
PHYSICAL REVIEW E 105, 034411 (2022)

Promoter methylation in a mixed feedback loop circadian clock model
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We investigate how epigenetic modifications to clock gene promoters affect transcriptomic activity in the
circadian clock. Motivated by experimental observations that link DNA methylation with the behavior of the
clock, we introduce and analyze an extension of the mixed feedback loop (MFL) model of François and Hakim.
We extend the original model to include an additional methylated promoter state and allow for reversible
protein sequestration, an important feature for circadian applications. First, working with the general form of
the MFL model, we find that the qualitative behavior of the model is dictated by the promoter state with the
highest transcription rate. We then build on the work of Kim and Forger, who analyzed the stability of the
mammalian circadian clock by using a reduced form of the MFL model. We present a rigorous procedure for
translating between the MFL model and the reduction of Kim and Forger. We then propose a model reduction
more appropriate for the study of oscillatory promoter states, making use of a fully coupled quasi-steady-state
approximation rather than the standard partially uncoupled quasi-steady-state approach. Working with the novel
reduced form of the model, we find substantial differences in the transcription function and show that, although
methylation contributes to period control, excessive methylation can abolish rhythmicity. Altogether our results
show that even in a minimal clock model, DNA methylation has a nontrivial influence on the system’s ability to
oscillate.
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I. INTRODUCTION

Epigenetic DNA modifications are far more dynamic than
their traditional depiction [1,2]. Indeed, the modification
status of cytosines (5-mC, 5-hmC, 5-fC, and 5-caC) can
vary significantly with various timescales: years or age [3],
hours [4–6], and minutes [7,8]. Ongoing experimental efforts
have focused on the relevance of epigenetic oscillations to bi-
ological function and phenotypes. In this paper, we focus on a
particular instance of this general phenomenon: the influence
of DNA methylation on the circadian clock.

Both steady-state and oscillatory differences in the methy-
lation status of clock genes in mammals have been detected
in recent years. Azzi et al. entrained mice to a 22 hour
day and found that after removing the entrainment cue the
mice retained a shortened circadian period and had differ-
entially methylated clock genes [9]. Azzi et al. also found
that the transcriptomic consequences of promoter methyla-
tion were gene-dependent. For example, the expression of
the clock genes Per2 and Cry1 was inhibited by increased
methylation, whereas the opposite was true of Clock. Interest-
ingly, period changes were suppressed by chemically induced
inhibition of methylation. From these observations, they hy-
pothesized that DNA methylation of clock genes contributes
to the plasticity of the mammalian circadian clock. More
recently, circadian epigenomic studies have found evidence
for 24-hour diurnal oscillations in cytosine modifications in
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human neutrophils [5], as well as the mouse liver and lung [4].
Interestingly, a portion of stochastic intra and interindividual
epigenetic variation was accounted for by oscillations [5],
and sequences surrounding oscillating cytosine modifications
were enriched in both canonical (CANNTG) and noncanon-
ical (CANNNTG, GANNTG) enhancer elements [4] (known
as E-boxes), which play key roles in regulation of circadian
transcripts [10]. These features of oscillating cytosine mod-
ifications suggest that oscillations in cytosine modifications
are intricately linked to circadian transcriptomics, possibly by
regulating the epigenetic status of E-box motifs.

Our aim in this paper is to add a mathematical perspec-
tive to these intriguing experimental findings. To this end,
we focus on the PER transcription-translation feedback loop
(TTFL), which is known to be of primary importance for
rhythm generation in the mammalian circadian clock. We
model this system using an extension of the mixed feedback
loop (MFL) model of François and Hakim [11]. The reader
may be more familiar with the classic Goodwin model of the
circadian clock [12]. We comment on similarities and differ-
ences between the MFL and Goodwin models in Sec. III D.

The MFL model was first presented as a simple gene regu-
latory network capable of a range of dynamic behaviours [13]
such as multistability and nonlinear oscillations. The MFL
model has been found to be present in a variety of biologically
important networks. For instance, the circadian clocks of neu-
ropsora [14] and drosophila [13], the p53-Mdm2 module [15],
and the E. coli lactose operon [16]. More recently, the MFL
model was used in several studies as a minimal model of
the circadian clock [17–20]. Building on the work of Kim
and Forger [17], who used the MFL model in their analysis
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FIG. 1. Reaction diagram for the IT-MFL model. The activator
A, with concentration [A], is constitutively expressed, whereas the
promoter of the target protein B, with concentration [B], can be
in an active, inactive, or methylated state with concentrations [g :
A], [g], [g : M], respectively. The concentration of the mRNA for
protein B is [rb]. Since B binds to A, which has concentration [A : B],
this sequestration mechanism forms a negative feedback loop. The
parameters of the model are as follows: α1, the binding rate of A to
g; θ1, the unbinding rate of g : A; α2, the methylation rate of g; θ2,
the demethylation rate of g : M; ρM , the transcription rate of B for a
methylated promotor; ρ f , the transcription rate of B for an inactive
promotor; ρb, the transcription rate of B for an active promotor; β, the
translation rate of B; ρA, the transcription rate of A; γ+, the binding
rate of A and B; γ−, the unbinding rate of A : B; δA, the degradation
rate of A; δB, the degradation rate of B; δAB, the degradation rate of
A : B; and δr , the degradation rate of rb. Reactions present in the
original MFL model are drawn in black and the reactions new to
the IT-MFL model are drawn in blue.

of a detailed mammalian clock model, we add an additional
promoter state to represent DNA methylation. Since the tran-
scription rate of the new promoter state will be assumed to
lie between the active and inactive transcription rates, we
refer to our extension of the MFL model as the intermediate
transcription rate MFL model (IT-MFL model). In some parts
of our analysis, we also consider reversible protein binding
which was crucial to the work of Kim and Forger, but was
absent from the original papers on the MFL model.

Our analysis is divided into two parts. Inspired by the work
of François and Hakim, we begin by studying the system
perturbatively. We extend their boundary layer analysis to

derive approximate expressions for the period and bounds on
the influence of methylation on the period in a limiting case
of the model. A recurring theme in our perturbative analysis is
that the MFL and IT-MFL models display qualitatively similar
behavior at dominant order provided that the transcription
rate of the new promoter state is, in fact, intermediate. In the
second part, we extend the work of Kim and Forger [17]. In
addition to simulating a detailed model of the clock, they also
used a modified form of the Goodwin oscillator to test their
hypothesis that a balanced stoichiometry between activators
and repressors was necessary for autonomous oscillations in
the clock. We show how their model [which takes the form
of a three-dynamic-variable monotone cyclic feedback (MCF)
system] can be obtained as an approximation of the IT-MFL
model. We show that Kim and Forger’s approximation of the
MFL model can be obtained by decoupling the activator pro-
tein from the promoter states and making quasi-steady-state
(QSS) approximations. We relax this assumption to allow for
fully coupled quasi-steady-states and find that substantial dif-
ferences emerge in the transcription function. Working in this
novel approximation, our analysis reveals that, although the
period and its derivatives in parameter space are sensitive to
methylation, excessive methylation can abolish rhythmicity.
For a wide range of promoter activation equilibrium con-
stants, numerical bifurcation analysis reveals that this loss of
rhythmicity occurs through a supercritical Hopf bifurcation.
Additionally we find that methylation cannot be compensated
for by varying the transcription rate of the inactive promoter
state alone. The fact that the qualitative behavior of our model
is sensitive to slight differences in transcriptional regulation
aligns with the general principle that even slight changes in
transcriptional regulation can dramatically alter the behavior
of a genetic oscillator [21].

