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Conformational properties of hybrid star-shaped polymers comprised of linear and ring arms
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We study the influence of arm architecture on the conformational properties of hybrid star-shaped macro-
molecules called rosette polymers containing linear and ring grafts connected to a central branching point in
a good solvent regime. We utilize analytical methods and molecular dynamics simulations to determine the
estimates for the relative size ratios of these polymers with respect to linear chains and starlike polymers
composed of the same number of solely linear arms and equal molecular weights. The results of numerical
simulations corroborate our theoretical prediction that rosette polymers undergo conformational compactification
with increasing functionality of grafted rings. Our results quantitatively describe the impact of the complex
architecture of the molecules with excluded volume on their effective size measures.
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I. INTRODUCTION

Polymers with complex macromolecular architectures are
in focus of current polymer science due to their unique phys-
ical properties. One of the examples of branched polymer
topology is a starlike macromolecule containing a number
of linear chains grafted with one end to the central core.
Star polymers are considered hybrids between polymer en-
tities and colloids [1]: by increasing the number of grafted
arms, fL, their conformations continuously transform from
soft polymer coils ( fL = 1, 2) to rigid, colloidal spheres
( fL � 1). As a result, star polymers reveal a number of fea-
tures which do not occur in solutions of linear chains and
in suspensions of colloids. Star polymers are characterized
by a compact structure and an enhanced segmental density
[2–10] as compared to linear polymers of the same molec-
ular weight. Star-shaped polymers modify surface tension
[11], glass temperature [12], surface wettability [13], pos-
sess hierarchical dynamics [14,15], and complex rheological
properties [16,17]. Star polymers are also important from an
application point of view [18]. For instance, they are used
in the oil industry as lubricants [19], binders in toners for
copying machines [20], and in numerous medical applica-
tions [21] as vectors to deliver peptides [22] or drugs [23].
Besides linear polymers other molecular architectures can be
utilized to construct star-shaped macromolecules. The distinct
example is cyclic polymers which have no free ends. This
kind of molecular topology of nongrafted rings enforces their
markedly different properties in solutions as compared to lin-
ear counterparts, including smaller radius of gyration, smaller
hydrodynamic volume, lower melt viscosity, and higher ther-
mostability [2,6,24–31]. The compactness of cyclic polymers
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determines unique mechanical properties such as lack of
plateau modulus in melts [31], much larger swelling abil-
ity, and maximum strain at break for swollen networks [32].
The cyclic architecture of polymers is also the major factor
triggering frictional forces of polymer-grafted surfaces under
shear [33,34]. Ring polymers can be found in living cells in
bacteria [35] and in higher eucaryotes [36] which contain the
circular DNA. Structures with rings are also encountered in
nature during the process of loop formation that plays an im-
portant role in stabilization of globular proteins [37–40], DNA
compactification in the nucleus [41–43], and gene regulations
[44–46]. Incorporation of cyclic grafts into the star-shaped
architecture provides yet another synthetic route to control
structure and dynamics of polymers via topology. Hybrid star
polymers (also called rosette polymers) consisting of fL linear
chains and fR cyclic polymers fused at the central point are
currently the subject of intensive experimental [47–51] and
theoretical studies [51–55].

In the present work we investigate theoretically the basic
conformational properties of rosette polymers in a good sol-
vent. Our focus is on the degree of compactness of hybrid
stars with increasing functionality of linear and cyclic arms.
The quantitative description of the relative decrease in size is
calculated through the size ratio [2]:

g =
〈
R2

g

〉
branched〈

R2
g

〉
linear

. (1)

The quantity g compares the size of a branched polymer to that
of a linear one of the same total degree of polymerization. The
ratio g is known to be universal in a sense that it does not de-
pend on the microscopic details of the macromolecules but on
the global parameters such as space dimension, solvent qual-
ity, or branching parameters. In this study we estimate g using
an analytical theory based on the path-integration method as
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well as extensive bead-spring coarse-grained molecular dy-
namics (MD) simulations.

The paper is organized as follows. In Sec. II we study
the conformational properties of hybrid stars analytically by
means of the continuous chain model. In Sec. III we describe
the details of the used simulation methods. In the same sec-
tion we present the obtained numerical results and compare
them with our theoretical predictions. We conclude our find-
ings in Sec. IV.

