregation number, denoted by
σ 2

m, is given by the mean-squared deviation

σ 2
m = 〈(n − q)2〉m, (20)

or, equivalently, σ 2
m = 〈n2〉m − q2.

In what follows, we will often assume for simplicity that
the total surfactant concentration ρ is dominated by the con-
tributions of unimers (n = 1) and proper micelles, giving

ρ � c1 + ρm, (21)

thus assuming negligible concentrations for clusters with 1 <

n < b.
Let ρ∗(c1), c∗

m(c1), ρ∗
m(c1), q∗(c1), and σ ∗

m(c1) denote equi-
librium values of ρ, cm, ρm, q, and σm, respectively, in an
equilibrium state with a unimer concentration c1. These quan-
tities are all defined by replacing cn by c∗

n (c1) in all of the sums
that appear in Eqs. (1)–(19).

Consider how equilibrium micelle properties vary with
changes in c1. Differentiating Eq. (8) for c∗

n (c1) with respect
to c1 yields

dc∗
n (c1)

dc1
= nc∗

n (c1)

c1
(22)

for all n � 1. Using this to evaluate the derivatives of Eq. (16)
for cm and Eq. (17) for ρm yields

dc∗
m(c1)

dc1
= c∗

mq∗

c1
, (23)

dρ∗
m(c1)

dc1
= c∗

m〈n2〉∗m
c1

. (24)

The corresponding derivative of q∗ = ρ∗
m/c∗

m is given by

dq∗(c1)

dc1
= (σ ∗

m )2

c1
, (25)

where (σ ∗
m )2 = 〈n2〉∗m − (q∗)2.

The dimensionless derivative dρ∗
m/dc1 will appear fre-

quently in subsequent discussions and will hereafter be
denoted by the symbol

κe(c1) ≡ dρ∗
m(c1)

dc1
. (26)

To describe changes in ρm = cmq in systems with q = q∗ that
arise from changes in q∗ at fixed cm, we also introduce a
related definition

κp(c1, cm ) ≡ cm
dq∗(c1)

dc1
= cm(σ ∗

m )2

c1
. (27)

Typical micellar solutions with ρ > cc and c1 � cc have q ∼
σ 2

m ∼ 102, giving σ 2
m � q2 and 〈n2〉m � q2. In such solutions,

κe � (ρm/cc)q and κp � (ρm/cc)((σ ∗
m )2/q). In such solutions,

κe  1 for (ρ − cc)/cc  q−1, giving κe  1 whenever ρ

exceeds cc by more than a few percent.
Consider the relationship between total surfactant concen-

tration ρ and unimer concentration c1 in a system with c1 > cd

in which we assume that ρ = c1 + ρm. Differentiating ρ with
respect to c1 yields dρ/dc1 = 1 + κe or, equivalently,

dc1

dρ
= 1

1 + κe
. (28)

States with ρ < cc in which ρm is negligible have ρ � c1,
dc1/dρ � 1, and κe � 1. Well-developed micellar states in
which ρ exceeds cc by more than a few percent are charac-
terized by values of κe  1, giving dc1/dρ � 1, so that c1

remains near cc and depends only weakly on ρ. For large mi-
celles, with q∗(cc)  1, the crossover from κe � 1 to κe  1
occurs over a very narrow range of values of ρ near cc.

III. STEPWISE REACTION MODEL

The stepwise reaction model assumes that the only relevant
elementary processes in a surfactant solution are unimer inser-
tion and expulsion. The rate of insertion of free unimers into
n-mers (events per volume per time), denoted by r+

n , is given
by

r+
n = k+

n c1cn, (29)

where k+
n is the associated insertion rate constant. The corre-

sponding rate for the reverse reaction, expulsion of unimers
from (n + 1)-mers, is given by

r−
n = k−

n cn+1, (30)

where k−
n is the expulsion rate constant. Let

In = r+
n − r−

n (31)

denote the net rate of conversion of n-mers into (n + 1)-mers,
for any n � 1.

Let Gn denote the net rate of creation of n-mers, such that

dcn(t )

dt
= Gn(t ) (32)

in a homogeneous system. This net creation rate is given by
the difference

Gn = In−1 − In, (33)
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for all n > 1, and by a sum

G1 = −2I1 −
∞∑

n=2

In, (34)

for the special case n = 1.
The principle of detailed balance requires that r+

n = r−
n or

(equivalently) In = 0 for all n � 1 in any equilibrium state.
Let r∗

n (c1) denote the value of r+
n or r−

n in an equilibrium state
with a unimer concentration c1, given by

r∗
n (c1) = k+

n c1c∗
n (c1) = k−

n c∗
n+1(c1). (35)

By combining this with Eq. (3) for c∗
n (c1), we find that k+

n and
k−

n must satisfy

k+
n c1 = k−

n e−β�Wn (c1 ), (36)

where β ≡ 1/kBT and where

�Wn(c1) ≡ Wn+1(c1) − Wn(c1). (37)

Using Eq. (6) for Wn(c1) yields

�Wn = �W ◦
n − kBT ln

(c1

c◦
)
, (38)

where �W ◦
n ≡ W ◦

n+1 − W ◦
n . Note that Eq. (36) is actually valid

for any value of c1. This is possible because Eq. (38) yields
e−β�Wn (c1 ) ∝ c1, giving an equation in which both sides of the
equation are proportional to c1.

Using Eq. (36), we may express Eq. (31) for In as a sum

In = k−
n (cne−β�Wn (c1 ) − cn+1) (39)

or, equivalently,

In = k−
n cn(e−β�Wn (c1 ) − 1) − k−

n (cn+1 − cn), (40)

for all n � 1. In Eq. (40), the first term on the r.h.s. is a flux
that is driven by the difference �Wn, and that vanishes when
�Wn = 0. The second term instead arises from “diffusion” of
n, with an effective diffusivity k−

n .

A. Evolution of statistical properties

We next consider predictions of the stepwise reaction
model for the time dependence of the micelle properties
cm(t ), ρm(t ), q(t ), and σ 2

m(t ). Time derivatives of cm(t ) and
ρm(t ) can be obtained by combining their definitions, given
in Eqs. (16) and (17), with Eq. (33) for dcn/dt = Gn. This
immediately yields

dcm

dt
=

∞∑
n=b

Gn =
∞∑

n=b

(In−1 − In) , (41)

dρm

dt
=

∞∑
n=b

nGn =
∞∑

n=b

n(In−1 − In). (42)

The sum of differences in Eq. (41) may be evaluated immedi-
ately if we assume that In → 0 as n → ∞. This yields

dcm

dt
= Ib−1. (43)

The current Ib−1 is simply the net rate at which aggregates
with n < b grow to the cutoff value b beyond which they

are counted as proper micelles. The sum in Eq. (42) may be
simplified by summation by parts, which yields

dρm

dt
=

∞∑
n=b

In + bIb−1. (44)

Equations (43) and (44) may then be combined to compute
the time derivative of q(t ) = ρm(t )/cm(t ). A straightforward
calculation yields

dq(t )

dt
= 1

cm

[ ∞∑
n=b

In + (b − q)Ib−1

]
. (45)

The term proportional to Ib−1 in Eq. (45) may be ignored
when considering fast processes, for which we assume that
dcm/dt = In−1 � 0.

The quantities cm(t ) and ρm(t ) are the zeroth and first
moments of the cluster concentration cn(t ) in the proper mi-
celle range, respectively. We extend the above analysis in
Appendix A by considering the time derivative of the corre-
sponding second moment, which we use to compute the time
derivative of the variance σ 2

m. The analysis given there yields

dσ 2
m(t )

dt
= 1

cm

∞∑
n=b

(2n + 1 − q)In

+ 1

cm

[
(q − b)2 − σ 2

m

]
Ib−1. (46)

Equations (45) and (46) are both exact expressions that have
been given previously by Danov et al. [48].

B. Continuum diffusion approximation

Many previous analyses of the stepwise reaction model
have introduced a continuum approximation in which the
discrete model is approximated by a continuous model of
diffusion of n. In this approximation, we treat n as a continu-
ous variable, and treat cn, Wn(c1), k−

n , and In as differentiable
functions of n, denoted by c(n, t ), W (n, t ) k−(n), and I (n, t ).
We also assume that differences between values of functions
of n at neighboring integers are small, and approximate finite
differences such as �Wn by derivatives with respect to n.

