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The Metropolis Monte Carlo (MMC) method is used to extract reaction kinetics from a given equilibrium
distribution of states of a complex system. The approach is illustrated by the folding/unfolding reaction for two
proteins: a model β-hairpin and α-helical protein α3D. For the β-hairpin, the free energy surfaces (FESs) and free
energy profiles (FEPs) are employed as the equilibrium distributions of states, playing a role of the potentials
of mean force to determine the acceptance probabilities of new states in the MMC simulations. Based on the
FESs and PESs for a set of temperatures that were simulated with the molecular dynamics (MD) method, the
MMC simulations are performed to extract folding/unfolding rates. It has been found that the rate constants
and first-passage time (FPT) distributions obtained in the MMC simulations change with temperature in good
agreement with those from the MD simulations. For α3D protein, whose equilibrium folding/unfolding was
studied with the single-molecule FRET method [Chung et al., J. Phys. Chem. A 115, 3642 (2011)], the FRET-
efficiency histograms at different denaturant concentrations were used as the equilibrium distributions of protein
states. It has been found that the rate constants for folding and unfolding obtained in the MMC simulations
change with denaturant concentration in reasonable agreement with the constants that were extracted from the
photon trajectories on the basis of theoretical models. The simulated FPT distributions are single-exponential,
which is consistent with the assumption of two-state kinetics that was made in the theoretical models. The
promising feature of the present approach is that it is based solely on the equilibrium distributions of states,
without introducing any additional parameters to perform simulations, which suggests its applicability to other
complex systems.
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I. INTRODUCTION

The equilibrium distribution of states and the kinetics of
their interconversion are two inherent characteristics of any
complex system that are important to know for understanding
its behavior. At the same time, the former are generally much
easier to determine than the latter, both in experiment and in
simulations. One representative example is the protein fold-
ing/unfolding reaction. Single-molecule experiments, such as
the Förster resonance energy transfer (FRET), atomic-force
microscopy (AFM), and optical tweezers (OT) techniques,
make it possible to determine the equilibrium distributions of
states, in the form of either the FRET-efficiency histograms
(FRET [1–7], folding/unfolding) or free energy profiles (AFM
[8,9] and OTT [10], unfolding). However, in order to ex-
tract kinetics from these distributions, theoretical models are
needed (FRET [11–15] and AFM and OTT [16–19]). A sim-
ilar difference in the possibility of obtaining the equilibrium
distribution of states and determining the kinetics exists for
the molecular dynamics (MD) simulations of folding of rela-
tively large proteins (of the order of 100 residues and larger).
While brute force all-atom simulations, which are able to
give a detailed insight into the folding kinetics, are very time
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consuming [20,21], several methods exist that allow very ef-
ficient calculation of the equilibrium distributions of protein
states [22], such as the replica exchange molecular dynamics
[23–25] and the weighted histogram analysis method [26] in
combination with sampling from biased MD simulations [27].
Therefore, it is tempting to find out whether the knowledge of
the equilibrium distribution of states of a system allows us to
obtain information about its kinetics, and if so, to what extent.

This paper examines the possibility of extracting kinetics
from the equilibrium distributions of protein states with the
use of the Metropolis Monte Carlo (MMC) algorithm [28].
Originally designed for calculating the equation of states, the
MMC method has become a powerful tool for the study of
equilibrium properties of various systems [29,30]. However,
the capabilities of this method are not limited to the study of
the equilibrium properties; it can be used to investigate the
dynamic properties as well. Using the diffusion of a Brownian
particle as an example, it was shown that on the coarse level,
the evolution of states in the MMC simulations can be de-
scribed by the Fokker-Planck equation [31]. The method has
long been successfully employed to study the protein folding
reaction in the framework of lattice models [32–36]. In this
dynamic implementation, the MMC method differs from the
kinetic MC method, in which the probability of transition
between two states is determined by the rate constant (or,
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more generally, by the height of the barrier) rather than by
the difference in populations of these states [37,38].

In the present paper, the acceptance probability of a new
state in the course of the MMC run is determined by the
equilibrium distribution of states known from simulations or
experiment. The typical examples of such distributions are the
free energy surfaces (FESs) and free energy profiles (FEPs),
although, in principle, any equilibrium distribution of states
along one or several collective variables can be used for
this purpose. These distributions represent potentials of mean
force (PMF) [27,39,40], and thus they can be assumed to
govern kinetics.

