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Large deviations of a susceptible-infected-recovered model around the epidemic threshold
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We numerically study the dynamics of the SIR disease model on small-world networks by using a large-
deviation approach. This allows us to obtain the probability density function of the total fraction of infected nodes
and of the maximum fraction of simultaneously infected nodes down to very small probability densities like
10725 We analyze the structure of the disease dynamics and observed three regimes in all probability density
functions, which correspond to quick mild, quick extremely severe, and sustained severe dynamical evolutions,
respectively. Furthermore, the mathematical rate functions of the densities are investigated. The results indicate
that the so-called large-deviation property holds for the SIR model. Finally, we measured correlations with other
quantities like the duration of an outbreak or the peak position of the fraction of infections, also in the rare
regions which are not accessible by standard simulation techniques.
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I. INTRODUCTION

The modeling of the spread of epidemic diseases has al-
ways been a central aspect in statistics, applied mathematics,
and statistical mechanics [1-5]. Due to the present outbreak
of the SARS-CoV-2 pandemic, interest in this field has risen
even more [6—12]. Disease spreading can be modeled in many
different ways, e.g., with ordinary differential equations like
in the mean-field version of the susceptible-infected-recovered
(SIR) model [13] or with agent-based approaches [14,15].
Also other fields are involved, e.g., Bayesian analysis [16]
to estimate model parameters [6,9] or machine-learning ap-
proaches [17] to predict the future development of an outbreak
[10,18-20]. We refer to recent review articles for a good
overview of the topic [21-23].

Given the large population of humans and animals on our
planet and the high number of active and potentially threat-
ening viruses or bacteria, the actual number of pandemic
diseases is surprisingly small. Thus, the outbreak of a specific
pandemic is actually a rare event, i.e., occurs, looking at
each single type of disease, with a very small probability. For
example, the disease might be very active in one population
of, e.g., bats, but much rarer contacts or rare mutations are
needed to allow the transfer to another population, like hu-
mans, maybe even requiring unknown intermediate animals.
Hence, it is natural to consider the application of large-
deviation approaches to study disease dynamics. So far this
was done only a few times, e.g., the large-deviation principle
was investigated analytically [24] by generalizing an approach
of Ref. [25] for simple mean-field epidemic models.

A more realistic modeling of epidemic dynamics beyond
mean-field level is generally obtained by studying the dynam-
ics on networks [3]. These networks represent the contacts
between the individuals or groups of individuals. This, of
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course, can become arbitrarily complex, e.g., by combining
several network layers, which can then represent different
environments of contact [26]. Depending on the structure of
a network and on the epidemic parameters, like transmission
probability and recovery probability, the infection of a single
node might stay contained or might lead to a pandemic out-
break. The critical value of, e.g., the transmission probability,
beyond which an pandemic outbreak occurs, i.e., a percolation
of the infected nodes, is called the epidemic threshold. For not
too complex models, the epidemic threshold of disease models
can be analyzed by using a variety of analytical methods,
e.g., the mean-field method, its quenched version, or dynamic
message passing approaches. [27-33]. Naturally, for more
complex models it is even harder to obtain analytical results,
thus computer simulations [34] are applied instead.

To our knowledge, for the study of disease spreading on
networks with respect to large-deviations and rare events
no results are available, let it be analytical or numerical.
Thus, to start to establish such approaches in the field of
disease dynamics, here the simple case of the SIR model on
standard networks drawn from a small-world [35] ensemble
is considered. This is motivated by the fact that physical
contact networks between humans resemble small-world-like
networks [14]. However, the methods applied here can be used
for all types of networks. We apply large-deviation techniques
[36-38] that are based on the Markov-chain approaches Wang
Landau [39] and entropic sampling [40]. In this way we are
able to explore the probability density function (pdf) of the
fraction of infected nodes down to values as small as 10715,
For the pdf of the maximum of the fraction of simultane-
ously infected nodes, we reach values as small as 102500,
For both quantities, we look at the respective mathematical
rate functions, to verify whether the large-deviation principle
holds [41-44]. This gives a complete description of these
stochastic quantities, over the full range of the support of
the distributions. First, this is desirable from a fundamental
research point of view. Second, we are able to investigate cor-
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FIG. 1. Showing transition probabilities for node i at a given time
step.

