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Pathway-resolved decomposition demonstrates correlation and noise dependencies of redundant
information processing in recurrent feed-forward topologies
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In a biochemical assay that converts fan-in networks into feed-forward loops (FFLs), we show that the
inter-regulator redundant information about the output gene product can be decomposed into finer components,
mediated by the constituent pathways. Variance-based information within the linear noise regime facilitates
quantifying these submodular redundancies. Contrary to the conventional wisdom on information decomposi-
tion, we report that information redundancy depends nontrivially on inter-regulator correlation. For the type-1
coherent (C1) and incoherent (I1) FFLs, the direct regulatory path-mediated redundancy is certainly correlation
independent. However, components induced by the indirect regulatory path and interpathway interference are
correlation dependent in (non)linear fashion. The trade-off between information redundancy and similarly
decomposable extrinsic noise from input to output node has been demonstrated for the pathways and full
motifs. Our analyses suggest that the interpathway cross redundancy positively and negatively influences the
superposition of elementary redundancies in the C1- and I1-FFLs, respectively. Their corresponding total
extrinsic noise is produced by the weighted sum and difference of the pathway-specific components. We
find that the I1-FFL is able to manufacture more varied redundancy and extrinsic noise responses compared
to the C1-FFL. Underlying the differing characteristics of the composite metrics across FFL variants, there
exist uniformly behaving pathway-dependent elements. The decomposition framework has been meticulously
explored in biologically rational parametric realizations through analytical estimates and stochastic simulations.
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I. INTRODUCTION

A living cell maintains its fitness by coping with envi-
ronmental dynamics through a continual flow of predictive
information. Over the years, many biophysical problems,
such as chemotaxis, metabolism, cell signaling, intercellular
resource sharing, quorum sensing, inflammatory response,
morphogenesis, cellular decision making, and neural cod-
ing, have benefited from information-theoretic insights [1–8].
In gene regulation, information from an external signal is
processed by the cell’s finely constructed networks of bio-
chemical entities. When the input species relays this signal
to the output gene, necessary biomolecules are synthesized
at the appropriate time and quantity. To this end, specialized
regulatory proteins are often required to control the output
gene expression. With ∼4500 genes [9] and O(107) proteins
[10], the E. coli gene regulatory network is a model complex
system displaying distinct properties at the collective and sub-
system levels. The bacterial and yeast transcription networks
are dense in statistically over-represented network motifs
which play crucial roles in various physiological processes
[11,12].

A feed-forward loop (FFL) is a common motif in these
systems and consists of three gene products with two up-
stream regulators controlling the output expression. Unlike in
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the simple regulation or fan-in network where the regulators
are independent, the top-level master regulator of an FFL
enslaves the intermediate co-regulator. As a result, an FFL has
two signal decoding channels running in parallel. A one-step
cascade is formed by connecting the master regulator to the
output, but a two-step cascade places the co-regulator between
the other two species. In a random net, eight FFLs cover all
possible combinations of activatory and inhibitory edges. The
C1- and I1-FFLs are preferred by the bacterial and yeast gene
transcription networks [13]. All of the edges in the C1-FFL
are activatory in nature, whereas an inhibitory edge connects
the co-regulator to the output in the I1-FFL. Experiments
on E. coli reveal that AND-gated C1- and I1-FFLs, respec-
tively, control the ara and gal metabolic systems, whereas a
SUM-gated C1-FFL regulates the flagella-producing fli operon
[14–16].

Shannon’s information theory [17] has lately been ex-
tended in the form of the partial information decomposition
(PID) principle [18,19] to tackle multivariate systems. This is
particularly useful in dealing with an interacting biochemical
population where the summed pairwise information differs
from the ensemble-level information. In this domain, a long-
standing problem has been the negative-valued interaction
information, an unphysical outcome given that the metric
signifies the common entropy space of three or more random
variables. To resolve this discrepancy, PID quantifies the finer
substructures of multivariate information. These non-negative
and independent elements are referred to as unique, syner-
gistic, and redundant information. For the well-characterized
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three-variable Gaussian system with two information sources
(drivers) and one target species, the unique information is
solely provided by the individual sources, whereas the synergy
appears from their complementary interaction. The redun-
dancy exists due to the presence of a common intersource
information space. Thanks to PID, the interaction informa-
tion that weighs the total information against the summed
pairwise information is proved identical to the difference
between synergy and redundancy. Therefore, a positive (neg-
ative) interaction information merely reflects the prevalence
of synergy (redundancy) in multispecies interaction. At times,
synergy and redundancy may balance each other to produce
zero interaction information. A fully specified decomposition
rule conceives of redundancy as the minimum of the two
constituent pairwise mutual information. As a corollary, in-
formation redundancy is regarded to be independent of the
intersource correlation strength [19]. This concept is an in-
tegral part to any analysis based on the minimum mutual
information PID (MMI PID) [19] and is the central theme
of our present investigation. Prior to the inception of MMI
PID, a number of other PID measures were introduced by
different information theorists. Some of them formalized re-
dundancy [18,20], while others built on synergy [21,22]. The
common assumption is that the redundant information and the
unique information only depend on the marginal distributions
between each of the sources and the target. For sources with
arbitrary dimensions and a univariate target jointly forming
a multivariate Gaussian distribution, MMI PID unified the
earlier PIDs. Within this framework, the unique information
from the source responsible for the minimum mutual infor-
mation vanishes. Synergy appears as the extra information
from the weaker source when the stronger one is known. Both
redundancy and synergy maintain symmetry in relation to the
sources.