The stepwise reaction model reduces in this approximation
to a one-dimensional diffusion model in which

∂c(n, t )

∂t
= −∂I (n, t )

∂n
(47)

with a current

I = −k−
(

c
∂ (βW )

∂n
+ ∂c

∂n

)
. (48)

Equations (47) and (48) are valid if and only if: (a) cn, Wn

and k−
n are smoothly varying functions of n, with very small

second derivatives, and (b) β�|Wn| � 1 for all relevant values
of n. Observe that assumption (b) is necessary in order to
justify Eq. (48) for I as a valid approximation to Eq. (40),
because this assumption allows us to approximate the differ-
ence (e−β�Wn − 1) that appears in Eq. (40) by the derivative
−∂ (βW )/∂n that appears in Eq. (48).

This continuum approximation is approximately valid for
weakly perturbed micellar systems for which q  1 and
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σm  1 in equilibrium, which have been the primary focus
of most previous work on fast processes. This approximation
is actually never valid, however, in the limit of low unimer
concentration, c1 → 0. To show this, we note that Eq. (38)
implies that �Wn → ∞ in the limit c1 → 0, violating the
necessary requirement that β|�Wn| � 1. The correct limiting
value of In in the limit c1 → 0, can instead be obtained by
simply suppressing the contribution to In arising from inser-
tion, leaving only the expulsion contribution to obtain In =
−k−

n cn+1. This limiting behavior is correctly recovered by the
discrete expression given in Eq. (39), because e−β�Wn (c1 ) → 0
as c1 → 0, but is not recovered from Eq. (48). Models of
phenomena that may involve large changes in c1 must thus
avoid relying on this form of continuum approximation.

C. Diffusion-controlled insertion

Several prior treatments of the stepwise reaction model
have considered simplified models in which either the expul-
sion or insertion rate constants are taken to be independent
of n. To improve on this, it is useful to consider a physically
motivated approximation for how these quantities actually
depend on n.

Analyses of experiments on small molecule surfactants
and simulations of moderately soluble block copolymer sur-
factants [9] suggest that insertion of individual molecules
into a micelle is generally diffusion controlled. A diffusion-
controlled model for insertion yields an insertion rate constant

k+(n) = 4πD1R+(n), (49)

in which R+ is an effective capture radius that is generally
comparable to the micelle core radius, and in which we have
used a continuum notation for the dependence of k+ and R+
on n

Spherical micelles contain a spherical core of solvent-
phobic material with a core radius Rcore that increases with
aggregation number as approximately Rcore ∝ n1/3. An as-
sumption that R+ is equal or proportional to this core radius
thus yields R+ ∝ n1/3. Because R+ is the only factor on the
r.h.s. of Eq. (49) that depends on n, this assumption yields an
expression for the derivative of ln k+

n as

d ln k+

dn
= d ln R+

dn
� 1

3n
. (50)

The expulsion rate constant k− is related to the insertion
constant by the detailed balance condition k−

n = c1k+
n eβ�Wn

of Eq. (36). The assumption that R+ ∝ n1/3 thus yields giving
a corresponding expression for the derivative of ln k− as

d ln k−

dn
� 1

3n
+ W ′′

kBT
, (51)

where W ′′ = ∂2W (n, c1)/∂n2.
In an equilibrium state, (σ ∗

m )2 � kBT/W ′′, and so the sec-
ond term on the r.h.s. of Eq. (51) is approximately equal
to 1/(σ ∗

m )2. Typical micellar aggregates have n ∼ σ 2
m ∼ 102.

This implies that each of the two terms on the r.h.s. of Eq. (51)
and the resulting expressions for d ln k−/dn are all typically
of order 10−2.

In what follows, we obtain some small corrections to
expressions obtained in some earlier treatments that are pro-
portional to either d ln k−/dn or βW ′′. Corrections of this
form arise either from use of a model in which k−

n depends on
n or from our avoidance of the continuum diffusion approx-
imation. When computing such corrections, we assume that
the dimensionless quantities d ln k−/dn and βW ′′ are small
parameters, and expand our results only to first order in these
parameters.

IV. FAST STEPWISE PROCESSES

Fast processes in micellar systems are characterized by
relatively rapid changes in c1(t ), q(t ), and σ 2

m(t ) with neg-
ligible change in cm(t ) over the relevant time range. In this
section, we thus develop explicit approximate expressions
for dq(t )/dt and dσ 2

m(t )/dt for processes during which cm

remains approximately constant. Details of the calculation of
dq(t )/dt are given in the body of the paper, while correspond-
ing details of the calculation of dσ 2

m(t )/dt are relegated to
Appendix A.

A. Evolution of q(t )

Consider predictions of the stepwise reaction model
for dq(t )/dt under conditions for which dcm/dt � 0. By
Eq. (43), the assumption that dcm/dt � 0 implies that Ib−1 �
0, allowing us to ignore the boundary term proportional to Ib−1

in Eq. (45) for dq/dt . In this limit, we thus obtain

dq

dt
� 1

cm

∞∑
n=b

In. (52)

The fast process drives the system towards a partial equi-
librium state in which In = 0 throughout the proper micelle
range, in which the r.h.s. of Eq. (52) vanishes.

1. Aggregation number velocity

By using Eqs. (29)–(31) for In, Eq. (52) may be rewritten
as a micelle number average

dq(t )

dt
= 1

cm

∞∑
n=b

cnVn = 〈V 〉m (53)

of a quantity

Vn ≡ k+
n c1 − k−

n−1, (54)

which we refer to as the aggregation number velocity. Observe
that Vn is simply the difference between the rate k+

n c1 per
cluster of insertion of unimers into n-mers and the the corre-
sponding rate k−

n−1 of expulsion from n-mers. The velocity Vn

thus gives dq/dt for a hypothetical monodisperse distribution.
By using detailed balance, we may express Vn as a function

of only k−
n and Wn, giving

Vn ≡ k−
n e−β�Wn − k−

n−1, (55)

or, equivalently,

Vn ≡ k−
n (e−β�Wn − 1) + �k−

n−1, (56)

where �k−
n−1 = k−

n − k−
n−1.
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In what follows, we will consider approximations for k−
n ,

Wn and Vn that require that we treat these quantities as contin-
uous functions of n. For this purpose, we adopt a continuous
notation in which V (n) ≡ Vn, W (n) ≡ Wn, and k(n) ≡ k−

n , and
in which we use primes to indicate differentiation with respect
to n, giving, e.g., k′(n) = dk(n)/dn. Note that we use k, with
no − or + superscript, to denote the expulsion constant k−

n . It
is possible to suppress the − superscript without ambiguity
because we use expressions in which the detailed balance
condition is used to consistently rewrite k+

n in terms k−
n , giving

expressions that involve only k−
n and Wn.

To compute dq/dt , we must evaluate the average 〈V 〉m

given in Eq. (53). It is not possible to give an exact analytic
expression for such an average value for a model in which Wn

and k−
n can have an arbitrary dependence on n. To construct

useful approximations, we assume in what follows that, at any
time t , number averages such as 〈V 〉m are dominated by the
contributions of a relatively narrow range of values of n close
to the current average value q(t ). We then assume that, as a
result, quantities other than c(n, t ) that appear within the sum
that defines such an average can be adequately approximated
within this limited range by a low order Taylor expansion
around their values at n = q(t ).

In the stepwise reaction model, all quantities of interest
can be expressed as functions of W (n, c1) and k(n). We thus
begin by introducing physically motivated assumptions about
the behavior of these two input quantities. Throughout our
analysis, we assume the following:

(i) The function W (n, c1) can be adequately approximated
over the width of the micellar peak in c(n, t ) by a second-
order Taylor expansion about its value at q(t ), with a second
derivative |W ′′| � kBT .

(ii) The expulsion rate constant k(n) is adequately approx-
imated over this range by a linear Taylor expansion, with a
first derivative |k′| � k.
The assumptions that |k′| � k and |W ′′| � kBT are used in
what follow to systematically categorize contributions to V (n)
and 〈V 〉m in powers of the dimensionless quantities k′/k and
βW ′′.

In continuous notation, in a system in which k(n) is a
locally linear function of n, Eq. (56) becomes

V (n) = k(n)(e−β�W (n) − 1) + k′, (57)

where �W (n) ≡ W (n + 1) − W (n) and k′ is a constant. Us-
ing the fact that �W (n) = W ′(n) + W ′′/2 whenever W (n)
is quadratic, and the assumption that β|W ′′| � 1, we may
expand the exponential as

e−β�W (n) � e−βW ′(n)( 1 − βW ′′/2 ). (58)

This yields an approximate expression for V (n) as

V � k(e−βW ′ − 1)

+ k′ − 1
2 kβW ′′e−βW ′

. (59)

The dominant contribution to the r.h.s. of Eq. (59) is given
by the first line. The largest subdominant contributions are
given in the second line, which are suppressed relative to the
dominant contribution by prefactors of k′/k and βW ′. Higher
order corrections have been neglected.