relations between different quantities, e.g., how the fraction
of infected nodes corresponds to how quickly the disease dies
out. By using a large-deviation technique, we are able to study
these correlations much beyond the typical behavior. Thus, we
can also analyze extremely severe as well as extremely mild
disease progression, and try to identify their possible causes
through looking at their correlations. The much broader un-
derstanding gained in this way could be one piece to help to
better prevent pandemic outbreaks in the future, in particular,
if it is applied not to the general model but for a specific case
tailored to the epidemic under scrutiny, respectively.

The paper is organized as follows: First, the SIR model is
introduced and its dynamics and the main measurable quan-
tities are defined. Next, we define the ensemble of networks
we use. In the main methodological section, we present the
algorithms used for sampling the rare events and how we
have to set up the simulation of the SIR dynamics to embed
it into the large-deviation scheme. Our results come in three
parts. We begin by investigating the ensemble with standard
techniques to identify interesting points in parameter space.
For these points, large-deviation simulations are performed
to obtain the distributions of the total fraction C of infected
individuals and of the maximum fraction M of simultaneously
infected individuals, respectively. We finish with a summary
and an outlook.

II. SIR MODEL

Let there be a given connected network with N nodes,
where the nodes represent individuals and the edges contacts.
The term connected here means that there is only one con-
nected component, i.e., all nodes can be reached from all other
nodes through paths along edges. Each node is in one of the
three states susceptible (S), infected (1), or recovered (R).

For any given configuration of states in the network, at
each time step a node can change its state as follows: The
probability of an infected node infecting a specific susceptible
neighbor is given by the transmission probability ). = const.
The probability of an infected node recovering in a given time
step is given by w = const. A node in the recovered state
remains recovered forevermore.

We consider a node i in S state, which has A; adjacent
infected nodes. Since each infected neighbor has a probability
of A to infect node i, the probability for node i to become
infected in a time step is

r=1—(1=x)". 9]

All possible transitions between the states of a node are shown
in Fig. 1.

For all disease dynamics we consider, as initial state at
discrete time t = 0, one particular node (in the following
called node 0) set to the infected state, while all other nodes

are susceptible. Our simulations [34] are performed at discrete
times T — 7 + 1 by applying the above mentioned rules in a
parallel fashion to all nodes. This is repeated until the disease
dies out, i.e., no infected nodes remain, or if a maximum
chosen time is reached. Such a development we call the time
evolution of an outbreak from here on out. Note that the
outbreak might be very small, with just node O being initially
infected and recovering after some time before any other node
is infected. Clearly, unless A < w, this will not occur too
often.

Due to the probabilistic nature of the problem, multiple
outbreak simulations will generally lead to different results.

To describe the time evolution of an outbreak, let us intro-
duce a few quantities: Let s(t), i(t), and r(7) be the fractions
of susceptible, infected, and recovered nodes at time step T,
respectively. Let c¢(t) = i(t) 4 r(t) be the fraction of the to-
tal, i.e., cumulative infections, which have occurred up to time
step t. These quantities depend on the time step. To describe
the global characteristics of an outbreak, the following two
quantities are introduced:

C= rnrax[c(t)] = c(00) 2)

describes the fraction of the network that caught the disease
during the outbreak and is therefore a measure for its severity.
This is the standard quantity to distinguish between a local
outbreak and a pandemic.

M = max[i(t)] A3)

denotes the peak fraction of nodes that happen to simulta-
neously be in the infected state during an outbreak and is,
therefore, a relevant quantity for the health care system.

III. ENSEMBLE

In our work, we investigate a small-world network ensem-
ble [35,45-47], because contact networks between individuals
are highly connected small-world-like networks [14]. We use
the same implementation as we used in Ref. [48].

