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White-noise-induced double coherence resonances in reduced
Hodgkin-Huxley neuron model near subcritical Hopf bifurcation
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Coherence resonance (CR) describes a counterintuitive phenomenon in which the optimal oscillatory re-
sponses in nonlinear systems are shaped by a suitable noise amplitude. This phenomenon has been observed
in neural systems. In this research, the generation of double coherence resonances (DCRs) due to white noise is
investigated in a three-dimensional reduced Hodgkin-Huxley neuron model with multiple-timescale feature. We
show that additive white noise can induce DCRs from the resting state near a subcritical Hopf bifurcation. The
appearance of DCRs is related to the changes of the firing pattern aroused by the increases of the noise amplitude.
The underlying dynamical mechanisms for the appearance of the DCRs and the changes of the firing pattern are
interpreted using the phase space analysis and the dynamics of the stable focus-node near the subcritical Hopf
bifurcation. We find that the multiple-timescale dynamics is essential for generating the DCRs and different
firing patterns. The results not only present a case in which noise can induce DCRs near a Hopf bifurcation
but also provide its dynamical mechanism, which enriches the phenomena in nonlinear dynamics and provides
further understanding on the roles of noise in neural systems with multiple-timescale feature.
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I. INTRODUCTION

Noise is ubiquitous in real-world systems and usually
produces undesirable disturbances or fluctuations [1]. In con-
trast to the undesirable effects, it has been demonstrated
that noise can play constructive roles in nonlinear systems,
where stochastic resonance or coherence resonance (CR) is
the classic phenomenon [2–5]. Suitable noise intensity can
enhance the sensitivity of a system to weak external stimu-
lation [5], and optimal noise intensity can induce a coherent
oscillatory response [3,4]. Stochastic resonance and CR have
been found in distinct systems such as the laser systems [6],
quantum systems [7], chemical systems [8], and thermoacous-
tic systems [9], especially in the neuronal systems. In the
neuronal systems, both phenomena have been identified in
various neurons, including cat visual neurons, cricket cercal
sensory neurons, and human muscle spindles [10,11]. Due to
the positive roles of noise, stochastic resonance or CR [12]
has been applied in the field of biomedical applications such
as the enhancement of lower-limb cutaneous reflex responses
and vestibulospinal reflexes, the improvement of sensorimotor
control, and perceptual decision-making [13–15]. This shows
that it is essential to study stochastic resonance or CR for
understanding their roles and the underlying mechanisms.

CR has been extensively studied in the neuronal sys-
tems, including neuronal networks not just single neurons.
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Researchers have focused on the intrinsic characteristics of
single neurons and the features of neuronal networks to better
understand the generation mechanisms. In single neurons,
the generation mechanisms of the CR aroused by various
noises in neuronal models with different bifurcation points
have been studied, such as the white noise in spiking neuron
models including the classic Hodgkin–Huxley (HH) [16,17],
Morris–Lecar [18], and Fitzhugh–Nagumo [4,19–22] neu-
ron models and white noise, Ornstein–Uhlenbeck noise, and
quasimonochromatic noise in bursting neuron models [23–26]
such as the Hindmarsh–Rose neuron model [27]. Different
bifurcations in these neuron models signify the different gen-
eration mechanisms of the CR. In neuronal networks, the
coupling strength, network structure, synaptic types, and time
delay are used to investigate the influence on CR [7,28–34].
For instance, the CR can be enhanced as the coupling strength
or time delay increases [35,36]. The degree of coherence
response can be enhanced by adding shortcut links in a small-
world network [37].

In most research results, only one CR in neuronal systems
is aroused as noise intensity increases. For example, a single
CR is induced by white noise from the resting state near the
Hopf bifurcation [4,6,16,20,38] or the saddle node bifurcation
of the limit cycles [16,18,39–41] or near the bursting state
[26]. In contrast to single CR, DCRs can be induced by
noise when neuron models with different dynamical charac-
teristics or other types of noise are considered. For example,
phase noise can induce DCRs in single neuron models near
the Hopf bifurcation [42–44]. DCRs in the Rulkov discrete
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model are evoked from subthreshold oscillations by addictive
or multiplicative noises [45]. Doubly stochastic coherence
is observable in Fitzhugh–Nagumo neuron model with both
additive noise and multiplicative noise [46,48]. DCRs are also
observable when inhibitory or excitatory correlated stimuli is
considered [49]. In addition, other factors of neuronal sys-
tems such as synaptic characteristics and the properties of the
network can evoke CR or multiple CRs [50]. For example,
multiple CRs appear in neuronal networks with the increase
of the time delay in synapses or autapses [17,21,35,51–53].
In addition to a noise-induced CR, with the help of noise, CR
can also be induced by increasing the connection probability
of nearby layers in feedforward networks [54].

In this research, the effect of white noise on CR in a
reduced HH neuron model is studied near a subcritical Hopf
bifurcation. We find that DCRs are aroused from the resting
state near the subcritical Hopf bifurcation as the noise ampli-
tude increases, which is different from the previous results that
white noise induces a CR near a Hopf bifurcation in single
neuron models [4,6,16,20,38] and the appearance of DCRs
requires multiple external stimuli such as simultaneous pres-
ence of additive noise and multiplicative noise [46–49]. These
results not only enrich the phenomena of nonlinear dynamics
but also present a different understanding about the roles of
noise in neural systems. In addition, we find that the changes
of the firing patterns have a relationship with the transition
of the DCRs. Based on the multiple-timescale dynamics of
the reduced HH neuron model and the dynamics of stable
focus-node near the Hopf bifurcation, the underlying dynam-
ical mechanisms for the changes of firing patterns induced
by noise are investigated to interpret the DCR phenomena.
Specifically, with the fluctuation of weak noise, the trajectory
near the stable focus-node rotates multiple times to form small
amplitude oscillations, and the trajectory crosses over the
threshold surface near the focus-node to form a spike, i.e.,
mixed-mode oscillations (MMOs) that consist of alternation
between a spike and multiple small amplitude oscillations
are induced, hereafter referred to as class 1 MMOs. With
the increase of the noise amplitude, the firing pattern of the
class 1 MMOs becomes more regular due to the decrease
of interspike intervals (ISIs). For a larger noise amplitude,
some trajectories can cross over the threshold surface far
away from the stable focus-node to form a cluster of spikes.
MMOs that are random alternation of a spike, a cluster of
spikes, and multiple small amplitude oscillations, are gener-
ated. These MMOs are called class 2 MMOs in this paper.
In other words, class 2 MMOs are composed of successive
spiking and class 1 MMOs. The random appearance of suc-
cessive spiking destroys the coherence of the firing pattern
of the class 1 MMOs. With the further increase of the noise
amplitude, the firing pattern is mainly composed of successive
spiking and returns as a regular mode. For stronger noise,
great fluctuations of the trajectories aroused by the noise result
in the decrease of coherence. Similar results are also observed
in> the classic HH neuron models with multiple-timescale
feature.

