
PHYSICAL REVIEW E 105, 034503 (2022)

Effective forces between active polymers
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The characterization of the interactions between two fully flexible self-avoiding polymers is one of the classic
and most important problems in polymer physics. In this paper we measure these interactions in the presence of
active fluctuations. We introduce activity into the problem using two of the most popular models in this field,
one where activity is effectively embedded into the monomers’ dynamics, and the other where passive polymers
fluctuate in an explicit bath of active particles. We establish the conditions under which the interaction between
active polymers can be mapped into the classical passive problem. We observe that the active bath can drive the
development of strong attractive interactions between the polymers and that, upon enforcing a significant degree
of overlap, they come together to form a single double-stranded unit. A phase diagram tracing this change in
conformational behavior is also reported.
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I. INTRODUCTION

One of the defining features of active systems is their abil-
ity to transform energy in their environment into translational
or rotational motion [1]. This enhanced kinetics results in very
exotic physical behavior not achievable in systems in thermal
equilibrium. A significant amount of work has been done to
understand the interplay between active and thermodynamic
forces (see, for instance, Refs. [2–13]) and to discover ways to
exploit active forces to perform specific tasks at the microscale
[14,15]. Although most of the literature has focused on the
behavior of spherical colloidal active particles, more recently,
the way active particles interact with flexible and deformable
objects or the behavior of active filaments has been the subject
of intense scrutiny [16–30] (see also Ref. [31] for a brief
review on the subject and references therein). Fully flexible
active polymers are of particular interest. While there is model
dependence for the scaling of the radius of gyration as a func-
tion of Péclet number [28], the scaling behavior for polymers
made out of active Brownian particles seems to remain unaf-
fected by the action of active forces. Within this framework,
the radius of gyration of a fully flexible active polymer follows
Flory’s exponent (at least for weak to moderate activities),
and the active forces only affect the prefactor of the scaling
law [21]. Similarly, we have recently shown [32] how the
coil-to-globule transition of an active polymer with attractive
interactions can also be understood with a rescaling of the
temperature. Yet, some of its scaling behavior breaks down
when polymers are placed under strong confinement [33].

In this paper, we study how adding activity changes the
entropic forces two polymers exert on each other within the
framework of dry active matter. This is a classic problem
in polymer physics of passive polymers as it is of crucial
importance to understand the phase behavior of dense poly-
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mer solutions [34,35]. What is somewhat surprising about
the interaction between two polymers in the infinite dilute
limit is that the free-energy cost of fully overlapping two
self-avoiding flexible polymers is finite and accounts for only
few kBT , where kB is the Boltzmann’s constant and T is the
temperature of the system [36,37].

A simple way of rationalizing this result is to realize that
overlapping two chains of N monomers and radius of gyration
R(N )

g is similar to confining a single chain of double the orig-
inal length (2N) into a spherical cavity of radius equal to the
radius of gyration of a single chain, i.e., R = R(N )

g . The free-
energy cost associated with this operation in units of kBT is
equal to βF ∼ (R(2N )

g /R)d/(dν−1) [35,38], where β = 1/(kBT )
is the inverse temperature, ν = 3/(d + 2) is the Flory scaling
exponent, and d is the dimension of the embedding space.
By plugging R(2N )

g ∼ (2N )ν and R � R(N )
g ∼ Nν , one obtains

an estimate of the overlapping free energy βF ∼ 2dν/(dν−1),
which is clearly finite. Unfortunately, this quantity cannot be
directly measured in active systems as free energies cannot
be consistently defined, yet their derivatives, i.e., pressures
and forces the polymers exert on each other can be readily
measured numerically.

There are two distinct models that have been put forward
to study flexible active polymers in the context of dry active
matter: one where a passive chain is free to fluctuate in an
explicit bath containing active particles [18], which we will
refer to here as the explicit model, and the other where the
action of the active bath is incorporated into the chain by
treating every single monomer as an effective independent
Brownian active particle [21], which we will refer to as the
implicit model.