II. ANALYTICAL THEORY

A. Model

Our theoretical treatment of the conformational properties
of rosette polymers in good solvents is based on the contin-
uous chain model [56]. In this model, polymer chains are
described as 3d trajectories, with radius vectors �ri(s) (i =
1, . . . , fL + fR), parametrized by s changing from 0 to L,
where L is the total arc length of the trajectory. All fL + fR
trajectories start at the origin and fR of them form closed
loops. The partition function of this system is defined as [52]

Z fL, fR = 1

Z0

fL+ fR∏
i=1

fR∏
j=1

∫
d �ri(s)δ(�ri(0))δ(�r j (L) − �r j (0))e−H ,

(2)

where δ functions are used to impose constraints on the tra-
jectories such that they start at the origin and form loops,
respectively. Z0 is the partition function of the Gaussian chain
given by

Z0 =
fL+1∏
i=1

∫
d �ri(s)e−∑ fL+1

i=1

∫ L
0 ds

(
d �ri (s)

ds

)2

. (3)

In Eq. (2) H is the system Hamiltonian:

H =
fL+ fR∑

i=1

∫ L

0
ds

(
d �ri(s)

ds

)2

+ u

2

fL+ fR∑
i, j=1

∫ L

0
ds′

∫ L

0
ds′′ δ(�ri(s

′) − �r j (s
′′)), (4)

where the first term describes polymer connectivity and the
second term represents excluded volume interactions with the
coupling constant, u.

It is important to note that cyclic polymers usually have
more complicated topological constraints as compared to lin-
ear chains. In particular different types of knots can be present.
The partition sum in our case is taken over all the possible
configurations, including all possible knot types. We are con-
sidering a model in its asymptotic limit where monomers are
considered as points on the infinitely long trajectory [57]. Un-
der these conditions knots are localized and do not influence
either scaling exponents or the critical amplitudes [58–60].

Within the frames of the continuous chain model the ex-
cluded volume effect is treated as perturbation of the Gaussian
model and the perturbation theory in parameter u is applicable

in this case. To evaluate the quantitative estimates for uni-
versal observables of interest, the advanced renormalization
schemes are applied, which are described below. The main
general idea of these approaches is removal of divergencies
which are encountered in the asymptotical limit L → ∞. This
can be achieved by a controlled rearrangement of the pertur-
bation theory series.

B. Direct renormalization scheme

Within Cloiseaux’s direct renormalization [57], a set of
renormalization factors are introduced that are directly con-
nected to the physical quantities and allow one to remove
those divergencies. Within the continuous chain model, the
Hamiltonian of the system does not contain any reference
towards the particular topology that is considered. As a result,
the fixed points of the scheme do not depend on the topology
and can be calculated for the simplest case of a single linear
chain and then used in the description of more complicated
polymer architectures. For this scheme the renormalized cou-
pling constant is introduced as

uR(u0) = −[Z (L, u0)]−2Z (L, L)[2πχ0(L, u0)]−2+ε/2, (5)

where Z (L, L) is the partition function of two interacting
polymers, ε = 4 − d stands for the deviation from the upper
critical dimension, d denotes the spatial dimension, and the
dimensionless coupling constant u0 is defined by

u0 = u(2π )−d/2L2−d/2. (6)

The renormalization factors that are introduced in this expres-
sion are connected with the number of allowed trajectories or
the partition function of a single chain, [Z (L, u0)]−2, and with
its characteristic size, i.e., the end-to-end distance, 〈R2

e〉, or
more precisely with the swelling factor, χ0(L, {x0}), defined
as χ0 = 〈R2

e〉/L. The introduction of these factors leads to the
finite value of uR in the limit of infinitely long chains, unlike
u0 that in the same limit is divergent:

lim
L→∞

uR(u0) = u∗
R. (7)

In practical applications the value u∗
R can be calculated from

the equation

βuR = 2L
∂uR(u0)

∂L
= 0. (8)

For the simplest case of a Gaussian polymer (without ex-
cluded volume interactions) and a real polymer (with excluded
volume interactions) the solutions for u∗

R are well known [57]
and given by the following equations:

Gaussian:u∗
R = 0, (9)

EV:u∗
R = ε

8
. (10)

C. Douglas-Freed approximation for the universal size ratios

The renormalization group approach described above al-
lows one to calculate observables that can be directly
compared to experimental and simulation results only if the
analytical calculations are made up to at least the second
order terms in the coupling constant u0. Note that this is a
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complicated task for nonlinear polymer architectures since
the number of diagrams that have to be taken into account
and their mathematical complexity increase tremendously. At
this point it is useful to consider the connection between the
continuous chain model and the two-parameter model in three
spatial dimensions (d = 3). It enables us to use the approxi-
mation developed by Douglas and Freed [6] that allows better
concurrence between the renormalization group in the first
order and experimental data.

