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We address the problem of evaluating the transfer entropy (TE) produced by biochemical reactions from
experimentally measured data. Although these reactions are generally nonlinear and nonstationary processes
making it challenging to achieve accurate modeling, Gaussian approximation can facilitate the TE assessment
only by estimating covariance matrices using multiple data obtained from simultaneously measured time series
representing the activation levels of biomolecules such as proteins. Nevertheless, the nonstationary nature
of biochemical signals makes it difficult to theoretically assess the sampling distributions of TE, which are
necessary for evaluating the statistical confidence and significance of the data-driven estimates. We resolve
this difficulty by computationally assessing the sampling distributions using techniques from computational
statistics. The computational methods are tested by using them in analyzing data generated from a theoretically
tractable time-varying signal model, which leads to the development of a method to screen only statistically
significant estimates. The usefulness of the developed method is examined by applying it to real biological data
experimentally measured from the ERBB-RAS-MAPK system that superintends diverse cell fate decisions. A
comparison between cells containing wild-type and mutant proteins exhibits a distinct difference in the time
evolution of TE while any apparent difference is hardly found in average profiles of the raw signals. Such a
comparison may help in unveiling important pathways of biochemical reactions.
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I. INTRODUCTION

Cells and their processes are regulated by interactions
with biomolecules via chemical reactions. Considerable effort
has been made to properly understand the biomolecules and
their interactions, which constitutes a tremendous amount of
knowledge [1]. Particularly in the last two decades, chains or
cascades of reactions have gained increasing attention ow-
ing to their potential role in understanding living things as
systems [2]. Various reactions in cells are mathematically
modeled using nonlinear differential equations and Monte
Carlo simulations among others. In addition, large reaction
pathways composed of tens or hundreds of components are
drawn as graphs.

These research efforts have made great progress in under-
standing the mechanism of cell function control. However,
there are still shortcomings. Although fundamental reactions
are modeled by differential equations precisely, assessing their
significance in the reaction cascade is nontrivial. An increase
in the activation levels of enzymes indicates that certain
functions are emerging. Nevertheless, one cannot quantify
the significance of the reactions by only examining solu-
tions of the differential equations as relevant activation levels
can differ from enzyme to enzyme. In addition, biochemical
reactions are dynamical processes, which indicates that the
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temporal alteration of signals is an important medium for
transferring relevant information. Therefore, after the reaction
pathways are plotted as graphs, there is a need to clarify
the timing and how large the transmitted information is to
properly control cell function.

For compensating these deficiencies, we focus on the
transfer entropy (TE) [3,4]. TE is a universal measure of the
causal relationship between two time series. It is defined by
a functional of the joint distributions of two time series. This
makes it possible to quantify causal significance in a unified
manner, regardless of the physical mechanism that gener-
ates the time series, by representing the generation process
in probabilistic models. Some empirical studies support its
effectiveness in detecting and characterizing causal relations
in complex systems [5,6]. TE has been used for analyzing
information processing in various biological organisms from
nervous systems [7–15] to gene regulatory networks [16–19]
owing to its universality and effectiveness.

Generally, there are two ways to assess TE: model-based
and data-driven approaches. In the model-based approach,
the generation processes of the time series are modeled us-
ing high-dimensional joint distributions or their equivalent
expressions, in which the TE is evaluated analytically or nu-
merically. Although this approach can potentially enable the
exact assessment of TE for given models, accurately modeling
the generation process of actual systems is difficult, which
practically limits its application range to the analysis of theo-
retical models [20]. Meanwhile, in the data-driven approach,
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the TE is assessed directly from experimentally measured
data, which avoids the difficulty in accurately modeling actual
systems. However, the data-driven approach requires a suffi-
cient number of simultaneously measured data to substitute
the joint distribution of the objective time series as samples.
Hence, technical constraints have restricted its application
mostly to nervous systems, in which large-scale simultaneous
measurement is possible and the required sample sizes are
relatively small because of the stationary nature of the nervous
systems [7–15]. However, the recent advancement and devel-
opment of measurement techniques has greatly increased the
ability of simultaneously measuring the activation levels of
biomolecules with high space and time resolutions [21,22].
This may make it possible to assess TE of nonstationary
biochemical interactions in cells from measured data.

In such a view of the current situation, we explore the pos-
sibilities and limitations for assessing TE from measured data
of biochemical reactions. Generally, the assessment of TE is a
computationally demanding task involving high-dimensional
integrals. For overcoming this difficulty, we employ an ap-
proximation using Gaussian models, in which the assessment
can be performed efficiently by estimating the covariance ma-
trix of the time series. However, it is difficult to theoretically
assess the sampling distributions of TE, which are indispens-
able for evaluating statistical confidence and significance of
the data-driven estimates, due to the nonstationary nature of
biochemical signals. We overcome this difficulty by develop-
ing a method to screen only statistically significant estimates
based on techniques from computational statistics, the utility
of which is tested by the application to a theoretically tractable
time-varying signal model. In addition, we employ the method
for analyzing data experimentally measured from the ERBB-
RAS-MAPK system of actual cells. A distinct difference in
the time alteration of TE is found in the comparison between
cells containing wild-type and mutant proteins, whereas there
is no apparent difference in the average profiles of raw time
series. Such a comparison may be useful in identifying un-
known pathways of biochemical reactions.