We will need a corresponding expression for the second
derivative V ′′(n) in what follows. Straightforward differentia-
tion of the r.h.s. of Eq. (59), in which we take k(n) and �W (n)
to be linear functions of n, yields a dominant contribution

V ′′ � −(2k′ − kβW ′′)βW ′′e−βW ′
, (60)

in which we have dropped contributions of higher than linear
order in βW ′′ and k′/k.

Note that our analysis assumes that second derivative
of βW is small (i.e., that |βW ′′| � 1), but does not as-
sume that the first derivative βW ′ is small. We must
allow for potentially large values of βW ′ in order to cor-
rectly treat large changes in unimer concentrations, because
W ′(n) = dW ◦/dn − kBT ln(c1/c◦) contains a contribution
−kBT ln(c1/c◦) that diverges in the limits c1 → 0 or c → ∞.
However, because this contribution to W ′(n) is independent
of n, W ′′(n) is independent of c1, allowing us to assume that
β|W ′′(n)| � 1 at any value of c1 without contradiction.

To compute 〈V 〉m, we approximate V (n) within the sum
that defines the number average by a Taylor expansion about
its value at n = q(t ). We show in what follows that use of a
Taylor expansion leads naturally to approximations in which
the average is expressed as a sum of moments of the size
distribution. Different low-order expansions lead to different
possible approximations.

An exact treatment of an equilibrium in a system of con-
stant cm must yield dq/dt = 0. To test whether this criterion
is satisfied by any proposed approximation, it is useful to
consider an equilibrium state of a model in which W (n, c1)
is a locally quadratic function of n, as assumed throughout
our analysis. A quadratic model for W (n) yields a Gaussian
distribution for c∗

n (c1), for which q∗ = ne(c1) and (σ ∗
m )2 =

kBT/W ′′. Because W ′(ne ) = 0 and q∗ = ne, W ′(q∗) = 0 in
any such state. A model with a locally quadratic free en-
ergy should thus yield dq/dt = 〈V 〉 = 0 when W ′(q) = 0 and
βW ′′σ 2

m = 1.

2. Local linear approximation for V (n)

We first consider an approximation that is based on a linear
Taylor approximation for V (n), as a sum

V (n) = V (q) + V ′(q)δn, (61)

where δn = n − q and q = 〈n〉m. By using this approximation
to evaluate the average 〈V 〉m, while noting that 〈δq〉m = 0, we
obtain

dq

dt
= 〈V 〉m = V (q), (62)

where V (n) is given by Eq. (59). Note that, in a model
with known input parameters, this gives an approximation for
dq/dt as a function of q and c1 alone, with no dependence on
σ 2

m or any higher moment.
Note that Eq. (59) yields a nonzero value of V (q) in states

with W ′(q) = 0, because the subdominant contribution in the
second line of Eq. (59) do not vanish in this limit. Equa-
tion (62) for dq(t )/dt thus does not satisfy our criterion for
consistent treatment of Gaussian equilibrium states.
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3. Local quadratic approximation for V (n)

We next consider a local quadratic approximation for V (n),
as a Taylor expansion

V (n) = V (q) + V ′(q)δn + 1
2V ′′(q)(δn)2. (63)

Using this to evaluate the average 〈V 〉m yields

〈V 〉m = V (q) + 1
2V ′′(q)σ 2

m, (64)

where we have used the fact that 〈δn〉m = 0 and the definition
σ 2

m = 〈(δn)2〉m.
Using Eq. (59) for V (q) and Eq. (60) for V ′′(q) then yields

a final expression
dq

dt
� k(e−βW ′ − 1)

−1

2
kβW ′′(1 − βW ′′σ 2

m

)
e−βW ′

+ k′(1 − βW ′′σ 2
me−βW ′)

, (65)

in which all quantities on the r.h.s. are evaluated at n = q(t )
and c1 = c1(t ).

Note that Eq. (65) yields an expression for dq/dt that
depends on the instantaneous value of σ 2

m(t ) as well as c1(t )
and q(t ). Equation (65) can thus be used to construct a model
for fast processes as a closed set of differential equations for
c1, q and σ 2

m, but cannot be used to construct a simpler model
that does not track σ 2

m.
Observe that Eq. (65) yields dq/dt = 0 in any equilibrium

state with W ′(q) = 0 and βW ′′(q)σ 2
m = 1. This approximation

thus satisfies our consistency criterion for Gaussian equilib-
rium states.

4. Simplified form

For some purposes, it is useful to consider a simplified
approximation for dq/dt as a function of c1 and q, with no
explicit dependence on σ 2

m. In Eq. (65) the dependence of
dq/dt on σ 2

m arises from the second and third lines of the
r.h.s., which both yield subdominant terms proportional to the
deviation of σ 2

m from its equilibrium value. The simplest ther-
modynamically consistent approximation for dq(t )/dt that
does not depend on σ 2

m is obtained by simply neglecting all
of the subdominant terms proportional to k′ and kβW ′′ in
Eq. (65), leaving only the dominant contribution

dq(t )

dt
� k(q)(e−βW ′(q) − 1). (66)

Use of Eq. (66) is preferable to use of the approximation
dq/dt = V (q) given in Eq. (62) because Eq. (66) correctly
yields dq/dt = 0 when W ′(q) = 0, and thus yields dynamics
in which q(t ) relaxes to the correct equilibrium value.

Equation (66) yields an expression for dq(t )/dt that is
always of the same sign as −W ′(q). It thus yields gradient-
search dynamics in which q(t ) always migrates in the
direction of locally decreasing W (n), as assumed without
proof throughout the qualitative discussion of fast processes
given in Sec. I B. Equation (66) is also designed to yield the
correct limiting behavior in the limit c1 → 0 in which the
insertion rate becomes negligible.

We have shown the quantities k′/k and βW ′′ are both
typically of order 10−2 in micellar systems. Neglect of sub-
dominant contributions in which these quantities appear as

prefactors is thus expected to cause no qualitative change and
very small quantitative changes in resulting predictions for
q(t ).

A simple nonlinear model of fast processes in situations
in which cm remains constant can be constructed by using
Eq. (66) for dq/dt while using the constraint of constant total
concentration ρm(t ) = c1(t ) + cmq(t ) to determine c1(t ).

B. Evolution of σ2
m(t )

It is straightforward to compute dσ 2
m(t )/dt by methods

analogous to those used above to compute dq(t )/dt . The
required calculation is presented in Appendix A, where we
obtain the expression

dσ 2
m(t )

dt
� 2k

(
1 − βW ′′σ 2

me−βW ′)
+ k(e−βW ′ − 1)

+ k′(e−βW ′ − 1)σ 2
m. (67)

Here all functions on the r.h.s. are evaluated at n = q(t ) and
c1 = c1(t ). Note that dσ 2

m/dt vanishes in an equilibrium state
in which βW ′′(q)σ 2

m = 1 and W ′(q) = 0, as required for con-
sistency with equilibrium statistical mechanics.

A nonlinear model for the coupled evolution of q and
σ 2

m during a fast process can be constructed by combining
Eq. (65) for dq(t )/dt with Eq. (67) for dσ 2

m(t )/dt , while
assuming constant cm and using the conservation of surfactant
to compute c1(t ).

C. Linearized models

Linearized dynamical models of the relaxation of small
perturbations can be obtained either by linearizing either: (a)
the simplified expression for dq/dt given in Eq. (66) or (b) the
coupled equations for dq/dt and dσ 2

m/dt given by Eqs. (65)
and (67). Both analyses are shown to recover previously pub-
lished results. Details of the linearization procedure are given
in Appendix B, and results presented below.

We consider relaxation of infinitesimal perturbations from
an equilibrium state characterized by a unimer concentration
c1. Deviations of q and σ 2

m from equilibrium values are de-
noted by δq and δσ 2

m, respectively. All relevant relaxation
times are all proportional to a timescale

τσ ≡ (σ ∗
m )2

k− , (68)

in which (σ ∗
m )2 is evaluated in the reference equilibrium state

and k− is evaluated at the most probable value ne(c1). Time
τσ is the autocorrelation time for fast dynamical fluctuations
in the aggregation number of individual micelles in an equili-
brated solution.

Simplified model: Linearization of the simplified expres-
sion for dq/dt given in Eq. (66) is found to yield the linear
ordinary differential equation (ODE)

d (δq)

dt
� − 1

τ1
δq, (69)

where τ1 is the fast relaxation time predicted by Aniansson
and Wall, given by

1

τ1
= (1 + κp)

1

τσ

. (70)
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Here κp = cmdq∗(c1)/dc1 = cmσ 2
m/c1 is the quantity defined

in Eq. (27), evaluated in the equilibrium state. This approx-
imation simply recovers the prediction of Aniansson and
Wall [1,2].