A known shortcoming of the MMC method is that a gen-
erated MMC trajectory represents a Markovian sequence of
states rather than the change of these states in time [29,30].
Therefore, only the relative values of the reaction rates for
different reaction conditions, e.g., for temperature, are avail-
able. In order to have the absolute value of rates, a fit to the
timescale of the original data is required [41–44]. At the same
time, in contrast to other possible approaches which could
employ the PMFs to calculate kinetics, e.g., the use of the
Langevin equation [45], no additional parameters are needed
to perform the MMC simulations for a given equilibrium
distribution of states. It is a considerable advantage of the
present approach.

The approach is illustrated for two systems. One is a model
β-hairpin protein. In order to have baseline results, the equi-
librium MD simulations were performed. The obtained FESs
and FEPs were employed as the input distributions of states
for subsequent MMC simulations. It has been shown that the
rate constants of folding and unfolding calculated from the
FESs and FEPs change with temperature in good agreement
with those from the MD simulations. The other system is an α-
helical protein α3D, for which folding and unfolding rate con-
stants for different denaturant concentrations were extracted
from single-molecule FRET trajectories [3] using theoretical
models [12,13]. In this case, the FRET-efficiency histograms
(FEHs) obtained in the experiment were employed as the equi-
librium distributions of states for the MMC simulations. It has
been found that the folding and unfolding rate constants ob-
tained in the MMC simulations vary with the denaturant con-
centration in reasonable agreement with those extracted from
the FRET trajectories. For both proteins, the first-passage time
(FPT) distributions in the MMC simulations have been found
to be single exponential, which agree with those obtained in
the MD simulations (β-hairpin protein) and correspond to the
assumption of two-state kinetics employed in the theoretical
models to extract rate constants (α3D protein).

The paper is organized as follows. Section II describes
the MD (Sec. II A) and MMC (Sec. II B) simulations for the
β-hairpin protein, Sec. III presents the results of the MMC
simulations for the α3D protein, and Sec. IV briefly summa-
rizes the results of the work.

II. β-HAIRPIN PROTEIN: SYSTEM AND SIMULATION

A. System and molecular dynamics simulations

To perform MD simulations, a coarse-grained (Cα-bead)
protein model and a Gō-type interaction potential [46] were

used. Briefly, the approach is as follows (for details, see Ref.
[47]). The Cα model was constructed on the basis of the
solution NMR data for 12-residue HP7 protein (2evq.pdb)
[48]. Specifically, the first conformation in the NMR ensem-
ble of the protein structures was employed for this purpose,
which was then considered as a reference native structure of
the protein. The Gō-type potential accounted for the rigidity
of the backbone and the contributions of native and nonna-
tive contacts [49]. Two Cα beads were considered to be in
native contact if they were not the nearest neighbors along
the protein chain and had the interbead distance not longer
than dcut = 7.5 Å. In this case, the number of native con-
tacts is Nnat = NNAT

nat = 27. The simulations were performed
with a constant-temperature MD based on the coupled set of
Langevin equations [50]. The time step was �t = 0.0125τ ,
where τ is the characteristic time. At the length scale l =
7.5Å and the attractive energy ε = 2.2 kcal/mol [51], τ =
(Ml2/ε)1/2 ≈ 2.6 ps, where M = 110 Da is the average mass
of the residue. The friction constant γ in the Langevin
equations was γ = 10M/τ . In what follows, the length, in
particular, the radius of gyration, is measured in angstroms.
Unless otherwise noted, the other quantities (energy, tempera-
ture, and time) are dimensionless; specifically, the energy and
temperature are measured in units of ε (in the latter case with
the Boltzmann constant set to unity), and the time is measured
in units of τ .