This paper is organized as follows: we review the defini-
tion of TE and how it can be computed under the Gaussian
approximation in Sec. II. In addition, we present methods for
assessing the statistical confidence and significance of the in-
ferred results using techniques from computational statistics.
In Sec. III the utility of the methods is examined by applying
them to data from a theoretically tractable time-varying signal
model. Based on the results obtained for the theoretically
tractable model, we propose a method for screening only
statistically significant estimates of TE. In Sec. IV real-world
data from the ERBB-RAS-MAPK system are examined us-
ing the method. The final section presents the summary and
discussion of the study.

II. ASSESSMENT OF THE TRANSFER ENTROPY FROM
MEASURED DATA

A. Transfer entropy

Here we briefly review the definition of TE [3,4]. We
use a conventional matrix-vector notation in which the
bold type denotes column vectors and the uppercase type

represents matrices or random variables. The symbol �
indicates the matrix-vector transpose, such that the (col-
umn) vector x ∈ Rn is represented as x = (x1, . . . , xn)�.
Given multiple vectors such as x ∈ Rn, y ∈ Rm, z ∈
R�, etc., their concatenation is expressed as x ⊕ y ⊕ z ⊕
· · · = (x1, . . . , xn, y1, . . . , ym, z1, . . . , z�, . . .)�. The notation
N (μ, �) denotes a Gaussian distribution, where μ is the mean
vector and � is the covariance matrix.

We suppose two interdependent discrete-time stochas-
tic processes Xt and Yt (t = 0, 1, . . . , T ), and denote X ≡
(XT , XT −1, . . . , X0)� and Y ≡ (YT ,YT −1, . . . ,Y0)�. We also
use the notation X (p)

t ≡ (Xt , Xt−1, . . . , Xt−p+1)� and Y (q)
t ≡

(Yt ,Yt−1, . . . ,Yt−q+1)�. Let us assume that X and Y follow
a joint distribution Q(x, y). Under this setup, the uncertainty
of Xt is assessed by (differential) entropy

H (Xt ) = −
∫

dxt Q(xt ) ln Q(xt ), (1)

and that given X (p)
t−1 is quantified by conditional entropy

H
(
Xt |X (p)

t−1

)
= −

∫
dx(p)

t−1 dxt Q
(
x(p)

t−1

)
Q

(
xt

∣∣x(p)
t−1

)
ln Q

(
xt

∣∣x(p)
t−1

)
, (2)

where Q(xt ), Q(x(p)
t−1), and Q(xt |x(p)

t−1) represent the marginal
and conditional distributions with respect to relevant vari-
ables. All of these distributions are reduced from the joint
distribution Q(x, y), and similar notations are employed here-
after without explanation. H (Xt |X (p)

t−1) means the remaining

uncertainty of Xt on average given X (p)
t−1. Therefore, the

amount of the reduction of the uncertainty

I
(
Xt ; X (p)

t−1

) = H (Xt ) − H
(
Xt

∣∣X (p)
t−1

)
, (3)

which is referred to as mutual information between Xt and
X (p)

t−1 and can be shown to be non-negative, is interpreted as
the amount of information conveyed from the past p states
X (p)

t−1 = (Xt−1, . . . , Xt−p)� to the current state Xt .
Extending the notion of mutual information, transfer en-

tropy (TE) from Y to X at time t with lags q and p is
defined as

T (q),(p)
Y →X (t ) = I

(
Xt ; X (p)

t−1,Y (q)
t−1

) − I
(
Xt ; X (p)

t−1

)
= H

(
Xt

∣∣X (p)
t−1

) − H
(
Xt

∣∣X (p)
t−1,Y (q)

t−1

)
(4)

and from X to Y as

T (p),(q)
X→Y (t ) = I

(
Yt ; X (p)

t−1,Y (q)
t−1

) − I
(
Yt ;Y (q)

t−1

)
= H

(
Yt

∣∣Y (q)
t−1

) − H
(
Yt

∣∣X (p)
t−1,Y (q)

t−1

)
. (5)

Equation (4) indicates how much information is increased
regarding Xt or how much uncertainty about Xt is reduced by
providing Y (q)

t−1 on top of X (p)
t−1, and similarly for (5). These

mean that TE stands for the significance of past states of one
variable in predicting the current state of the other. In addi-
tion, the TE is asymmetric between X and Y unlike mutual
information. Therefore, TE is employed as a useful measure
of information flow that quantifies the causal relationship be-
tween two time series.
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B. TE for Gaussian models

TE assessment is computationally demanding even though
it is expressed in compact forms, such as (4) and (5). This
is because the computational complexity grows exponentially
with respect to p + q + 1 when numerically evaluating (4)
and (5), which can be infeasible even for the minimum lags of
p = q = 1 in practical situations. However, when Q(x, y) is
a multivariate Gaussian distribution, the assessment becomes
feasible as entropy and conditional entropy can be analytically
evaluated using covariance matrices for the Gaussian model.

For explaining this more precisely, we introduce the nota-
tion �(U ) to generally express the covariance matrix of the
random vector U . In addition, we use the notation �(U ,V )
to denote the cross-covariance matrix between U and V ,
which is composed of their cross-covariances cov(Ui,Vα ).
These provide the partial covariance [4] of U given
V ⊕ W ⊕ · · · as

�(U |V ⊕ W ⊕ · · · )

= �(U ) − �(U ,V ⊕ W ⊕ · · · )�(V ⊕ W ⊕ · · · )−1.