The present paper is organized as follows. Deterministic
and stochastic reduced HH models, the methods used in the
paper, and the measurements used to characterize CR are
presented in Sec. II. The results of the effect of white noise

on the CR of the reduced HH neuron model are presented in
Sec. III. Discussions and conclusions are presented in Sec. IV.

II. MODELS, METHODS, AND MEASUREMENTS

A. Deterministic models

The classic HH neuron model first accurately describes the
generation and propagation of action potentials in the giant
axon of a squid and is generally used to study cellular func-
tions such as neural encoding. The classic HH model contains
four variables: membrane potential V , activation variable m
and inactivation variable h of a sodium current, and activation
variable n of a potassium current. The variables V and m
evolve on a fast timescale, and the variables h and n evolve on
a slow timescale. The classic HH neuron model is as follows:

C
dV

dt
= −gNam3

∞h(V − ENa ) − gKn4(V − EK )

− gL(V − EL) + Iapp, (1)

dm

dt
= αm(1 − m) − βm

τm
, (2)

dh

dt
= αh(1 − h) − βh

τh
, (3)

dn

dt
= αn(1 − n) − βn

τn
, (4)

with

αm(V ) = 0.1(V + 40)/{1 − exp[−0.1(V + 40)]},
βm(V ) = 4 exp[−(V + 65)/18],

αh(V ) = 0.07 exp[−(V + 65)/20],

βh(V ) = 1/{1 + exp[−0.1(V + 35)]},
αn(V ) = 0.01(V + 55)/{1 − exp[−0.1(V + 55)]},
βn(V ) = 0.125 exp[−(V + 65)/80].

To make analysis easier, some neuron models modified
from the classic HH neuron model are proposed [56]. A
three-dimensional (3D) reduced model [55] with the steady-
state function m∞(V ) = αm(V )/[αm(V ) + βm(V )] replacing
the fast activation variable m in the classic HH model, is
proposed, as follows:

C
dV

dt
= −gNam3

∞h(V − ENa ) − gKn4(V − EK )

−gL(V − EL) + Iapp, (5)

dh

dt
= αh(1 − h) − βh

τh
, (6)

dn

dt
= αn(1 − n) − βn

τn
. (7)

The parameter values for the 3D HH model are taken from
Ref. [55], and they are as follows: membrane capacitance C =
1.2 μF/cm2, maximum conductance of the sodium current
gNa = 120 mS/cm2, maximum conductance of the potas-
sium current gK = 36 mS/cm2, maximum conductance of the
leak current gL = 0.3 mS/cm2, reversal potential of the
sodium current ENa = 50 mV, reversal potential of the potas-
sium current EK = −77 mV, reversal potential of the leak
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current EL = −54.4 mV, and time constants τh = 6 and τn =
1. Iapp is the applied current. Unless otherwise stated, Iapp =
8 μA/cm2 is selected as an example to present the results.

In addition to the replacement of the activation variable m
by its steady-state function, the time constant τh = 6 used in
this paper is different from the original HH neuron model.
For the original HH neuron model, the time constant τh is 1.
When τh is increased to 6, more complex dynamical behaviors
such as MMOs are observed in the previous studies [55,56],
which is because the time constant τh = 6 assures that the
inactivation variable h evolves more slowly. The difference
between the time constants τh = 1 and τh = 6 leads to that
the dynamics of the 3D HH neuron model is different from
the dynamics of the original HH neuron model. That is, the
slower kinetic of h is responsible for the 3D HH neuron model
to have dynamical properties different from the original HH
neuron model. The 3D HH neuron model has a fast variable V
and two slow variables h and n. In fact, the original HH neuron
model can have the dynamics similar to the 3D HH neuron as
τh increases, which has been demonstrated in Ref. [56]. When
τm = 1 and other parameter values for the classic HH neuron
model (hereafter called four-dimensional (4D) HH neuron
model) are the same as the 3D HH neuron model, the 4D HH
model exhibits multiple-timescale feature and has dynamical
behaviors that are similar to the 3D HH neuron model, as
shown in the Appendix of the paper.

B. Stochastic models

In this research, the Gaussian white noise ξ (t ) is added to
the right hand side of Eq. (5) to study the effect of the current
noise on the firing process of the 3D HH model, and Eqs. (6)
and (7) remain unchanged. Then, the 3D deterministic HH
model becomes a 3D stochastic model, as follows:

C
dV

dt
= −gNam3

∞h(V − ENa ) − gKn4(V − EK )

−gL(V − EL) + Iapp + Dξ (t ), (8)

where D is the noise amplitude. The Gaussian white noise
ξ (t ) satisfies 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 = δ(t − t ′), where 〈·〉
symbolizes ensemble average, and δ(·) is the Dirac δ function.

Similarly, the Gaussian white noise ξ (t ) is added to the
right hand side of Eq. (1) to study the effect of the current
noise on the firing process of the 4D HH neuron model, and
Eqs. (2)–(4) remain unchanged. Then, the 4D deterministic
HH neuron model becomes a 4D stochastic model, where

C
dV

dt
= −gNam3h(V − ENa ) − gKn4(V − EK )

−gL(V − EL) + Iapp + Dξ (t ). (9)

In this paper, the 3D HH neuron model is mainly used to
present the results. Similar results can also be obtained by
using the 4D HH neuron model and are given in the Appendix.