The equilibrium simulations were carried out for a range
of temperatures at which both folding and unfolding events
occurred quite frequently, specifically, at T = 0.35, 0,375,
0.4, 0.425, and 0.45. The regime of folding varied from
downhill (low temperatures) to uphill (larger temperatures)
folding through a marginal two-state folding (intermediate
temperatures). For each temperature, the MD trajectory was
run until 103 folding/unfolding events took place. The protein
was considered to be unfolded if Nnat � 5 and to be folded
if the root-mean-square deviation from the reference native
structure was less than 1Å [52]. Based on the simulated tra-
jectories, the FESs and FEPs were calculated. The FES was
constructed using the number of native contacts (Nnat) and the
radius of gyration (Rg) as collective variables [27,53]

F (Nnat, Rg) = −T ln P(Nnat, Rg), (1)

where P(Nnat, Rg) is the probability to find the protein in the
point (Nnat, Rg). The FEP was calculated as

F (Nnat ) = −T ln P(Nnat ), (2)

where P(Nnat ) is the probability that the protein has Nnat

native contacts. The resulting FESs and FEPs for the lower,
intermediate, and upper temperatures are shown in Figs. 1 and
2, respectively. In structure, they are common for folding of
β-hairpins (experiment [54] and simulation studies in explicit
[55,56] and implicit [57,58] solvents).

Both folding and unfolding reactions were considered. For
this, the equilibrium MD trajectory was divided into segments
of the trajectory corresponding to the transition from the
unfolded to the native state (folding) and to the backward
transition (unfolding) [52]. Based on these segments of the
trajectory, the MD rate constants of folding and unfolding, as
well as the corresponding FPT distributions, were calculated
(see below).
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FIG. 1. β-hairpin, free energy surfaces: (a) T = 0.35, (b) T =
0.4, and (c) T = 0.45. The radius of gyration is given in angstroms.

B. Monte Carlo simulations

Having the FESs and FEPs, the MMC simulations were
performed. According to the Metropolis algorithm [28], the
acceptance probability of the transition from state A to B is
determined as

W (A → B) =
{

1 if P(B/P(A) � 1
P(B)/P(A) if P(B)/P(A) < 1 , (3)

where P(A) and P(B) are the equilibrium probabilities of
the old (A) and new (B) states, respectively. A trial move
from A to B is accepted if P(B)/P(A) � α, where α is a
random number uniformly distributed between 0 and 1. In
application to the free energy landscapes of Figs. 1 and 2,
P(B)/P(A) = exp{−[F (B) − F (A)]/T }. For FESs (Fig. 1),
A and B represent the points in the (Nnat, Rg) space, and for
FEPs (Fig. 2), the points in the Nnat space. The corresponding

FIG. 2. β-hairpin, free energy profiles: T = 0.35 (blue and
cyan), T = 0.4 (black and gray), and T = 0.45 (red and magenta).
The first colors in the brackets are for the MD simulations, and the
second colors are for the MMC simulations based on the FESs of
Fig. 1.

free energies F (A) and F (B) are determined by Eqs. (1)
and (2).

In the case of FESs, the MMC simulation space repre-
sented a rectangle with 0 � Nnat � 28 and 0 � Rg � 15 Å.
It was divided into 28 × 30 segments (dNnat = 1 and dRg =
0.5), forming a mesh of 29 × 31 discrete states. The trial
moves consisted of random shifts of the point along the Nnat

and Rg axes by −1 or +1 mesh step so that the eight nearest
points surrounding the current point were sampled with equal
probability. To verify that detailed balance is satisfied, a long
(“equilibrium”) MMC trajectory with many folding/unfolding
events was run. It was found that the balance was approxi-
mately maintained for each point-to-point transition and was
exactly fulfilled for the transitions within the simulation cell,
i.e., the number of transitions from the central point of the cell
to the eight surrounding points was equal to the number of
the backward transitions. Accordingly, the equilibrium MMC
simulations successfully reproduced the original equilibrium
distributions on which they were based (one example is shown
in Fig. 2). To simulate the process of folding, the trajectories
were initiated at point (5, 11.8), representing the unfolded
state, and terminated at point (27, 5.78), representing the na-
tive state (Fig. 1). For the unfolding trajectories, these points
served as the terminal and initial states, respectively.

In the case of FEPs, the MMC simulations were conducted
in the linear Nnat space with the boundaries Nnat = 0 and
Nnat = 27. The trial moves represented random changes of the
current value of Nnat by −1 or +1, which were taken with
equal probability. In equilibrium, detailed balance was strictly
maintained. The folding trajectories started at Nnat = 5 and
terminated at Nnat = 27, and the unfolding trajectories used
these points as terminal and initial state, respectively.