Full model: Linearization of Eqs. (65) and Eq. (67) yields

d (δq)

dt
= − 1

τ1
δq − F

τσ

δσ 2
m , (71)

d (δσ 2
m )

dt
= − G

τ1
δq − 2

τσ

δσ 2
m, (72)

in which

F = k′

k
− βW ′′

2
, G = 1 + k′

βW ′′ (73)

are dimensionless parameters. Note that F is a small parame-
ter, of order 10−2, but that G is order unity.

Equations (71)–(73) are a slight generalization of the lin-
earized dynamical equations obtained previously by Danov
et al. [48]. Danov et al. [48] considered a model with an n-
independent value of the expulsion rate constant k, for which
k′ = 0, but used discrete reaction kinetics rather than relying
on a continuum diffusion approximation. We have confirmed
that the linearized equations obtained by Danov et al. are
equivalent to Eqs. (71) and (72) with k′ set to zero.

The only difference between Eqs. (71) and (69) for
dq(t )/dt is the presence of the subdominant term Fδσ 2

m/τσ

on the r.h.s. of Eq. (71). Because the dimensionless parameter
F is expected to be quite small, of order 10−2, deviations
from the predictions of Aniansson and Wall for q(t ) are also
expected to be small [48] and may be experimentally unde-
tectable.

D. Continuum vs discrete models

Several previous studies of the dynamics of the fast
relaxation process have relied on a continuum diffusion
approximation for micelle dynamics [1,2,29]. To facilitate
understanding of the consequences of different possible
mathematical approximations, we have derived nonlinear ex-
pressions for dq/dt and dσ 2

m/dt by a method that relies on the
continuum approximation for ∂c(n, t )/∂t given in Eqs. (47)
and (48), but that is otherwise very closely analogous to the
analysis given above. As in the above analysis, the depen-
dences of W (n, c1) and k′(n) on n are approximated by local
Taylor expansions about n = q(t ) to obtain expressions that
depend on the derivatives of W (n, c1) at n = q(t ). The main
differences between our treatments of discrete and continuum
models are simply the replacement of sums by integrals and
replacement of a discrete model for In by the continuum ex-
pression given in Eq. (48).

Details of the required continuum analysis are given in Ap-
pendix C. That analysis yields nonlinear differential equations

dq

dt
� −kβW ′ + k′(1 − βW ′′σ 2

m

)
, (74)

dσ 2
m

dt
� 2k

(
1 − βW ′′σ 2

m

) − k′βW ′σ 2
m, (75)

in which all the functions W ′, W ′′ and k are evaluated at n =
q(t ) and c1 = c1(t ).

To facilitate comparison to earlier studies of linearized
models, Eqs. (74) and (75) can be linearized by repeating
the reasoning used to obtain Eqs. (71) and (72). This analysis
yields a pair of linear ODEs of the same form as those given
in Eqs. (71) and (72), except for the appearance of modified
values for the coefficients F and G, for which the continuum
analysis yields

F = k′

k
G = k′

βW ′′ . (76)

Note that Eq. (76) gives expressions for both coefficients that
are both proportional to k′, and that are identical to the terms
proportional to k′ in Eq. (73) for F and G.

The coefficients F and G are prefactors of the “off-
diagonal” terms that couple relaxation of δq and δσ 2

m in
Eqs. (71) and (72). In the continuum model, these coefficients
vanish when k′ = 0. A linearized continuum approximation
for a model with k′ = 0 thus yields uncoupled relaxation of
δq(t ) and δσ 2

m(t ) with relaxation times τ1 and τσ /2, respec-
tively, as originally predicted by Aniansson and Wall. The
linearized continuum ODEs obtained here are thus a gener-
alization of those obtained by Aniansson and Wall to models
in which k varies with n.

Nonlinear Eqs. (74) and (75) are the continuum analogs of
Eqs. (65) and (67). Two differences are particularly apparent
upon comparison of the r.h.s. of these pairs of equations,
which we refer to here as “continuum” and “discrete” equa-
tions.

One obvious difference is the replacement of the contin-
uum drift velocity −kβW ′ that appears in two places in the
continuum equations by corresponding factors of k(e−βW ′ −
1) in the analogous discrete equations. This replacement is
a straightforward result of the use of a discrete rather than
continuum expression for the current I .

A second notable difference is the existence of two terms in
the discrete equations for which there are no analogous terms
in the continuum equations. Specifically, the continuum equa-
tions do not contain any terms analogous to the following:

(i) The contribution − 1
2 kβW ′′(1 − βW ′′σ 2

m ) in the second
line of Eq. (65) for dq/dt or

(ii) The contribution k(e−βW ′ − 1) in the second line of
Eq. (67) for dσ 2

m/dt .
Both of these are cross-coupling contributions that make the
relaxation of one of the variables q(t ) or σ 2

m(t ) depend on the
other. The contributions of these two terms to the correspond-
ing linearized equations give rise to the terms in Eq. (73) for
the coefficients F and G that are absent in the corresponding
continuum expressions of Eq. (76). These two terms in the
linearized equations are the only cross-coupling terms that are
independent of k′, and have both been previously identified
in the linearized analysis of a discrete model with k′ = 0 by
Danov et al. [48]. The fact that no analogous contributions
appear in the ODEs obtained from a continuum model shows
that the existence of these terms is a direct result of the use of
a discrete model for reaction rates.

V. PARTIAL EQUILIBRIUM

In systems with c1 > cd and widely disparate fast and slow
relaxation times, the fast process allows redistribution of ma-
terial between micelles of different sizes and between unimer
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and micelles, but preserves the total number of micelles. After
completion of the fast process, such a system is thus left
in a state of partial equilibrium in which the free energy is
minimized subject to a constraint on the number of proper
micelles.

A. Definition

The reaction equilibrium criterion for a reaction involving
insertion of a single unimer into an n-mer is

μn+1 = μn + μ1. (77)

In a partial equilibrium state, this criterion is satisfied for all
stepwise reactions involving the numerous proper micelles,
with n � b, but is generally not satisfied for rare aggregates
with 1 < n < b. Equation (77) is satisfied for all n � b if and
only if

μn = nμ1 + λ (78)

for all n � b, where λ is a chemical potential difference that
is independent of n. The condition for full equilibrium instead
requires that μn = nμ1, corresponding to λ = 0.

An expression for the number concentration cn of proper
micelles in a partial equilibrium state may be obtained by
substituting Eq. (4) for μn and μ1 into Eq. (78). Solving the
resulting equation for cn yields a distribution

cn = Y c∗
n (c1) (79)

for all n � b, where Y ≡ eλ/kBT is a related dimensionless,
n-independent number. Full equilibrium, with cn = c∗

n (c1), is
recovered in the special case Y = 1 or λ = 0.

In such a partial equilibrium state, it follows from Eq. (79)
and the definitions of cm and ρm that

cm = Y c∗
m(c1), ρm = Y ρ∗

m(c1). (80)

It also follows that the average aggregation number q ≡
ρm/cm is equal to the equilibrium value at the relevant unimer
concentration,

q = q∗(c1), (81)

independent of Y .

B. Quasistatic evolution

After completion of the fast process, a disturbed system
remains in a slowly evolving partial equilibrium state through-
out the slow process. In a system of fixed temperature and
pressure, a partial equilibrium state can be uniquely specified
by specifying values for two independent variables. These
can be chosen to be either c1 and Y or c1 and cm, where
cm(Y, c1) = Y c∗

m(c1). During a slow process, a system thus
evolves along a path within a two-dimensional space of pos-
sible partial equilibrium states. The requirement that total
surfactant concentration ρ remains constant is thus sufficient
to define a unique one-dimensional path for evolution of a
system with a specified total concentration ρ.

To analyze processes that occur at fixed total concentration
ρ, we assume that ρ is dominated by contributions of unimers
and proper micelles, as in Eq. (21). When applied to a partial

equilibrium state, in which q = q∗(c1), Eq. (21) implies that

ρ(c1, cm ) = c1 + cmq∗(c1), (82)

or, equivalently, that

ρ(c1,Y ) = c1 + Y ρ∗
m(c1) . (83)

By requiring that dρ = 0 during an infinitesimal change of
state, while using state variables c1 and Y and starting from
Eq. (83) for ρ, we obtain a differential constraint

0 = dρ = (1 + Y κe )dc1 + ρ∗
mdY. (84)

By instead using c1 and cm as state variables and starting from
Eq. (82), we obtain an equivalent constraint

0 = dρ = (1 + κp)dc1 + q∗dcm, (85)

in which κp = cmdq∗(c1)/dc1 is defined in Eq. (27).
By combining Eqs. (85) and (84), we find that

dY

dcm
= 1 + Y κe(c1)

1 + κp(c1, cm )

1

c∗
m(c1)

. (86)

Equation (86) applies along any path of constant ρ through
the space of partial equilibrium states, independent of any
assumptions regarding the mechanism of the change in cm.
Specifically, it applies equally well whether cm changes pri-
marily by stepwise association and dissociation or primarily
by fission and fusion.