C. Methods

The bifurcation diagram [Fig. 1(a)] is obtained using XP-
PAUTO [57], the deterministic model is simulated by means
of the Runge-Kutta method with a 0.01 ms step, and the

FIG. 1. Bifurcation diagram of the 3D deterministic HH model
with the increase of Iapp. (a) Bifurcations of equilibrium (red) and
limit cycle (green). The red solid and dashed curves denote the stable
and unstable equilibria, respectively. The green solid and dotted
curves denote the maximum and minimum values of the stable and
unstable limit cycles, respectively. The blue and black solid circles
denote the bifurcation points of the subcritical Hopf bifurcation
(SubH) and the saddle node bifurcation of the limit cycles (SNLC),
respectively. (b) Other complex bifurcations of limit cycle when Iapp

is located between the bifurcation points SubH and SNLC

stochastic model is simulated by using the Euler-Maruyama
method with a 0.001 ms step [58].

D. Measurements of CR

The spike timing of neurons is of interest in neuroscience,
because it is related to the temporal coding. Defining a se-
quence of spike times as ti, the interspike interval (ISI) is
Ti = ti+1 − ti, i = 1, 2, 3, · · · , where ti and ti+1 are two con-
tiguous spike times of spike trains. The coefficient of variation
(CV) of the ISIs is a common measurement [59–61] used to
characterize the spike train variability, and it is defined as

CV =
√

〈T 2
i 〉 − 〈Ti〉2

〈Ti〉 .

The prominent minimum of CV at the optimal noise ampli-
tude indicates the high degree of coherence of neuronal firing
and is generally used to characterize CR. For the 3D stochastic
HH model, 10 000 ISIs are simulated to plot the interspike
interval histogram (ISIH) and to calculate the CV.
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III. RESULTS

A. Dynamical behaviors for the 3D deterministic HH neuron

For the 3D deterministic HH neuron model, the bifurcation
diagram of the membrane potential with respect to Iapp is as
shown in Fig. 1(a). There is a unique equilibrium (red curve)
even for a larger range of Iapp. With the increase of Iapp, the
stable equilibrium (red solid curve) changes to an unstable
equilibrium (red dashed curve) via a subcritical Hopf bifurca-
tion (SubH, blue solid circle) at IH := Iapp ≈ 8.359 μA/cm2.
A branch of unstable limit cycles (green dashed curve) is
bifurcated from the Hopf bifurcation point SubH. The Hopf
bifurcation-bifurcated unstable limit cycle collides with the
stable limit cycle (green solid curve) at the point Iapp ≈
14.86 μA/cm2 (black solid circles), which is a saddle-node
bifurcation of the limit cycles (SNLC).

In addition to the above-mentioned bifurcations and dy-
namical behaviors, more complex bifurcations and dynamical
behaviors are found in the interval between the bifurcation
points SubH and SNLC, the detailed bifurcations can be found
in Refs. [55,69]. The changes of the ISIs with respect to
Iapp are shown in Fig. 1(b). When 8.359 μA/cm2 < Iapp <

14.18 μA/cm2, the dynamical behavior for the 3D HH neuron
model is single spike alternating with multiple small am-
plitude oscillations, i.e., MMOs. For example, when Iapp =
9 μA/cm2 and Iapp = 11.67 μA/cm2, the firing patterns are
as shown in Figs. 2(a) and 2(b), respectively. With the increase
of Iapp, the number of small amplitude oscillations within
the ISIs decreases, which results in the decrease of the ISIs
[Fig. 1(b)]. For example, when Iapp increases from 9 μA/cm2

to 11.67 μA/cm2, the ISIs are decreased from 459.34 ms to
76.38 ms. When 14.18 μA/cm2 < Iapp < 14.86 μA/cm2, the
firing pattern of the 3D HH neuron is still MMOs. However,
the MMOs are that a cluster of successive spikes alternate
with multiple small amplitude oscillations. For example, when
Iapp = 14.2 μA/cm2, the MMOs of two successive spikes al-
ternating with several small amplitude oscillations are shown
in Fig. 2(c). The ISI of the two successive spiking occurrences
is around 16 ms, which is close to the period of the periodic
repetitive spiking shown in Fig. 2(d) [corresponding to the
stable limit cycle shown in Fig. 1(a)]. The ISIs for the MMOs,
in which spikes are separated by small amplitude oscillations,
are larger than 25 ms.

B. White-noise-induced DCRs

In this section, we describe the effect of white noise on
the 3D HH neuron when it is excitable, i.e., when Iapp < IH ≈
8.359 μA/cm2. Unless otherwise stated, Iapp = 8 μA/cm2 is
selected as representative to present the results.

1. Noise induces different firing patterns

For the 3D HH neuron, noises with different ampli-
tudes can induce different firing patterns from the resting
state. The distinct firing patterns for six different noise
amplitudes, including D = 0.1 μA/cm2, D = 0.4 μA/cm2,
D = 0.6 μA/cm2, D = 1.3 μA/cm2, D = 7 μA/cm2, and
D = 20 μA/cm2, are shown in Figs. 3(a)–3(f). When D =
0.1 μA/cm2, the firing pattern of the 3D HH neuron is class
1 MMOs, that is, single spike alternates with multiple small

FIG. 2. Different firing patterns of the 3D deterministic HH
neuron model when Iapp is at different values. (a1, a2) MMOs of a sin-
gle spike alternating with small amplitude oscillations when Iapp =
9 μA/cm2. (b1, b2) MMOs of a single spike alternating with small
amplitude oscillations when Iapp = 12 μA/cm2. (c1, c2) MMOs of
two successive spikes (red) alternating with small amplitude oscil-
lations when Iapp = 14.2 μA/cm2. (d1, d2) Successive spiking (red)
when Iapp = 16 μA/cm2. The right panels are partial enlargements
of the left panels.