The three-species-strong FFL topology is suitable for a
correlation-based description of redundant information pro-
cessed by the regulators targeting their common output.
Therefore, we hypothesize a biochemical construct that starts
from fan-in networks and gradually increases the inter-
regulator interaction to generate the C1- and I1-FFLs. Our
theoretical assay is inspired by previous experiments that
compared the relative physiological advantages of these struc-
tures in E. coli [14]. We quantify the inter-regulator correlation
strength in terms of the co-regulator species abundance syn-
thesized by the master regulator. In the spirit of PID, we
present a pathway-dependent decomposition of redundant
information in the C1- and I1-FFLs. In doing so, nontriv-
ial correlation patterns of information redundancy emerge.
This decomposition is realizable if we choose to compute
information in terms of a reduction in variance instead of
the conventional reduction in entropy. Since stochasticity
is ubiquitous in biochemical systems with both beneficial
and detrimental effects [23,24], we present an analytically
tractable correspondence between information redundancy
and noise flow in FFLs. To this end, we use the definition of
extrinsic noise as elucidated in the dual-reporter technique of
Elowitz et al. [25].

To model the FFL dynamics, we apply the Langevin for-
malism [26,27] where s, x, and y indicate copy numbers of
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FIG. 1. (a), (b) The schematic diagrams of the C1- and I1-FFLs,
respectively, with production (degradation) reactions marked by
blue (red) arrows and associated propensities. The Venn diagram in
(c) is reproduced from Ref. [19] and shows generic PID elements
embedded within the pairwise information [IF (y; s) and IF (y; x)] and
total information [IF (y; s, x)] spaces. Here, {s, x} act as information
sources, with y as their common target. U F (y; s) [U F (y; x)] is the
unique information from s (x) about y. RF (y; s, x) and SF (y; s, x) are
the redundant information and synergistic information from {s, x}
about y, respectively. These PID elements are interconnected through
the equations [19]: IF (y; s) = U F (y; s) + RF (y; s, x), IF (y; x) =
U F (y; x) + RF (y; s, x), and IF (y; s, x) = U F (y; s) + U F (y; x) +
RF (y; s, x) + SF (y; s, x).

the master regulator, co-regulator, and output gene product,
respectively:

ds

dt
= fs − μss +

√
βs(s)ξs(t ), (1a)

dx

dt
= fx(s) − μxx +

√
βx(s, x)ξx(t ), (1b)

dy

dt
= fy(s, x) − μyy + √

βy(s, x, y)ξy(t ). (1c)

Figures 1(a) and 1(b) represent the C1- and I1-FFLs with
blue (red) arrows denoting the production (degradation)
reactions with propensities fi (μii). We have used
Hill functions to model the co-regulator and output
productions, i.e., fx(s) = kur

x + ksx[s/(Ksx + s)], fy(s, x) =
ksy[s/(Ksy + s)] + kxy[x/(Kxy + x)] (C1), and fy(s, x) =
ksy[s/(Ksy + s)] + kxy[Kxy/(Kxy + x)] (I1). Here, k··· (μi )
stands for the production (degradation) rate parameter. In
particular, kur

x is the rate parameter for unregulated synthesis
of the co-regulator. This reaction keeps the three-node
structures intact when the edge S → X is absent. Thus,
appear the fan-in topologies [9], which act as primers for
constructing the C1- and I1-FFLs. Ksx is the activation
coefficient which is numerically equivalent to the master
regulator’s population needed to produce the half-maximal
regulated co-regulator abundance. In mechanistic terms,
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Ksx = σ u
sx/σ

b
sx, where σ u

sx and σ b
sx are the unbinding and

binding rate parameters for the master regulator to bind to
its co-regulator, respectively [28]. Other K... follow similar
interpretation. Kxy works as the repression coefficient in the
I1-FFL. ξi(t ) are statistically independent and temporally
uncorrelated Gaussian white noise terms with zero means
and unit variances. βi are the corresponding dynamical noise
strengths [27]. Recent advances in the MMI PID literature are
based on Gaussian random variables and this motivates us to
use the linear noise approximation (LNA). LNA is obtained
by applying van Kampen’s system size (�) expansion to the
multivariate master equation corresponding to the former
Langevin description in the close proximity of stationary
trajectories [26,29]. Within this regime, fluctuation around
the monostable deterministic mean population is assumed
to be small for large � (in the strict mathematical sense,
when � → ∞). The approximated random variable is given
by i = �ρi + √

�δi, where ρi and δi are, respectively, the
macroscopic concentration and the copy number fluctuation
of the ith species. The stationary solution of the resulting
linear Fokker-Plank equation is a mutivariate Gaussian
whose covariance matrix (�) obeys the Lyapunov equation:
J� + �JT + D = 0. J and D are the steady-state Jacobian
and noise (diffusion) matrices, respectively. For our case, we
normalize the system volume to unity without any loss of
generality. This is motivated by the fact that in a eukaryotic
cell, the regulatory proteins are synthesized in the cytoplasm
and then transported to the nucleus. Hence, the volume sensed
by them is neither cytoplasmic nor nuclear volume, but an
effective cellular volume [30]. In this measurement setup, the
copy number and concentration states become numerically
identical to each other. Previously, this choice was validated
for systems free of bimolecular reactions [31,32]. The
information-theoretic analyses of four-node regulatory
topologies by Ziv et al. successfully capitalized on this
simplifying assumption in the presence of Hill-type activatory
and inhibitory input functions with cooperative effects [33].
When the fluctuations around mean copy numbers are smaller
than the respective mean sizes, we can use 〈 fi(·)〉 ≈ fi(〈·〉) in
Eqs. (1a)–(1c). Here, 〈·〉 refers to the steady-state ensemble
average. Thus, we arrive at the following expressions: 〈s〉 =
ks/μs, 〈xur〉 = (kur

x /μx ), 〈xs〉 = (ksx/μx )[〈s〉/(Ksx + 〈s〉)].
Here, 〈xur〉 and 〈xs〉, respectively, denote the unregulated and
regulated co-regulator populations which additively produce
the total population 〈x〉. Similarly, for the output, the directly
and indirectly regulated populations are, respectively, 〈ys〉 =
(ksy/μy)[〈s〉/(Ksy + 〈s〉)] and 〈yx〉 = (kxy/μy)[〈x〉/(Kxy +
〈x〉)] (C1), and 〈yx〉= (kxy/μy)[Kxy/(Kxy+〈x〉)] (I1). The total

output population (〈y〉) in our additive signal integration
scheme is given by 〈y〉 = 〈ys〉 + 〈yx〉. Next, we record the
steady-state copy number (co)variances,