II. MATHEMATICAL MODEL

An illustration of the MFL model is given in Fig. 1, along
with the extensions of the IT-MFL model. Our primary inter-
est is in oscillatory solutions of the MFL and IT-MFL models,
depicted in Figs. 2 and 3. The MFL model consists of an
activator protein A which interacts with a target protein B. The
activator is assumed to be constitutively expressed whereas
B is regulated by a promoter that is active when bound to A

FIG. 2. Structure of the boundary layers in a limit-cycle solution to the MFL model. Boundary layers BL2 and BL3 form when the system
transitions from a phase of high A to high B concentration. Boundary layers BL1 and BL4 appear as the quasi-steady-state approximation for g
breaks down.
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FIG. 3. Oscillatory solutions to the MFL and IT-MFL models.
In both cases, the oscillatory solutions decompose into phases of
high A–low B (Phase I) and high B–low A (Phase II) concentration.
Promoter states are shown for both models. Simulation parameters:
δ = 3 × 10−3, ρ0 = 0, ρ1 = 1.45, θ̃1 = 1.33, da = 0.33, db = 0.33,
μ = 0.31, A0 = 4, ρ2 = 0, α̃2 = 1, θ̃2 = 2.

and otherwise inactive. Finally, B can bind to A, sequestering
it away from its promoters and thereby repressing its own
transcription [22,23]. The MFL model has been applied in
several biological contexts, including the work of Kim and
Forger on circadian rhythms [17]. When studied in the con-
text of the mammalian circadian clock, the activator A and
target protein B represent CLOCK-BMAL1 and PER, respec-
tively. Although the clock is made up of several interlocking
feedback loops, the PER TTFL is a well-established starting
point for a minimal model for analyzing the dynamics of this
complex system [17].

We extend the MFL model in two ways: we add a new
promoter state to represent methylation of the PER E-boxes
and allow for the unbinding of A and B. Some effects of the
unbinding were discussed by Kim and Forger in a reduced
form of the MFL model, but to the best of our knowledge
this has not yet been studied in the full MFL model. As
mentioned in the Introduction, we assume the transcription
rate corresponding to the methylated promoter state lies be-
tween the transcription rates of the active and inactive states.
Although DNA methylation and demethylation are catalyzed
by a variety of enzymes, the IT-MFL model assumes these
reactions are operating with first-order kinetics. Explicit in-
corporation of the methylation and demethylation enzymes
would be a natural next step to this work. Our analysis in this
section follows the methodology from the original paper of

François and Hakim and so we adopt their notation for our
model.

Parameters, dynamic variables, and governing equations

We use mass-action kinetics [24] to obtain the following
governing the promoter states:

d[g]

dt
= θ1[g : A] + θ2[g : M] − α1[g][A] − α2[g], (1)

d[g : M]

dt
= α2[g] − θ2[g : M], (2)

d[g : A]

dt
= α1[g][A] − θ1[g : A], (3)

gtot = [g] + [g : M] + [g : A], (4)

and similarly for the mRNA and protein concentrations

d[rb]

dt
= ρ f [g] + ρb[g : A] + ρM[g : M] − δr[rb], (5)

d[B]

dt
= β[rb] − δB[B] − γ+[A][B] + γ−[A : B], (6)

d[A]

dt
= ρA − γ+[A][B] − δA[A] + θ1[g : A]

−α1[g][A] + γ−[A : B], (7)

d[A : B]

dt
= γ+[A][B] − γ−[A : B] − δAB[A : B]. (8)

For the remainder of this section we use the same non-
dimensionalization procedure as François and Hakim to
derive a dimensionless form of equations Eqs. (1) to (8). Let
t̃ be the dimensionless time t̃ := δrt and write u̇ := du

dt̃ for
u ∈ C1(R), a function of dimensionless time. We normalize
the promoter states so that gtot = 1 and obtain dimensionless
equations for their time evolution

ġ = θ̃1

(
(1 − g − gM ) + θ̃2

θ̃1
gM − g

A

A0

)
− α̃2g, (9)

ġM = α̃2g − θ̃2gM , (10)

in which g = [g]/gtot and gM = [g : M]/gtot. The dimension-
less active promoter concentration gA = [g : A]/gtot is given
by gA = 1 − g − gM . We rescale the protein concentrations
so that A = √

γ+/ρA[A], B = √
γ+/ρA[B], AB = √

γ+/ρA[A :
B], r = √

γ+/ρA[rb] to obtain

ṙ = ρ0g + ρ1(1 − g − gM ) + ρ2gM − r, (11)

Ȧ = 1

δ
(1 − A · B) − daA + K̃d AB

+μθ̃1

(
(1 − g − gM ) − g

A

A0

)
, (12)

Ḃ = 1

δ
(r − A · B) − dbB + K̃d AB, (13)

ȦB = A · B

δ
− dABAB. (14)

Altogether, the IT-MFL model consists of the six
dynamic variables g, gM , r, A, B, AB that evolve according to
Eqs. (9) to (14) and 13 dimensionless parameters: ρ0 = βρ f

ρAδr
,
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ρ1 = βρb

ρAδr
, θ̃1 = θ1

δr
, δ = δr√

ρAγ+
, da = δA

δr
, db = δB

δr
, dAB = δAB

δr
,

μ =
√

γ+
ρA

, A0 = θ
α

√
γ+
ρA

, K̃d = Kd γ+
δr

, α̃2 = α2
δr

, θ̃2 = θ2
δr

, and

ρ2 = βρM

ρAδr
. The last three parameters are new to the IT-MFL

model. We will be most interested in the transcription rates
ρ0, ρ1, ρ2, the methylation and demethylation rates α̃2, θ̃2, and
the timescale ratio δ. Aside from the nonlinearity introduced
by the sequestration of A by B, the dynamics of the MFL and
IT-MFL models are linear. This weak nonlinearity has made
the MFL model attractive for stochastic extensions [25].