amplitude oscillations, as shown in Figs. 3(a1) and 3(a2). The
ISIs of the MMOs are very large due to the large number of
small amplitude oscillations, which indicates that the neuron
fires slowly. When the noise amplitude is increased to D =
0.4 μA/cm2, the firing pattern of the 3D HH neuron still is the
class 1 MMOs, as shown in Figs. 3(b1) and 3(b2). However,
the number of small amplitude oscillations is reduced, which
results in the reduction of ISIs. When D = 0.6 μA/cm2, the
firing pattern of the 3D HH neuron becomes class 2 MMOs
that are alternations of a spike, a cluster of spikes (a series
of successive spiking, labeled with red), and multiple small
amplitude oscillations, as shown in Figs. 3(c1) and 3(c2).
Because of the further reduction of the number of small am-
plitude oscillations and the appearance of a cluster of spikes
(successive spiking), the ISIs decrease further. As the noise
amplitude is increased to D = 1.3 μA/cm2, the firing pattern
is still that of class 2 MMOs, but the successive spiking (red)
appears more frequently [Figs. 3(d1) and 3(d2)], and the ISIs
decrease further. When the noise amplitude is increased to
D = 7 μA/cm2 [Figs. 3(e1) and 3(e2)] and D = 20 μA/cm2

[Figs. 3(f1) and 3(f2)], the firing pattern of the 3D HH neuron
is changed to successive spiking. The ISIs become smaller.
Compared to the above firing patterns, it can be found that
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FIG. 3. Different firing patterns of the 3D stochastic HH neu-
ron for different noise amplitude values. (a) Class 1 MMOs that
are random alternations between a spike and multiple small ampli-
tude oscillations when D = 0.1 μA/cm2. (b) Class 1 MMOs when
D = 0.4 μA/cm2. (c) Class 2 MMOs that are random alternations
of a spike, a cluster of spikes (red), and multiple small amplitude
oscillations when D = 0.6 μA/cm2. (d) Class 2 MMOs when D =
1.3 μA/cm2. (e) Successive spiking (red) when D = 7 μA/cm2. (f)
Successive spiking (red) when D = 20 μA/cm2.

the class 1 MMOs of a single spike alternating with multiple
small amplitude oscillations have a larger ISI (>25 ms), the
successive spiking has a smaller ISI (<25 ms), and the class 2
MMOs have both larger and smaller ISIs.

2. Noise induces different ISI distributions

ISIHs can be used to distinguish the characteristics of dif-
ferent firing patterns induced by noise. The probability density
of the ISIs corresponding to Figs. 3(a)–3(f) is plotted, as

FIG. 4. ISIH of the 3D stochastic HH neuron for different values
of the noise amplitude. (a) D = 0.1 μA/cm2. (b) D = 0.4 μA/cm2.
(c) D = 0.6 μA/cm2. (d) D = 1.3 μA/cm2. (e) D = 7 μA/cm2. (f)
D = 20 μA/cm2.

shown in Figs. 4(a)–4(f). When D = 0.1 μA/cm2, the ISIH
has a wide distribution, which corresponds to the larger ISIs
of the class 1 MMOs [Fig. 3(a)], and the peak number (the
number of ISIs in the peak of the ISIH) of the ISIs appears
near 280 ms, as shown in Fig. 4(a). As the noise amplitude
is increased to D = 0.4 μA/cm2, the ISIH becomes narrower
than that shown in Fig. 4(a), as shown in Fig. 4(b). However,
the firing pattern is still that of class 1 MMOs [Fig. 3(b)].
The peak of the ISIs is decreased to ∼105 ms, and the peak
number increases. When the noise amplitude is increased to
D = 0.6 μA/cm2, the firing pattern is changed to that of
class 2 MMOs [Fig. 3(c)], and two peaks appear in the ISIH
[Fig. 4(c)]. One peak corresponds to the successive spiking
shown in Fig. 3(c), appears at ∼19 ms, and the ISIs have a
narrow distribution. The other peak corresponding to the class
1 MMOs [Fig. 3(c)] appears at ∼75 ms, and the ISIs have a
wide distribution. The peak number of ISIs corresponding to
the wide distribution decreases. When the noise amplitude is
increased to D = 1.3 μA/cm2, the peak of the ISIs appears
at ∼18 ms for the narrow distribution (corresponds to the
successive spiking) and at ∼27 ms for the wide distribution
(corresponding to the class 1 MMOs), as shown in Fig. 4(d).
The peak number of ISIs for the narrow and wide distributions
increases and decreases, respectively. When D = 7 μA/cm2,
the wide distribution (corresponding to the class 1 MMOs)
disappears, and only the narrow distribution (corresponding
to the successive spiking) exists, as shown in Fig. 4(e). The
narrow distribution appears at ∼13 ms, and its peak number
has a substantial increase. Upon further increasing, the noise
amplitude becomes D = 20 μA/cm2, the peak of the ISIs
appears at ∼8 ms, and the peak number decreases.
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FIG. 5. Effects of the noise amplitude D on CV and proba-
bility of successive spiking when Iapp is fixed at different values.
(a) CV for Iapp = 8 μA/cm2. Two minima indicating DCRs ap-
pear. (b) Probability of successive spiking (ISI < 25 ms) for
Iapp = 8 μA/cm2. (c) CVs for Iapp = 6 μA/cm2, Iapp = 7 μA/cm2,
and Iapp = 8.35 μA/cm2. (d) Probabilities of successive spiking
(ISI < 25 ms) for Iapp = 6 μA/cm2, Iapp = 7 μA/cm2, and Iapp =
8.35 μA/cm2.

Comparing all the wide distributions of ISIs in Figs. 4(a)–
4(d), the intermediate noise amplitude (D = 0.4 μA/cm2)
induces a local maximum of the peak number within the
ISIs. The same comparison is performed for all the narrow
distributions of the ISIs shown in Figs. 4(c)–4(f), the peak
number of ISIs has a local maximum at a noise amplitude of
D = 7 μA/cm2. This indicates that white noise may induce
DCRs.