×�(U ,V ⊕ W ⊕ · · · )�. (6)

When Q(x, y) is given as a multivariate Gaussian distribu-
tion, the properties of the Gaussian random variables yield
a formula

H
(
Xt

∣∣X (p)
t−1

) = 1
2 ln

(
�

(
Xt

∣∣X (p)
t−1

)) + 1
2 ln(2πe), (7)

where �(Xt |X (p)
t−1) = �(Xt ) − �(Xt , X (p)

t−1)�(x(p)
t−1)

−1
�(Xt ,

X (p)
t−1)� is the variance of Xt conditioned by X (p)

t−1. The
derivation of this formula is presented in the Appendix.
Similarly, we also obtain

H
(
Xt

∣∣X (p)
t−1,Y (q)

t−1

) = 1
2 ln

(
�

(
Xt

∣∣X (p)
t−1 ⊕ Y (q)

t−1

)) + 1
2 ln(2πe).

(8)

These formulas provide an expression of TE for the Gaussian
time series as

T (q),(p)
Y →X (t ) = 1

2
ln

(
�

(
Xt

∣∣X (p)
t−1

)
�

(
Xt

∣∣X (p)
t−1 ⊕ Y (q)

t−1

)
)

, (9)

and similarly for T (p),(q)
X→Y (t ).

Several issues are to be noted with this formula. The first is
about the implications of (9). This formula indicates that TE
is determined using only covariances between the two time
series irrespectively of their averages. This implies that the
primary media of information transfer are not the average
profiles of the observed signals but their statistical fluctu-
ations, which may be counterintuitive. Nevertheless, in the
framework of the Gaussian approximation, the covariances
are determined by the Hessian of − ln Q(x, y) around the
averages for general joint distributions Q(x, y). This means
that the average profile of signals is not a unique but still a
major factor for determining TE. The second is about the cost
for computation. Given the covariance matrix �(Xt ⊕ X (p)

t−1 ⊕
Y (q)

t−1), the computational cost for assessing (9) increases as
O((p + q)3) since the most computationally intensive part is
the assessment of the matrix inversion �(X (p)

t−1 ⊕ Y (q)
t−1)−1. In

most cases, this is computationally feasible as long as p and

q are O(1). The third issue is that, as mentioned in [4], TE
is equivalent to the Granger causality [23], which has been
extensively studied since the 1970s, for time series generated
by multivariate autoregressive (MVAR) models. However, in
the framework of the Granger causality, we must introduce
many assumptions about how to describe the time series by
MVAR models, which becomes nontrivial, particularly when
handling nonstationary time series. In contrast, the TE frame-
work is “model agnostic” [4] as (9) can be assessed directly
from the covariances, for which we need few assumptions.
Therefore, the formula of (9) would be more user-friendly
when sufficient knowledge about the data generation process
is not available. The final issue is concerning the validity of
resorting to Gaussian models. The appropriateness of mod-
eling time series as Gaussians may be criticized for specific
physical generation processes. However, in most cases, as-
sessing the TE from the exact formula of (4) and (5) requires
significantly heavy computations for non-Gaussian models;
therefore, Gaussian models are practically unique choices.
Further, fortunately, it is known that even in non-Gaussian
cases nonzero values of (9) imply that nonzero values of the
true TE given by (4) [24]. For these reasons, we use the
formula of (9) for assessing TE.

C. Assessment of TE from data and its statistical significance

Following the above argument, TE can be assessed from
samples of time series DM = {xμ, yμ}M

μ=1 by substituting

�(Xt ⊕ X (p)
t−1 ⊕ Y (q)

t−1) with its estimate from DM in evaluat-

ing (9). A natural estimator of �(Xt ⊕ X (p)
t−1 ⊕ Y (q)

t−1) is

�̂
(
Xt ⊕ X (p)

t−1 ⊕ Y (q)
t−1

)
= 1

M − 1

M∑
μ=1

(
z(p),(q)

t,μ − z(p),(q)
t

)(
z(p),(q)

t,μ − z(p),(q)
t

)�
,

(10)

where z(p),(q)
t,μ ≡ (xt,μ, xt−1,μ, . . . , xt−p,μ, yt−1,μ, . . . , yt−q,μ)�

represents the concatenation of μth samples xt,μ, x(p)
t−1,μ, and

y(q)
t−1,μ, and z(p),(q)

t ≡ M−1 ∑M
μ=1 z(p),(q)

t,μ , respectively. This is

a consistent and unbiased estimator of �(Xt ⊕ X (p)
t−1 ⊕ Y (q)

t−1),
which guarantees that (10) converges to the true covariance as
M → ∞ and the average of (10) with respect to the generation
of DM accords with it for finite M. The assessment of (9)
using (10) also offers a consistent estimator of T (q),(p)

Y →X (t ) un-
der Gaussian assumptions. However, this is generally biased.
This is natural because T (q),(p)

Y →X (t ) is a non-negative quantity
by nature. Therefore, even if Xt and Y (q)

t−1 are statistically in-

dependent, yielding T (q),(p)
Y →X (t ) = 0, the statistical fluctuations

in (10) always results in positive values for the estimates of
T (q),(p)

Y →X (t ). In addition, the convergence rate of the covariance
matrix estimator of (10) is rather slow [25]. This makes it chal-
lenging to analytically evaluate the sampling distributions of
the estimates of TE, which are indispensable for assessing the
statistical confidence and significance of the inferred results,
although it is known that the maximum likelihood estimator
of TE will asymptotically have a χ2 distribution under the
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null hypothesis in which the true TE vanishes, in the case of
stationary time series [26,27].