�F
s = 〈s〉, (2a)

�F
sx = 〈 f ′

x,s〉�F
s

(μs + μx )
, (2b)

�F
sy = 〈 f ′

y,s〉�F
s + 〈 f ′

y,x〉�F
sx

(μs + μy)
, (2c)

�F
x = 〈x〉 + 〈 f ′

x,s〉�F
sx

μx
, (2d)

�F
xy = 〈 f ′

y,s〉�F
sx + 〈 f ′

x,s〉�F
sy + 〈 f ′

y,x〉�F
x

(μx + μy)
, (2e)

�F
y = 〈y〉 + 〈 f ′

y,s〉�F
sy + 〈 f ′

y,x〉�F
xy

μy
. (2f)

The superscript F implies that these expressions belong to the
generic FFL structure. The notation 〈 f ′

x,s〉 stands for dfx(s)/ds
evaluated at s = 〈s〉, and so on for other input functions.
Now that we have modeled the FFL, it is easier to con-
nect the gene products to the specifics of the PID principle.
Figure 1(c) schematically depicts the relationships that the
pairwise information [IF (y; s) and IF (y; x)] and total infor-
mation [IF (y; s, x)] share with the unique, redundant, and
synergistic information.

II. PATHWAY-DEPENDENT DECOMPOSITION
FRAMEWORK FOR INFORMATION REDUNDANCY

AND EXTRINSIC NOISE

The MMI PID principle prescribes RF (y; s, x) ≡ RF
y

def=
min{IF (y; s), IF (y; x)} [19]. To implement a redundancy de-
composition involving both of the parallel signal decoding
pathways, we restrict to parametric setups that conform to
the constraint IF (y; s) < IF (y; x). This means that the in-
formation redundancy is numerically identical to the signal
fidelity between input and output species, i.e., RF

y = IF (y; s).
To avoid any conceptual confusion, we should note that their
physical interpretations are quite different from each other
as described in Sec. I. This information is computed using

IF (y; s)
def= �F

y − �F
y|s [19,34,35]. The last term is the par-

tial variance of y when conditioned on s and follows from

�F
y|s

def= �F
y − (�F

sy
2
/�F

s ) [19,36]. Thus, we arrive at RF
y =

�F
sy

2
/�F

s . Now, we turn our attention to Eq. (2c) and rewrite
the steady-state covariance between the master regulator and
output species as follows:

�F
sy =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈ys〉(1 − Psy)	ys︸ ︷︷ ︸
�

�O
sy from S →Y

+

�T
sy from S → X →Y

�︷ ︸︸ ︷
〈xs〉〈yx〉

〈x〉 (1 − Psx )(1 − Pxy)	xs	ys (C1),

�︷ ︸︸ ︷
〈ys〉(1 − Psy)	ys − 〈xs〉〈yx〉

〈x〉 (1 − Psx )Pxy	xs	ys︸ ︷︷ ︸
�

�T
sy from S → X �Y

(I1).

(3)
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	i j =: [μi/(μi + μ j )] capture the internode separation of
timescales and are involved in downward filtration of regula-
tory fluctuations through temporal averaging [37]. Pi j denote
steady-state promoter occupancy probabilities, e.g., Psx =
[〈s〉/(Ksx + 〈s〉)] = [σ b

sx〈s〉/(σ u
sx + σ b

sx〈s〉)]. Other P··· follow
similar expressions. Equation (3) makes it evident that this
covariance is a mixture of two components. The contribution
from the one-step cascade (S → Y ) is common to both FFLs.
The remaining portion originates from the two-step cascade
(S → X → Y or S → X � Y ). Their respective magnitudes
are denoted by �O

sy and �T
sy. This covariance decomposition,

i.e., �F
sy = �O

sy ± �T
sy, signifies that fluctuations flowing along

the parallel pathways interfere at the output node construc-
tively and destructively for the C1- and I1-FFLs, respectively.

Using the last expression, we can reexpress RF
y in terms of

its pathway-centric terms as follows:

RF
y = �F

sy
2

�F
s

(4a)

= �O
sy

2

�F
s︸︷︷︸
�

RO
y

+ �T
sy

2

�F
s︸︷︷︸
�

RT
y

± 2
�O

sy�
T
sy

�F
s︸ ︷︷ ︸

�

RC
y

. (4b)

In Eq. (4b), the + and − signatures in front of RC
y stand for

the C1- and I1-FFLs, respectively. RO
y and RT

y are the redun-
dant information stemming from the one-step and two-step
cascades, respectively. RC

y is the cross redundancy produced
by interpathway interference in the fluctuations. RF

y = RO
y +

RT
y ± RC

y unequivocally suggests the impact of regulatory
interactions on the superposition of submodular common in-
formation sharing elements. Now, we consider measuring the
noise extrinsically transmitted from the master regulator to the
final gene product. Looking at the expression of the output
variance in Eq. (2f), we can distinguish 〈y〉 as a measure of
its intrinsic variability. On the other side, the covariances, i.e.,
�F

sy and �F
xy, represent extrinsic factors of fluctuations [38,39].

A comparison between Eqs. 2(c) and 2(e) suggests that the
metric of �F

sy is functionally independent of �F
xy. Hence,

we prefer the former covariance to compute the population-
normalized extrinsic noise [25,39] as

NF
sy

def=
∣∣�F

sy

∣∣
〈s〉〈y〉 (5a)

=
∣∣∣∣∣〈ys〉 f

�O
sy

〈s〉〈ys〉︸ ︷︷ ︸
�

NO
sy

± 〈yx〉 f
�T

sy

〈s〉〈yx〉︸ ︷︷ ︸
�

NT
sy

∣∣∣∣∣ ( ∵ �F
sy = �O

sy ± �T
sy

)
.