3. Two minima of CV appear with the increase of noise amplitude

Figure 5(a) shows the changes of the CV as the noise
amplitude D increases when Iapp = 8 μA/cm2. It is found that
the value of CV decreases at first and then increases, and
it then decreases and increases again, i.e., two local minima
appear as the noise amplitude increases. This indicates that the
CR appears twice, i.e., white noise can induce DCRs, which is
different from the common result that a CR can be induced by
white noise in single neuron models near a Hopf bifurcation
[4,6,16,20,38].

During the first descending interval (0 < D < 0.4), the
firing pattern of the 3D HH neuron is that of class 1 MMOs
that consist of a single spike alternating with multiple small
amplitude oscillations [Figs. 3(a) and 3(b)]. With the increase
of the noise amplitude, the number of small amplitude oscil-
lations within each ISI decreases [Figs. 3(b) and 4(b)], which
results in the drops of the time window of the subthreshold
activity perturbed by white noise and the CV.

During the first increasing interval (0.4 < D < 1.2), the
firing pattern of the 3D HH neuron is changed to that of class
2 MMOs in which some successive spiking appears randomly.
The random appearance of the successive spiking destroys the
coherence of the class 1 MMOs [Fig. 3(c)]. With the increase
of the noise amplitude, the probability of successive spiking

increases but is lower than 0.5 [Fig. 5(b)], which can lead to
the increase of the CV.

For the second decreasing interval (1.2 < D < 7), the fir-
ing pattern still is the class 2 MMOs, but successive spiking
appears more frequently [the probability of successive spiking
is larger than 0.5, Fig. 5(b)]. Since the time window perturbed
by noise for successive spiking is smaller than that for the
class 1 MMOs and the variability of ISIs for the successive
spiking is smaller than that for the class 1 MMOs. Thus, the
increase of the noise amplitude leads to the rise of probability
of successive spiking and the decline of the CV. When the
successive spiking accounts for the main parts of the firing
pattern [probability of successive spiking is ∼1, Fig. 5(b)],
the CV reaches the local minimum [Fig. 5(a)].

For the second increasing interval (7 < D < 20), although
the firing pattern still is successive spiking, the noise ampli-
tude in the interval is large, which can cause large fluctuations
of the spike timing [Fig. 3(f)]. The fluctuations increase with
the increase of the noise amplitude, which causes the increase
of the CV.

When Iapp is chosen from the other values in the interval of
the resting state (stable equilibrium) located on the left of the
SubH in Fig. 1, the noise amplitude D influences the CVs and
the probabilities of successive spiking, as shown in Figs. 5(c)
and 5(d), respectively. The results are the same as those for
Iapp = 8 μA/cm2 [Figs. 5(a) and 5(b)].

C. Dynamical interpretations of the firing patterns
induced by noise

The results described in the above subsection show that
the appearance of DCRs depends on the changes of the firing
patterns induced by white noise. In this part, the dynamical
mechanism for the white-noise-induced different firing pat-
terns is presented to study the generating mechanism of the
white-noise-induced DCRs.

1. Trajectory evolution of the 3D deterministic HH model with
different initial values

The steady-state behavior of the 3D deterministic HH
neuron is the resting state that corresponds to the stable
focus-node when Iapp < IH, but the transient behavior is dif-
ferent and is dependent on the initial values. For instance, at
Iapp = 8 μA/cm2, when one of the initial values h is selected
as 0.31, the membrane potentials for two different initial
values [V (0) = −75, n(0) = 0.4] and [V (0) = −75, n(0) =
0.45], shown in Figs. 6(a) and 6(b), are changed into the
resting potential (red line). However, the transient behav-
iors before the resting potential are different. One transient
behavior is composed of small amplitude oscillations (blue
line) with decreasing amplitude, as shown in Fig. 6(a), and
the other is composed of a transient spike (green line) and
small amplitude oscillations with increasing (black line) and
decreasing amplitude (blue line), as shown in Fig. 6(b). The
trajectories corresponding to Figs. 6(a) and 6(b) are plotted
on the phase space (V, n, h), as shown in Figs. 6(c) and 6(d),
respectively. In Fig. 6(c), the trajectory is a spiral line (blue
line) that converges to the stable focus-node (red solid circle)
along the curve F+ (fold curve in the V -nullsurface), which
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FIG. 6. Different transient behaviors of the 3D deterministic HH model with different initial values. (a) Transient behavior of small
amplitude oscillations (blue line) with decreasing amplitudes before the resting state (red line) for initial values (V (0) = −75, n(0) =
0.45, h(0) = 0.31). (b) Transient behavior composed of a spike (green line) and small amplitude oscillations with ascending (black line)
and decreasing (blue line) amplitudes for initial values (V (0) = −75, n(0) = 0.4, h(0) = 0.31). (c, d) Trajectories corresponding to panels (a,
b) in the phase space (V, n, h) with the same color scheme. The corresponding trajectories in the phase space (V, n, h) have the same color
scheme as the membrane potentials in panels (a, b). The gray cubic-shaped surface is the V -nullsurface, S− and S+ are left and right attracting
sheets of the V -nullsurface, and the black dashed curves F− and F+ are the fold curve in the V -nullsurface. The red solid circle is the stable
focus-node.

corresponds to the generation of the small amplitude oscilla-
tions with decreasing amplitude [Fig. 6(a)]. In Fig. 6(d), the
trajectories move from the initial point (corresponding initial
values) toward the right branch S+ (attracting sheet) of the
V -nullsurface, and then along S+ toward the left curve F−
(fold curve in the V -nullsurface), switch to the left branch
S− (attracting sheet) of the V -nullsurface and along branch
S− toward the right curve F+. When the trajectories reach
the neighborhood of F+, the trajectories spiral slowly to the
stable focus-node along F+ due to that F+ is almost parallel
to the h axis and h is the slow variable. Thus, the amplitude
of the membrane potential first increases to form a spike and
then decreases to form small amplitude oscillations with a
decreasing amplitude and with a resting state [Fig. 6(b)].