In each case (the FES- or FEP-based simulations, the
protein folding or unfolding, and a given temperature), 103

trajectories were run. For the FES-based simulations, the
acceptance probability increased from ≈0.57 (T = 0.35) to
≈0.67 (T = 0.45) for folding trajectories, and from ≈0.57
(T = 0.35) to ≈0.62 (T = 0.45) for unfolding trajectories.
For the FEP-based simulations, it increased from ≈0.87 (T =
0.35) to ≈0.9 (T = 0.45) for both folding and unfolding tra-
jectories.

In order to fit the MMC steps to the MD time steps, the av-
erage ratios between the MMC and MD rate constants over the
whole temperature range were calculated. In particular, for the
FES-based folding trajectories, the time step was determined
as (�t )F

FES = (1/N )
∑i=N

i=1 (kF)MMC,i/(kF)MD,i, where N = 5 is
the number of temperatures, and (kF)MMC and (kF)MD are
the rate constants for the MMC and MD folding trajecto-
ries, respectively. The rate constants were calculated as the
inverses of the corresponding mean first-passage times in
units of number of steps (the MMC simulations) and τ (the
MD simulations). Similarly, the time steps for the FEP based
and unfolding MMC simulations were determined. It was
found that (�t )F

FES ≈ 3.4 × 10−3τ , (�t )F
FEP ≈ 6.3 × 10−3τ ,

and (�t )U
FES ≈ (�t )U

FEP ≈ 0.18τ . These values of the time
steps show that the MMC timescales generally depend on
both the direction of the process (folding or unfolding) and
the dimensionality of the state distributions for the MMC
simulations (FES or FEP).
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FIG. 3. β-hairpin, rate constants of (a) folding and (b) unfolding:
the MD simulations (black diamonds and dashed line), the FES-
based MMC simulations (read triangles and dotted line), and the
FEP-based MMC simulations (blue triangles and dashed line). The
lines are to guide the eye.

Figures 3 and 4 compare the results of the MMC and
MD simulations. Figure 3 presents the rate constants ob-
tained in the MMC simulations in comparison to those in
the MD simulations. The MMC “time” scales were adjusted
to the MD timescales using the above values of the MMC
steps in τ units, e.g., for the MMC folding simulations based
on the FES, the adjusted rate constant at T = 0.35 was
obtained to be (kF)MMC = (k̃F)MMC/(�t )F

FES ≈ 2.6 × 10−3,
where (k̃F)MMC ≈ 8.75 × 10−6 is the original rate constant
in the inverse number of the MMC steps, and (�t )F

FES ≈
3.4 × 10−3τ . Figure 3 shows that the rate constants from the
MMC simulations are in good agreement with those from
the MD simulations through the entire temperature range.
The same result would evidently be obtained if the MMC
step in τ units was determined by equating the MMC rate
constant at one temperature with the corresponding MD rate
constant. The above values of the time steps were also used to
adjust the timescales for the MMC FPT distributions. Figure 4
presents these distributions in comparison with the distribu-
tions obtained in the MD simulations and shows that, similar
to the rate constants, they are also in agreement, including a
single-exponential decay. Importantly, the good agreement of

FIG. 4. β-hairpin, first-passage time distributions: (a) folding
and (b) unfolding. Solid lines are for the MD simulations, dashes
lines are for the MMC simulations based on the free energy surfaces
of Fig. 1, and dotted lines are for the MMC simulations based on
the free energy profiles of Fig. 2. Temperatures and lines: T = 0.35
(blue), T = 0.375 (olive), T = 0.4 (black), T = 0.425 (magenta),
and T = 0.45 (red).

the MMC rate constants with the MD constants through all
temperature range indicates that the time step in the MMC
simulations is not affected by temperature.

III. α3D PROTEIN: EXPERIMENT AND MONTE
CARLO SIMULATIONS

The equilibrium folding/unfolding of this 73-residue three-
helix bundle protein (2a3d.pdb) at room temperature and
different denaturant (GdmCl) concentrations (1.5 M to 3 M)
was studied using single-molecule FRET [3]. Two models
assuming two-state kinetics were employed to analyze the
photon trajectories. One is a maximum likelihood estima-
tion (MLE), in which the photon trajectory were fitted to
the sequences of transitions between unfolded and folded
states [12], and the other is an approximation of the FRET-
efficiency histogram (FEH) by a sum of Gaussians whose
weights depended on the probabilities of surviving the folded
and unfolded states for the bin time (3G) [13]. Using these
approaches, the rate constants of folding and unfolding were
determined, which were found in good agreement, except for
the denaturant concentrations of 1.5 M and, partially, of 3.0 M
(cf. the corresponding lines of Table 1 of Ref. [3]). Figure 5
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FIG. 5. α3D: FRET-efficiency histograms [3]. Figures inside the
panels represent the GdmCl concentrations. Labels U and F indicate
the unfolded and folded state, respectively.