(5b)

Here, 〈yi〉 f =: 〈yi〉/〈y〉 measure the normalized output syn-
thesis capacities of the individual cascades. Equation 5(b)
implies that the one-step and two-step cascades, respectively,
transfer NO

sy and NT
sy amounts of noise to the output node in the

process of decoding the input signal. As in the redundancy
case, the C1- and I1-FFLs follow different rules, i.e., NF

sy =
|〈ys〉 f NO

sy ± 〈yx〉 f NT
sy|, to assemble the pathway-specific noise

flows. While the C1-FFL produces the composite extrinsic
noise by summing up the weighted elementary noise flows,
the I1-FFL takes into account the corresponding difference.
By consulting Eqs. 4(b) and 5(b) and using �F

s = 〈s〉 from
Eq. (2a), we underline the following trade-offs between re-
dundancy and extrinsic noise both at the submodular and
full-motif levels:

RO
y = 〈s〉〈ys〉2NO

sy
2
, (6a)

RT
y = 〈s〉〈yx〉2NT

sy
2
, (6b)

RC
y = 2〈s〉〈ys〉〈yx〉NO

syNT
sy, (6c)

RF
y = 〈s〉〈y〉2NF

sy
2
. (6d)

Equations 6(a)–6(d) convey that with increased (decreased)
extrinsic noise flow from input to output node, the inter-
regulator common information sharing invariably increases
(decreases). In other words, redundant information processing
and extrinsic noise transmission are intimately interconnected.

Equations 4(a) and 5(a), in association with Eq. (3),
are used, respectively, to compute the analytical RF

y and NF
sy .

The corresponding pathway-resolved elements are explicitly
expressed in terms of biochemical parameters and species
abundances as follows:

RO
y = 〈ys〉2

〈s〉 (1 − Psy)2	2
ys (C1 and I1), (7)

RT
y =

{ 〈xs〉2〈yx〉2

〈s〉〈x〉2 (1 − Psx )2(1 − Pxy)2	2
xs	

2
ys (C1)

〈xs〉2〈yx〉2

〈s〉〈x〉2 (1 − Psx )2P2
xy	

2
xs	

2
ys (I1),

(8)

RC
y =

{
2〈xs〉〈ys〉〈yx〉

〈s〉〈x〉 (1 − Psy)(1 − Psx )(1 − Pxy)	xs	
2
ys (C1)

2〈xs〉〈ys〉〈yx〉
〈s〉〈x〉 (1 − Psy)(1 − Psx )Pxy	xs	

2
ys (I1),

(9)

NO
sy = 1

〈s〉 (1 − Psy)	ys (C1 and I1), (10)

NT
sy =

{ 〈xs〉
〈s〉〈x〉 (1 − Psx )(1 − Pxy)	xs	ys (C1)
〈xs〉

〈s〉〈x〉 (1 − Psx )Pxy	xs	ys (I1).
(11)

To validate our LNA-based results, we implement the
stochastic simulation algorithm (SSA) [40]. Here, we should
mention that the usage of Hill functions to model gene
regulation is an approximation in contrast with elementary
mass-action kinetics [26,41]. The coarse-grained origin of
the Hill functions assumes fast binding and unbinding events
between regulatory proteins and their target promoters in
comparison with other timescales in the network. In doing
so, binding fluctuations are excluded in the regulator copy
numbers. Recently, Holehouse and Grima demonstrated that
for positive and negative feedback models, the usage of Hill
functions is only justified when the protein-DNA binding rate
is considerably smaller than the unbinding rate [28]. Besides,
application of the heuristic SSA sometimes underestimates
the noise level for Hill-type input functions [42]. Hence, such
modeling approach is not suitable for all parametric regimes
of a gene regulation network. Previously, Ref. [31] reported
that the LNA can yield exact results up to second moments
even for certain systems with second-order reactions. But, the
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presence of deterministic bistability and stochastic bimodal-
ity causes the breakdown of LNA. These features are often
exhibited by genetic systems with simpler architectures than
the FFL. For example, in an autoregulatory switch, stochastic
bimodality emerges for a large parameter range even when
the deterministic description is monostable [43]. This is also
the case for a genetic toggle switch without cooperativity
but in the presence of multiplicative noise [44]. Hence, we
choose our parameter sets that conform to monostable and
monomodal FFL configurations. We should mention that the
signals are always on in our model, i.e., none of the genes
switch between their individual active and inactive states.
Finally, as a cautionary remark, we note that the need for
monomodal parameter regimes presents quite a limitation on
the methodology utilized in this paper. In Sec. III, the LNA-
and SSA-based datasets are, respectively, represented by solid
lines and symbols. The latter are generated using steady-state
ensemble averages of O(105) independent time series for each
of the separate constructs.

III. RESULTS AND DISCUSSION

A. Controlling information redundancy and extrinsic noise
via the direct regulatory pathway’s activation strength

In our first parametric setup, we maintain equal output pro-
ductions by the parallel signal decoding cascades, i.e., 〈ys〉 =
〈yx〉 = 50 copies. 〈xs〉 (〈xur〉) increases (decreases) within 0–
100 (100–0) to keep 〈x〉 fixed at 100. Additionally, 〈s〉 = 100
is maintained throughout the network transformation. Chang-
ing Ksy implies that the master regulator-mediated maximal
output production rate (ksy) is altered following the constraint:
ksy = μy〈ys〉[1 + (Ksy/〈s〉)]. kxy may be changed in a similar
fashion. Fixed output abundance helps to compare different
network configurations on an equitable footing, which may
be interpreted as a robust fitness trait. This can be experi-
mentally achieved by altering the RNA polymerase-promoter
interaction strength [9]. Ultimately, these distinct genotypes
({ksy, kxy}) map onto a unique phenotype (〈y〉). This is con-
sistent with experimental observations on the lac system of
E. coli, which shows remarkable optimization to achieve
maximal expression levels [45]. Choosing a tunable direct
activation coefficient comes from the following consideration.
Compared to the two-step cascade, the one-step cascade can
respond to the input signal quite easily, thereby quickly ini-
tiating the output production. Depending upon the reliability
of the inducer signal, this may not be an accurate decision
all the time. Thus, a tunable direct activation coefficient helps
the regulatory machinery to mount gene expression only when
the inducer signal is of significance. Following Ref. [46], we
assign Ksx = 10〈s〉, Kxy = 10〈x〉 (C1), and Kxy = 〈x〉 (I1). To
ensure RF

y = IF (y; s), we make the following three choices for
the one-step cascade: Ksy = {0.5, 0.1, 0.01} × 〈s〉. Thus, we
can probe a broad range of binding conditions between the
master regulator and output promoter.