2. Separatrix surface of action potential in phase space

Transient behaviors can be used to reveal the relevant
features of systems and the dynamical behaviors of systems
subjected to external forces [62–66]. For example, the noise-
induced chaos can be explained based on the transient chaos
of systems [62–64]. This subsection describes how the sepa-
ratrix surface of the spiking and subthreshold oscillations in
the phase space (V, n, h) is obtained based on the transient
behaviors from different initial values. This is used to explain
the changes in the firing patterns induced by noise.

The distinct transient behaviors (Fig. 6) depend on the
choice of the initial values. There is a separatrix curve (sur-

face) that separates the phase plane (V, n) [the phase space
(V, n, h)] into two regions of initial values that evolve into
the two different transient behaviors. The separatrix curve
(surface) can be regarded as the threshold of the action po-
tential [67]. It should be noted that the transient behavior
is considered a transient spike when the membrane potential
crosses over 0 mV. To present the effects of the separatrix
curve (surface), a separatrix curve [67,68] (magenta solid
curve) that separates the phase plane (V, n) into regions with
two different transient behaviors and the phase trajectories
corresponding to Figs. 6(a) and 6(b) are plotted in the phase
plane (V, n) when h = 0.31, as shown in Figs. 7(a) and 7(b).
When the initial values are chosen from the outside of the
separatrix curve [Fig. 7(b)], the transient behavior has spiking
[Fig. 6(b)]. Otherwise [Fig. 7(a)], no transient spiking appears
[Fig. 6(a)]. To present the effect of the initial values of the
variables (V, n, h) on the transient behavior, the separatrix sur-
face (magenta) and the trajectory corresponding to Figs. 6(a)
and 6(b) are plotted in phase space (V, n, h), as shown in
Figs. 7(c) and 7(d). The separatrix curve in Figs. 7(a) and 7(b)
is the intersection of the separatrix surface in Figs. 7(c) and
7(d) with a plane h = 0.31. If the initial values are chosen
from the bottom of the separatrix surface, then the trajectory
spins into the stable focus-node directly [Fig. 7(c)]. Other-
wise, the trajectory moves to the top right of the phase space to
form a spike [Figs. 7(d) and 6(b)]. Later, the trajectory moves
to the area below the separatrix surface and spins into the
stable focus-node to form small amplitude oscillations.
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FIG. 7. Separatrix curve (surface) of action potential. (a) Trajectory of small amplitude oscillations projected upon (V, n) when initial
values lie inside of the separatrix curve (magenta). (b) Trajectory of transient spike and small amplitude oscillations projected upon (V, n)
when initial values lie outside of the separatrix curve. (c) Trajectory of small amplitude oscillations in phase space (V, n, h) when initial values
lie under the separatrix surface (magenta). (d) Trajectory of transient spike and small amplitude oscillations in phase space (V, n, h) when
initial values are above the separatrix surface (magenta). The initial values for (a) and (c) [(b) and (d)] are the same as in Fig. 6(a) [Fig. 6(b)].

3. Noise-induced changes of trajectory in phase space

In this subsection, we describe the analysis of the dy-
namical mechanism of different firing patterns induced by
the white noise. The trajectories corresponding to Figs. 3(a)–
3(e) are plotted in the phase space (V, n, h), as shown in
Figs. 8(a)–8(e), respectively. With the perturbations of small
noise amplitude (D = 0.1 μA/cm2), the trajectory rotates
around the stable focus-node many times anticlockwise and
may easily cross over the convex part of the separatrix surface
near the stable focus (red solid circle) from inside to outside
due to the the close spatial distance between the stable focus-
node and the convex part in the phase space, as shown in
Fig. 8(a). If the trajectory has crossed over the convex part,
then the trajectory may rotate away from the convex part
anticlockwise to the upper right corner to form a spike. Then,
the trajectory will move to the area below the convex part and
spin into the stable focus-node. Consequently, class 1 MMOs
that are composed of a spike and multiple small amplitude
oscillations are formed [Fig. 3(a)]. When the noise amplitude
is increased to D = 0.4 μA/cm2 [Fig. 8(b)], it becomes rel-
atively easier for the trajectory to cross over the convex part,
and the range of the trajectory that can cross over the convex
part is enlarged, which can result in the reduction of the tra-
jectory rotating around the stable focus-node, i.e., the rotation
number of small amplitude oscillations decreases [Fig. 3(b)].
When the noise amplitude is increased to D = 0.6 μA/cm2,
some trajectories (marked in red) will not spin into the region
near the convex part around the stable focus-node, but they
will cross over the remaining part of the separatrix surface

in addition to the convex part, as shown in Fig. 8(c). Thus,
there are no small amplitude oscillations within two adjacent
spikes [Fig. 3(c)], i.e., successive spiking appears randomly
and class 2 MMOs are evoked. With the increase of the noise
amplitude, for instance, D = 1.3 μA/cm2, there is a larger
probability of trajectory that can cross over the remaining
parts of the separatrix rather than the convex part [Fig. 8(d)],
i.e., successive spiking appears more frequently [Fig. 3(d)].
With the further increase of the noise amplitude, for instance,
D = 7 μA/cm2, the trajectory rarely enters into the regions
surrounded by the convex part but can easily cross over the
remaining part of the separatrix surface rather than the convex
part [Fig. 8(e)], i.e., the firing pattern is changed to successive
spiking [Fig. 3(e)]. When the noise amplitude is increased to
D = 20 μA/cm2 [Fig. 8(f)], although the firing pattern is still
successive spiking, the trajectory becomes irregular due to the
great fluctuations aroused by the strong noise amplitude.

4. Dependence of the two coherent firing patterns on variable h

From Fig. 8, it can be seen that the firing patterns aroused
by different noise amplitudes depend on the values h at which
the trajectories cross the separatrix surface. To clearly present
the effects of h on the generation of two firing patterns, the tra-
jectories corresponding to Figs. 8(b) and 8(e) in phase space
(V, n, h) with V -nullsurface are plotted, as shown in Figs. 9(a)
and 9(b).