shows the FEHs for freely diffusing protein molecules. The
time bin to count donor and acceptor photons is 2 ms. Two
peaks are significant: at intermediate and higher values of
FRET efficiency (E ), which represent the unfolded (U) and
folded (F) states, as indicated in Fig. 5. The peaks at E ∼ 0
originate from molecules with inactive acceptors and are not
included in consideration. It was found that the FEHs are well
approximated by a sum of three Gaussians (3G model). Two
Gaussians describe the unfolded and folded states, and the
third one accounts for the intermediate values of E that appear
due to the transitions between the folded and unfolded states.

It should be noted that the present FEHs may not represent
the true PMFs, as it would be if they obeyed the Förster
“distance-efficiency” equation E = 1/[1 + (r/R0)6] (r is the
donor-to-acceptor separation distance, and R0 is the Förster
radius). First, the number of photons in time bin (∼102) is
not sufficiently large to avoid the effect of shot noise on the
distribution of protein states. In this case, the broadening of
the folded and unfolded peaks may mainly be a result of short
noise rather than of the presence of folded- and unfolded-like
conformations of the protein. Second, the binning time (2 ms)
is comparable to the relaxation time (∼1 ms), so that the
signal from different protein conformations, which typically
interconvert on a much shorter timescale (∼1 μs and shorter),
may be placed in the same bin. In particular, the intermediate
values of E between the unfolded and folded peaks may
represent a mixture of photons that come from the unfolded
and folded states rather than the transitional conformations.
However, if detailed balance is fulfilled, it seems more impor-
tant that the intermediate values of E adequately represent the
probabilities of the intermediate protein conformations rather
than the conformations themselves.

The MMC moves were determined by Eq. (3), in which the
values of FRET efficiency represented the protein states, and
the numbers of bursts in the FEHs served as (non-normalized)
probabilities of these states, P(E ). According to the FEHs
of Fig. 5, the whole range of FRET efficiencies, from 0 to
1, was divided into 31 segments. To take into account that
the peak at E ∼ 0 corresponds to the inactive acceptor, the
populations of states at 0 � E � Ethr, where Ethr is the value
of E at which P(E ) has a minimum between the inactive
and unfolded peaks, were set to zero, P(E ) = 0. Each MMC
step was taken to be an equally probable random move to
a neighboring segment. Detailed balance was strictly sat-
isfied similar to the FEP-based MMC simulations for the
β-hairpin (Sec. II B). The unfolded and folded states were
chosen to correspond to the maxima of the unfolded and
folded peaks (Fig. 5), with the values of FRET efficiency
EU = 0.61 and EF = 0.93, respectively. To simulate folding,
the MMC trajectories were initiated at E = EU and terminated
at E = EF, and to simulate unfolding, the states EF and EU

were used as the initial and terminal states, respectively. In
all cases, i.e., at each denaturant concentration for folding
and unfolding, 103 MMC trajectories were run. For both
folding and unfolding reactions, the acceptance probability
varied insignificantly, from ≈0.87 to ≈0.92. Based on the
simulated folding and unfolding trajectories, the rate constants
for folding (kF) and unfolding (kU) were determined, and the
corresponding FPT distributions were constructed. Similar to
β-hairpin, the MMC “time” scale was adjusted to the exper-
imental timescale by calculating the average ratios between
simulated and experimental rate constants. Specifically, the
MMC time steps for folding and unfolding were determined,
respectively, as (�t )F = (1/N )

∑i=N
i=1 (kF)MMC,i/(kF)exp,i and

(�t )U = (1/N )
∑i=N

i=1 (kU)MMC,i/(kU)exp,i, where N = 3 is the
number of denaturant concentrations ranging from 2.0 M to
2.5 M (i.e., 2.0 M, 2.25 M, and 2.5 M), at which the rel-
ative populations of both folded and unfolded states were
larger than 1%. It was obtained (�t )F ≈ 7.5 × 10−3 ms and
(�t )U ≈ 8.7 × 10−3 ms. Given the MMC time steps, the
rate constants for folding and unfolding were recalculated as
(kF)MMC = (k̃F)MMC/(�t )F and (kU)MMC = (k̃U)MMC/(�t )U,
where the rate constants denoted by the tilde are the original
MMC constants in the inverse number of the MMC steps.