It is a well known fact that any observable calculated in the
renormalization group approach can be presented in a form
of a universal function [6,61]. Such a function for a radius of
gyration, Rg, reads

〈
R2

g

〉 = 〈
R2

g

〉
0

(
2πN

�

)2ν(η)−1

fp(η), (11)

where N is the number of monomers, � is the coarse-graining
length scale, and fp(η) is the function that controls the solvent
quality with η being the crossover variable. For a Gaus-
sian chain η = 0 and fp(η) = 1. The case of a polymer in
an athermal solvent is recovered in the limit η → ∞ with
fp(η) = 1 + a, where a is the topology-dependent parameter.

Note that the form of Eq. (11) is the same for any polymer
topology. Thus we can write the size ratio of two different
architectures in the following form:

gx =
〈
R2

g,1

〉
0〈

R2
g,2

〉
0

1 + a1

1 + a2
, (12)

where x is the generic subscript which can refer either to linear
chains (x = c) or to star polymers (x = s). In the case of a
linear chain it is possible to get the parameters a1 and a2

from the renormalization group approach by conducting the
calculations up to at least quadratic terms ε2 [6]. However,
apart from that simple topology such calculations proved to
be complicated and it is more convenient to use the two-
parameter model for which the radius of gyration is obtained
at the first order in the perturbation parameter z from the
following formula: 〈

R2
g

〉 = 〈
R2

g

〉
0(1 + Cz), (13)

with z being the counterpart of u0 in two-parameter models
with fixed d = 3 space dimension. In the equation above C
is the function of branching parameters calculated in a three
dimensional space which is related to the parameter a via

a = 3

32
C − 1

4
. (14)

D. Analytical results

a. The partition function. The starting point of our cal-
culations is the partition function defined by Eq. (2). The
perturbation expansion is performed over the excluded vol-
ume coupling constant, u, as required by the general scheme
of calculations for this model [57,62]. The first order expan-
sion reads

Z fL, fR = 1

Z0

fL+ fR∏
i=1

fR∏
j=1

∫
d �ri(s) δ(�ri(0))δ(�r j (L) − �r j (0))e−H0

Z1 Z2 Z5Z3 Z4

FIG. 1. Diagrammatic representation of contributions to the par-
tition function of a rosette polymer in the one loop approximation.
The solid lines denote polymer paths of length L and the dashed lines
present the excluded volume interactions between points s′ and s′′.

− u

2

1

Z0

fL+ fR∏
i=1

fR∏
j=1

∫
d �ri(s) δ(�ri(0))δ(�r j (L) − �r j (0))

×
fL+ fR∑
i, j=1

∫ L

0
ds′

∫ L

0
ds′′ δ(�ri(s

′) − �r j (s
′′))e−H0 ,

(15)

with H0 = ∑ fL+ fR
i=1

∫ L
0 ds ( d �ri (s)

ds )2 being the Hamiltonian of
the Gaussian model. In order to calculate the first and
Gaussian term in the partition function we use the inte-
gral representation of the δ(�r j (L) − �r j (0)) functions that
describe the looping of fR chains. After performing all
integrations we recover the known expression for rosette
polymers [52]:

Z
fL, fR

0 = (2πL)−
d
2 fR . (16)

To calculate the contribution due to excluded volume inter-
actions [given by the second term in expression (15)] we
have used the diagrammatic technique as presented in Fig. 1.
The analytical expressions corresponding to these diagrams as
functions of the space dimension, d , read

Z1 = −2u0 (2πL)−
d
2 fR

�
(
2 − d

2

)2

(d − 2)�(3 − d )
, Z2

= u0 (2πL)−
d
2 fR

4

(4 − d )(2 − d )
,

Z3 = u0 (2πL)−
d
2 fR

4(22−d/2 − 2)