Comparing the trajectories in Figs. 9(a) and 9(b), it can
be seen that the difference between the two firing patterns
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FIG. 8. Trajectories in the phase space (V, n, h) for different noise amplitudes. (a) D = 0.1 μA/cm2. (b) D = 0.4 μA/cm2. (c) D =
0.6 μA/cm2. (d) D = 1.3 μA/cm2. (e) D = 7 μA/cm2. (f) D = 20 μA/cm2. The black and red lines are the trajectories of the MMOs and
successive spiking, respectively. The red solid circle is the stable focus-node. The magenta surface is the separatrix surface of the action
potential (threshold of action potential). The directions of the trajectories are indicated by the arrows.

of the class 1 MMOs [Fig. 9(a)] and the successive spiking
[Fig. 9(b)] is determined by whether or not the trajectories can
spiral toward the stable focus-node along F+ to form small
amplitude oscillations. The V -nullsurface is a cubic-shaped
surface and the fold curve F+ is almost parallel to the h

axis. With the perturbation of noise with small amplitude, the
trajectories spiral slowly toward the focus-node along F+ due
to the slow varying of h and the stable focus-node, and then
cross the convex part of the separatrix surface (near h = 0.4)
[Fig. 9(b)] and toward the right branch S+, which results in

FIG. 9. Comparison between the trajectories of the class 1 MMOs and the successive spiking in the phase space (V, n, h). (a) The trajectory
of the class 1 MMOs. (b) The trajectory of the successive spiking.
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multiple small amplitude oscillations followed by a spike; i.e.,
the class 1 MMOs depend on the slow varying of h and the
larger value h at which trajectory cross the separatrix surface,
as shown in Fig. 9(a). The generation of the MMOs is similar
to the canard-induced MMOs in deterministic neuron mod-
els that have two slow variables [55]. With the perturbation
of noise with large amplitude, the trajectories can cross the
separatrix surface (near h = 0.28) without spiraling toward
the focus-node along F+ [Fig. 9(e)]; i.e., for the successive
spiking, the trajectories cross the separatrix surface at lower
value h and there is no slow varying of h.

IV. DISCUSSIONS AND CONCLUSIONS

Noise plays constructive roles in the generation of CR,
which is one of the most famous phenomena. Usually, single
CR is aroused by white noise from the resting state near a
Hopf bifurcation. In this research, DCRs induced by white
noise are found near the subcritical Hopf bifurcation in the 3D
HH neuron model, and the dynamical mechanism is revealed.
The multiple-timescale feature of the 3D model is the key to
the generation of DCRs, based on which the phenomenon can
be generalized to 4D models.

The appearance of DCRs is related to the firing patterns
induced by noise, which depend on the intrinsic dynamical
characteristics of the 3D HH neuron model. Under the in-
fluence of the weak noise, the trajectory rotating around the
stable focus-node crosses over the convexity of the threshold
surface. Then, the trajectory rotates away from the convexity
to form a spike. During the whole process, multiple small
amplitude oscillations followed by a spike are formed, i.e.,
class 1 MMOs are induced by the noise. When the noise
amplitude increases, the ISIs decrease, which causes the firing
pattern of the class 1 MMOs to be more regular. When the
noise amplitude is increased to a certain value, some trajec-
tories far away from the stable focus-node can cross over
the threshold surface far away from the stable focus-node
to form successive spikes without rotating around the stable
focus-node, i.e., successive spiking appears randomly with
the class 1 MMOs. The random appearance of successive
spiking destroys the regularity of the firing pattern of the class
1 MMOs. Thus, the CV decreases at first and then increases
as the noise amplitude increases, i.e., the optimal coherence
of the firing pattern of the class 1 MMOs appears with the
first CR. With the further increase of the noise amplitude, the
proportion of the successive spiking is more than half of all the
firing pattern, and its ratio increases, which causes the CV to
decrease. When the successive spiking plays a prominent role,
a suitable noise amplitude can optimize the firing responses
and cause the CV to achieve a local minimum. When the
noise amplitude is larger than the suitable noise amplitude, the
fluctuations of the trajectory become large as the noise ampli-
tude increases, which causes great fluctuations of the spike
timing and increases of the CV, i.e., the optimal coherence
of the firing pattern of the successive spiking appears with
the second CR. Based on the above discussion, the changes
of the firing pattern aroused by the white noise play critical
roles in the appearance of DCRs. The firing patterns induced
by the noise depend on the slow variable h and the inverse
U-shaped separatrix surface (Figs. 8 and 9). That is, the DCRs

depend on the multiple-timescale feature and the shape of the
separatrix surface of the 3D HH neuron model. In addition,
the noise-induced firing patterns (Fig. 3) are similar to the
firing patterns of the 3D deterministic HH model induced
by the applied current (Fig. 2), which is due to the noisy
precursors of the bifurcations [38]. However, the generation
of MMOs in the deterministic 3D HH neuron model also
depends on the multiple-timescale feature, i.e., the generation
of the MMOs requires that the phase space of the deterministic
model has at least three dimensions. The 3D deterministic
HH model has a fast variable and two slow variables, and
the model can exhibit MMOs and successive spiking, which
is different from the two-dimensional neuron models (contin-
uous systems) that have a slow variable and a fast variable
such as the Morris–Lecar [18] and FitzHugh–Nagumo neuron
models [4,6,20,38,69]. The difference in timescales between
the 3D HH neuron model and these two-dimensional neuron
models can arouse the different firing patterns not only in
deterministic models but also in stochastic models [69]; that
is, the white noise has different effects on the CR for the 3D
HH neuron model and two-dimensional neuron models. Thus,
it may be difficult to extend the result of this research to these
two-dimensional neuron models.