Our first choice, i.e., Ksy = 0.5〈s〉, implies that 50 copies
of S mount the half-maximal production of 〈ys〉. Figures 2(a)
and 2(b) show the resulting profiles of {RF

y , NF
sy} for the two

FFL types. Both metrics monotonically increase with grow-
ing 〈xs〉 for the C1-FFL. In the I1-FFL, their response is
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FIG. 2. (a), (b) The profiles of {RF
y , NF

sy} for the C1- and
I1-FFLs, respectively. 〈s〉 = 〈x〉 = 〈y〉 = 100, 〈ys〉 = 〈yx〉 = 50 are
maintained. Other parameters are μs = μx = 0.5, μy = 1.0, all in
min−1, and Ksx = 10〈s〉, Ksy = 0.5〈s〉, Kxy = 10〈x〉 (C1), and Kxy =
〈x〉 (I1). The associated k... are determined from the steady-state
version of Eqs. (1a)–(1c). The pathway-resolved redundancy and
extrinsic noise components are shown in (c)–(f). Their correlation
dependencies follow from Eqs. (7)–(11). The redundancy-noise as-
sociation agrees with Eqs. (6a)–(6d). The FFL-level differences in
the redundancy and extrinsic noise trends vanish in the submodular
level.

completely opposite. Their behavior attests to the fact that
the information redundancy does depend on the interdriver
correlation strength. To rationalize the profiles, we need to
explore their pathway-resolved components from Eqs. (7)–
(11) in Figs. 2(c)–2(f). They indeed suggest the existence of
a correlation-independent redundancy element, namely, RO

y .
RT

y and RC
y grow parabolically and linearly with 〈xs〉, respec-

tively. On the noise front, NO
sy is the correlation-independent

component that corresponds to RO
y . Similar to RT

y , NT
sy rises

with the interdriver correlation. Due to a common type of one-
step cascade, {RO

y , NO
sy} are invariant across FFLs. However,

{RT
y , RC

y , NT
sy} take different values due to the regulatory dis-

similarity of the two-step cascades. A one-to-one association
between composite and submodular {R···

y , N ···
sy } is confirmed

through Eqs. (6a)–(6d). Although the composite metrics char-
acteristically differ from each other in the FFL variants, the
respective submodular elements are consistent in their re-
sponses to an increasing 〈xs〉. It is only through the formulas:

RF
y = RO

y + RT
y ± RC

y and NF
sy = |〈ys〉 f NO

sy ± 〈yx〉 f NT
sy| that we

can appreciate how submodular redundancy and extrinsic
noise elements manufacture differences in distinct FFLs. To
elaborate on this issue, we point out the following. Figure 2(b)
portrays diminishing NF

sy when increasing 〈xs〉 opens up
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FIG. 3. Keeping other independent parameters the same as in our
control Fig. 2, we make Ksy = 0.1〈s〉. (a), (b) {RF

y , NF
sy} for the C1-

and I1-FFLs, respectively. In (b), an arrow marks the 〈xs〉 value at
which the composite redundancy and extrinsic noise are completely
quenched. (c)–(f) The respective pathway-resolved metrics.

another channel (S → X ) for noise flow in addition to the ex-
isting S → Y . Naturally, one expects increased transmission
of upstream fluctuations to the output node in this situation.
This is precisely what we find by looking at NT

sy in Fig. 2(f).
To accommodate this intuitively antithetical scenario, we
are guided by the above-mentioned decomposition rule for
the I1-FFL. Here, a constant NO

sy and a negative signature
accompanying NT

sy engineer the decaying NF
sy . This nega-

tive signature bears testimony to the regulatorily mismatched
parallel cascades in the I1-FFL. The destructive interfer-
ence in redundancy quantified by RC

y gradually disentangles
the pairwise information spaces, namely, IF (y; s) and IF (y; x),
thereby reducing their overlap region [see Fig. 1(c)]. Hence,
the commonly shared information between the regulators
about the target (RF

y ) diminishes with increasing 〈xs〉 in the
composite I1-FFL.

Figure 3 illustrates {R···
y , N ···

sy } for Ksy = 0.1〈s〉, i.e., when
half of 〈ys〉 is synthesized by 10 copies of S. With this in-
crease in direct activation strength (∝ K−1

sy ), the binding of
S with its output promoter gets five-times tighter than in the
control setup of Fig. 2. In Fig. 3(a), the C1-FFL preserves
the increasing trends of {RF

y , NF
sy} from Fig. 2(a). Their re-

duced magnitudes result from significant drops in {RO
y , NO

sy}
as shown in Figs. 3(c) and 3(e). The changes in the one-step
cascade-controlled elements accompany lowering of RC

y at par
with Eq. (9). An interesting situation arises for the I1-FFL
in Fig. 3(b), where RF

y displays a concave-up profile closely
followed by NF

sy . Both of them are completely extinguished
at a unique value of 〈xs〉. Equations (4b), (5b), and (7)–
(11) determine the precise numerical value of this correlation

strength,

〈xs〉|{RF
y ,NF

sy}=0 = 〈ys〉〈x〉(1 − Psy)

〈yx〉(1 − Psx )Pxy	xs
. (12)