(4 − d )(2 − d )
, Z4

= u0 (2πL)−
d
2 fR

(
− 1

8

2d√π�
(
1 − d

2

)
�

(
5−d

2

)

+ 1

3

2d−15− d
2
[

2F1
(

3
2 , d

2 ; 5
2 ; 1

5

) − 3 2F1
(

1
2 , d

2 ; 3
2 ; 1

5

)]
d − 2

)
,

Z5 = u0 (2πL)−
d
2 fR

2
d−1

2
√

π2F1
(

1
2 , d−1

2 ; 3
2 ; 1

2

)
�

(
1 − d

2

)
�

(
3−d

2

) ,

(17)

where u0 was defined in Eq. (6). Here, �(x) is the gamma
function and 2F1(a, b; c; z) is the hypergeometric function.
Each type of diagram presented in Fig. 1 has to be taken with a
prefactor. For the diagrams Z1 and Z2 the prefactor is equal to
the number of rings, fR, and linear chains, fL, respectively.
The diagrams Z3 and Z5 have to be accounted for each pair
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FIG. 2. Diagrammatic representation of contributions to the ra-
dius of gyration of rosette polymer in the Gaussian approximation.
The solid lines represent polymer paths of length L. Bullets denote
restriction points s1 and s2.

of linear chains [ fL( fL − 1)/2] or rings [ fR( fR − 1)/2] and
the diagram Z4 for each pair of a single chain and a single
ring ( fL fR). The ε expansion of the diagrams results in the
partition function:

Z fL, fR = (2πL)−
d
2 fR

{
1−u0

f 2
L+4 fL fR+2 f 2

R − 3 fL+2 fR
ε

− u0

[
fL( fL − 3)

2
− fL( fL − 1)

2
ln(2)

+ 2

5
fL fR

√
5 ln

(
2√

5 + 3

)
+ 2 fL fR − f 2

R − fR

− fR( fR − 1)
√

2
∫ 1

0
dt

ln(2 − t )√
t (t − 2)

√
4 − 2t

]}
.

(18)

Note that for fR = 1 the above expression reproduces the
result of our previous study [53].

b. The radius of gyration and the universal size ratios.
Within the continuous chain model the radius of gyration of a
rosette polymer is defined as

〈R2
g〉 = 1

2L2( fL + fR)2

×
fL+ fR∑
i, j=1

∫ L

0

∫ L

0
ds1 ds2〈[�ri(s2) − �r j (s1)]2〉. (19)

Here and below, 〈. . .〉 denotes averaging with the effective
Hamiltonian Eq. (4) according to the recipe

〈. . .〉 =
∏ fL+ fR

i=1

∏ fR
j=1

∫
d �ri(s) δ(�ri(0))δ(�r j (L) − �r j (0))e−H

Z fL, fR
.

In order to calculate the average we use the identity

〈
[�ri(s2) − �r j (s1)]2

〉 = −2
d

d|�k|2 ξ (�k)�k=0,

ξ (�k) ≡ 〈
e−ι�k[�ri (s2 )−�r j (s1 )]

〉
, (20)

and evaluate ξ (�k) in the path integration approach. In the cal-
culation of the contributions to ξ (�k) it is again useful to use a
diagrammatic presentation. The corresponding diagrams for a
Gaussian polymer are displayed in Fig. 2. Taking into account
that each diagram is taken with the appropriate prefactor, as it
was in the case of partition functions in Eq. (17), we recover
the known expression for the radius of gyration of a rosette

FIG. 3. Diagrammatic representation of the contributions to the
radius of gyration of rosette polymer in a good solvent coming
from the interactions that involve more than one ring. The solid
lines represent polymer paths of length L. Bullets denote restriction
points s1 and s2, whereas dashed lines display the excluded volume
interactions between points s′ and s′′.

polymer in Gaussian approximation [52]:

〈
R2

g

〉
0,r = 2 fL(3 fL − 2) + 8 fL fR + fR(2 fR − 1)

12( fL + fR)2
. (21)

Similarly, in the one loop approximation one has to calcu-
late a set of diagrams that will contribute to ξ (�k), where each
diagram contains both the restriction points, s1, s2, and the
interaction points, s′, s′′. For a rosette polymer there is a set of
88 diagrams and 58 of them were calculated in our previous
work [53]. The additional 30 diagrams which constitute the
theoretical result of this work are presented in Fig. 3. These
additional diagrams contribute to the interactions that involve
more than one ring polymer. The general expression for the
radius of gyration of a rosette polymer in a good solvent
calculated in the one loop approximation as a series of ε reads

〈
R2

g

〉
r = 〈

R2
g

〉
0,r

(
1 + 2u0

ε
− u0R1( fL, fR)

)
, (22)

where R1( fL, fR) is the function of branching parameters fL
and fR and is defined by Eq. (A1) in Appendix A.