Figure 6 compares the adjusted MMC rate constants with
those extracted from the FRET trajectories with the 3G model
(Table 1 of Ref. [3]). It shows that the MMC simulations based
on the FRET histograms reasonably predict the change of the
rate constants with denaturant concentration, for both folding
and unfolding reactions. The only exception are the concen-
trations at which the normalized population of the target state
is as small as ≈1%, as at 3 M GdmCl in the case of folding,
where P(0.93) ≈ 1.2 × 10−2, and at 1.5 M GdmCl in the case
of unfolding, where P(0.61) ≈ 9 × 10−3. More generally, the
MMC simulations are expected to give satisfactory results
when the peaks for the target states are resolved. Figure 7
also presents the simulated FPT distributions for folding and
unfolding. The distributions are single exponential, which is
consistent with the assumption of two-state kinetics that was
made in the theoretical models for extracting the rate constants
from the FRET data [3]. Since the FEHs for the GdmCl
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FIG. 6. α3D: Comparison of the rate constants for protein
(a) folding and (b) unfolding. Open triangles show the experimental
rate constants obtained with the 3G model [3], and solid triangles
represent simulated rate constants.

concentrations of 1,5 M, 2.0 M, and 3.0 M do not have minima
between the unfolded and native states that would represent
the transition state barriers, the folding kinetics in these cases
should generally be considered as downhill rather than two-
state [59–61]. At the same time, it does not rule out that the
distributions of folding times can remain single-exponential,
as has been discussed, e.g., in Refs. [62,63], in particular, for
the α3D protein [63].

IV. CONCLUSIONS

It has been shown that the Metropolis MC (MMC) simu-
lations based on the equilibrium distributions of states can be
successfully used to predict how characteristic reaction times
in a complex system change with the determining conditions.
As an example, the process of folding and unfolding for two
proteins was considered. The first protein, a β-hairpin pro-
tein, whose coarse-grained (Cα-bead) model was constructed
on the basis of the solution NMR data for 12-residue HP7
protein [48], was employed to develop and test the approach.
Performing MD simulations, the baseline characteristics of
the folding/unfolding process were determined for a set of
temperatures: the equilibrium free energy surfaces (FESs) and
free energy profiles (FEPs), the rate constants of folding and
unfolding, and the first-passage time (FPT) distributions for
these reactions. Using the FESs and FEPs as the potentials

FIG. 7. α3D: Simulated first-passage time distributions for pro-
tein (a) folding and (b) unfolding.

of mean force (PMFs), the MMC simulations were carried
out to obtain relative rate constants of folding and unfolding
and the FPT distributions. It has been found that they change
with temperature in good agreement with those from the MD
simulations, and, after fitting the MMC steps to the MD time
steps, they agree well in absolute value. The other protein
is a three-helical α3D protein, whose folding/unfolding reac-
tion was studied at different denaturant concentrations using
single-molecule FRET method [3]. In this case, the measured
FRET-efficiency histograms (FEHs) were employed as the
equilibrium distributions of states. Because of the uncertainty
posed by experimental limitations (a relatively small number
of photons in time bins, and a long binning time in compar-
ison to the characteristic times of interconversion of protein
molecules), it was not quite clear whether these FEHs could
be used as the PMFs. However, it has been found that for
the denaturant concentrations at which the FEH peak for the
target folded (unfolded) state is resolved, the rate constants of
folding (unfolding) change with the denaturant concentration
in satisfactory agreement with those extracted from photon
trajectories with the use of theoretic models [12,13]. Also, it
has been found the FPT distributions are single-exponential,
which is consistent with the assumption of two-state kinetics
in the theoretical models [12,13] for extracting the rate con-
stants from the FRET data. Although the kinetics observed for
β-hairpin and α3D proteins do not go beyond two-state kinet-
ics, there seem to be no reasons why adding a new state would
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reduce the ability of the present approach. To support this,
the approach was tested on a two-dimensional (2D) potential
energy surface [64], which was designed to mimic the process
of folding of an imaginary protein three states, i.e., unfolded,
folded and off-pathway intermediate states [65]. It has been
shown that the approach works equally well in this case,
i.e., the FPT distribution obtained with the MMC simulations
based of the FES generated from the given 2D PES agrees
well with the double-exponential distribution obtained in the
MD simulations (see the Supplemental Material [66]). To
obtain absolute values of the rate constants, a time-dependent
quantity is required, which, on the one hand, would be known
in the experiment (physical or computational) and, on the
other, could be obtained in the MMC simulations based on the