In experiments, the simplest realization of an active particle
is obtained by coating one hemisphere of a silica or polymer
microparticle with a thin layer of platinum. Since the metal
hemisphere can be rather heavy, most active colloids readily
deposit at the bottom of the solution, and perform what is
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effectively a two-dimensional Brownian active motion with
the axis of propulsion parallel to the surface that supports
them. We therefore limit our study to two dimensions, and
when considering the explicit model, we envision the passive
polymer as a chain of colloidal particles having the same
diameter of the active colloids.

II. MODEL

In this paper, we will perform our measurements using
both the implicit and explicit models. Our basic model for
a flexible, self-avoiding polymer consists of N monomers of
diameter σ linearly connected with stiff harmonic springs and
subject to thermal forces. Every monomer undergoes Brown-
ian dynamics at a constant temperature T . For the model with
implicit active forces, a self-propelling force is introduced via
a directional velocity of constant magnitude vp directed along
a predefined orientation unit vector n̂̂n̂n centered at the origin
of each monomer. For the model with an explicit solvent, the
monomers are exclusively subject to thermal forces, however,
Na spherical particles of diameter σ are also added in a simula-
tion box of size L, and these follow the same active dynamics
discussed above for the monomers of the implicit model. The
resulting equations of motion for both species of particles are

drrri(t )

dt
= 1

γ
fff ({ri j}) + vp n̂̂n̂ni(t )δti,1 +

√
2D ξξξ (t ),

dn̂̂n̂ni(t )

dt
=

√
2Dr ξξξ r (t ) × n̂̂n̂ni(t ), (1)

where i is the particle index, and ti is a binary index that
can acquire two values, 0 for passive particles and 1 for
the active ones. δti,1 is a Kronecker delta function which
deactivates the self-propulsion term for the passive par-
ticles. The translational diffusion coefficient D is related
to the temperature and the translational friction γ via the
Stokes-Einstein relation D = kBT γ −1. Likewise, the rota-
tional diffusion coefficient, Dr = kBT γ −1

r , with Dr = 3Dσ−2.
The solvent-induced Gaussian white-noise terms for both the
translational ξξξ and rotational ξξξ r motion are characterized
by 〈ξ (t )〉 = 0 and 〈ξm(t )ξn(t ′)〉 = δmnδ(t − t ′). fff ({ri j}) indi-
cates the excluded volume forces for all particles and the
harmonic forces between the monomers of each polymers. Ex-
cluded volume forces between any two particles are enforced
via a Weeks-Chandler-Andersen (WCA) potential U (ri j ) =
4ε[( σ

ri j
)12 − ( σ

ri j
)6 + 1

4 ]. We use harmonic bonds between the

monomers according to the potential Ub = kb(ri,i+1 − σ )2.
Here, ri,i+1 is the distance between consecutive monomers
along the chain. kb is set to 3500kBT/σ 2 to ensure polymer
connectivity while simultaneously minimizing bond stretch-
ing that could arise from the action of the active forces.
Finally, the hard repulsion between the monomers was se-
lected to be ε = 100kBT , to prevent interpenetration of the
polymers. To confine the distance between the center of mass
of the two polymers, δRc.m., to remain within a given distance
R, we use a boundary defined by the potential

Uc(δRc.m. − R) =
{

0, δRc.m. � R,

k(δRc.m. − R)2, δRc.m. > R,
(2)

Quadratic

Linear

FIG. 1. Reduced contact force f R
w as a function of Pe for two

polymers of length N = 256. The vertical dashed line indicates the
crossover point Pe∗ between quadratic and linear behavior obtained
as discussed in the text. The solid line is a fit to the data with the
function f (x) = ax/(1 + b/x). The inset shows the linear relation-
ship between 	∗

p = (Pe∗/3)σ and Rg for N = 32, 64, 128, 256.

with k = 2000kBT/σ 2. Each monomer in a chain at position
rrri will experience a confining force

fff i = −
(

∂Uc

∂δRc.m.

)
∂δRc.m.