To quantify the size properties of a rosette polymer in
comparison with other molecular architectures we introduce
two size ratios:

gc =
〈
R2

g

〉
r〈

R2
g

〉
c

, (23)
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FIG. 4. Molecular dynamics simulation snapshot of a rosette
polymer comprised of fR = 2 ring arms and fL = 1 linear arms.
The degree of polymerization, N , of each arm is 1000. The linear
arm is depicted in red and the ring arms are in green.

gs =
〈
R2

g

〉
r〈

R2
g

〉
s

, (24)

(25)

where 〈R2
g〉c and 〈R2

g〉s are the radii of gyration of a linear
chain and a star-shaped polymer comprised of linear poly-
mers, respectively. Both ratios gc and gs are calculated for
architectures with the same molecular weight as rosettes. The
corresponding expressions for 〈R2

g〉c and 〈R2
g〉s are given by

[62]

〈
R2

g

〉
c=

dL

6[( fL+ fR)L]

(
1+2u0

ε
+ u0 ln[( fL + fR)] − 13

12

)
,

(26)

〈
R2

g

〉
s = dL

[
3( fL + fR)2 − 2 fL − 2 fR

]
6( fL + fR)2

(
1 + 2u0

ε

+ u0

12(3 fL + 3 fR − 2)

{
144( fL + fR)2 ln(2)

+ 195( fL + fR) − [
384( fL + fR) ln(2)

− 78( fL + fR)2 + 240 ln(2) − 130
]})

. (27)

In the following section we compare our analytical findings
with the results of simulations and experiments.

III. NUMERICAL SIMULATIONS

A. Simulation model

We consider a bead-spring, coarse-grained model [8]
of a rosette polymer consisting of fL linear and fR ring
arms tethered to a core monomer with a diameter σ . Each

arm is composed of N beads of the same size σ and
equal mass connected by bonds. Thus the total number
of monomers in the star (excluding the core) is ( fL +
fR)N . The bonds between subsequent beads are described by

Kremer-Grest potential V KG(r) = V FENE(r) + V WCA(r)
with the so-called finitely extensible nonlinear elastic (FENE)
potential [63]:

V FENE(r) = −0.5kr2
0 ln [1 − (r/r0)2]. (28)

The nonbonded interactions between monomers are taken into
account by means of the Weeks-Chandler-Anderson (WCA)
interaction, i.e., the shifted and truncated repulsive branch of
the Lennard-Jones potential given by

V WCA(r) = 4ε[(σ/r)12 − (σ/r)6 + 1/4]θ (21/6σ − r).
(29)

In Eqs. (28) and (29), r denotes the distance between the
centers of two monomers (beads), while ε and σ are chosen as
the units of energy and length, respectively. Accordingly, the
remaining parameters are fixed at the values k = 30ε/σ 2 and
r0 = 1.5σ . In Eq. (29) we have introduced the Heaviside step
function θ (x) = 0 or 1 for x < 0 or x � 0. In consequence,
the steric interactions in our model correspond to good solvent
conditions.

Newton’s equations of motion were solved using the
velocity-Verlet algorithm. The Langevin damping term with
the coefficient ζ = 0.5mτ−1 was added to maintain the tem-
perature T = ε/kB, where kB is the Boltzmann constant, τ =√

mσ 2/ε is the LJ unit time and m is the monomer mass. The
integration step employed to solve the equations of motions
was taken as �t = 0.003τ . All simulations were performed in
a cubic box with periodic boundary conditions imposed in all
spatial dimensions. All simulations were carried out using the
Large-scale Atomic Molecular Massively Parallel Simulator
(LAMMPS) [64] and the simulation snapshots were rendered
using the Visual Molecular Dynamics (VMD) [65].