The network is constructed as follows: Let there be N
nodesi =0, ..., N — 1. First, the nodes are arranged in a ring
structure, meaning every node is connected to its next and sec-
ond next neighbor by the edges {i, i + 1} and {i, i 4+ 2} (nodes
N and N + 1 are identified with index O and 1, respectively).

To gain small-world characteristics, next some of the edges
created in the first step are made long-range, i.e., each edge
will be rewired with probability p. To rewire an edge {i, j},
with j =i+ 1 or j =i+ 2, a random node ;" # i is drawn
and the edge is changed to {i, j'}. Throughout this paper, p =
0.1 is used.

As mentioned, we only consider connected networks, i.e.,
networks where there exists a path of edges between any two
nodes. We use depth first search to verify, whether any created
network is connected or not. If the network is not connected,
then the whole network is discarded and the construction
process repeated, until a connected network is generated.

IV. ALGORITHMS

The straightforward way to perform the outbreak simula-
tions outlined in Sec. II, often called simple sampling, is to
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start with the initial state and, while performing the itera-
tions, draw the necessary random numbers independently “on
demand.” This will generate typical outbreaks, i.e., when per-
forming K independent runs, one can efficiently sample events
which occur with probabilities not smaller than O(1/K).

We are interested in the large-deviation properties of the
outbreaks, i.e., want to access events that occur with much
smaller probabilities. To achieve this, we have to control the
dynamics of the outbreaks. This works by biasing them in a
suitable way within a Markov chain Monte Carlo (MCMC)
simulation [38], as explained in Sec. IV B. But to use the
outbreak simulation as the basic element within an MCMC
simulation, we have to make it accessible for control, as ex-
plained in the next section.

All large-deviation simulations are for a fixed given net-
work. As stated below, we average only over few networks,
or, for a large number N of nodes, only one given network
is considered due to assumed self-averaging. Thus, we are
not interested in rare properties induced by rare network
structures. This is justified, because the contact network of a
population of individuals is usually given. Thus, what we are
interested in are typical and rare dynamical processes taking
place on typical networks.

A. Outbreak simulation

To analyze this model with large-deviation methods down
to very small probabilities, we need a way to manipulate the
randomness of the spread of disease in a controlled fashion.
This is done by manipulating the random numbers utilized
within the simulation.

An easy way to achieve this, is to draw the random numbers
beforehand, store them in one or several vectors [38,49] and
pick numbers from the vector whenever needed. That means,
an educated guess is required about how many time steps
max are needed for the simulation to make the vectors large
enough. Clearly, the choice of #,,x will depend on the values
of A and u and will be determined below.

Now, the random numbers to be drawn beforehand are con-
tained in two arrays &[] and &,[/] with [ =0, 1, ... fm.N.
The entries shall be drawn uniformly between O and 1 each.
The MCMC approach will manipulate these two vectors to
control the outbreak simulation. The basic assumption used
in the MCMC approach is that the state of a system, here the
entire evolution of an outbreak, changes only slightly, if the
random numbers are changed only slightly. For this purpose
each random number will be assigned a specific purpose or
use. This implies that any random number can occasionally
be ignored.

Now the use of the random numbers in one outbreak sim-
ulation is detailed. Let 7 > 0 be the current time step. To
calculate the states of the nodes for the next iteration, we
first iterate over all susceptible nodes i, that have at least
one infected neighbor. The probability for i to be infected is
A; as shown in Eq. (1). To decide whether the node should
be flagged for becoming infected at time t 4 1 the random
number &, [tN + i] is used, i.e., it will be flagged to become
infected if &, [tN + i] < A;. Of course this means that for all
nodes i which have no infected neighbors, the corresponding
entries of &, are ignored.

Next, we iterate over all infected nodes i. We use the
random number stored at §,[TN + i], to flag the state of node
i to be recovered in the next time step, which occurs with
probability .