III. ANALYSIS

All results in this section which depend on the assumption
that the new promoter state is intermediate (ρ0 < ρ2 < ρ1)
will say so explicitly. Our aim is to determine how the inter-
mediate promoter state affects the stability and period of the
IT-MFL model. Building on the work of François and Hakim,
we begin by expanding the system perturbatively in δ. This
reveals that in the small δ regime, the behavior of the MFL
and IT-MFL models are qualitatively similar provided that

ρ0 < ρ2 < ρ1. (15)

Notice that Eq. (15) is equivalent to the requirement ρ f <

ρM < ρb because all three transcription rates were rescaled
by a factor of β/ρAδr to arrive at the dimensionless rates.
Expressions of the form 1 < ρ1 and ρ0 < 1 appear later in this
section. Such conditions are naturally interpreted as timescale
separations when written in terms of dimensionful parame-
ters. For instance, ρ0 < 1 is equivalent to βρ f /δR < ρA and
the second expression is easily interpreted as a comparison
between the timescales of B production and A production.

In the later part of this section, we focus on the circadian
setting and explicitly show how the Kim-Forger model can be
derived from the IT-MFL model. We also relax an assump-
tion commonly employed in this derivation and explore the
consequences of this choice. In its reduced form, the IT-MFL
model is a monotone cyclic feedback system and therefore
obeys a generalization of the Poincaré-Bendixson theorem in
this regime. This structure plays a key role in our bifurcation
analysis of the reduced model. Using parametric sensitivity
analysis, we show that, although the period is not particularly
sensitive to the methylation parameters, they do play a non-
trivial role in determining the sensitivity of the period to the
other parameters in the model. In general, the period becomes
most sensitive as the model approaches a Hopf bifurcation
rendering its equilibrium stable.

A. Equilibrium uniqueness conditions

The assumption that A is an activator (ρ0 < ρ1) eliminates
the possibility for multistability in the MFL model. François
and Hakim showed this by reducing the equilibrium equa-
tions of the MFL model to

1 = δdaA + A(ρ1A + ρ0A0)

(A + A0)(A + δdb)
. (16)

The right-hand side of Eq. (16) vanishes when A = 0, tends
to infinity as A → ∞, and is monotonic in A when ρ0 < ρ1. It
follows that there is a unique nonnegative value of A that sat-

isfies Eq. (16) and determines the steady state of the system.
A similar property is true of the IT-MFL model. We find that
at steady state, Eqs. (9) to (14) reduce to

1 = δdaA +
A
(
1 − K̃2

d

d2
AB

)[
ρ1A + (

ρ0 + ρ2α̃2

θ̃2

)
A0

]
[
A + A0

(
1 + α̃2

θ̃2

)][
A + δdb

(
1 + K̃d

dAB

)] . (17)

Note that Eq. (16) is recovered from Eq. (17) in the limit
of no methylation ( α̃2

θ̃2
→ 0) and tight activator-target binding

(K̃d → 0). If we assume the additional promoter state has an
intermediate transcription rate (ρ0 < ρ2 < ρ1) then the right-
hand side of Eq. (17) is monotonic in A and there remains
a unique nonnegative solution to the system’s equilibrium
equation.

When the conditions for a unique nonnegative equilibrium
are not satisfied, one can proceed algebraically or pertur-
batively. The algebraic approach taken by Nagy produces a
closed-form parametrization of the boundary between unique
and multiple equilibria in the parameter space of the MFL
model [26,27]. Although this approach still applies to the
IT-MFL model, the expressions are more cumbersome and do
not give much intuition on differences in the stability bound-
ary in the two models. On the other hand, the perturbative
approach taken by François and Hakim is informative when
applied to the IT-MFL model. Observe that Eq. (17) can be
expanded perturbatively in δ. Using the method of dominant
balance [28], we find that A may take low, medium, or high
steady-state values

A1 := δ
db

(
1 + α̃2

θ̃2

)(
1 + K̃d

dAB

)
ρ0 − 1 + α̃2

θ̃2
(ρ2 − 1)

+ O(δ2), (18)

A2 :=
A0

(
ρ0 − 1 + α̃2

θ̃2
(ρ2 − 1)

)
1 − ρ1

+ O(δ), (19)

A3 := 1 − ρ1

δda
+ O(1), (20)

respectively.
Remark 1. If ρ0 < ρ2 < ρ1 then exactly one of the steady

states given in Eqs. (18) to (20) will be nonnegative at domi-
nant order. In the particular case where ρ0 < 1 < ρ2, it cannot
be determined a priori which of the three steady states is
nonnegative at dominant order.

Remark 1 clarifies how the existence of three steady states
relates to the monostability condition ρ0 < ρ2 < ρ1. See the
Supplemental Material at [29] for further details and a proof
of Remark 1. Also, note that the equilibrium solutions in
Eqs. (18) to (20) reduce to those found by François and Hakim
in the no methylation and tight activator-target binding limit
(K̃d → 0). The ratio α̃2/θ̃2 = α2/θ2 appearing in Eqs. (18)
to (20) is the equilibrium constant of the methylation reaction.
We denote this value by K2 and note that a larger value of
K2 corresponds to a stronger presence of methylation in the
model. Some intuition can be gained by examining how the
steady-state activator concentrations depend on K2. As might
be expected, ρ1 is the only transcription rate that influences
the high-A steady state A3. The remaining parameters in
Eq. (18) compare timescales of A production to timescales of
B production, but indeed these are independent of methyla-
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TABLE I. Steady states and eigenvalues corresponding to the linearization of the MFL and IT-MFL models at the Aeq = A2 steady state. ωi

denotes the ith cubic root of unity for i = 1, 2, 3. The additional eigenvalues in the IT-MFL model will be negative provided that ρ0 < ρ2 � ρ1.

Steady state Eigenvalues

MFL

gMFL
eq = A0

Aeq + A0

BMFL
eq = ρ1Aeq + ρ0A0

(Aeq + A0)(Aeq + δdb)

λMFL
i = −ωi

(
θ̃1gMFL

eq Aeq(ρ1 − ρ0)

δA0

(
Aeq + BMFL

eq

)
) 1

3

+ O(1)

λMFL
4 = −(

Aeq + BMFL
eq

)
δ

+ O(1)

IT-MFL

gIT-MFL
eq = A0

Aeq + A0

(
1 + α̃2

θ̃2

)

BIT-MFL
eq =

(
1 + K̃d

dAB

)[
ρ1Aeq + (

ρ0 + ρ2 α̃2
θ̃2

)
A0

]
[
Aeq + A0

(
1 + α̃2

θ̃2

)][
Aeq + δdb

(
1 + K̃d

dAB

)]

λIT-MFL
i = −ωi

(
θ̃1gIT-MFL

eq Aeq(ρ1 − ρ0)

δA0

(
Aeq + BIT-MFL

eq

)
) 1

3

+ O(1)

λIT-MFL
4 = −(

Aeq + BIT-MFL
eq

)
δ

+ O(1)

λIT-MFL
5 =

(
1 + α̃2

θ̃2

)
ρ1 − (

ρ0 + α̃2
θ̃2

ρ2

)
1
θ̃2

(ρ0 − ρ1)
+ O(δ)

λIT-MFL
6 = −dAB + O(δ)

tion. The low and medium steady-state concentrations (A1 and
A2), on the other hand, are influenced by methylation. Under
the standard assumption that the methylated promoter state
has an intermediate transcription rate (ρ2 < ρ1), one finds
that the lowest steady-state (A1) is decreasing as a function
of K2. The case for A2 is similar, except one requires instead
that (1 − ρ2)/(ρ1 − 1) > 0, or equivalently ρ2 < 1 < ρ1. The
interpretation of such expressions in terms of dimensionful
parameters is discussed in the next section. One might expect
that the incorporation of methylation in the model could result
in a lower concentration of the target protein (B) in the system,
hence less sequestration, and therefore more free activator.
Our analysis reveals that the opposite is true under reasonable
conditions on the parameters.