For practically overcoming this difficulty, we employ
computational methods known as bootstrapping [28]. We
construct the sampling distributions in the following ways
depending on the purpose.

a. For the confidence interval: Suppose that an estimate
T̂ (q),(p)

Y →X (t ) of (9) is evaluated for a given data set DM by
substituting �(Xt ⊕ X (p)

t−1 ⊕ Y (q)
t−1) with �̂(Xt ⊕ X (p)

t−1 ⊕ Y (q)
t−1)

of (10). We need to evaluate the degree of statistical fluctua-
tions in T̂ (q),(p)

Y →X (t ), which is inevitable owing to the finiteness
of the sample size M. For this purpose, we handle �̂(Xt ⊕
X (p)

t−1 ⊕ Y (q)
t−1) as if it is the true covariance matrix and generate

a new sample set of size M by independently drawing samples
from an identical distribution N (0, �̂(Xt ⊕ X (p)

t−1 ⊕ Y (q)
t−1)).

This provides a surrogate estimate of TE T̂ ∗(q),(p)
Y →X (t ) using

�̂∗(Xt ⊕ X (p)
t−1 ⊕ Y (q)

t−1), which is the covariance matrix esti-
mated from the new sample set. We repeat these procedures
for B(	1) times, which results in an empirical distribution
of T̂ ∗(q),(p)

Y →X (t ). We construct the 100(1 − α)% (0 < α < 1)
confidence interval (CI) by specifying 50α and 100 − 50α

percentile points of the empirical distribution to evaluate the
degree of statistical fluctuation of the estimate. The same
procedure is performed for T̂ ∗(p),(q)

X→Y (t ) as well.
b. For significance threshold: When estimating T̂ (q),(p)

Y →X (t ),
it always takes a non-negative value even when the true
TE T (q),(p)

Y →X (t ) vanishes. We need to evaluate the distribution
of T̂ (q),(p)

Y →X (t ) for the null hypothesis H0 : T (q),(p)
Y →X (t ) = 0 to

distinguish the obtained value from those of chance levels.
To construct the distribution, we define the covariance ma-
trix �H0 (Xt ⊕ X (p)

t−1 ⊕ Y (q)
t−1) for H0 by making all elements

of the cross-covariance between Xt ⊕ X (p)
t−1 and Y (q)

t−1 vanish

in �̂(Xt ⊕ X (p)
t−1 ⊕ Y (q)

t−1), keeping the other elements fixed.
Based on this, we generate a new sample set of size M by
independently drawing samples from an identical distribution
N (0, �H0 (Xt ⊕ X (p)

t−1 ⊕ Y (q)
t−1)). This provides an estimate of

TE T̂ #(q),(p)
Y →X (t ) using �̂#(Xt ⊕ X (p)

t−1 ⊕ Y (q)
t−1), which is the co-

variance matrix estimated from the new sample set. We repeat
these procedures for B(	1) times, which provides an empir-
ical distribution of T̂ #(q),(p)

Y →X (t ). The 100(1 − α) (0 < α < 1)
percentile point of the empirical distribution is used as the
significance threshold (ST) to distinguish the estimated value
from those of chance levels with the significance level of
100α%. The same procedure is performed for T̂ #(p),(q)

X→Y (t ) as
well.

These methods are very simple in terms of technical as-
pects. The necessary procedure is just repeating the evaluation
of the TE from resampled data many times. The computa-
tional burden for repetition can prevent the execution of these
methods in cases where a considerable amount of computa-
tion is required in obtaining a single estimate. However, in
the current case, the computational cost for assessing TE is
only O((p + q)3) under the Gaussian approximation, which
would not be an obstacle for the execution. Nevertheless, the
validity of using not the true distribution but the empirical
distribution provided by the estimated covariance matrices
for assessing the sampling distributions, following the plug-in

principle [28], is debatable. In the next section, we examine
this issue by applying the methods to a time-varying signal
model, in which the theoretical evaluation of TE is tractable.

III. TESTING THE DEVELOPED METHOD USING THE
THEORETICALLY TRACTABLE MODEL

As a simple but nontrivial example for which the theoreti-
cal assessment of TE is possible, we consider a d-dimensional
time-varying state space model [29], which is expressed as

ut = Ft ut−1 + μt + ξU
t , (11)

vt = Gut + ξV
t , (12)

where t = 1, . . . , T , and ut ∈ Rd (�2) and vt ∈ R2, respec-
tively. ξU

t ∈ Rd and ξV
t ∈ R2 are the Gaussian noise vectors,

both of which are independent in time. Equation (11) de-
scribes how the state vector U t evolves in time, being subject
to time-varying parameters Ft ∈ Rd×d and μt ∈ Rd . Mean-
while, (12) defines the measurement process of U t . We
consider that the first and last components of U t are mea-
sured, such that the components of the resulting vector V t

are regarded as Xt and Yt in Sec. II under the setup of the
measurement matrix G = (1 0 . . . 0 0

0 0 . . . 0 1).
Two features are noted for (11) and (12):
(1) Given a set of the time-varying parameters Ft and

μt , the resulting time series uT , . . . , u1 and vT , . . . , v1 are
provided as linear combinations of ξU

T , . . . , ξU
1 and ξV

T , . . . , ξV
1

added to deterministic time series for a given initial state u0.
This guarantees that the set of time series U = {UT , . . . ,U1}
and V = {V T , . . . ,V 1} follows a joint Gaussian distribution
that varies over time.

(2) The mean parameters μT , . . . ,μ1 do not contribute to
statistical fluctuations of U . This indicates that covariances
of any components of U and V are independent of the mean
parameters.