Initially, star-shaped polymers were grown using a self-
avoiding random walk technique and placed randomly in the
simulation cell. Simulations of rosette polymers were per-
formed for the following number of monomer beads per arm:
N = 100, 500, 1000, and 3000. To improve the efficiency
of conformational sampling each simulation was carried out
with 12 identical molecules in the simulation box. The in-
termolecular interactions between the stars were turned off
which corresponds to dilute solution conditions. In the first
stage, simulations were carried out until the stars adopted
their equilibrium conformations. This part of the simulation
was running for at least three relaxation times, τR, defined
as the relaxation time of the radius of gyration autocorre-
lation function. The required equilibration time depends on
arms’ functionality and their degree of polymerization. Af-
ter equilibration we conducted production runs lasting up to
106 τ . The number of linear, fL, and cyclic, fR, arms of
rosette polymers was varied between 1 and 4. The example
conformation of a rosette polymer is displayed in Fig. 4. In
the course of simulations the universal size ratios (23) and
(24) were measured. Both ratios, gc and gs, are defined in
the limit of infinitely long arms (N → ∞). However, in nu-
merical simulations we calculate these ratios for finite values
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FIG. 5. Relative size ratio, gc, of hybrid star polymers with respect to the size of linear polymers plotted as a function of the number of
linear chains, fL, for different number of grafted rings, fR, as indicated. The lines represent theoretical predictions obtained for the Gaussian
model (Ref. [52]) (dotted line), the renormalization group calculations (dashed line), and the Douglas-Freed approximation (solid line). The
circles display results of molecular dynamics simulations. The experimental data for rings (Ref. [66]) ( fR = 1 and fL = 0) and tadpoles
(Ref. [48]) ( fR = 1 and fL = 1, 2) are depicted by squares.

of N . In order to exclude finite-size effects from the calcu-
lated ratios we have used a least-square fitting of the form
gi(N ) = gi + Ai/N for i = c, s and with gi and Ai being fitting
constants.

B. Results and discussion

In Figs. 5–7 we display the overview of the theoretical and
the numerical results as well as the available experimental
data for the universal size ratios gc and gs of rosette poly-
mers. The data in Figs. 5 and 7 are plotted as a function
of the number of linear arms fL for a fixed number fR of
grafted rings, whereas in Fig. 6 the data are displayed as a
function of fR for fixed values of fL. As compared with the
outcome of our simulations (circles) and the existing experi-
ments [48,66] (squares), the analytical renormalization group
calculations (dashed lines) reproduce only qualitatively the
behavior of gc( fL) and gs( fL) profiles. In fact, the results
of the renormalization group approach and the Gaussian ap-
proach [52] (dotted lines) serve, respectively, as the upper
and the lower limit for the numerical and the experimental
data. The Douglas-Freed approximation (solid lines), in turn,
yields a significantly better agreement. This indicates that
in order to get an improved quantitative concurrence with
simulations higher order terms need to be included in the
analytical approach. Due to complexity of the calculations

those terms were not taken into account in our renormalization
group approach.

Note that the experimental values of the size ratios gexpt
c

were obtained for polymers with relatively small molecular
weights (up to ≈ 6 × 104 g/mol per polystyrene arm [48]).
The entanglement molecular weight for polystyrene in a melt
is ≈ 2 × 104 g/mol. It is known that entanglements of ring
polymers are significantly suppressed as compared to linear
counterparts [31]. Thus entanglement effects which affect
conformations of star arms should not impact on gexpt

c in this
case.

The numerically estimated relative size of a single ring
polymer in a good solvent (i.e., for fR = 1, fL = 0) with
respect to the size of a linear chain with the same N is gsim

c =
0.539 [cf. Fig. 5(a)]. This value with a good accuracy repro-
duces our theoretical prediction which was calculated within
the Douglas-Freed approximation, i.e., gDF

c = 0.516. It is also
very close to the experimentally measured relative size ratio
gexpt

c = 0.53 [66]. The obtained ratios indicate the well-known
feature of ring polymers, which adapt more compact confor-
mations as compared to linear chains. Note that the values of
gsim

c , gDF
c , and gexpt

c are slightly larger in comparison to the
corresponding value of gc = 0.5 known for ideal (Gaussian)
rings [2]. For all considered rosette polymers (i.e., for fL > 0)
the size ratio, gc, decays with increasing functionality of linear
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FIG. 6. Relative size ratio, gc, of hybrid star polymers with respect to the size of linear polymers plotted as a function of the number of
grafted rings, fR, for different number of linear arms, fL, as indicated. The convention of symbols and lines is the same as in Fig. 5.