The result that white noise can induce DCRs is differ-
ent from previous findings about DCRs or multiple CRs. A
previous study [45] showed that the white noise can induce
DCRs in the Rulkov model, which is a discrete system, and
the underlying mechanism was unclear. In this study, the 3D
HH neuron model is a continuous system, and the under-
lying mechanism for the DCRs is interpreted according to
the changes of the firing pattern induced by noise. There are
many differences in the dynamics of these two systems. In
addition, some studies [17,21,35,51–53] have shown that mul-
tiple CRs appear as time delay in the coupling term increases,
where time delay, rather than noise, induces multiple CRs.
The reason that time delay induces multiple CRs is that the
entrainment of the period of noise-induced motion by time
delay, which is different from the noise-induced DCRs in
this study. Recent studies [42–44] have shown phase-noise-
induced DCRs in a FitzHugh–Nagumo neuron (corresponding
to Hopf bifurcation), in which one CR occurs at the average
frequency of the phase noise and the other one occurs at the
intrinsic firing frequency of the FitzHugh–Nagumo neuron,
i.e., the generation of the DCRs depends on the frequency
characteristic of the phase noise. However, the white noise
used in the study does not have the frequency characteris-
tic. In this study, the occurrence of DCRs depends on the
multiple-timescale feature of the 3D HH neuron model. Pre-
vious studies showed doubly stochastic coherence induced
by white noise [46,48]. In these studies, the appearance of
doubly stochastic coherence is the joint effect of additive noise
and multiplicative noise, i.e., there are two sources of noise
present simultaneously. In this paper, the generation of the
DCRs only requires additive noise.

The result described in this paper presents a particular case
in which white noise can induce DCRs rather than single
CR from the resting state near the subcritical Hopf bifur-
cation. The appearance of DCRs depends on the intrinsic
dynamical characteristics of the 3D HH neuron model that
has a fast variable and two slow variables, i.e., the multiple-
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FIG. 10. Bifurcation diagram of the 4D deterministic HH model
with the increase of Iapp. (a) Bifurcations of equilibrium (red) and
limit cycle (green). The red solid and dashed curves denote the
stable and unstable equilibria, respectively. The green solid and dot-
ted curves denote the maximum and minimum values of the stable
and unstable limit cycles, respectively. The blue and black solid
circles denote the bifurcation points SubH and SNLC, respectively.
(b) Other complex bifurcations of limit cycle when Iapp is located
between SubH and SNLC.

timescale feature of the 3D HH neuron model. In this paper,
the model that white noise is introduced to the equation of
membrane potential is analyzed, when Gaussian stochastic
process is introduced into the equations of the gating vari-
ables, there are similar results (not given in this paper) due
to the multiple-timescale feature. Since noise is ubiquitous in
nervous systems [1,5], the research presents one case in which
neurons may utilize noise to enhance information processing
and transformation, which are helpful for understanding the
role of noise in neuronal systems with multiple-timescale
feature.

FIG. 11. Effects of the noise amplitude D on CV and proba-
bility of successive spiking for the 4D HH neuron model when
Iapp = 10.3 μA/cm2. (a) CV. Two minima indicate the appearance
of DCRs. (b) Probability of successive spiking (ISI < 25 ms).
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APPENDIX: RESULTS FOR THE 4D HH NEURON MODEL

In this Appendix, some results that the influences of the
white noise on the 4D HH neuron model being composed by
Eqs. (2)–(4) and (8), are presented.

1. Dynamical behaviors for the 4D deterministic HH neuron

For the 4D deterministic HH neuron model, the bifur-
cation diagram of the membrane potential with respect to
Iapp is shown in Fig. 10(a). There is a unique equilibrium
(red curve) even for a larger range of Iapp. With the increase
of Iapp, the stable equilibrium (red solid curve) changes to
the unstable equilibrium (red dashed curve) via subcritical
Hopf bifurcation (SubH, blue solid circle) at IH := Iapp ≈
10.3859 μA/cm2. A branch of unstable limit cycles (green
dashed curve) is bifurcated from the Hopf bifurcation point
SubH. The unstable limit cycle bifurcated from Hopf bifurca-
tion collides with the stable limit cycle (green solid curve) at
the point Iapp ≈ 30.1643 μA/cm2 (black solid circles), which
is a saddle-node bifurcation of the limit cycles (SNLC).

Some complex bifurcations and dynamical behaviors are
found in the interval between the bifurcation points SubH
and SNLC. The changes of the ISIs with respect to Iapp

are shown in Fig. 10(b). When 10.3859 μA/cm2 < Iapp <

26.02 μA/cm2, the dynamical behavior is single spike al-
ternating with multiple small amplitude oscillations, i.e.,
MMOs. With the increase of Iapp, the number of small
amplitude oscillations decreases, which results in the de-
crease of the ISIs [Fig. 10(b)]. When 26.02 μA/cm2 < Iapp <

30.1643 μA/cm2, the firing pattern is still MMOs, however,
the MMOs are a cluster of successive spikes alternating with
multiple small amplitude oscillations.

2. White-noise-induced DCRs

When Iapp = 10.3 μA/cm2, the 4D deterministic HH neu-
ron model is at resting state. CV and probability of successive
spiking with respect to the noise amplitude D are shown in
Figs. 11(a) and 11(b), respectively.

3. Noise-induced firing patterns and their trajectories

When D = 0.7 μA/cm2 and D = 14 μA/cm2 [two min-
ima in Fig. 11(a)], the firing patterns are class 1 MMOs
[Fig. 12(a)] and the successive spiking [Fig. 12(b)], respec-
tively. To better explain the firing patterns, the corresponding
trajectories in phase space (V, n, h) are shown in Figs. 12(c)
and 12(d), respectively. The evolution of the trajectories is
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FIG. 12. Comparison between the firing patterns and trajectories of the 4D HH neuron model when D = 0.7 μA/cm2 and D =
14 μA/cm2. (a) Class 1 MMOs when D = 0.7 μA/cm2. (b) Successive spiking when D = 14 μA/cm2. (c) The trajectory of the class 1
MMOs. (d) The trajectory of the successive spiking.

also the same as that of the 3D HH neuron model [Figs. 9(a)
and 9(b)]. Thus, the mechanism of the white-noise-induced

DCRs for the 4D HH neuron model is the same as this for the
3D HH neuron model.
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