B. Linear stability analysis

We now focus on the case where A is an activator and
the new promoter state is intermediate (ρ0 < ρ2 < ρ1). From
the previous section, we know there is a unique nonnegative
equilibrium Aeq = A2 in this case. We use the subscript “eq”
to refer to the steady-state value of a dynamic variable cor-
responding to the equilibrium A(t ) = Aeq. When linearized at
Aeq, we see in Table I that the dominant-order terms in the
eigenvalues of the MFL and IT-MFL models are most easily
compared when expressed in terms of the g and B steady
states. The first row of Table I summarizes the findings of
François and Hakim and the second row contains our exten-
sion of their calculations. Both models possess eigenvalues
proportional to each of the cubic roots of unity, along with an
eigenvalue λ4 which is stable for all parameter values.

Two additional eigenvalues are present in the the IT-MFL
model. Under the assumption that ρ0 < ρ2 � ρ1, we can show
the λIT-MFL

5 eigenvalue is stable at dominant order.
Proposition 1. If ρ0 < ρ2 � ρ1 then λIT-MFL

5 < 0 to domi-
nant order as δ → 0.

See the Supplemental Material at [29] for a proof of Propo-
sition 1. The other new eigenvalue λIT-MFL

6 is always stable
to dominant order since dAB � 0. We see that the qualita-

tive behavior (the linear stability and number of nonnegative
equilibria) is similar between the MFL and IT-MFL models
provided that ρ0 < ρ2 < ρ1. A natural extension of this work
would be to see if this phenomenon persists in n-promoter
state models.

C. Period estimation

Oscillatory solutions of the MFL model oscillate between
phases of high-A–low-B and low-A–high-B concentration.
Such phases are referred to as Phases I and II of the limit cycle,
respectively. The boundary layer structure of these oscillations
(schematized in Fig. 2) is crucial for François and Hakim’s
original estimates of the model’s period. The numerical simu-
lations in Fig. 3 show it is possible to change the period of the
IT-MFL model by only altering the methylation parameters.
To analyze such solutions, we use the same technique as
François and Hakim. We make a change of variable A → δa
for the Phase I of the limit cycle and B → δb for Phase II.
Following this substitution, we approximate the governing
equations to lowest nontrivial order in δ. In this approxima-
tion, some variables are left in the steady state and others
obey linear differential equations. The steady-state values and
linear equations for each of the two phases are summarized
in the first two rows of Table II. Imposing continuity of
the solution across the boundary layers, depicted in Fig. 2,
produces a system of nonlinear equations that determines
the constants of integration and the durations of each phase.
For both models, the system of nonlinear equations can be
separated into boundary conditions and a closed system of
equations implicitly determining the period. These systems
are listed in the third and fourth rows of Table II.

When the influence of the smaller boundary layers are
included, the O(δ0) period estimate is improved to an O(

√
δ)

estimate. These corrections result in updated boundary con-
ditions and an updated system of nonlinear equations, given
in the final two rows of Table II. Comparing the O(δ0) and
O(

√
δ) estimates, we see that the only change in boundary

conditions is for the gII (t ) solution and the only change in
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TABLE II. Summary of the nonlinear equations derived in the lowest-order and dominant-order period estimates. Phases I and II of the
oscillations are defined in Fig. 2 and shown for a nominal simulation in Fig. 3. The rescaled variables are given by a := δA and b := δB and
the parameters κ1 := θ̃1(1−r1 )

2A0δ
and g1 := 1 − e−θ̃1t2 .

MFL IT-MFL

Phase I

g = δA0

a

B = δr

a

ṙ = ρ1 − r

ȧ = 1 − r − daa

g = δA0

a

[
1 −

(
1 − θ̃2

θ̃1

)
gM

]

B = δr0

a

ġM = −θ̃2gM

ṙ = ρ1(1 − g − gM ) + gMρ2 − r

ȧ = 1 − r − daa

Phase II

A = δ

b

ġ = θ̃1(1 − g)

ṙ = ρ0g + ρ1(1 − g) − r

ḃ = r − 1 − dbb

A = δ

b

ġ = θ̃1

(
1 − g − gM + θ̃2

θ̃1
gM

)
− α̃2g

ġM = α̃2g − θ̃2gM

ṙ = ρ0g + ρ1(1 − g − gM ) + gMρ2 − r

ḃ = r − 1 − bdb

Boundary conditions O(δ0 ) estimate

rI (0) = r1, aI (0) = 0,

gII (0) = 0, rII (0) = r2,

bII (0) = 0

rI (0) = r1, aI (0) = 0, gM,I (0) = gM1,

gII (0) = 0, gM,II (0) = gM2, rII (0) = r2,

bII (0) = 0

O(δ0 ) Estimate
rI (t1) = r2, aI (t1) = 0,

rII (t2) = r1, bII (t2) = 0

rI (t1) = r2, aI (t1) = 0, gM,I (t1) = gM2,

rII (t2) = r1, bII (t2) = 0, gM,II (t2) = gM1

Boundary conditions O(
√

δ) estimate

rI (0) = r1, aI (0) = 0,

gII (0) =
√

πA0θ̃1δ

2(r2 − 1)
, rII (0) = r2,

bII (0) = 0

rI (0) = r1, aI (0) = 0, gM,I (0) = gM1,

gII (0) = (θ̃1 + (θ̃2 − θ̃1)gM2 )

√
πA0δ

2θ̃1(r2 − 1)
,

gM,II (0) = gM2, rII (0) = r2,

bII (0) = 0

O(
√

δ) Estimate

rI (t1) = r2, aI (t1) = 0,

rII (t2) = r1 + g1(ρ1 − ρ0)
√

π

4κ1
,

bII (t2) = 0

rI (t1) = r2, aI (t1) = 0, gM,I (t1) = gM2,

rII (t2) = r1 + g1(ρ1 − ρ0)
√

π

4κ1
,

bII (t2) = 0, gM,II (t2) = gM1

the period equations is for rII (t ). Even in the case of the
O(δ0) estimate in the MFL model, the system of implicit
equations given in Table II cannot be solved exactly. Figure 4
shows a strong agreement between a fully numerical simu-
lation and a numerical solution of the nonlinear system of
equations from Table II.