VI. SLOW STEPWISE PROCESSES

During the so-called slow relaxation process of a system
of metastable micelles, cm(t ) changes via rare events that
create and destroy micelles while the system remains in par-
tial equilibrium. The stepwise reaction model assumes that
this occurs via rare association and dissociation events. This
section briefly reviews the nonlinear theory of stepwise asso-
ciation and dissociation [43–47] developed by Grinin, Kuni,
Rusanov, and Shchekin (GKRS), using results from Sec. V to
simplify some aspects of the analysis.

In this context, it is convenient to define a relative concen-
tration

yn ≡ cn

c∗
n (c1)

(87)

for all n � 1, in which cn and c1 denote the actual n-mer
and unimer concentrations. By definition, y1 = 1. A partial
equilibrium state is one in which yn is independent of n in
the proper micelle range n > b, within which yn = Y . It is
straightforward to show that, in the stepwise reaction model,

r+
n = ynr∗

n (c1), r−
n = yn+1r∗

n (c1), (88)

for all n � 1, where r∗
n (c1) is the equilibrium rate of either

reaction. It follows immediately that

In = −r∗
n (c1)(yn+1 − yn) (89)

for all n � 1.

A. Association-dissociation kinetics

Consider the calculation of dcm(t )/dt for a system that
remains in partial equilibrium throughout the proper micelle
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range and in which c1 > cd and �Wd  kBT . We assume that
the total surfactant concentration ρ is dominated by unimers
and proper micelles, as indicated by Eq. (21). The assumption
of negligible concentrations cn(t ) � 0 in the rare cluster range
n ∈ [2, b − 1] also implies that 0 = dcn(t )/dt = In−1 − In in
this range. This, in turn, implies the existence of quasistation-
ary current

I1 = I2 = · · · = Ib−1 = I (90)

throughout the rare cluster range. Equation (43) implies that
I = Ib−1 = dcm/dt is the net rate of micelle creation.

The value of the flux I (t ) through the rare cluster range
may be computed by a method analogous to that used to
compute the electrical current through resistors in series:
Rewriting Eq. (89) in the form yn+1 − yn = −I/r∗

n (c1) we
treat I as the analog to an electrical current through resistors
in series, and treat 1/r∗

n (c1) as a resistance between nodes n
and n + 1. We assume partial equilibrium for n � b, implying
that yb = Y . Summing differences in neighboring values of yn

over the range [1, b], noting that y1 = 1, we obtain

dcm

dt
= I = −1

R(c1)
(Y − 1), (91)

where

R(c1) ≡
b−1∑
n=1

1

r∗
n (c1)

(92)

denotes the total resistance.
Using the relation Y = cm/c∗

m(c1), we may rewrite
Eqs. (91) as a differential equation for cm(t ), of the form

dcm(t )

dt
= ka(c1) − kd (c1)cm, (93)

in which

ka(c1) = 1

R(c1)
(94)

is the rate of micelle creation by stepwise association, while
kd (c1)cm is the corresponding rate of micelle dissociation,
with a rate constant

kd (c1) = 1

R(c1)c∗
m(c1)

. (95)

The inverse of kd (c1) is a characteristic micelle dissociation
lifetime, denoted here by

τd(c1) ≡ 1/kd (c1). (96)

The time τd(c1) is equal to the average time for a micelle cho-
sen at random from an equilibrated solution to be destroyed
by stepwise dissociation [9,45].

Equation (94) for ka(c1) and Eq. (95) for kd (c1) can be fur-
ther simplified for systems in which �Wa  kBT and �Wd 
kBT by approximating sums over n by Gaussian integrals [44].
A straightforward analysis of Eq. (92) for R(c1), using a
Gaussian approximation for 1/c∗

n (c1) for n ∼ nt (c1), yields

ka(c1) � k−
t√

2πσt

c1e−β�Wa (c1 ), (97)

in which k−
t = k−

nt
is the expulsion constant at the transition

state and σt (c1) denotes the width (or standard deviation) of

the Gaussian peak in 1/c∗
n (c1). Using Eq. (95) for kd and a

corresponding Gaussian approximation for c∗
m(c1) then yields

kd (c1) � k−
t

2πσtσ ∗
m

e−β�Wd (c1 ), (98)

where σ ∗
m(c1) is the equilibrium standard deviation of the

Gaussian peak in c∗
m(c1) for n ∼ ne(c1).

B. Evolution of cm(t )

Analysis of the slow process in a closed system is com-
plicated by the fact that the unimer concentration c1 changes
as micelles are created and destroyed, causing c∗

m, ka and kd

to change as well as cm. Analysis of this coupled evolution
may be simplified by invoking the analysis of quasistatic
evolution of systems that remain in partial equilibrium given
in Sec. V B.

It is convenient to consider the evolution of the ratio
Y (t ) = cm(t )/c∗

m(t ), which approaches Y = 1 in equilibrium.
Using the chain rule to compute the derivative dY (t )/dt from
knowledge of Eq. (91) for dcm/dt and Eq. (86) for dY/dcm

for a system that remains in partial equilibrium, we obtain

dY

dt
= dY

dcm

dcm

dt
= 1 + Y κe(c1)

1 + κp(c1, cm )

1

τd (c1)
(Y − 1). (99)

In Eq. (99) the unimer concentration c1 = c1(t ) is an implicit
function of Y (t ) and total surfactant concentration ρ, given by
the requirement that ρ = c1 + Y ρ∗

m(c1). Equation (99) thus
yields a single nonlinear ODE for Y (t ) in a homogeneous
system.

The Aniansson-Wall linearized model of infinitesimal per-
turbations can be easily recovered by linearizing Eq. (99)
around Y = 1. Expanding the r.h.s. of Eq. (99) to linear order
in a deviation δY = Y − 1 yields a linear differential equation

dY

dt
� − 1

τ2
(Y − 1), (100)

in which

1

τ2
≡ 1 + κe

1 + κp

1

τd
(101)

is the slow relaxation time obtained by Aniansson and
Wall [1,2]. Here κe, κp, and τd are all constants that are
evaluated in the final equilibrium state.

C. Relaxation rate vs concentration

The dependence of τd and τ2 on total concentration has
been analyzed by Aniansson et al. [3] and by Kahlweit and
Teubner [4]. Their conclusions may be recovered as follows:
Starting from Eq. (98) for τd, we assume that the dependence
of ln τd on ln c1 is dominated by the contribution of the barrier
−β�Wd, and thus that

d ln τ−1
d

d ln c1
� −1

kBT

d�Wd

d ln c1
� −(ne − nt ), (102)

where we have used Eq. (15) for d�Wd/d ln c1. We
then compute d ln τ−1

d /d ln ρm by dividing the above by
d ln ρm/d ln c1 = c1κe/ρm. Approximating κe � ρmq/c1 and
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q � ne yields

d ln τ−1
d

d ln ρm
� −

(
1 − nt

ne

)
. (103)

Let X denote the dimensionless concentration

X = ρm

c1
� ρ − cc

cc
. (104)

By assuming that nt and ne are nearly independent of ρm, we
obtain

τ−1
d ∝ X αd (105)

with an effective exponent

αd = nt

ne
− 1. (106)

Because 0 < nt/ne < 1, this yields a negative exponent −1 <

αd < 0, giving a rate τ−1
d that decreases with increasing con-

centration. For the polymer models studied in Refs. [8,9],
nt/ne � 0.2–0.3, giving |αd | � 0.7–0.8.

By substituting Eq. (105) for τ−1
d into Eq. (101) for τ2,

while assuming κe  1 and κe ∝ X , we obtain an inverse slow
relaxation time

1

τ2
∝ X nt/ne

1 + (
σ 2

m/q
)
X

, (107)

consistent with Eq. (VI.31) of Ref. [4].

VII. SLOW FISSION-FUSION PROCESSES

We now consider the rate of the slow process for systems in
which micelle birth and death occur predominantly by fission
and fusion. Fission and fusion are rare events that can produce
clusters with aggregation numbers that would be quite rare in
a partial equilibrium state. We assume, however, that products
of fission and fusion experience a sequence of a compara-
tively rapid sequence of stepwise processes by which reaction
products rapidly revert to a partial equilibrium distribution
of aggregation numbers. Following Waton [54] and Shchekin
et al. [30], we thus assume here that partial equilibrium is
maintained throughout the slow process when this process
occurs by fission and fusion, as well as when it occurs by
association and dissociation.