∂rrri
, (3)

where δRδRδRc.m. = 1/N
∑N

i=1(rrr(1)
i − rrr(2)

i ), and the upper indices
refer to whether the monomer is part of the first or the second
chain.

In our simulations, σ and kBT are used as the units of
length and energy scales of the system respectively, while
τ = σ 2D−1 is the unit of time. All simulations were typically
run for at least 109 time steps with a time step ranging from
�t = 10−4τ to �t = 10−5τ . We skip the first 2 × 106 time
steps to let the system achieve a state of dynamic equilibrium.
The strength of the active forces is reported in terms of the
Péclet number defined as Pe = vpσ/D. The positions of the
random active particles in the explicit model are randomly and
uniformly distributed.

III. RESULTS AND DISCUSSION

A. Implicit model

We begin our analysis with the implicit model. We measure
how the force exerted on the boundary, fw = −∂Uc/∂δRc.m.,
in the fully overlapping regime, i.e., when the distance be-
tween the centers of mass of two polymers is confined within
R = σ from each other, depends on the strengths of the active
forces, Pe. The results are shown in Fig. 1, where we report
the reduced force f R

w = [ fw(Pe) − fw(0)]/ fw(0) as a function
of Pe—written this way f R

w is effectively equivalent to the
reduced pressure between the polymers. The data display a
quadratic behavior for small activities and a linear behavior
for large Pe. The data for all polymer lengths considered in
this study, N = 32, 64, 128, 256, are accurately described

034503-2



EFFECTIVE FORCES BETWEEN ACTIVE POLYMERS PHYSICAL REVIEW E 105, 034503 (2022)

FIG. 2. Force between two active polymers fp as a function of
their separation R, for different Péclet numbers. The data are nor-
malized with respect to the radius of gyration of a passive polymer,
Pe = 0, of equal length Ro

g.

when fitted to the functional form f R
w = a Pe/(1 + b/Pe), pre-

viously proposed to describe the pressure of active particles
within a cavity as a function of Pe [39]. The crossover Péclet
number Pe∗ is estimated using the fitted parameter b. Cru-
cially, we find that the crossover occurs when the persistence
length of the active force, defined as 	p = vp/Dr = (Pe/3)σ ,
becomes of the order of the radius of gyration of the polymers
Rg. This result is important because it indicates that as long
as 	p is much smaller than Rg, activity acts as an effective
temperature T ∝ Pe2, and the phenomenology of the parent
passive system can be easily extended to incorporate the active
forces. In the opposite limit, such a mapping becomes inap-
propriate. The inset in Fig. 1 shows that the crossover 	∗

p tracks
with Rg as 	∗

p ≈ Rg/2. An analogous result was obtained for
the implicit model embedded in three dimensions (see Fig. 6).

Next, we measure the full force curve between two poly-
mers, each of N = 128 monomers, as a function of R. The
force fw contains two contributions, one due to the repulsion
between the polymers, fp, and the other, the ideal term, fid,
due to the overall motion of each polymer’s center of mass
independently of the presence of the other polymer. Since we
are exclusively interested in extracting the effective polymer-
polymer interactions, we subtract the second contribution
from the first and report fp = fw(R) − fid(R). fid is computed
in the same manner as fw, but now the excluded volume
interaction between monomers from two different polymers
is turned off.

Figure 2 shows how fp depends on the polymer separation
R for different values of Pe. The overall shape of the force as
a function of R is reminiscent of that expected for two passive
polymers [37], where a steep repulsion observed as one moves
from small to moderate overlaps leaves space to a decay of
the force for large overlaps. This is consistent with a fully
repulsive potential of mean force between the two polymers
that flattens as the two polymers develop a significant degree
of overlap.

FIG. 3. Force between two passive polymers fp in a fluid of
active particles, as a function of their separation R, for different
Péclet numbers. The data are normalized with respect to the radius of
gyration of a passive polymer, Pe = 0, of equal length Ro

g. The inset
shows fp for small values of Pe.