given equilibrium distribution of states, e.g., the self-diffusion
coefficient, if this distribution were in physical space [41].
The promising feature of the present approach is that it is
based solely on the equilibrium distributions of states, without
introducing any additional parameters to perform simulations,
which suggests its applicability to other complex systems.
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[32] N. Gō and H. Taketomi, Proc. Natl. Acad. Sci. USA 75, 559
(1978).

[33] A. Rey and J. Skolnick, Chem. Phys. 158, 199 (1991).
[34] A. Šali, E. Shakhnovich, and M. Karplus, Nature (London) 369,

248 (1994).
[35] S. F. Chekmarev, S. V. Krivov, and M. Karplus, J. Phys. Chem.

B 109, 5312 (2005).
[36] S. F. Chekmarev, A. Yu. Palyanov, and M. Karplus, Phys. Rev.

Lett. 100, 018107 (2008).
[37] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
[38] A. F. Voter, in Radiation Effects in Solids, edited by K. E.

Sickafus, E. A. Kotomin, and B. P. Uberuaga (Springer, NATO
Sci. Ser., Dordrecht, 2007), p. 1–23.

[39] B. Roux, Comput. Phys. Commun. 91, 275 (1995).
[40] D. Trzesniak, A.-P. E. Kunz, and W. F. van Gunsteren,

ChemPhysChem 8, 162 (2007).
[41] H. E. A. Huitema and J. P. van der Eerden, J. Chem. Phys. 110,

3267 (1999).
[42] G. Rutkai and T. Kristóf, J. Chem. Phys. 132, 104107

(2010).
[43] E. Sanz and D. Marenduzzo, J. Chem. Phys. 132, 194102

(2010).
[44] K. M. Bal and E. C. Neyts, J. Chem. Phys. 141, 204104 (2014).
[45] G. Tiana, L. Sutto, and R. A. Broglia, Physica A: Stat. Mech.

Appl. 380, 241 (2007).
[46] N. Gō, Annu. Rev. Biophys. Bioeng. 12, 183 (1983).
[47] S. F. Chekmarev, J. Chem. Phys. 139, 145103 (2013).

034407-7

https://doi.org/10.1038/nature01060
https://doi.org/10.1073/pnas.0909126106
https://doi.org/10.1021/jp1009669
https://doi.org/10.1073/pnas.1111164109
https://doi.org/10.1016/j.sbi.2012.10.008
https://doi.org/10.1016/j.bpj.2014.08.016
https://doi.org/10.1021/acs.jpcb.1c00206
https://doi.org/10.1073/pnas.1206190109
https://doi.org/10.1016/j.bbagen.2020.129613
https://doi.org/10.1146/annurev-biochem-013118-111442
https://doi.org/10.1529/biophysj.106.082487
https://doi.org/10.1021/jp903671p
https://doi.org/10.1021/jp105359z
https://doi.org/10.1021/acs.jpcb.5b03176
https://doi.org/10.1021/acs.jpcc.5b09892
https://doi.org/10.1073/pnas.071034098
https://doi.org/10.1021/ar040148d
https://doi.org/10.1088/0953-8984/19/11/113101
https://doi.org/10.1073/pnas.0806085105
https://doi.org/10.1126/science.1187409
https://doi.org/10.1126/science.1208351
https://doi.org/10.1016/S0009-2614(99)01123-9
https://doi.org/10.1016/S0006-3495(03)74897-8
https://doi.org/10.1063/1.1591721
https://doi.org/10.1103/PhysRevLett.63.1195
https://doi.org/10.1146/annurev.physchem.52.1.499
https://doi.org/10.1063/1.1699114
https://doi.org/10.1016/S0009-2614(91)85070-D
https://doi.org/10.1073/pnas.75.2.559
https://doi.org/10.1016/0301-0104(91)87067-6
https://doi.org/10.1038/369248a0
https://doi.org/10.1021/jp047012h
https://doi.org/10.1103/PhysRevLett.100.018107
https://doi.org/10.1021/j100540a008
https://doi.org/10.1016/0010-4655(95)00053-I
https://doi.org/10.1002/cphc.200600527
https://doi.org/10.1063/1.478192
https://doi.org/10.1063/1.3359434
https://doi.org/10.1063/1.3414827
https://doi.org/10.1063/1.4902136
https://doi.org/10.1016/j.physa.2007.02.044
https://doi.org/10.1146/annurev.bb.12.060183.001151
https://doi.org/10.1063/1.4824133