arms (cf. Fig. 5). This trend is also in line with the available
experimental data for tadpole conformations (i.e., for fR = 1
and fL = 1 or 2) [48]. A visual inspection of all panels in
Fig. 5 indicates that the degree of compactness of rosette poly-
mers with respect to linear polymers significantly increases
with increasing the number of ring arms. The relative size
ratio, gs, of rosette polymers to stars comprised of solely
linear arms is presented in Fig. 7. As expected, gs for rosette
polymers with the largest number of linear arms that was
investigated in our study ( fL = 4) and with only one grafted
ring ( fR = 1) tends to unity. Increasing the functionality of
the grafted rings leads to systematic compactification of the
rosettes with respect to star shaped polymers comprised of
linear arms.

IV. CONCLUSIONS

In this work we have studied the conformational properties
of rosette polymers with excluded volume using the analytical
theory and simulations. We have determined the basic univer-
sal characteristics of these macromolecules in a good solvent
by comparing their size to the size of linear chains of the same
molecular weight (gc ratio) and to the size of starlike polymers
composed of the same number of solely linear arms (gs ratio).

Our results indicate that conformations of rosette polymers
are much more compact as compared to linear chains and
corresponding star polymers. The degree of compactness of
rosettes increases with increasing the functionality of grafted
rings. The analytical calculations based on the Douglas-Freed
approximation are in very good agreement with the estimates
obtained from molecular dynamics simulations and experi-
ments. Since the existing experimental data are limited we
hope that our investigation will stimulate further experimental
investigations on the behavior of complex polymer architec-
tures in solutions.
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APPENDIX

The prefactor R1( fL, fR) in Eq. (22) is defined by the
following expression:

R1( fL, fR) = −
16800π f 2

R − 109200 f 3
L − 189840 f 2

L fR − 231167 fL f 2
R − 16800π fR + 273000 f 2

L + 333647 fL fR
8400

(
6 f 2

L + 8 fL fR + 2 f 2
R − 4 fL − fR

)
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FIG. 7. Relative size ratio, gs, of hybrid star polymers with respect to the size of star-shaped polymers with linear arms as a function of the
number of linear chains, fL, for different numbers of grafted rings, fR, as indicated. The convention of symbols and lines is the same as in
Fig. 5.

+
−50400 f 2

R − 182000 fL + 50400 fR
8400

(
6 f 2

L + 8 fL fR + 2 f 2
R − 4 fL − fR

) + 2

5

√
5 ln(

√
5 + 3) fL fR − 48 fL fR ln(2)

√
5

120

−
√

5 fL fR
4200

arctanh

(√
5

5

)20160 f 2
L + 26880 fL fR + 6720 f 2

R + 61824 fL + 141275 fR − 148667

6 f 2
L + 8 fL fR + 2 f 2

R − 4 fL − fR

− fL ln(2)

120

2880 f 2
L + 2880 fL fR − 197 f 2

R − 7680 fL − 2683 fR + 4800

6 f 2
L + 8 fL fR + 2 f 2

R − 4 fL − fR

+ fR( fR − 1)
12 fL + 12 fR − 18

8
(
6 f 2

L + 8 fL fR + 2 f 2
R − 4 fL − fR

) + 2 fR( fR − 1)

6 f 2
L + 8 fL fR + 2 f 2

R − 4 fL − fR

×
∫ 1

0
dt

ln(2 − t )(t2 − 3t + 1)√
t (2 − t )3/2

− fR( fR − 1)

√
2arctanh

(√
2

2

)
(34 fL + 34 fR − 59)

8
(
6 f 2

L + 8 fL fR + 2 f 2
R − 4 fL − fR

)

+ 8 fR( fR − 1)
∫ 1

0
dt arctan((4t2−4t − 1)−

1
2 )

(t − 1)[12t2(t − 1)( f 1+ f 2) − 30t4 + 39t3+5t2 − 14t − 2]

(4t2 − 4t − 1)5/2
(
6 f 2

L+8 fL fR+2 f 2
R − 4 fL− fR

) .
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