These features enable us to evaluate �(Xt ⊕ X (p)
t−1 ⊕ Y (q)

t−1)

and �(Yt ⊕ X (p)
t−1 ⊕ Y (q)

t−1) efficiently using recursive equa-
tions, which results in the theoretical assessment of TE. More
specifically, the statistical independence of noise vector ξU

t
regarding time provides a recursive equation for computing
covariance matrix CU

t = E[U tU�
t ] − E[U t ]E[U t ]�, which is

expressed as

CU
t+1 = FtC

U
t F�

t + �U
t , (13)

where E[· · · ] is the average with respect to noise vectors and
�U

t is the covariance matrix of ξU
t . In addition, the covariance

matrix of U t between two different times is given as

DU
t+m,t =

(
t+m∏

τ=t+1

Fτ

)
CU

t , (14)

where m = 1, . . . , T − t and DU
t+m,t = E[U t+mU�

t ] −
E[U t+m]E[U t ]�. Subsequently, the covariance matrices
of V t are computed as

CV
t = GCU

t G� + �V
t , (15)

DV
t+m,t = GDU

t+m,t G
�, (16)
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FIG. 1. Theoretically computed T (p),(q)
X→Y (t ) for the system characterized by (17). From top to bottom: The cascade length d varies from 2 to

5. From left to right: The lag p of the cause time series Xt changes from 1 to 4.

where CV
t =E[V tV �

t ]−E[V t ]E[V t ]�, DV
t+m,t=E[V t+mV �

t ]
−E[V t+m]E[V t ]�, and �V

t is the covariance matrix of ξV
t .

The recursive Eqs. (13) and (14), in conjunction with (15)
and (16), offer all components that constitute �(X ⊕ Y ) with
O(T 2) computational cost. Performing this is feasible as long
as p and q are O(1). Picking up all components of �(Xt ⊕
X (p)

t−1 ⊕ Y (q)
t−1) from �(X ⊕ Y ) and substituting them into (9)

provide T (q),(p)
Y →X (t ), and similarly for T (p),(q)

X→Y (t ).
For simulating time series that are simultaneously mea-

sured from a cascade of reactions, we consider a very simple
model, which is given by

Ft =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α 0 . . . . . . 0

F21(t ) α 0 . . . 0

0 β
. . .

. . .
...

...
...

. . . α 0

0 0 . . . β α

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (17)

where 0 < α < 1 is the decay rate of each component and
β is the activation caused by the reaction with the com-
ponent of the previous subscript. We assume that the first
component of U triggers the reaction cascade in a short du-
ration γ > 0, which is taken into account by the time-varying

matrix element

F21(t ) =
{
δ exp(−t/γ ), t � 0

0, t < 0
. (18)

Indeed, we need to employ nonlinear equations with re-
spect to ut to precisely describe realistic cascades of chemical
reactions. However, the media for information transfer in the
framework of the Gaussian treatment is the statistical fluctua-
tions of the state vectors around their averages, which justifies
the current linearized description at least as a first approxi-
mation. In addition, the uniform setting of the parameters is
not crucial when examining how the length of the reaction
cascade d is reflected in the dependence of TE on the lag
parameters p and q, which we will focus on in the following
discussions.

We set α = 0.5 and β = 1 to ensure that the influence of
the trigger of the first component propagates forward without
decay. Meanwhile, we set δ = 5 and γ = 1, �U

t = 0.12 ×
Id×d , and �V

t = 0 for other parameters, where In×n generally
denotes n × n identity matrix. Figure 1 presents the plot of
T (p),(q)

X→Y (t ) computed from (13)–(15) for various pairs of lag
parameters p and q by varying the length of the reaction
cascade d from 2 to 5. The TE of the reverse direction can
also be computed, but it is not presented because the statistical
independence between the first component of U t and the sub-
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FIG. 2. Computational graph of (17) in the case of d = 4.

sequent components in the past state U t−m (m � 1) guarantees
that T (q),(p)

Y →X (t ) vanishes trivially. All the plots indicate that
T (p),(q)

X→Y (t ) does not significantly depend on the lag q of the
effect time series Yt . This is presumably because in the current
setup, �V

t = 0 is set to zero for a relatively small α. When
�V

t is set finite, the dependence of the TE on the lag q of the
effect time series varies in a nontrivial manner depending on
the value of α.

On the other hand, T (p),(q)
X→Y (t ) monotonically increases

as the lag p of the cause time series Xt increases, and
almost saturates at p = d − 1. This is because the influ-
ence of the first component U1,t (=Xt ) of U t reaches the
last component Ud,t (=Yt ) late by the lag of d − 1 due to
to the one-dimensional nature of the reaction cascade, as
shown in the computational graph in Fig. 2. This graph
indicates that the prediction accuracy of Yt (red node) is
maximized when Ud−1,t−1 is given in addition to Yt−1. Un-
fortunately, Ud−1,t−1 is a hidden variable and cannot be
directly observed. However, it is correlated with past states
Xt−1(=U1,t−1), Xt−2(=U1,t−2), . . . as they share the same an-
cestors, and the strength of the correlation is maximized
by Xt−d+1 as it is connected to Ud−1,t−1 without decay-
ing through the path of the sequence of yellow nodes in
the graph. Therefore, T (p),(q)

X→Y (t ) increases as p increases
from 1 to d − 1. However, for p > d − 1, the informa-
tion from Xt−d , . . . , Xt−p has already been considered in
Yt−1(=Ud,t−1), . . . ,Yt−p+d (=Ud,t−p+d ), which are denoted as
light green nodes in the graph, and yields little innovative gain
on top of Y (q)

t−1 in predicting Yt . Therefore, T (p),(q)
X→Y (t ) hardly

increases for p > d − 1, which is the reason for the saturation
at p = d − 1. Such a dependence of TE on the lag parameter
of the cause time series does not change qualitatively unless
decay rates α and β vary depending on sites significantly
around the above-mentioned values. This, in conjunction with
rough knowledge about the time scale of elemental reactions,
may be useful for characterizing the length of the reaction
cascade.