A. Fission-fusion kinetics

The rate equations for a model that includes fission and
fusion of clusters of arbitrary aggregation number are a
straightforward generalization of those used in the stepwise
reaction model. Let r+

n,n′ denote the rate (events per unit vol-
ume and time) of fusion of clusters of aggregation numbers n
and n′, with n � n′, given by

r+
n,n′ = k+

n,n′cncn′ , (108)

where k+
n,n′ is a fusion rate constant. Let r−

n,n′ denote the rate
of fission events in which of clusters of aggregation number
n + n′ fission into products of aggregation numbers n and n′
with n � n′, given by

r−
n,n′ = k−

n,n′cn+n′ , (109)

where k−
n,n′ is a fission rate constant. The principle of detailed

balance implies that r+
n,n′ = r−

n,n′ in any equilibrium state. Let

r∗
n,n′ (c1) = k+

n,n′c∗
nc∗

n′ = k−
n,n′c∗

n+n′ (110)

denote the rate of either such reaction in an equilibrium state
characterized by a unimer concentration c1, in which c∗

n =
c∗

n (c1).
Let rfus and rfis denote the overall rates of fusion and fission

events involving proper micelles, respectively, given by

rfus =
∞∑

n=n′

∞∑
n′=b

k+
n,n′cncn′ , (111)

rfis =
∞∑

n=n′

∞∑
n′=b

k−
n,n′cn+n′ . (112)

These quantities must be equal in equilibrium.
Let r∗

f (c1) denote the overall rate of micelle fission or
fusion reactions in equilibrium, as given by the sum

r∗
f (c1) =

∞∑
n=n′

∞∑
n′=b

r∗
n,n′ (c1). (113)

Let τf denote the equilibrium fission lifetime, which is defined
by the expression

1

τf (c1)
≡ r∗

f (c1)

c∗
m(c1)

, (114)

in which the r.h.s. is the frequency of fission events per proper
micelle.

In equilibrium, the micelles that undergo fission typically
have aggregation numbers greater than the average q, because
the fission rate constant increases with increasing aggregation
number. Let nf denote the average aggregation number of
micelles that undergo fission. This quantity is given by the
weighted average

nf (c1) ≡ 1

r∗
f (c1)

∞∑
n=n′

∞∑
n′=b

(n + n′)r∗
n,n′ (c1). (115)

Analysis of a simple simulation model of block copolymer
micelles by Mysona et al. [8,9,11] indicates a value of nf ∼
1.4ne in systems in which the slow process is dominated by
fission and fusion. Because fission was found to usually yield
two child clusters of comparable aggregation number [9],
this yields typical fission products with aggregation numbers
roughly 30% less than q.

We may characterize the dependence of r∗
f (c1) on c1 by

computing the logarithmic derivative d ln r∗
f (c1)/d ln c1. A

straightforward calculation, based on Eqs. (110) and (113) for
r∗

f and Eq. (22) for dc∗
n (c1)/dc1, yields

d ln r∗
f (c1)

d ln c1
= nf (c1). (116)

The dependence of the equilibrium reaction rate on c1 is thus
controlled by the average aggregation number of a fusion
product, or of a fission reactant.

To describe the slow process for a system that remains in
partial equilibrium, we assume that cn = Y c∗

n (c1) throughout
the proper micelle range n � b, where Y is independent of n.
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Using this in Eq. (112) yields an overall fission rate

rfis = Y r∗
f (c1), (117)

which is linear in Y at fixed c1 because fission is a first-order
reaction, Similar reasoning yields an overall fusion rate

rfus = Y 2r∗
f (c1), (118)

which is quadratic in Y because fusion is a second-order reac-
tion. These simple expressions for the dependence of reaction
rates on Y in a partial equilibrium state were clearly implicit
in the approach of Shchekin, Kshevetskiy, and Pelevina [30],
but do not seem to have been made explicit.

B. Evolution of cm(t )

Combining these expressions for fission and fusion rates,
and noting that fission creates one new micelle and fusion
destroys one, yields a rate law

dcm

dt
= −(Y 2 − Y )r∗

f (c1). (119)

Repeating the reasoning used for the stepwise model, we then
use the assumption of partial equilibrium and Eq. (86) for
dY/dcm to show that Y (t ) thus obeys the differential equation

dY

dt
= dY

dcm

dcm

dt

= −1 + Y κe

1 + κp

1

τf (c1)
Y (Y − 1). (120)

The timescale τf (c1), as defined in Eq. (114), is the fission
lifetime in a hypothetical equilibrated system with a unimer
concentration equal to the actual instantaneous unimer con-
centration. As in systems in which the slow process occurs
by stepwise processes, the unimer concentration c1(t ) in a
closed system is implicitly determined as a function of Y by
the requirement that ρ = c1 + Y ρ∗

m(c1) remain independent
of time.

The case of small deviation from equilibrium can be treated
by linearizing Eq. (120). This yields the linear differential
equation

dY

dt
� − 1

τ2
(Y − 1) (121)

with a slow relaxation time given by

1

τ2
= 1 + κe

1 + κp

1

τf
, (122)

where τf is the fission lifetime in the final equilibrium state.
Equation (122) for the slow time was originally given in
slightly simplified form by Kahlweit [53] and in a form equiv-
alent to that given here by Waton [54].

Equations (122) and (101) give analogous expressions for
the slow time τ2 in systems in which the slow process occurs
primarily by fission and fusion and by stepwise processes,
respectively. Note that the only difference between these two
equations is the replacement of the equilibrium dissociation
lifetime τd(c1) that appears in Eq. (101) by the fission lifetime
τf (c1) in Eq. (122). The relationship between the equilib-
rium micelle lifetime and the relaxation time τ2 observed in
a macroscopic relaxation experiment is thus independent of

the mechanism of micelle creation and destruction, and is
instead a more general consequence of the partial equilibrium
condition.

C. Relaxation rate vs concentration

We now consider the dependence of τf and τ2 on surfactant
concentration. To begin, we consider the dependence of τf on
c1. Using Eq. (114) for τf , we find

d ln τ−1
f (c1)

d ln c1
= d ln r∗

f (c1)

d ln c1
− d ln c∗

m(c1)

d ln c1
. (123)

Using Eq. (116) for d ln r∗
f /d ln c1 and Eq. (23) for

dc∗
m(c1)/dc1 then yields

d ln τ−1
f

d ln c1
= nf − q, (124)

where nf is the number average aggregation number of mi-
celles that undergo fission, as defined in Eq. (115). The
corresponding derivative with respect to ln ρm is then obtained
by dividing by d ln ρm/d ln c1 = c1κe/ρm. By assuming κe �
(ρm/c1)q and q � ne, we find that

d ln τ−1
f

d ln ρm
� nf

ne
− 1. (125)

Assuming that nf and ne are almost independent of ρ, we
obtain a power-law relationship

τ−1
f ∝ X α f (126)

with an effective exponent

α f = nf

ne
− 1. (127)

For the expected case ne < nf < 2ne, this yields 0 < τ−1
f < 1.

For a typical case nf/ne � 1.4, α f � 0.4. This analysis thus
predicts a fission rate constant τ−1

f that increases with in-
creasing concentration, or a lifetime τf that decreases with
concentration as τf ∝ (ρ − cc)−α f . This trend is opposite to
that predicted by Eq. (105) for the stepwise reaction model,
which predicts micelle dissociation lifetime τd that instead
increases with increasing concentration.

By substituting Eq. (126) for τ−1
d into Eq. (122) for τ−1

2 ,
while assuming κe  1 and κe ∝ X , we obtain

1

τ2
∝ X nf /ne

1 + (σ 2
m/q)X

. (128)

Equations (126) and (128) are analogous to Eqs. (105)
and (107), which give corresponding predictions for systems
controlled by association and dissociation. While Eqs. (105)
and (107) were previously known, Eqs. (126) and (128) to the
best of our knowledge are new.

VIII. REDUCED MODELS

We now consider the construction of a complete but ap-
proximate dynamical model for a homogeneous surfactant
solution as a set of ODEs for a small number of variables.
Construction of such requires a set of related choices of a
set of primary dynamical variables and approximate relations
for their time derivatives. The analysis presented here allows
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the construction of models in which the primary variables are
micelle number concentration cm(t ), average micelle aggrega-
tion number q(t ), and, optionally, the variance σ 2

m(t ).
Given expressions for dcm(t )/dt and dq(t )/dt , the corre-

sponding derivative dc1(t )/dt can always be inferred for a
homogeneous system from the constraint of constant total sur-
factant concentration ρ = c1(t ) + cm(t )q(t ), which implies
that

dc1

dt
= −cm

dq

dt
− q

dcm

dt
. (129)

Unimer concentration can thus be treated as an auxiliary
variable rather than a primary variable when considering ho-
mogeneous systems.