Continuing to follow the methodology of François and
Hakim, we make two additional simplifying assumptions to
obtain approximate expressions for the O(δ0) period estimate.
First, we assume the decay rate of B is smaller than the
decay rate of its mRNA. Second, we assume the transcription
rate corresponding to the active promoter state is larger than
the expression rate of A. When expressed in terms of the

model parameters, these two assumptions give us db = 0 and
ρ1 � 1. When db = 0, the expressions for the solutions in
each phase of the limit cycle become much simpler. Under
the assumption ρ1 � 1, it is justifiable to Taylor expand the
system of implicit equations in powers of 1

ρ1
. In addition, it can

be verified by simulation and later confirmed by the approx-
imate formulas in Table III that t1 decreases as ρ1 increases.
This allows us to also Taylor expand the implicit equations in
powers of t1. Table III summarizes the result of Taylor ex-
panding the implicit equations from the O(δ0) estimate from
Table II in powers of 1

ρ1
and t1, and neglecting any terms that

are exponentially small in t2. See the Supplemental Material
at [29] for further details on this calculation. Figure 5 shows
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FIG. 4. Comparison of numerically and asymptotically esti-
mated periods. The period is expressed as a ratio with its limiting
value as δ → 0. Parameters for the intermediate promoter state were
selected so its influence is weak (ρ2 = 0, α̃2 � θ̃2). Parameters:
ρ0 = 0, ρ1 = 10.45, θ̃1 = 1.33, da = 0.33, db = 0.33, μ = 0.31,
A0 = 4, ρ2 = 0, α̃2 = 1.0, θ̃2 = 10.

reasonable agreement between numerical period estimation
and the approximate expressions from Table III. Since we
have Taylor expanded in powers of 1

ρ1
, note that we expect

to see agreement as ρ1 gets large in Fig. 5.
Comparing the MFL and IT-MFL period estimates, it is

immediate that t1 is always larger in the IT-MFL model and
that its contribution to the period vanishes as ρ1 → ∞. Hence
in the large ρ1 limit, the period is approximately equal to t2.
The following two remarks give some interpretation to the
extra terms that appear in the expression for t2 in the case of
the IT-MFL model.

Remark 2. t2 depends linearly on ρ1 with a slope given by

∂tMFL
2

∂ρ1
= 1

θ̃1(1 − ρ0)
, (21)

∂t IT-MFL
2

∂ρ1
= 1

θ̃1
(
1 − ρ0 + α̃2

θ̃2
(1 − ρ2)

)(
1 + α̃2

θ̃2

) . (22)

TABLE III. Limiting value of period estimate for MFL and IT-
MFL models.

Equation MFL IT-MFL

aI (t1) = 0 t1 = 2(1−ρ0 )
ρ1

t1 = 2(1−ρ0 )
ρ1

+ 2(1−ρ2 )
α̃2
θ̃2

ρ1

rI (t1) = r2 r2 = 2 − ρ0 r2 = 2−ρ0+(2−ρ2 )
α̃2
θ̃2

1+ α̃2
θ̃2

rII (t2) = r1 r1 = ρ0 r1 = ρ0+ρ2
α̃2
θ̃2

1+ α̃2
θ̃2

bII (t2) = 0 t2 = 2 + ρ1−ρ0
θ̃1(1−ρ0 )

t2 = 2 + ρ1−ρ0+ α̃2
θ̃2

(ρ1−ρ2 )

θ̃1

(
1−ρ0+(1−ρ2 )

α̃2
θ̃2

)(
1+ α̃2

θ̃2

)

gM,I (t1) = gM2 N/A gM2 = α̃2
α̃2+θ̃2

gM,II (t2) = gM1 N/A gM1 = α̃2
α̃2+θ̃2

FIG. 5. Comparison of numerically estimated period and the lim-
iting values given in Table III. We see t IT-MFL

2 < tMFL
2 when ρ1 is large,

as proved in Remark 2. Simulation parameters: δ = 10−4, ρ0 = 0,
θ̃1 = 1.33, da = 0.3, db = 0, μ = 0.31, A0 = 4, ρ2 = 0.5, α̃2 = 1,
θ̃2 = 1.

In the case that ρ0 < 1 and ρ2 < 1, both tMFL
2 and t IT-MFL

2 are
monotonically increasing in ρ1 with

∂t IT-MFL
2

∂ρ1
� ∂tMFL

2

∂ρ1
. (23)

An expression of the form 1 − ρ0 > 0 may be rewritten
in dimensionful parameters as δrρA > βρ f . So we see the
sign and magnitude of our approximation for the slope are
determined by how the timescales of activator and target pro-
duction compare to one another. Also note that the right-hand
side of Eq. (22) becomes larger or smaller relative to the corre-
sponding expression in the MFL model in Eq. (21) depending
on if ρ2 < 1 or ρ2 > 1.

In the case where ρ0 < 1 and ρ2 < 1, we obtain a stronger
result where the period of the IT-MFL model is controlled by
the period of the MFL model up to a constant.

Remark 3. If ρ0 < 1, ρ2 < 1, and ρ1 > max(ρ0, ρ2) then

t IT-MFL
2 � tMFL

2 + C, (24)

with C = ρ1−ρ2

θ̃1
min( α̃2

θ̃2(1−ρ0 )
, 1

1−ρ2
).

See the Supplemental Material at [29] for a proof of
Remark 3. One can interpret these results as follows: in
the current approximation, t IT-MFL

2 < tMFL
2 when ρ1 is large

enough by Remark 2, and although we may find tMFL
2 <

t IT-MFL
2 for moderate ρ1, this is controlled by the constant C

given in Remark 3.

D. Relation between the Kim-Forger, Goodwin,
MFL, and IT-MFL models

So far our analysis has been an extension of the original
MFL paper of François and Hakim. We now shift our attention
to the work of Kim and Forger. The Kim-Forger model is a
three-dynamic-variable negative feedback loop with nonlin-
earity introduced by means of a sequestration function [22]

f (P; A, Kd ) = 1
2 (1 − P/A − Kd/A

+
√

(1 − P/A − Kd/A)2 + 4Kd/A), (25)
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with governing equations of the form

dM

dt
= α1 f (P) − β1M, (26)

dPc

dt
= α2M − β2Pc, (27)

dP

dt
= α3Pc − β3P. (28)

Kim and Forger interpret M, Pc, and P as the mRNA, cy-
tosolic, and nuclear concentrations of the target protein PER.
The parameter A in Eq. (25) represents the total concentration
of activator CLOCK-BMAL1 and Kd is the dissociation con-
stant of the activator-target binding reaction. The aim of this
section is to explain how one can start with the MFL model
and arrive at the Kim-Forger model. We also discuss how
the standard assumptions can be relaxed to provide a better
approximation of the IT-MFL model.