Figure 3 shows T (p),(q)
X→Y (t ) assessed from Nsamp = 200 sam-

ples generated by (11) and (12) for the d = 4 case presented
in Fig. 1 using the methods discussed in Sec. II. Estimates
of T (q),(p)

Y →X (t ), the true values of which are constantly zero,
are also plotted for reference. For all plots, the upper limit
of 99% CIs surpassed the true value (green) at every point.
However, its lower limit is also larger than the true value at
points where the true values are small (marked by red crosses).
In such cases, the CIs do not cover the true values, leading to
inaccurate estimations.

Cross covariances in the estimated matrices �̂(Xt ⊕
X (p)

t−1 ⊕ Y (q)
t−1) and �̂(Yt ⊕ X (p)

t−1 ⊕ Y (q)
t−1) are always nonzero

even if two time series X and Y are statistically independent.
This means that TE assessed from samples is always biased
positively even for statistically independent two time series,
which could lead to a risk of giving false positives in judging
the finiteness of TE. One approach to reduce the risk is to
estimate the covariance matrices extremely accurately by col-
lecting a huge number of samples. However, this is difficult to
carry out in practice. Another approach is to take into account
the positive biases in judging the statistical significance. In
Fig. 3 the lower limit of the 99% CI is smaller than the 1%
ST at all points that are marked by the red crosses, indicating
that the estimates are not statistically significant in the worst
case. In other words, statistically significant estimates can be
screened under given statistical confidence and significance
levels by accepting only cases where the lower limit of the CI
is larger than ST (marked by red arrows). This is the method
for assessing TE that we propose in this study.

The degrees of freedom of covariance matrices �̂(Xt ⊕
X (p)

t−1 ⊕ Y (q)
t−1) and �̂(Yt ⊕ X (p)

t−1 ⊕ Y (q)
t−1) that are necessary for

assessing TE with lag parameters p and q are (p + q + 2)(p +
q + 1)/2. This is as high as 6 even for the smallest case of
p = q = 1, and grows up to 28 for p = q = 3. As Nsamp must
be sufficiently larger than the degrees of freedom for accurate
estimation of the matrices, the sample size should be at least
hundreds even if the proposed method is employed.

IV. APPLICATION TO DATA FROM ERBB-RAS-MAPK
SYSTEM

The proposed method for assessing TE was applied to real
biological data obtained from single living cells.

A. ERBB-RAS-MAPK system and simultaneous signal
measurement by the fluorescence microscope

The ERBB-RAS-MAPK system is an intracellular signal
transduction network responsible for cell fate decisions [30].
ERBB is a cell surface receptor protein activated by small
proteins, including epidermal growth factor (EGF), applied to
the cell culture medium. The ERBB activation is recognized
by the GRB2/SOS protein complex in the cytoplasm and is
associated with the ERBB at the cytoplasmic side of the cell
membrane (Fig. 4). Subsequently, SOS activates RAS protein
on the membrane to induce an association of RAF protein
in the cytoplasm with the active RAS. The recruitment of
SOS and RAF to the cell surface can be detected under a
fluorescence microscope, reflecting the activation of ERBB
and RAS, respectively [21]. SOS and RAF can be observed
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FIG. 3. (a) T (p),(q)
X→Y (t ) assessed from 200 samples for the d = 4 case presented in Fig. 1. (b) That for T (q),(p)

Y →X (t ). In both panels, blue and
green full lines stand for the estimated and true values, respectively. The true values of T (q),(p)

Y →X (t ) are constantly zero in this setting. Light blue
areas and red dotted lines represent 99% CIs and 1% STs. The lower limit of the 99% CI exceeds the true value of the TE at points marked by
red crosses, which may overestimate TE. However, one can screen statistically significant estimates (marked by red arrows) by accepting only
cases in which the lower limit of the CI is larger than the 1% ST.

simultaneously in the same single cells using two different
colors of fluorescent tags [22].

B. Experiment and measured signals

We stimulated ERBB in HeLa cells expressing the wild-
type or mutant (i.e., R1131K) SOS with EGF under a
microscope at time t = 0 and measured the changes in the
fluorescence signals from SOS and RAF on the cell membrane
(Fig. 5). R1131K is a mutant of SOS, in which the arginine
(R) at position 1131 in the amino acid sequence is replaced by
lysine (K). This mutation is observed in Noonan syndrome, a
human genetic disease [31]. The hyperactivation of RAS has

been reported under this mutation, but its molecular mecha-
nism is not entirely known. One possibility is the defect of
a negative feedback regulation caused by serine phosphoryla-
tion around R1131, which is in the GRB2 association site of
SOS [21,32].

Figures 6 and 7 show 248 and 282 samples of the signals
measured from cells with wild-type (wt) or mutant SOS, re-
spectively. The unit time is 1 minute, and the signals represent
the increase of the fluorescence intensity from the average
levels of the first three points corresponding to t = −3,−2,
and −1 [min]. As shown in these figures, transient increases
of the fluorescence signals of SOS and RAF are observed after
EGF application. In addition, the RAF activation dynamics
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FIG. 4. Signal transduction pathway of the ERBB-RAS-MAPK
system. In cells stimulated with EGF, successive translocations of
SOS and RAF from the cytoplasm to the cell membrane occur, which
recognizes ERBB and RAS activation, respectively. The membrane
associations of SOS and RAF and RAF-induced MAPK activation
create a negative feedback loop, which is disrupted by the R1131K
mutation of SOS.

are delayed and sustained after the initial peak. The differ-
ence in the activation dynamics between cells with wt and
mutant SOS is barely noticed in the average and single-cell
trajectories.