Suitable expressions for the rate of change of q(t ) and (if
desired) σ 2

m(t ) have been given in Sec. IV. To construct a
model in which σ 2

m(t ) is retained as a primary variable, we
may use Eq. (65) for dq(t )/dt and Eq. (67) for dσ 2

m(t )/dt . To
construct a simpler but slightly less accurate model in which
σ 2

m(t ) is not retained, we may instead use (66) for dq(t )/dt . In
either case, we expect the resulting equations to correctly de-
scribe evolution of these variables during either the two-stage
relaxation of a weakly perturbed micellar system or during
the rapid dissociation of unstable micelles that is expected in
systems with c1 < cd.

Construction of a generally applicable approximation for
the net rate dcm/dt of micelle creation requires more thought.
The main conceptual challenge that we face is the need to treat
situations in which c1 is greater than or less than cd somewhat
differently, because of the different physical mechanisms at
play in these cases. For simplicity, we focus hereafter on
systems in which the slow process is adequately described by
the stepwise reaction model.

In systems with c1(t ) > cd and q(t ) > nt(c1(t )), changes
in cm(t ) occur by rare micelle association and dissociation
events. In this case, it is appropriate to use the GKRS theory
to approximate dcm/dt . This yields a model of the form

dcm

dt
= ka(c1) − kd (c1)cm, (130)

where ka(c1) ∝ e−β�Wa (c1 ) and kd (c1) ∝ e−β�Wd (c1 ) are the as-
sociation and dissociation rate constants given in Eqs. (94)
and (95), respectively. In this case, micelles are created and
destroyed by rare events while the average aggregation num-
ber of existing micelles remains very close to q∗(c1).

In systems with c1(t ) < cd or c1(t ) > cd but q(t ) < nt (t ),
micelles instead become unstable to rapid shrinkage by
unimer expulsion. In this situation, unimer expulsion leads
to a rapid decrease in q(t ) and micelles are destroyed rather
suddenly when q(t ) approaches zero. In this case, dcm/dt
should be described by an expression that treats micelles as
having been destroyed when their aggregation number reaches
or approaches n = 1. In a dynamical model that tracks q(t )
but not σ 2

m(t ), the derivative dcm/dt could modelled relatively
simply by an expression of the form

dcm

dt
= −D(q)cm, (131)

in which D(q) is a rate of destruction that is zero for q greater
than some critical value (e.g., for q > 10) but that becomes

rapidly larger with decreasing n. Neither the exact functional
form nor the magnitude of the function D(q) is particularly
important, as long D(q) is large enough so that cm(t ) reaches
zero before q(t ) reaches zero. Conceptually, the simplest
variant of this would be to take cm(t ) to drop suddenly to
zero when q(t ) reaches 1, thus implicitly assuming monodis-
perse micelles that all simultaneously finish dissociating when
q(t ) → 1. More realistic variants could be constructed within
the context of a model that retains σ 2

m(t ) as a primary variable,
by making D a function of σ 2

m(t ) as well as q(t ), but this would
not change the essential features of the phenomena.

A general dynamical model must allow for both of these
mechanisms for changes in cm(t ). Both mechanisms can be
combined in a physically motivated manner by taking dcm/dt
to be a sum of the form

dcm

dt
= −D(q)cm − S(c1, q)[ka(c1) − kd (c1)cm], (132)

in which S(c1, q) is “switching” function that approaches 1
for c1 > cd and q > nt (c1), but that rapidly approaches zero
for either c1 < cd or for c1 > cd but q < nt (c1).

A general nonlinear dynamical model for a homogeneous
solution can thus be constructed by using the results of
Sec. IV for dq(t )/dt and, optionally, dσ 2

m(t )/dt , while using
an expression of the form suggested in Eq. (132) for dcm/dt .
Remaining unspecified details, such as the exact functional
forms of the functions D(q) and S(c1, q), are not expected to
strongly affect resulting predictions.

IX. CONCLUSIONS

This article presents a self-contained discussion of the the-
ory of kinetics in homogeneous micelle-forming surfactant
systems in a form suitable for describing large deviations from
equilibrium. Results of this analysis are used as a starting
point for the discussion of inhomogeneous systems in the
accompanying article [64].

The analysis of fast stepwise processes given in
Sec. IV provides general nonlinear expressions for the net
rate dq/dt of micelle growth by stepwise processes and the
corresponding rate of change dσ 2

m/dt of the variance. The
resulting expression for dq/dt is given in its simplest form
in Eq. (66). This yields dynamical behavior in which q(t ) al-
ways migrates in the direction of decreasing micelle formation
free energy Wn(c1). This yields gradient-search dynamics in
which q(t ) evolves toward a local equilibrium value ne(c1)
in weakly perturbed micellar systems, but in which q(t ) de-
creases steadily towards zero via unimer expulsion in systems
with either a subcritical value of q or a subcritical unimer
concentration c1 < cd. A somewhat more accurate model with
similar qualitative behavior can be obtained by combining
Eq. (65) for dq(t )/dt and Eq. (67) for dσ 2

m/dt to describe
the coupled equations for the first and second moments.

A reduced dynamical model for the evolution of a homo-
geneous system can be constructed by combining expressions
obtained here for the time derivatives of c1(t ), cm(t ), q(t ),
and (optionally) σ 2

m(t ) as functions of the same set of primary
variables. The main conceptual challenge that is encountered
when attempting to construct a globally valid model is the
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need to use different physical models and mathematical ex-
pressions to predict dcm(t )/dt in situations in which there is
or is not a barrier to rapid stepwise dissociation. In systems
with c1 > cd and a barrier to dissociation, dynamics in a
stepwise reaction model can be described by combining the
theory of Sec. IV for fast relaxation of q(t ) and σ 2

m(t ) with
the GKRS theory of the slow process. In systems of unstable
micelles, dynamics can be described by the nonlinear theory
of the fast process combined with an assumption that micelles
are destroyed when q(t ) approaches zero. We have proposed a
somewhat ad hoc way of combining expressions designed to
describe these different situations so as to interpolate correctly
between them, but have not entirely resolved this difficulty.

The analysis of slow processes in Secs. VI and VII allows
for the possibility that, in different systems, the slow process
may occur primarily either by stepwise association and disso-
ciation or by micelle fission and fusion. Predictions are given
here for the concentration dependence of the micelle fission
lifetime and the slow relaxation time in nonionic systems in
which the slow process proceeds by fission and fusion; these
can be compared to previously known predictions for systems
in which the slow process proceeds by association and dis-
sociation. The two mechanisms yield qualitatively different
trends, giving a micelle dissociation lifetime that increases
with increasing concentration for the association-dissociation
mechanism and a fission lifetime that decreases with increas-
ing concentration for the fission-fusion mechanism. In both
cases, the relevant micelle lifetime τ is found to exhibit an ap-
proximately power-law dependence τ−1 ∝ (ρ − cc)α , with an
exponent α that depends on the ratio of an aggregation number
associated with a dynamical transition state to the value of
the most probable equilibrium micelle aggregation number ne.
For the association-dissociation mechanism, α = nt/ne − 1,
where nt is the aggregation number of the transition state
for stepwise association or dissociation, for which nt < ne.
For the fission-fusion mechanism, α = nf/ne − 1, where nf is
the average aggregation number of rare micelles that undergo
spontaneous fission, for which nf > ne.
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APPENDIX A: TIME DEPENDENCE OF THE VARIANCE

In this Appendix, we analyze the rate of change dσ 2
m(t )/dt

of the variance of the micelle aggregation number. To begin,
we introduce the notation

c(k)
m ≡

∞∑
n=b

cnnk (A1)

for integer k, such that c(0)
m = cm, c(1)

m = ρm, and

c(2)
m = (

q2 + σ 2
m

)
cm. (A2)

The desired derivative of σ 2
m = (c(2)

m /cm ) − q2 is thus

dσ 2
m(t )

dt
= d

dt

(
c(2)

m

cm
− q2

)

= 1

cm

dc(2)
m

dt
− q2 + σ 2

m

cm

dcm

dt
− 2q

dq

dt
. (A3)

The derivative dc(2)
m /dt is given by

dc(2)
m

dt
=

∞∑
n=b

dcn

dt
n2 =

∞∑
n=b

(In−1 − In)n2

= Ib−1b2 +
∞∑

n=b

[(n + 1)2 − n2]In

= Ib−1b2 +
∞∑

n=b

(2n + 1)In, (A4)

where the second line is obtained from the first by applying a
summation by parts. Upon substituting Eq. (A4) for dc(2)

m /dt ,
Eq. (43) for dcm/dt , and Eq. (45) for dq/dt into Eq. (A3), we
obtain

dσ 2
m(t )

dt
= 2A + B + C, (A5)

where

A = 1

cm

∞∑
n=b

(n − q)In, (A6)

B = 1

cm

∞∑
n=b

In, (A7)

C = 1

cm

[
(q − b)2 − σ 2

m

]
Ib−1. (A8)

Note that B is equivalent to the r.h.s. of Eq. (52) for dq/dt
during a fast process and can thus be approximated by using
the results of our analysis of this quantity.