In the context of the MFL model, Eqs. (26) to (28) can be
obtained as a consequence of the following assumptions: The
transcription rate corresponding to the inactive promoter state
is zero, the binding of A and B has reached equilibrium (rapid
equilibrium approximation), the total amount of activator Atot

is constant, the transcription rate of P is proportional to the
fraction of unbound activator f = A

Atot
, and finally that the QSS

values of A and the promoter states are decoupled. By adding
nuclear export and import of the target protein to the MFL
model and applying the assumptions listed above, one may
reduce the MFL model to Eqs. (26) to (28). In particular, if
one begins with the full MFL model and follows the reduc-
tion stated above, the following reduced model is obtained as
follows:

d[rb]

dt
= ρbK1gtotAtot f ([Btot]; Atot, Kd ) − δr[rb], (29)

d[Bc]

dt
= β1[rb] − λc[B], (30)

d[Btot]

dt
= β2[rb] − δB[Btot], (31)

in which K1 = α1/θ1 and Kd = γ−/γ+. See the Supplemen-
tal Material at [29] for a detailed derivation of Eqs. (29)
to (31). Notice that under the mapping [rb] → M, [Bc] → Pc,

[Btot] → P, and relabelling of parameters, Eqs. (29) to (31) are
identical with the version of the Kim Forger model stated in
Eqs. (26) to (28). One should be cautious in viewing Eqs. (26)
to (28) [or equivalently Eqs. (29) to (31)] as a reduction of
the MFL model since their derivation requires adding nuclear
import and export to the model, thereby introducing a new
dynamic variable: the cytosolic PER concentration. Naturally,
the same is true of the IT-MFL model when we perform a
similar reduction to obtain Eqs. (37) to (39). We refer to
the reduction of Kim and Forger as “artificially decoupled”
because the steady-state value of [A] in their reduced model
can be obtained by decoupling [A] from the equilibrium of
the promoter states. Our approximation of the IT-MFL model
starts instead with the fully coupled set of equilibrium equa-
tions and produces a cubic equation 
dim([A]qss) = 0 for the
QSS concentration [A]qss, where 
dim is given by


dim([A]) = adim[A]3 + bdim[A]2 + cdim[A] + ddim, (32)

with coefficients

adim = K1, (33)

bdim = 1 + K2 + (gtot + Btot − Atot + Kd )K1, (34)

cdim = (1 + K2)(Btot − Atot + Kd )

+ (gtot − Atot )Kd K1, (35)

ddim = −(1 + K2)AtotKd , (36)

and the equilibrium constants are given by K1 = α1/θ1 and
K2 = α2/θ2, the dissociation constant Kd = γ−/γ+, Atot is
constant by assumption, and Btot = [Btot]. See the Supplemen-
tal Material at [29] for a derivation and analysis of 
dim([A]).
We emphasize that this polynomial is dimensionful because
its dimensionless form, which we denote simply by 
(Ã),
appears in the Supplemental Material. We denote the solution
to 
dim([A]) = 0 by [A]qss and obtain a reduced form of the
IT-MFL model

d[rb]

dt
= ρb[g : A]qss + ρM[g : M]qss − δr[rb], (37)

d[Bc]

dt
= β1[rb] − λc[Bc], (38)

d[Btot]

dt
= β2[Bc] − δB[Btot], (39)

in which [Bc] is the concentration of cytosolic protein and the
promoter states [g : A]qss and [g : M]qss can be expressed in
terms of [A]qss as

[g : A]qss = [A]qssK1gtot

1 + K2 + [A]qssK1
, (40)

[g : M]qss = K2(gtot − [g : A]qss)

1 + K2
. (41)

Of all the assumptions involved in the derivation of Eqs. (37)
to (41), the assumption of [A]tot being constant in time
seems to be the most difficult to verify. Supplemental Fig. 1
shows that the IT-MFL model is well approximated by
Eqs. (37) to (41) provided that [A]tot is close to constant in
time and the other assumptions used in the model reduction
hold true. Following a non-dimensionalization scheme similar
to that of Kim and Forger, we reduce Eqs. (37) to (39) to

dr̃

dτ
= T (B̃tot ) − r̃, (42)

dB̃c

dτ
= r̃ − B̃c, (43)

dB̃tot

dτ
= B̃c − B̃tot, (44)

T (B̃tot ) =
(

Ãqss(B̃tot )K̃1

1 + K2 + Ãqss(B̃tot )K̃1

)(
1− ρK2

1 + K2

)
+ ρK2

1 + K2
.

(45)

in which τ = tδr and [A]qss = B∗Ãqss(B̃tot ). We show in the
Supplemental Material that Ãqss(B̃tot ) is a root of the poly-
nomial 
(Ã) mentioned earlier in this section [29]. The
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dimensionless concentrations r̃, B̃c, B̃ satisfy

[rb] = r∗
b r̃, [Bc] = B∗

c B̃c, Btot = B∗B̃tot, (46)

with scaling factors

r∗
b = ρbgtot

δr
, B∗

c = β1ρbgtot

δ2
r

, B∗ = β2β1ρbgtot

δ3
r

, (47)

and the dimensionless parameters satisfy

ρ = ρM

ρb
, K2 = α2

θ2
, K̃1 = B∗K1 = B∗ α1

θ1
, (48)

K̃d = Kd

B∗ , Atot = B∗Ãtot, gtot = B∗g̃tot. (49)

To reduce the number of parameters in the dimensionless
model, we also assumed all degradation rates are equal (δr =
λc = δB). In a sense that is made precise in the work of
Forger [30], the assumption of equal degradation rates maxi-
mizes the likelihood of periodic behavior in the system. Since
our analysis in the next section is concerned with the situation
where oscillations cease to exist, we believe this to be a
reasonable simplification. Written in its dimensionless form,
our reduction of the IT-MFL model contains three dynamic
variables r̃, B̃c, and B̃tot which evolve according to Eqs. (42)
to (45) and six parameters Ãtot, g̃tot, K̃d , ρ, K̃1, and K2.

E. Stability and period sensitivity in the reduced IT-MFL model

When the Kim-Forger model is non-dimensionalized using
the same procedure as the reduced IT-MFL model, given in
Eqs. (46) to (49), a factor of K̃1Ãtot remains in front of the tran-
scription function f (B̃tot ). As shown in Fig. 6, this factor can
have a substantial effect on the transcription function. Figure 6
also shows that even in the absence of methylation effects,
there are substantial differences in the transcription functions
of these two models. Importantly, the monotonicity of f (B̃tot )
which is crucial to the analysis of Kim and Forger appears
to be preserved when one switches from f (B̃tot ) to T (B̃tot )
in Fig. 6. Under some conditions given in the Supplemental
Material, we prove that this is indeed the case [29]. Assuming
these conditions hold true, it follows from the monotonicity of
T (B̃tot ) that there is a unique nonnegative equilibrium solution
to Eqs. (42) to (45). Moreover, we show in the Supplemental
Material that the monotonicity conditions also ensure non-
negative solutions to Eqs. (42) to (45) are bounded. This
implies that the reduced IT-MFL model constitutes a bounded
monotone cyclic feedback (MCF) system, so any solution
must converge to static equilibrium, a nonconstant periodic
solution, or a combination of homoclinic and heteroclinic
orbits connecting the previous two types of equilibria. This is
a consequence of Mallet-Paret and Smith’s generalization of
the Poincaré-Bendixson theorem to MCF systems [31]. MCF
systems are capable of bistability, for example, the coexis-
tence of a stable equilibrium and a stable periodic solution.
The top panel of Fig. 7 shows that the reduced IT-MFL model
can display such behavior. Bistability can be eliminated by in-
troducing a moderate amount of methylation into the system,
as in the bottom panel of Fig. 7.