Here again, we can verify that the redundancy and extrinsic
noise components displayed in Figs. 3(d) and 3(f) are su-
perposed according to the respective Eqs. (4b) and (5b) to
produce the effective metrics in Fig. 3(b). This shows that
even sufficiently correlated predictor species may produce
zero redundant information about their target when the com-
posite I1-FFL is considered. Analysis at the full-motif level
masks the nonzero redundancies generated by the constituent
pathways. Besides, Fig. 3(b) firmly connects information re-
dundancy to extrinsic noise flow from input to output node in
FFLs. It is noteworthy that an analysis focusing only on the
C1-FFL would have obscured the full picture concerning the
interplay among redundancy, correlation, and extrinsic noise.
It is RC

y that nullifies RO
y + RT

y and gives RF
y = 0. Similarly,

the balancing act between NO
sy and NT

sy finally quenches NF
sy . It

can be further shown from Eqs. (7)–(9) that at the particular
value of 〈xs〉 = 40 given by Eq. (12), RO

y = RT
y = RC

y /2 [see,
also, Fig. 3(d)]. Therefore, a strong destructive interpathway
crosstalk is implemented by RC

y with this particular magni-
tude and thus IF (y; s) and IF (y; x) are completely decoupled.
Hence, the redundant information vanishes in the composite
I1-FFL.

Our final parametric setup considers Ksy = 0.01〈s〉, imply-
ing only one copy of S is able to produce half of 〈ys〉. This
is the maximum binding strength achievable by the one-step
cascade. The resulting redundancy and extrinsic noise datasets
are profiled in Fig. 4. As expected from our previous deliber-
ation, Fig. 4(a) shows that {RF

y , NF
sy} are further diminished

in their magnitudes for the C1-FFL. The I1-FFL continues to
produce new trends as {RF

y , NF
sy} now rise with increasing 〈xs〉

in Fig. 4(b). With the present supertight binding in the one-
step cascade, NO

sy is so small that {RO
y , RC

y } are also minimized.
Naturally, NT

sy and RT
y are the dominant factors in this situa-

tion. Here, the destructive interference induced by RC
y is not

sufficient enough to dampen the common information sharing
[the overlap between IF (y; s) and IF (y; x)] in the composite
I1-FFL. Hence, even in the presence of X � Y , RF

y grows with
increasing 〈xs〉. Under the current circumstances, the FFLs be-
come information-theoretically similar to the corresponding
two-step cascades. In this scenario, we observe IF (y; s, x) ≈
IF (y; x) (data not shown). This has a substantial bearing
on the interaction information or net synergy [19]: 
I =
IF (y; s, x) − IF (y; s) − IF (y; x) ≈ −IF (y; s) = −RF

y . In ear-
lier works, we hypothesized that the underlying Markov chain
structure of a two-step cascade generates net information
redundancy [47,48]. The present parametrization transforms
fully functional FFLs into information-theoretic two-step cas-
cades poised at redundancy. This happens in spite of the
one-step cascade synthesizing half of the total output popula-
tion. Figures 2–4 suggest that the I1-FFL, due to its regulatory
architecture, has an advantage over the C1-FFL in producing
varied redundancy and extrinsic noise responses.

We close this section by providing a quantitative assess-
ment of the changes in the pathway-specified redundancies
and extrinsic noise as Ksy is tuned. If the direct activation
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FIG. 4. We implement the strongest direct activation of the out-
put gene by setting Ksy = 0.01〈s〉. Other independent parametric
considerations are identical with previous setups. (a) and (b) capture
the composite redundancy and extrinsic noise, both of which show
similar trends in the C1- and I1-FFLs. The submodular metrics in
(c)–(f) document minimal RO

y and NO
sy .

coefficient (ac) is made 1/pac times its former value, where
pac > 1, the relevant metrics in the strong-binding (SB) and
weak-binding (WB) conditions are inter-related through

RO
y

∣∣
SB = [1 + (pac − 1)Psy|WB]−2RO

y

∣∣
WB, (13a)

RC
y

∣∣
SB = [1 + (pac − 1)Psy|WB]−1RC

y

∣∣
WB, (13b)

NO
sy

∣∣
SB = [1 + (pac − 1)Psy|WB]−1NO

sy

∣∣
WB. (13c)

B. Effects of unbalanced direct and indirect signal decodings
on information redundancy and extrinsic noise

Equations (7)–(9) indicate the nonlinear dependence
of pathway-resolved redundancies on {〈ys〉, 〈yx〉}. The
population-normalized extrinsic noise components are natu-
rally invariant to the parallel pathways’ output production
capacities [see Eqs. (10) and (11)]. Datasets in Sec. III A
considered balanced signal decodings, i.e., 〈ys〉 = 〈yx〉 = 50
copies. Here, we make them unbalanced while keeping 〈y〉 =
100 copies as before. With Ksy = 0.5〈s〉 as in Fig. 2, the max-
imal output production rates, namely, {ksy, kxy}, are modified
accordingly. In general, if 〈ys〉 is made p〈ys〉 times its previous
value (〈ys〉 → p〈ys〉 × 〈ys〉), Eqs. (7)–(9) obey the following
transformation rules:

RO
y

p〈ys〉−→ p2
〈ys〉R

O
y , (14a)

RT
y

p〈ys〉−→
[

1 + (1 − p〈ys〉)
〈ys〉
〈yx〉

]2

RT
y , (14b)

RC
y

p〈ys〉−→ p〈ys〉

[
1 + (1 − p〈ys〉)

〈ys〉
〈yx〉

]
RC

y . (14c)
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FIG. 5. Results showing the redundancy and extrinsic noise re-
sponses for unequal output production capacities of the direct and
indirect pathways. 〈ys〉 : 〈yx〉 = 60 : 40, 30 : 70 are maintained for
the C1- and I1-FFLs, respectively. Other independent parametric
conditions remain the same as in the control Fig. 2. {RF

y , NF
sy} in

(b) show similar trends as in Fig. 3(b). The monotonic metric features
in (a) are the same as in previous instances of the C1-FFL. (c) and
(d) suggest simultaneous control over {RO

y , RT
y , RC

y } with respect to
the corresponding control Figs. 2(c) and 2(d). Comparison between
Figs. 2(e) and 2(f) and Figs. 5(e) and 5(f) reveals that NO

sy and NT
sy are

invariant to the p〈ys〉 transformation.