SERGEI F. CHEKMAREV PHYSICAL REVIEW E 105, 034407 (2022)

[48] N. H. Andersen, K. A. Olsen, R. M. Fesinmeyer, X. Tan, F. M.
Hudson, L. A. Eidenschink, and S. R. Farazi, J. Am. Chem. Soc.
128, 6101 (2006).

[49] T. X. Hoang and M. Cieplak, J. Chem. Phys. 112, 6851
(2000).

[50] R. Biswas and D. R. Hamann, Phys. Rev. B 34, 895 (1986).
[51] S. Miyazawa and R. L. Jernigan, J. Mol. Biol. 256, 623 (1996).
[52] S. F. Chekmarev, Phys. Chem. Chem. Phys. 23, 17856 (2021).
[53] R. B. Best, G. Hummer, and W. A. Eaton, Proc. Natl. Acad. Sci.

USA 110, 17874 (2013).
[54] V. Muñoz, P. A. Thompson, J. Hofrichter, and W. A. Eaton,

Nature (London) 390, 196 (1997).
[55] R. Zhou, B. J. Berne, and R. Germain, Proc. Natl. Acad. Sci.

USA 98, 14931 (2001).
[56] Y. Gao, Y. Li, L. Mou, B. Lin, J. Z. H. Zhang, and Y. Mei, Sci.

Rep. 5, 10359 (2015).
[57] A. R. Dinner, T. Lazaridis, and M. Karplus, Proc. Natl. Acad.

Sci. USA 96, 9068 (1999).

[58] B. Zagrovic, E. J. Sorin, and V. Pande, J. Mol. Biol. 313, 151
(2001).

[59] J. Sabelko, J. Ervin, and M. Gruebele, Proc. Natl. Acad. Sci.
USA 96, 6031 (1999).

[60] S. F. Chekmarev, S. V. Krivov, and M. Karplus, J. Phys. Chem.
B 110, 8865 (2006).

[61] P. T. Bui and T. X. Hoang, Biophys. J. 120, 4798 (2021).
[62] S. J. Hagen, Proteins: Struct. Funct. Genet. 50, 1 (2003).
[63] J. Kubelka, J. Hofrichter and W. A. Eaton, Curr. Opin. Struct.

Biol. 14, 76 (2004).
[64] K. Müller and L. D. Brown, Theor. Chim. Acta 53, 75 (1979).
[65] S. F. Chekmarev, PLoS ONE 10, e0121640 (2015).
[66] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.105.034407 for the simulation of folding
of an imaginary protein on a two-dimensional energy surface
with the unfolded, folded, and off-pathway states, and the com-
parison of the first-passage time distributions for the resulting
three-state kinetics obtained in the MD and MMC simulations.

034407-8

https://doi.org/10.1021/ja054971w
https://doi.org/10.1063/1.481261
https://doi.org/10.1103/PhysRevB.34.895
https://doi.org/10.1006/jmbi.1996.0114
https://doi.org/10.1039/D0CP06560A
https://doi.org/10.1073/pnas.1311599110
https://doi.org/10.1038/36626
https://doi.org/10.1073/pnas.201543998
https://doi.org/10.1038/srep10359
https://doi.org/10.1073/pnas.96.16.9068
https://doi.org/10.1006/jmbi.2001.5033
https://doi.org/10.1073/pnas.96.11.6031
https://doi.org/10.1021/jp056799o
https://doi.org/10.1016/j.bpj.2021.09.027
https://doi.org/10.1002/prot.10261
https://doi.org/10.1016/j.sbi.2004.01.013
https://doi.org/10.1007/BF00547608
https://doi.org/10.1371/journal.pone.0121640
http://link.aps.org/supplemental/10.1103/PhysRevE.105.034407