To better understand the qualitative influence of methy-
lation in the reduced model, we fix parameters Ãtot, K̃d ,
and g̃tot, and numerically compute the location of any

FIG. 6. Comparison of the transcription functions in the dimen-
sionless Kim-Forger and reduced IT-MFL models. The analysis of
Kim and Forger shows that f (B̃tot ) has a knee at the value B̃tot = Ãtot,
indicated on the B̃tot axis. (Top panel) Ãtot is an order of magnitude
larger than g̃tot. As the equilibrium constant K̃1 is varied, the tran-
scription function T (B̃tot ) of the reduced IT-MFL model becomes
increasingly nonlinear. (Bottom panel) The transcription function in
the reduced IT-MFL model resembles a piecewise affine function
when g̃tot and Ãtot are equal. Null methylation parameters were used
in both plots (ρ = 0 = K2) so any difference between the transcrip-
tion functions should be attributed to the relaxation of Kim and
Forger’s quasi-steady-state assumption. Parameters: Ãtot = 2.20 ×
10−2, K̃d = 10−5, ρ = K2 = 0. In the top panel g̃tot = 2.20 × 10−3

and in the bottom g̃tot = 2.20 × 10−2.

Hopf bifurcations in the methylation parameters ρ and K2.
We use pseudoarclength continuation [32] of the equa-
tions 
(Ãqss) = 0, T (Btot ) = Btot (condition for equilibrium),
and − 1

2
3
√

T ′(Btot ) − 1 = 0 (complex conjugate pair of eigen-
values of the equilibrium’s linearization are crossing the
imaginary axis) in the unknowns Ãqss, Btot, ρ, and K2. The
value of K̃1 is varied from 10−1 to 103 and the result is
shown in Fig. 8. These Hopf bifurcations are confirmed to
be supercritical by numerically evaluating the first Lyapunov
coefficient [33]. Therefore, to the left of each curve, there
is a stable periodic solution and an unstable equilibrium. To
the right of each curve, there is a single stable equilibrium.
Notice the Hopf bifurcation curve disappears for K̃1 below a
specific value (11.6 for the parameters in Fig. 8) as K2 → 0.
Also, the reduced IT-MFL exhibits oscillations for sufficiently
high K̃1 and for sufficiently low methylation parameters ρ

and K2. These findings do not contradict Fig. 7 because they
use different parameters. Repeating the calculations shown
in Fig. 8 with the parameters of Fig. 7, we find the Hopf
bifurcations could be subcritical or supercritical depending on
the value of K̃1, consistent with our observation of bistability.
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FIG. 7. Methylation can remove bistability from the reduced
IT-MFL model. The reduced IT-MFL model was simulated with ini-
tial conditions of the form σ B̃tot,eq = r̃b(0) = B̃c(0) = B̃tot(0) where
B̃tot,eq is the equilibrium value of B̃tot and σ takes 11 uniform val-
ues in [1.01,2]. (Top) After an initial transient, solutions settle to
either periodic or constant trajectories. (Bottom) All solutions settle
to periodic trajectories due to the moderate amount of methyla-
tion. Parameters: Ãtot = 10−3, K̃d = 10−6.75, K̃1 = 103, g̃tot = 10−4,
ρ = 0. K2 = 0 in the top panel and K2 = 0.12 in the bottom panel.

The influence of the methylation parameters on the loca-
tion of the Hopf bifurcation can also be observed when one
performs parametric sensitivity analysis on the period. We
use a method of sensitivity analysis intended for oscillating
systems [34] which avoids some of the numerical difficulties
encountered when studying period sensitivity. The sensitivi-
ties of the period with respect to Ãtot and K2 are shown in

FIG. 8. Each grayscale colored curve corresponds to a Hopf
bifurcation in ρ, K2. The color gives the value of K̃1. Using the
Lyapunov coefficient, we find these bifurcations are supercritical. To
the left of each curve there is a stable periodic solution and to the
right there is a single stable equilibrium. The other parameters are
Ãtot = 1.31 × 10−1, g̃tot = 1.31 × 10−2, K̃d = 10−5. This shows that
methylation can make the clock arrhythmic. Hopf bifurcations do not
occur for K̃1 below approximately 11.6 as the bifurcation value of K2

goes to zero.

FIG. 9. Numerically computed period sensitivities. S(t̂, p) :=
p
t̂

∂ t̂
∂ p denotes the sensitivity of the period t̂ with respect to a parameter

p, with p = Ãtot in the top panel and p = K2 in the bottom panel.
The dimensionless transcription rate ρ was varied uniformly from
0 to 1 and this is represented by the transparency of each sensitiv-
ity curve. In general, the sensitivities of the period grow as K2 is
increased and the fixed point becomes stable, rendering the model ar-
rhythmic. Simulation parameters Ãtot = 7 × 10−2, K̃d = 10−6, K̃1 =
103, g̃tot = 10−3.

Fig. 9. We see that variations in the methylation parameters ρ

and K2 affect the sensitivity of the period with respect to other
parameters in the model and these changes are most dramatic
as the sensitivities diverge in the neighborhood of the Hopf
bifurcation. Since it would be risky for a biological clock
to operate close to a Hopf bifurcation and the sensitivities
are relatively unaffected by the methylation parameters away
from the Hopf bifurcation, we see that the period is robust
to changes in the methylation parameters. As in Fig. 8, where
higher ρ values cause the bifurcation to occur for lower values
of K2, Fig. 9 shows that higher values of ρ cause the sensitivity
curves to diverge for lower K2. One could interpret this finding
as saying that lower ρ values allow the model to tolerate more
methylation (larger K2 value) before becoming arrhythmic.