B. Explicit model

The phenomenology is richer for the explicit model. Here,
we considered two N = 64 passive polymers embedded in a
square box of side length L = 100σ with periodic boundaries
containing Na = 600 active spherical particles. Each particle
in the system interacts via the purely repulsive WCA po-
tential discussed above. This particular number density ρ =
Na/L2 = 0.06/σ 2 is sufficiently large to ensure the induction
of strong active fluctuations on the polymer, but not too large
to drive motility-induced phase separation in the fluid. The net
force between the polymers as a function of R, computed in a
similar fashion as in the previous case [40], is shown in Fig. 3.
The data indicate a strikingly different behavior than what is
observed for the implicit model.

For small Péclet numbers the functional form of the
polymer-polymer force is similar for both models, however,
beyond a certain Péclet number a net negative force develops
for the explicit model, the depth and range of which increases
with Pe. This is clear evidence of the development of an attrac-
tive interaction between the polymers at short range following
a repulsion for intermediate separations.

This attraction develops as a result of the condensation of
active particles along the perimeter of the polymers, which
leads to an effective active depletion force not unlike that
previously observed between rigid bodies in an active fluid
(see, for instance, Refs. [41–45]). The net effect is that at
short separations the polymers pair up to form a single,
double-stranded fluctuating unit. This is in opposition to the
conformations in the implicit model, where such a pairing is
not observed.

We should stress that the range, strength, and sign of
depletion interactions between passive objects immersed in
active baths are known to be strongly shape dependent. In a
two-dimensional system of active depletants, passive colloidal
plates experience an effective long-range attractive force
whereas passive colloidal disks experience a short-ranged re-
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Unpaired

Paired
Unpaired

Paired

FIG. 4. Left side: Probability distribution of the contact parame-
ter q as a function of Péclet number Pe. Right side: Snapshots from
simulations showing characteristic unpaired (for small Pe) and paired
(for large Pe) configurations of the two polymers in an active bath
while their centers of mass are confined to be within a distance of
R = σ from each other.

pulsive force [41]. Unlike rigid objects, flexible polymers are
free to fluctuate between shapes ranging from an extended
rodlike conformation to a coiled up disklike conformation.
Thus, the result that emerges from our simulations is rather
nontrivial and neatly extends the results obtained for rigid
objects to include fully flexible ones.

The right-hand side of Fig. 4 shows typical paired and un-
paired conformations associated with the two polymers at full
overlap. Although once in a while we observe some active par-
ticles in the interstitial space between the polymers, they can
easily wiggle out because of their active forces and because of
fluctuations between the polymer centers of mass that allow
for some breathing room along the chain. It should be noticed
that we also performed simulations with polymers of double
the length (N = 256) and even in this case we observe pairing
of the polymer chains. To characterize the transition between
the two conformations as a function of the Péclet number, we
measured the probability distribution of a contact parameter q
defined as the average number of monomers in one polymer
that are within a distance of 2σ from each monomer in the
other polymer. With this definition, q ∈ [0, 4], where q = 0
for fully unpaired polymers, and q = 4 when they are fully
aligned.

Figure 4 shows the shift of P(q) as a function of Pe when
the centers of mass of the two polymers are confined to be
within a distance of R = σ from each other. A peak at small
values of q is visible for small Pe and the peak moves closer
to q’s maximum value for large Pe. In between, for Pe ≈ 40,
we see a broad distribution of q indicating a region where
the polymer can move unobstructed from one conformation
to the other. Although the onset value of Pe† ≈ 40 appears
to be rather independent of N , apart from possible finite-size
effects, we do expect Pe† to be very sensitive to the overall
number density of active particles. By measuring P(q) for
different values of Pe, we can construct a phase diagram
tracing Pe† for different values of active particles density ρ.
The results are shown in Fig. 5.