C. Detecting the difference between cells with wild-type and
mutant biomolecule by TE

Figures 8 and 9 show the assessment of TE values for the
samples presented in Figs. 6 and 7 by changing the lags p
and q systematically. A code and raw data for reproducing

FIG. 5. Recruitments of SOS and RAF to the cell membrane
in cells stimulated with EGF. Fluorescence signals from the basal
surface of the cells were selectively observed using a total internal
reflection fluorescence microscope. At time 0, cells were stimulated
with EGF. The upper (SOS) and lower (RAF) images were acquired
at the same field of view using a dual color microscopy. Scale bar:
10 μm.

FIG. 6. Top panels: 248 samples of raw signals measured from
cells with wt SOS. Bottom panels: Their averages together with one
standard deviation. Left (a, c) and right (b, d) panels correspond to
SOS and RAF, respectively.

these figures are available from [33]. The sample sizes of 248
and 282 for cells with wt and mutant SOS, respectively, are
considered not to be too small compared with the degrees of
freedom (p + q + 2)(p + q + 1)/2 of the covariance matrices
to be estimated within the range of 1 � p � 3 and 1 � q � 3.
For all cases, the number of bootstrapping repetitions B for
assessing CI and ST was set to 1000.

Significantly large values of TE from SOS to RAF are
observed at the early stage of cell signaling in all (p, q) com-
binations for both wt and mutant SOS, which is expected from
the signal transduction cascade (Fig. 4). However, from RAF

FIG. 7. Top panels: 282 samples of raw signals measured from
cells with mutant (R1131K) SOS. Bottom panels: Their averages
together with one standard deviation. Left (a, c) and right (b, d)
panels correspond to SOS and RAF, respectively.
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FIG. 8. Assessed TE (blue full lines) for cells with wt SOS from
samples shown in Fig. 6. (a) From SOS to RAF. (b) From RAF to
SOS. Light blue areas and red dotted lines represent 99% CIs and
1% STs, respectively. The red arrows indicate statistically significant
estimates, which are screened by the statistical confidence and the
significance levels. In response to the initial peak of TE from SOS
to RAF, the significant TE in the reverse direction was found after
2–3 min (insets). Statistically significant TE is also observed even in
the later stage.

to SOS, significant TE values are obtained only in cells with
wt SOS (Fig. 8). The initial peaks of TE from RAF to SOS
delay by approximately 2–3 minutes from those from SOS
to RAF (insets), suggesting reversed information flow caused
by the negative feedback loop from RAF to SOS via MAPK
and/or other proteins downstream of RAF. In addition, the
initial peak of TE from RAF to SOS increases as the lag q of
the RAF is set larger, while that of the reverse direction does
not exhibit such a tendency. The result of the theoretical model
in Sec. II implies that this may be because there is a longer
cascade of reactions in the signal transduction pathway from

FIG. 9. Assessed TE (blue full lines) for cells with mutant SOS
from samples shown in Fig. 7. (a) From SOS to RAF. (b) From RAF
to SOS. Light blue areas and red dotted lines represent 99% CIs and
1% STs, respectively. The red arrows indicate statistically significant
estimates, which are screened by the statistical confidence and the
significance levels. No statistically significant TE was found in the
direction from RAF to SOS, even in the early stages (insets).

RAF to SOS than in that from SOS to RAF. The first peak
values of TE from RAF to SOS decrease as p increases, while
those from SOS to RAF hardly depend on q. This may be due
to the difference of noise levels in the measurement between
the SOS and RAF. The noise levels in our measurement are
affected by the nature of the fluorescence tag bound to the
proteins. We used tetramethylrhodamine and GFP for SOS
and RAF, respectively. The former is a chemical probe that
is brighter and more stable than fluorescent proteins like GFP.

Another striking feature is that statistically significant TE
values are observed in cells with wt SOS at the later stage,
while no such behavior is found in cells with mutant SOS. As
RAF activation is sustained in cells with SOS of both types
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FIG. 10. (a) Covariance and (b) Pearson’s correlation coefficient
between SOS and RAF activities with time lags for cells with wild-
type SOS (blue full lines). 99% CIs (light blue areas) and CTs (red
dotted lines), which represent one percentile point from the top for
the null hypothesis, are computed with the bootstrapping method.

(Figs. 6 and 7), this difference may be a collateral evidence of
the defect of a negative feedback regulation from RAF to SOS
in cells with mutant SOS.

Under the Gaussian approximation, TE can be computed
from covariances of two time series with given time lags. This
may invoke a naive question whether similar results can also
be obtained by more conventional covariance based analyses.
For answering such a question, we plot covariance and Pear-
son’s correlation coefficient, which is defined by normalizing
the covariance with product of standard deviations, between
SOS and RAF changing time lags in Figs. 10 and 11 for
cells with wt and mutant SOS, respectively. The plots show
that the two time series with the time lags are correlated with
the statistically significant level in the almost entire range of
observation time regardless of whether the SOS type is wild
or mutant. Although the profiles of peaks and the strength of
correlations differ slightly, it is difficult to find distinct qual-
itative difference between the two cases from the plots. This
implies that TE is a more suitable measure for characterizing
the information flow conveyed between the two time series
with a high time resolution.