F. Transcription function in the no-methylation limit

In this section we explore the extent to which the influ-
ence of methylation in the reduced IT-MFL model can be
reproduced in the no-methylation limit (K2 = 0 = ρ). We
investigate this by adjusting the transcription rate ρ f of the in-
active promoter state. To make this comparison, we altered our
derivation of the reduced IT-MFL model to allow a nonzero
value of ρ f . This results in the transcription function

T (B̃tot ) =
(

Ãqss(B̃tot )K̃1

1 + K2 + Ãqss(B̃tot )K̃1

)(
1 − ρ ′ − (ρ − ρ ′)K2

1 + K2

)

+ (ρ − ρ ′)K2

1 + K2
+ ρ ′, (50)

in which ρ ′ = ρ f /ρb, and Eqs. (42) to (44) remain other-
wise unchanged. We used numerical optimization to find

034411-10



PROMOTER METHYLATION IN A MIXED FEEDBACK LOOP … PHYSICAL REVIEW E 105, 034411 (2022)

FIG. 10. Varying ρ ′ does not compensate for the effects of
methylation, but it is possible to compensate for these effects by
varying both ρ ′ and K̃1. (Top left) The transcription function of
the reduced IT-MFL model with methylation is shown in blue, and
the dashed black line shows the best approximation under the con-
straint that K2 = 0 = ρ, ρ ′ ∈ [0, 1], and all other parameters are
fixed. Transcription functions with ρ ′ ∈ [0, 1] and K2 = 0 = ρ are
shown in gray, with darker lines representing higher levels of ρ ′.
(Top right) When only ρ ′ is allowed to vary, there is a qualitative
difference between the dynamics produced by the methylated tran-
scription function shown in blue, and those produced by the best
approximation shown with the dashed black line. (Bottom left) By
allowing both ρ ′ and K̃1 to vary, we obtain a good approximation
of the methylated transcription function (bottom right) and good
agreement in their trajectories B̃tot(t ). Fixed parameters: K̃d = 10−7,
Ãtot = 7 × 10−2, g̃tot = 10−2. In the methylated case, ρ ′ = 0, ρ =
3 × 10−2, K2 = 3 × 102 and in the unmethylated case ρ = K2 = 0
and ρ ′ ∈ [0, 1]. In the top row K̃1 = 3 × 105 and in the bottom row
K̃1 was optimized over the interval [10−5, 107] and an optimal value
of K̃1 ≈ 103 was found. Transcription functions were optimized in
the L∞ norm; similar results were obtained using the L2 norm.

the best approximation of the transcription function in the
no-methylation limit and then assessed the quality of the ap-
proximation by comparing the limit-cycle trajectory B̃tot(t ).
Since ρb is held constant and only the dimensionless ratio
ρ ′ = ρ f /ρb affects the dynamics, we varied ρ ′ instead of ρ f .
Figure 10 confirms that the influence of methylation on the
model cannot be reproduced by altering the value ρ ′ alone.
By comparing a variety of methylation levels, we find this
difference was most pronounced for high values of K2 and
low values of ρ. This is to be expected since K2 must be large
for methylation to have a nontrivial effect, and a higher value
of ρ translates the transcription function upward, making it
easier to approximate the function by simply increasing ρ ′. A
much better approximation can be found by varying K̃1 and ρ ′
simultaneously, as shown in the bottom two panels of Fig. 10.

The results of Fig. 10 suggest that methylation allows
the system to operate with an effectively lowered value of
K̃1. In other words, methylation may be a mechanism for
the clock to tune the value of K̃1 which is crucial for gen-
erating the nonlinearity necessary for oscillatory behavior.
Since the equilibrium constants K̃1 and K2 are regulated

by a variety of factors, some of which may be shared, it
is difficult to argue that K2 is more easily modified than
K̃1 in a real organism. At the same time, there is substan-
tial experimental evidence that points to the integral role of
methylation in the circadian clock [35]. Certainly our model
is a vast simplification of this reality, however, it is positive
to see that the influence of methylation in our model is more
complex than a mere vertical translation of the transcription
function.

IV. DISCUSSION

We introduced and analyzed a mathematical model of a
mixed feedback loop with an intermediate promoter state. By
extending the perturbative analysis of François and Hakim,
we found that the uniqueness and stability of its equilibrium
solution were preserved provided that the transcription rate
of the new promoter state was between the inactive and ac-
tive transcription rates. Under some additional restrictions
on the parameters, we derived leading-order estimates for
the period in the IT-MFL model as well as bounds for the
difference in period between the MFL and IT-MFL models.
Following our perturbative analysis, we used a different set
of assumptions on the parameters to show how a modified
Goodwin oscillator model, previously studied by Kim and
Forger, can be obtained as an approximation of the IT-MFL
model. Working in a generalization of this approximation, we
found that, although methylation influences the period and its
sensitivity to other parameters in the reduced IT-MFL model,
excessive methylation can remove oscillations from the sys-
tem. We also identified a parameter set where oscillations
were lost upon the removal of methylation and could not be
restored by varying ρ ′ alone. Since the assumptions for the re-
duced IT-MFL model are more general than those used in our
derivation of the Kim-Forger model, we believe a systematic
comparison of these two models viewed as approximations of
the full IT-MFL model would be a valuable contribution to the
literature.

Our perturbative analysis produced sufficient conditions,
such as the requirement that ρ2 < ρ1, for controlling the
IT-MFL model by the MFL model. For instance, the pe-
riod estimates, monostability conditions, and linear stability
of the IT-MFL model could all be phrased in terms of the
corresponding behavior in the MFL model. In future work,
one could test if inequalities of the form ρi < ρ1 allow for
similar estimates when one generalizes to an n-promoter state
mixed feedback loop model. In addition, incorporating DNA
methylation machineries, namely DNA methyltransferases
(DNMTs) and Ten-eleven translocation enzymes (TETs), as
well as cellular states that influence DNA modifications (e.g.,
development, aging, or even cancer) may provide a better
representation of biological reality. These features may intro-
duce sufficient nonlinearity for the model to stay rhythmic
at higher methylation levels, allowing methylation to play
a greater role in controlling the periodic behavior [36]. Al-
though such a model would likely be too detailed for the type
of analysis we used here, we hope our results will provide a
useful starting point for analyzing such an extension. Future
work will attempt to explore the role of oscillatory patterns in
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DNA modifications seen in cell fate determination, aging, and
disease [1,2].

Molecular noise is another biologically important fac-
tor [37,38] which could be studied in future work. The recent
work of Karapetyan and Buchler on a stochastic general-
ization of the MFL model [25] and the work of Wang and
Peskin on the effects of molecular noise on entrainment in
an MFL model of the circadian clock [20] provide useful
starting points for extending our analysis to the stochastic
setting. More generally, several stochastic models of methy-
lation [39–41] and histone [42–44] dynamics, as well as
biophysical epigenetic models [45,46] have appeared in re-
cent years. As it becomes more common practice to include
epigenetic effects in gene regulatory network models, see,
for example, [47–50], we anticipate the detailed stand-alone
models of epigenetic dynamics will come to be useful in

gene regulatory network models. It has been argued that the
incorporation of epigenetic factors in mathematical models of
gene regulatory networks is one of the most important chal-
lenges in the development of large-scale predictive models
of postembryonic systems [51]. As these models come into
existence, we expect studies of reduced models will continue
to provide unique insights into the intricate machinery of
regulated gene expression, unavailable through detailed model
simulation alone.
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