Afterward all nodes that are currently flagged to become
infected are set to infected.

Note that, technically, one could store all needed random
numbers from &; and &, in one single array. We found this
splitting more convenient, in particular because it allows to
easily manipulate the arrays in different ways.

The underlying network is not changed during the simula-
tion, it represents a typical society. Furthermore, because the
actual outbreak always starts with only node 0 being infected,
no other randomness is present except the one contained in
the two vectors of random numbers. Thus, the dynamic evolu-
tion and any measurable quantity are deterministic functions

S, E).

B. Large-deviation sampling

Our goal is to calculate the probability density function
(pdf) P(E) for a given network G and given values of A and
. Here, E stands for a measurable quantity of the spread of
disease, in our case either £ = C or E = M. In the following,
E will be referred to as energy.

To calculate the pdf over a large range of the support,
possibly over its full support, one usually must be able to
obtain it in the region of very small probability densities
as well. To achieve this within numerical simulations [34],
specific large-deviation algorithms [36] can be applied. Such
approaches have been used to study various equilibrium and
nonequilibrium problems like alignment scores of protein
sequences [37,50,51], nucleation [52], properties of random
networks [53-55], dynamics of the totally asymmetric ex-
clusion process [56,57], traffic models [58], calculation of
partition functions [59], dynamics of model glasses [60],
dynamics of Ising ferromagnets [38,61], statistics of negative-
weight percolation [62], and RNA work processes [63].

Various large-deviation algorithms exist. Here, we applied
an approach based on the Wang-Landau (WL) algorithm [39].
Although the general approach is well known, we present
the main steps along with the details that are necessary to
reproduce our results.

The algorithm starts with a nonnormalized estimate g(E)
of the density of states for the energy E. In case one does
not have any prior information, like here, one starts with an
unbiased estimate g(£') = 1 VE. The algorithm will iteratively
refine g(E) to converge closely to the true pdf. This is achieved
by creating a Markov chain in the space of all possible out-
breaks for a given network and given initial state S, I or R
of each node. Since, as shown in the previous section, each
outbreak has a one-to-one correspondence to the two arrays
&, and &,, the Markov chain is actually performed in the
space of all possible assignments of random number entries
from [0,1] to these two arrays. We denote by (&7, SZ) the
current configuration at Markov step n. For each of such a
configuration, a full outbreak simulation is performed and the
energy, i.e., the cumulative or peak fraction of infections, is
read off. Thus, as mentioned, this energy is just a deterministic
function of the configuration: E, = E (&}, él’j).
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To perform the Markov chain, we use in particular
the Metropolis-Hastings MCMC method [64—66]. Therefore,
each step in the Markov chain consist of generating a trial
configuration (&, éu) from the current configuration, which
will be accepted or rejected, as detailed more below.

First, we explain how the trial configurations are generated
here. A combination of three different possible moves is used.
The moves are all based on the current configuration, i.e.,
they start with (&, :§M) = (&, &)- One of the three following
change operations is randomly selected:

With a high probability of 98%, we just perform random
changes as follows: We randomly choose one of the two arrays
£ e (&, éﬂ}, draw a random index k and a random number
x € [0, 1] uniformly and set £[k] = x. This is repeated B
times. As a rule of thumb, B should be chosen such that about
50% of the trial configurations are accepted, which is what we
aim for. The actual numbers are stated in the results section.
Note that the correctness of the method does not depend on the
acceptance rate, however, it does affect efficiency. It is clear
that this move alone can reach all possible configurations of
(%, &,), which means that ergodicity is fulfilled. Neverthe-
less, for a better convergence, we include two more moves:

With a probability of 1%, we perform a rotation, i.e., é,\
and £, are rotated by N elements to the left or to the right, with
periodic boundaries. This roughly corresponds to shifting the
resulting time series of the outbreak by one time step to the
left or right.

Also with a 1% probability we perform a swap. Here, we
draw two random indices ¢ and v and swap the values &, [(] <
&[v] and &[] < &,[v]. This is repeated B times to create
one trial configuration.