By using Eq. (40) for In, we may express A as a sum

A = AU + AD, (A9)

AU = 1

cm

∞∑
n=b

cn(n − q)Un, (A10)

AD = −1

cm

∞∑
n=b

(n − q)kn(cn+1 − cn) , (A11)

in which

Un ≡ kn(e−β�Wn − 1). (A12)

Here AU is a contribution to A arising from the drift velocity
Un, while AD is a contribution arising from a diffusive flux.

Using summation by parts to evaluate AD yields

AD = 1

cm

∞∑
n=b

kn−1cn + AS = 〈kn−1〉m + AS, (A13)

where AS is a boundary term given by

AS ≡ cb

cm
kb−1(b − 1 − q). (A14)
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We then obtain

AD � k(q) − k′ + AS (A15)

by approximating kn as a linear function of n within the
average 〈kn−1〉n.

To evaluate AU , we first express it as an average

AU = 〈(n − q)U 〉m. (A16)

Approximating Un by a Taylor expansion to linear order about
n = q then yields

AU � U ′(q)σ 2
m. (A17)

Evaluating the derivative U ′(q) and neglecting subdominant
terms then yields

AU � [−kβW ′′e−βW ′ + k′(e−βW ′ − 1)]σ 2
m, (A18)

where all functions of n on the r.h.s. are evaluated at n = q,
and where we have neglected higher order terms of order
k′(βW ′′) and k(βW ′′)2.

The final result for dσ 2
m(t )/dt given in Eq. (67) is obtained

by substituting Eq. (A15) AD and Eq. (A18) for AU into
Eq. (A11), using Eq. (66) to approximate B � dq/dt , ignoring
the boundary terms C and AS that are proportional to Ib−1 or cb,
and keeping only the dominant contributions in the resulting
sum, ignoring terms that are higher order in k′/k and βW ′′.

APPENDIX B: LINEAR DYNAMICS OF FAST PROCESSES

This Appendix presents some details of the derivation of
linearized models for the fast process. We consider small
deviations from a final equilibrium state with a unimer con-
centration c1. In this context, symbols with overbars denote
values obtained in this equilibrium state, such as ne ≡ ne(c1).
Symbols preceded by a “δ′′ denote deviations from equi-
librium values, so that δc1 ≡ c1 − c1, δq ≡ q − q∗(c1), and
δne ≡ ne(c1) − ne(c1).

To describe small perturbations, it is sufficient to consider
a model for W (n, c1) as a quadratic function

W (n, c1) � We(c1) + 1
2W ′′[n − ne(c1)]2, (B1)

in which We(c1) = W (ne(c1), c1) is the local minimum value
of W (n, c1), and in which W ′′ is a constant coefficient. This
model yields a Gaussian equilibrium distribution for which
q∗(c1) = ne(c1) and (σ ∗

m )2 = kBT/W ′′.
The deviations δq and δq∗ are both related to δc1, and thus

to each other. Conservation of total monomer concentration
ρ = c1 + cmq in a system with constant cm implies that

δc1 = −cmδq. (B2)

Linearization of the partial equilibrium condition, using
Eq. (25) for dq∗(c1)/dc1, yields

δq∗ � (σ ∗
m )2

c1
δc1 (B3)

to first order in deviations. Substituting Eq. (B2) for δc1 into
Eq. (B3), we find that

δq∗ = −cmσ 2
m

c1
δq = −κpδq, (B4)

where κp ≡ cm(σ ∗
m )2/c1.

Linearization of the simplified form for dq/dt given in
Eq. (66) yields the linear ODE

d (δq)

dt
� − 1

τσ

(δq − δq∗(c1)), (B5)

where τσ is defined by Eq. (68). Using Eq. (B4) for δq∗ then
yields Eq. (69).

Linearization of the coupled equations defined by Eqs. (65)
and Eq. (67), in which we again use Eq. (B4) for δq∗, yields
Eqs. (71) and (72).

APPENDIX C: CONTINUUM DIFFUSION MODEL

In this Appendix, we consider predictions for the fast
process of a continuum model in which n is treated from
the outset as a continuum variable, and in which the cluster
number concentration c(n, t ) is governed by Eqs. (47) and
Eq. (48). Let c(p)

m denote an integral

c(p)
m ≡

∫ ∞

b
dn c(n, t )np (C1)

for integer p. Let cm = c(0)
m and ρm = c(1)

m . Let 〈B〉m denote
the number average of a micelle property B(n), as defined by
an integral

〈B〉 ≡ 1

cm

∫ ∞

b
dn B(n)c(n). (C2)

Let q = 〈n〉m = ρm/cm and σ 2
m = 〈n2〉m − q2. Throughout

this Appendix, we use a continuous notation for functions of
n, in which W (n, c1) = Wn(c1) and k(n) = k−

n . Symbols with
primes denote derivatives or partial derivatives with respect to
n, such as W ′ = ∂W (n, c1)/∂n.

Using Eq. (47) for ∂c(n, t )/∂t and Eq. (47) for I (n, t ), we
find that

dc(p)
m

dt
≡ −

∫ ∞

b
dn np ∂I (n, t )

∂n
. (C3)

Using integration by parts to evaluate the above integral yields

dcm

dt
≡ I (b, t ) (C4)

for p = 0 and

dc(p)
m

dt
≡

∫ ∞

b
dn pnp−1I (n, t ) + bpI (b, t ) (C5)

for all p � 1.

1. Evolution of q(t )

Using the above relations for dρm/dt and dcm/dt , it is
straightforward to show that

dq(t )

dt
= d

dt

(ρm

cm

)
= 1

cm

dρm

dt
− q

cm

dcm

dt

= 1

cm

∫ ∞

b
dn I (n, t ) + 1

cm
(b − q)I (b, t ). (C6)

Using Eq. (48) for I and applying integration by parts to the
term arising from the diffusive flux then yields

dq

dt
≡ 〈V 〉m + 1

cm
(b − q)I (b, t ), (C7)
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in which

V = −kβW ′ + k′ (C8)

is the continuum expression for the aggregation number ve-
locity.

To describe a fast process, we may drop the term propor-
tional to I (b, t ) in Eq. (C7) to obtain dq/dt � 〈V 〉m. To obtain
an explicit approximation for 〈V 〉m, we introduce approxima-
tions of W , k, and V as Taylor expansions about their values
at n = q. Expanding V (n) to quadratic order yields

dq

dt
� V (q) + 1

2
V ′′(q)σ 2

m, (C9)

exactly as in Eq. (64). The term proportional to V ′′(n) is
evaluated by treating W as a locally quadratic function and
k as locally linear, and thus neglecting terms proportional to
W ′′′ and k′′, to obtain V ′′ = −2k′βW ′′. Equation (74) is then
obtained by substituting expressions for V (q) and V ′′(q).

2. Evolution of σ2
m(t )

To compute dσ 2
m/dt , we use Eqs. (C4) and (C5) for the

derivatives of cm, ρm and c(2)
m in Eq. (A3) for dσ 2

m/dt . This
yields

dσ 2
m

dt
= 2A + C, (C10)

where

A = 1

cm

∫ ∞

b
dn (n − q)I (n, t ),

C = 1

cm

[
(b − q)2 + σ 2

m

]
I (b, t ). (C11)

By using Eq. (48) for I , we may express AD as a sum

A = AU + AD, (C12)

AU = 〈(n − q)U 〉m, (C13)

AD = −1

cm

∫ ∞

b
dn (n − q)k(n)

∂cm(n, t )

∂n
, (C14)

in which

U (n, t ) ≡ −kβW ′ (C15)

is the continuum analog of the drift velocity Un(t ) defined in
Eq. (A12). Integrating by parts to evaluate AD yields

AD = 〈k〉m + AS, (C16)

where AS = c(b, t )k(b)[b − q(t )]/cm.
To describe fast processes, we may drop the boundary

terms C and AS that are proportional to I (b, t ) and c(b, t ), and
then introduce Taylor expansions of U (n, t ) and k(n) about
q to approximate the remaining average values. Expanding
U (n, t ) to either first or second order yields

AU � U ′(q)σ 2
m

� −[kβW ′′ + k′W ′]n=q(t )σ
2
m. (C17)

Expanding k(n) to linear order then yields AD � 〈k〉m � k(q).
Equation (75) is then obtained by combining results for AU

and AD.
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