Although the submodular extrinsic noise components remain
unchanged, their respective weightages (〈yi〉 f ) in the super-
position given by Eq. (5b) are now unequal. Hence, NF

sy in
Figs. 5(a) and 5(b) differ from the control Figs. 2(a) and 2(b),
respectively. In Fig. 5(a), the C1-FFL preserves the monotonic
nature of {RF

y , NF
sy} from previous setups. The constituent

redundancies change according to Eqs. (14a)–(14c) and are
plotted in Fig. 5(c). The invariant extrinsic noise elements are
shown in Fig. 5(e). Their weightages manage the pathway
susceptibilities to the intrinsic noise (variability) of S. The

latter is expressed as NF
s

def= �F
s /〈s〉2 = 〈s〉−1 [using Eq. (2a)].

Reexpressing Eq. (5b) makes this issue easier for the C1-FFL:

NF
sy =

[
〈ys〉 f (1 − Psy)	ys

+ 〈xs〉〈yx〉 f

〈x〉 (1 − Psx )(1 − Pxy)	xs	ys

]
× NF

s . (15)

Therefore, changed output productions from individual path-
ways alter the total extrinsic noise without modifying its basic
components.

The trends similar to Fig. 3(b) reappear in Fig. 5(b) for the
I1-FFL. Here, again, the I1-FFL manufactures {RF

y , NF
sy} = 0

in the presence of a strong inter-regulator activating edge.
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The elemental redundancies are appropriately modified in
Fig. 5(d). The current setup exemplifies complete attenuation
of redundancy and extrinsic noise for the composite I1-FFL
when the motif transforms its decoding branches from a
balanced to an unbalanced state. Perturbing the individual
extrinsic noise transduction is not a prerequisite in this case,
as verified by Fig. 5(f). Here, the interpathway regulatory mis-
match ensures that for certain 〈xs〉 and 〈yi〉 f , the proportions of
NF

s flowing through the decoding cascades balance each other.
This may be analytically verified via

NF
sy =

∣∣∣∣∣〈ys〉 f (1 − Psy)	ys − 〈xs〉〈yx〉 f

〈x〉 (1 − Psx )Pxy	xs	ys

∣∣∣∣∣
× NF

s . (16)

Similar to Fig. 3(d), it can be directly checked from Eqs. (7)–
(9) that for the unique 〈xs〉 value suggested by Eq. (12), the
I1-FFL produces RO

y = RT
y = RC

y /2, as shown in Fig. 5(d).
Consequently, RC

y completely separates IF (y; s) and IF (y; x)
engineering RF

y = 0.

C. Growing co-regulator abundance exerts hyperbolic control
over redundant information and extrinsic noise propagation

Until now, we have considered fixed 〈x〉 (100 copies) while
〈xs〉 increases from 0 to 100 copies. This is attained by si-
multaneously decreasing 〈xur〉 from 100 to 0 copies following
〈xur〉 = 〈x〉 − 〈xs〉. Here, we conceive of a situation in which
〈xur〉 = 10 copies with 〈xs〉 increasing like before. Hence, 〈x〉
increases from 10 to 110 copies. Other stand-alone param-
eters remain unchanged from their control values in Fig. 2.
The network modification factors in the fixed and increas-
ing 〈x〉 cases are 〈xs〉 and 〈xs〉/(〈xur〉 + 〈xs〉), respectively.
The latter sigmoidal function introduces saturating effects to
{RF

y , NF
sy}, profiled in Figs. 6(a) and 6(b). Contrasted with

their counterparts in Figs. 2(a) and 2(b), they hyperbolically
rise and fall for the C1- and I1-FFLs, respectively. Naturally,
the one-step cascade-mediated components (RO

y and NO
sy) are

indifferent to growing co-regulator abundance. The features
of RT

y , RC
y , and NT

sy in Figs. 6(c)–6(f) explain that of Figs. 6(a)
and 6(b). To fully appreciate the implications of variable

co-regulator population, we invoke its intrinsic noise: NF
x

def=
〈x〉−1 = (〈xur〉 + 〈xs〉)−1. For fixed 〈xur〉, linearly increasing
〈xs〉 inevitably forces NF

x to drop hyperbolically. Its effect on
the relevant metrics are gathered from Eqs. (8), (9), and (11):

RT
y ∝ [〈xs〉NF

x

]2
, (17a)

RC
y ∝ 〈xs〉NF

x , (17b)

NT
sy ∝ 〈xs〉NF

x . (17c)

Figures 6(a) and 6(b) are better understood with these
relations along with the superposition rules: RF

y = RO
y + RT

y ±
RC

y and NF
sy = |〈ys〉 f NO

sy ± 〈yx〉 f NT
sy|. The current analysis di-

rects our attention to a couple of biochemical mechanisms
through which the regulators may establish their commonly
shared information content. As the inter-regulator edge is
enhanced, the FFLs may require a robust (fixed) co-regulator
population level. Other parameters remaining fixed, the motifs
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FIG. 6. With Fig. 2 as our control setup, 〈xur〉 = 10 and 〈xs〉 ∈
[0, 100] produce hyperbolic trends in {RF

y , NF
sy} as shown in (a) and

(b). Their constituent elements are depicted in (c)–(f).

then gain in RT
y and RC

y by raising 〈xs〉 without tuning the
co-regulator’s intrinsic variability. In the absence of such phe-
notypic robustness, this variability is diminished to accelerate
redundant information processing.