V. SUMMARY AND DISCUSSION

In summary, we examined the possibilities and limitations
of assessing the transfer entropy (TE) from the measured
data of biochemical reactions. We employed the Gaussian ap-
proximation, which enables us to efficiently assess TE based

FIG. 11. (a) Covariance and (b) Pearson’s correlation coefficient
between SOS and RAF activities with time lags for cells with mutant
SOS (blue full lines). 99% CIs (light blue areas) and CTs (red dotted
lines), which represent one percentile point from the top for the null
hypothesis, are computed with the bootstrapping method.

on covariance matrices estimated from samples of objective
time series. In general, it is necessary to evaluate the sam-
pling distributions to guarantee the accuracy of the estimated
results. However, an analytical evaluation of the sampling
distributions of TE is difficult for nonstationary time series.
We resolved this difficulty by computationally assessing the
sampling distributions using bootstrapping techniques from
computational statistics. The computational methods were
tested by the application to a theoretically tractable model
of a stochastic process, which led to the development of a
method for screening only statistically significant estimates
under given levels of statistical confidence and significance.
In addition, this method was applied to assess the dynamics
of the information flow in a real biological reaction network
inside living cells. Although the raw signals measured from
cells with the wild-type and a mutant molecule are hardly
distinguished, the method successfully detected the difference
between them in the time course of TE. This implies that the
developed method may serve as a useful tool in studying intra-
cellular reaction networks in which large-scale simultaneous
measurement of activities of biomolecules has been made
possible owing to the recent advancement of fluorescence
microscope technologies.

It should be noted that the finiteness of TE is not a sufficient
sign of the causal relationship between two time series [34];
nonzero TE can be a spurious causality detector when obser-
vations are performed incompletely due to the presence of
unobserved states [35]. Nevertheless, the TE based analysis

034403-10



ASSESSING TRANSFER ENTROPY FROM BIOCHEMICAL … PHYSICAL REVIEW E 105, 034403 (2022)

shown in the current paper would still be useful at least for
the following two purposes. One is to quantify the efficiency
of information transmission for known pathways for which
unobserved states are absent or their influence is negligible.
As mentioned in Introduction, many pathways of biochem-
ical reactions have been identified with a high accuracy for
these decades. However, little is known about when and how
large information is transmitted through the pathways. Our
methodology could fill the “missing piece” with a high time
resolution, although hot debates are continuing on the appro-
priateness of TE as a causality quantifier [36–41]. The other
is to offer clues for finding unknown pathways. Although the
finiteness of TE is not a sufficient condition of the causal rela-
tionship, it still serves as a necessary condition. Therefore, the
assessment of TE would provide useful guidelines for screen-
ing possible candidates of relevant pathways. In addition, even
if pathways are not identified completely, comparison of TE
between healthy and disordered systems might lead to more
efficient diagnosis and treatment of various disorders.

Although we restricted the application domain to biochem-
ical reactions in this study, the proposed methodology can
be utilized to analyze information flow in general systems of
a wider class. For instance, it may be useful in examining
time-varying effective interactions in multiagent or nonlin-
ear dynamical systems from simulation data [42–44] and
those in nervous or active matter systems from video imag-
ing data [45,46], as phenomena observed in such systems

are fairly reproducible and collecting many data on them
is relatively easy. Nevertheless, the necessity of collecting
many samples of simultaneously measured data (i.e., at least
hundreds of samples) for accurately estimating covariances
may be a bottleneck in applying the data to nonstationary
time series in many other domains. Meanwhile, in general,
appropriate prior knowledge about objective systems can im-
prove the estimation accuracy significantly. The reduction of
the necessary sample size incorporating Bayesian inference
and/or other machine learning techniques is an important
research direction for further research.
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APPENDIX: DERIVATION OF EQ. (7)

For two random variables X and Y that follow joint dis-
tribution Q(x, y), where X and Y may be either scalar or any
dimensional vector random variables, conditional entropy of
X given Y is defined generally as

H (X |Y ) = −
∫

dyQ(y) dxQ(x|y) ln Q(x|y). (A1)

Let us suppose that X and Y follows a multivariate Gaussian,

Q(x, y) = 1

(2π )
n+m

2 [det�(X ⊕ Y )]1/2
exp

(
−1

2
(x ⊕ y − μX ⊕ μY )��(X ⊕ Y )−1(x ⊕ y − μX ⊕ μY )

)
, (A2)

where n and m are the dimensions of X and Y , and μX and μY are means of X and Y . Covariance matrix �(X ⊕ Y ) is
expressed as

�(X ⊕ Y ) =
(

�(X ) �(X ,Y )

�(Y , X ) �(Y )

)
(A3)

using the notation defined in the main text.
Computing the matrix inversion of (A3) yields an expression

�(X ⊕ Y )−1 =
(

�(X |Y )−1 −�(X |Y )−1�(X ,Y )�(Y )−1

−�(Y )−1�(Y , X )�(X |Y )−1 �(Y |X )−1

)
. (A4)

This means that conditional distribution Q(x|y) is expressed as

Q(x|y) = 1

(2π )n/2det[�(X |Y )]1/2
exp

(
−1

2
(x − μX |Y )��(X |Y )−1(x − μX |Y )

)
, (A5)

where μX |Y = μX + �(X ,Y )�(Y )−1(y − μY ). Inserting this expression into (A1) offers

H (X |Y ) = 1

2
ln det(�(X |Y )) + n

2
ln(2πe). (A6)

Finally, substituting Xt and X (p)
t−1 with X and Y , respectively, in (A6) provides (10).
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