This diagram presents two interesting features. First, den-
sity and Péclet number are inversely related to each other, and
it appears that even for very low densities it is possible to find

0
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0.1

20 40 60 80 100 120 140

ρ

P e

Paired

Unpaired

FIG. 5. Phase diagram separating the paired and unpaired config-
uration of two polymers in an active bath with the distance between
their centers of mass confined within a distance of R = σ as a
function of the density of active particles ρ and Péclet number Pe.

a sufficiently large Pe to drive the pairing of the polymers.
Second, our data show a lower bound for Pe ≈ 35 below
which no pairing occurs, even for large particle densities.
We suspect this is because upon increasing the density, the
number of active particles condensing on the two polymers
becomes quite significant. The polymers act as crystallization
seeds for the active particles that form multiple crystalline
layers around and between the contour length of the two
polymers, effectively hindering their mobility. We find that
the shape of the boundary is well described by the simple

0 50 100 150
Pe

0

100

200

300

400

500

f w
R

FIG. 6. Reduced contact force f R
w = [ fw (Pe) − fw (0)]/ fw (0) as

a function of Pe for two polymers of length N = 128 in three dimen-
sions. Here, both polymers are in the fully overlapping regime, i.e.,
the distance between the centers of mass of the polymers are confined
to be within a distance of R = σ , the monomer diameter. The reduced
contact force moves from a quadratic regime at small Pe to a linear
regime at large Pe. The solid line is a fit to the data with the function
f (x) = ax/(1 + b/x). The fitting parameter b = 48.4 is the Pe∗ at
which the system moves across the two regimes. At this crossover,
l∗
p = Pe∗/3 ≈ 2Rg. Note that the prefactor is different from the case

of two polymers in two dimensions.
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empirical equation ρ = 0.27/(Pe − 31.3), which predicts a
lower bound for Pe ≈ 31.

Although we have not performed systematic simulations
of the full force-separation curves as a function of Pe for
polymers embedded in a three-dimensional space (this is be-
cause most of the experiments with active colloids are in
two dimensions), it is nevertheless of interest to look at the
behavior in this case. Our sparse data in three dimensions for
large Péclet numbers suggest that both the implicit (see Fig. 6)
and explicit models generate a purely repulsive interaction
between the polymers which increases with the strength of the
active forces. In this case the active depletion is not present as
it is harder for the polymers to capture active particles along
their contour length.

IV. CONCLUSIONS

In this paper, we measured the forces between two active
polymers. We used two different models to incorporate the
role of active fluctuations into the problem. In one model
the fluctuations are implicitly incorporated into the motion of
the monomers, and in the other, they are explicitly accounted
for by placing the polymers in an active bath of active par-
ticles. We find that in the former case, the forces between
two fully overlapping polymers can be understood in terms
of an effective temperature T ∝ Pe2 as long as 	p is smaller
than Rg/2. Deviations from this behavior occur in the opposite
limit where the forces grow linearly with Pe.

We observe a very different scenario when considering the
explicit model. For small Péclet numbers, similar to the previ-
ous case, the net effect of the active bath is that of increasing

the overall repulsion between the polymers. However, as
soon as Pe becomes sufficiently large for active particles to
condense on the contour length of the polymers, a strong
depletion attractive force emerges and drives the polymers
to fluctuate as a pair. Our results extend our current under-
standing of how active forces affect polymer fluctuations and
set clear limits for their mapping into effective equilibrium
systems. It is also important to emphasize that the emergence
of an active depletion force between fully flexible filaments is
not a trivial result, and will have important implications for the
dynamics and morphology of polymers solutions in an active
bath.

An important limitation of our study is that it does not
account for hydrodynamic effects [2]. At a sufficiently large
concentration of active particles, hydrodynamic interactions
could, in principle, drive orientational instabilities that could
destabilize the paired configurations. Whether this is the case
requires more work in this direction, using a more sophisti-
cated description of the active colloids with explicit squirmer
models [46] and explicit hydrodynamic interactions. We ex-
pect possible deviations to be dependent on the specific choice
of swimming mode (puller versus pusher), and on whether
the monomers in the chains are free to rotate or act as a
fixed boundary against the torques applied by the squirmers
[47].
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