IV. CONCLUSION

The formalism of MMI PID implies that redundant in-
formation which is commonly shared between the driver
variables is invariant to the interdriver correlation. To scru-
tinize this claim in sufficient detail, we employed the C1-
and I1-FFLs with tunable inter-regulator edges and quanti-
fied information redundancy in a variety of biochemically
realistic parametric configurations. Additionally, we assessed
the extrinsic noise propagation from input to output node
in these motifs. Using the variance-based concept of infor-
mation in a Gaussian context, we deconstructed information
redundancy produced by the composite FFL into three dis-
tinct components at the submodular level. Apart from the
redundancies handled individually by the constituent one-step
and two-step cascades, the interpathway signaling interfer-
ence generates a cross-redundancy element. Similar analysis
revealed the separate shares of the two decoding branches in
the overall extrinsic noise. Unlike the redundancy, the noise
propagation is free of any cross-pathway element. We con-
ducted our study on three independent parametric realizations.
These are dictated by (i) the tunable activation coefficient
of the one-step cascade, (ii) asymmetrical output production
capacities of the cascades, and (iii) the growing co-regulator
population. The first two setups kept the total co-regulator ex-
pression level constant. Both of them showed that the one-step
cascade-mediated information redundancy is indeed indepen-
dent of interdriver correlation, whereas the component due to
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the two-step cascade maintains a quadratic relationship. The
cross redundancy linearly grows with the correlation. With
increasing co-regulator population, the redundancy element
from the two-step cascade shows hyperbolic tendency and
so does the cross redundancy. However, the one-step cascade
redundancy retains its correlation invariance. In all of these
cases, the extrinsic noise elements from the parallel cascades
exhibit correlation dependencies relatable to the associated
redundancies. Our analytical estimates predict that each of the
submodular and composite redundancies nonlinearly relies on
the corresponding extrinsic noise components.

The composite metrics show monotonic growths for the
C1-FFL. In sharp contrast, the I1-FFL produces a wide range
of responses. This is due to an interpathway regulatory mis-
match created by the inhibitory edge between the co-regulator
and the output of the I1-FFL. As a result, the input fluctu-
ations flowing via the parallel decoding branches interfere
constructively and destructively at the output node for the
C1- and I1-FFLs, respectively. Consequently, these two FFLs
are distinct in combining their elementary redundancy and
extrinsic noise contributions. The cross redundancy upgrades
and downgrades the summed pathway redundancies for the
C1- and I1-FFLs, respectively. For the extrinsic noise, a mere
weighted sum and difference of the pathway-dependent noise
flows distinguish these respective FFLs. Hence, with suitable
activation coefficients and pathway-specific output production
capacities, the I1-FFL unveils nonmonotonic redundancy and
extrinsic noise. The quenching of information redundancy
shared by sufficiently correlated regulators is a special feature
of the I1-FFL. The growth (decay) in total extrinsic noise
translates itself into an increasing (diminishing) total redun-
dancy. Furthermore, the latter is extinguished in the absence of
the former. The growing co-regulator abundance allows for an
enhanced control over redundancy and extrinsic noise trans-
duction. Their effective contributions quickly reach high (C1)
or low (I1) values. Results compiled from this varied paramet-
ric repertoire showcase the subtle correlation dependencies of
redundant information. They also provide good evidence in
favor of a close connection between redundant information
and extrinsic noise in FFLs. To boost inter-regulator redundant
information sharing targeting the output, the master regulator
also needs to enhance noise supply to the output. The C1-
and I1-FFLs generally differ from each other in processing
redundant information and transducing extrinsic noise in their
composite structures. Thanks to the metric deconstruction for-
mulas, we can clearly see that their submodular characteristics
are similar in different FFLs. The cross redundancy precisely
quantifies the over- and underestimation of common informa-
tion sharing between the two hierarchical structural levels and
thus provides a measure of emerging complexity.

Since FFLs are recurrent beyond gene regulation, e.g., in
neuronal nets [9,11], our findings may generate some insights
there. In recent years, the incoherent FFL has been studied

in the context of adaptation [49–51]. The diverse redundancy
response of the I1-FFL may emerge as a key player in the
adaptive sensory systems. On the other hand, cascades of co-
herent FFLs are functional in the B. subtilis sporulation [52].
The role of multivariate information filtered via a sequence
of FFLs in developmental decision making is still an open
research problem. Previously, this covariance-based interpre-
tation of extrinsic noise was used to rationalize the abundance
statistics of the FFL class of motifs [46]. As shown in the
present communication, this type of extrinsic noise is easily
decomposable into pathway-specified components and can be
directly connected to the variance-based information. Besides,
this specific metric has been generalized for nonequivalent
reporters to decompose noise in TNF–NF-κB–JNK and TNF–
NF-κB–ATF-2 signaling nets [53]. An alternative framework
conceives of the extrinsic (environmental) noise as fluctuat-
ing reaction rates [32,54]. Notably, Shahrezaei et al. showed
that the coherent (incoherent) FFLs amplify (attenuate) noise
[54]. Interestingly, our current analyses reveal a more nuanced
performance of the I1-FFL in noise transmission. In Ref. [55],
Lestas and colleagues proved an information-noise correspon-
dence in a generic feedback circuit. Their study pinpointed the
information source in biomolecular abundance fluctuations.
Therefore, we can safely infer that the redundancy-extrinsic
noise trade-off in FFLs is a fundamental aspect of biochemical
signaling channels.

For the evolution of a multi-input-output net, multivariate
information acts as a candidate fitness function that favors
signal-integrating nets [56]. Multivariate information process-
ing often indicates pathological states, e.g., the presence of
synergy in epileptic brain and HeLa cell line [57]. For physical
systems such as the two-dimensional Ising model, multivari-
ate information transfer successfully anticipates the critical
transition [58,59]. These findings highlight the urgent need
to expand the widely used pairwise information-based frame-
works for biochemical networks. Earlier studies hypothesized
that cascades and branched motifs with net redundancy simul-
taneously benefit from increased signal-to-noise ratio [47,60].
Further refinements in the redundancy-noise trade-off may
propel efficient motif design by synthetic means. At present,
some evidence is available in E. coli to support gene expres-
sion noise as an evolvable trait [61–64]. It remains an open
question whether life forms can also get naturally selected
based on their information-processing capabilities. Moreover,
we hope that the intricate interplay of information and cor-
relation may usher in a better understanding of information
decomposition protocols in dynamical systems.
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