Note that these moves do not skew the probability of the
resulting random-number vectors in any direction, since all
entries are always uniformly drawn from [0,1].

For the trial configuration of random numbers a complete
outbreak simulation has to be performed again, resulting in
the corresponding energy E = E(&;, €,,).

The trial configuration will now be accepted, i.e.,
& gy = (5.8 and therefore E,.; =E, with a
Metropolis-Hastings probability

E,
a( )]‘ @

=min |1, ==
Puce [ i)
If the trial configuration is rejected, then the current con-
figuration is kept, i.e., (E;‘H, é}ﬁ*l) = (&, .§Z), and therefore
En+1 =E,.

As usual for the WL algorithm, next the density esti-
mate g is updated using a multiplicative factor f > 1, i.e.,
g(E,i1) — fg(E,y 1), while for all other values of E, g(E)
remains the same. One can start with a rather large factor like
f =e=2.71. The factor is then reduced toward 1 during the
simulation.

However, the saturation of the final error becomes a
problem for the original WL algorithm ([67]; see also
Refs. [68—70]). The algorithm introduced by Belardinelli and
Pereyra [68] is used to circumvent the problem, since it was
shown [70], that error saturation does not become a problem
for this alternative algorithm. The main difference between

this algorithm and the original WL is in how the factor f is
updated during the simulation, for details see the citations.

Still, the WL algorithm and its variants do not fulfill de-
tailed balance. Therefore, we perform entropic sampling [40]
afterward. We start with the estimate g(E) as computed by
WL. Entropic sampling is very similar to WL. The same
method is used to generate a Markov chain and accept the
states based on the probability Eq. (4). This time, however,
we do not update g, but instead maintain a histogram H (E)
of visited states. We always employ entropic sampling for
the same number of steps, as were used for the preceding
Wang-Landau runs, respectively.

To finish the entropic sampling simulation, the desired pdf
can be calculated. First, a nonnormalized pdf is calculated,

P(E) = g(E)H(E), (&)

for all bins, where H(E) > 0. For all other bins the pdf would
be unknown. Then the pdf is normalized,

P(E)

(6)

During the simulation using the entropic sampling, we oc-
casionally sample, i.e., store trajectories of outbreaks, which
can be analyzed later on. This will lead to a rather uniform
sampling of the trajectories with respect to the measured en-
ergy, Cor M.

Calculating the pdf over the whole regime at once can be
rather challenging. To make it more feasible, the E range is
split in multiple overlapping intervals [71,72]. For each of
those intervals we performed a WL and an entropic sampling
simulation. Finally the resulting pdf are merged to obtain a
full pdf. This can be done, because the pdfs of the overlapping
regions have to match, at least within statistical fluctuations
[37,39].

For some of these overlapping intervals we had problems
with the ergodicity, which can be observed if not the full inter-
val is visited, or if the distribution from neighboring intervals
does not match well. To circumvent the problem, we use a
replica exchange Wang-Landau (REWL) algorithm [73-75]
for the affected pdfs, which works similar to the Wang-Landau
algorithm described above, but regularly attempts to exchange
configurations between independent simulations on different
intervals, utilizing a suitable Metropolis criterion. Again, we
refer to the literature for details. Note that we also applied the
replica exchange approach to the entropic sampling to obtain
the final pdf estimates.

V. SIMPLE SAMPLING SIMULATIONS

To choose points of interest in parameter space and a
suitable length #;,x of the outbreak simulations, we have
performed some test simulations prior to the large-deviation
simulations.

A. Critical transmission probability

We want to analyze the behavior of the model in the
nonpandemic phase, in the pandemic phase, and close to
the epidemic threshold. Since we work in discrete time,
the parameters are not rates but probabilities. Thus, unlike
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FIG. 2. Example for the average C as a function of the transmis-
sion probability A for N = 800 and p = 0.14. The inset shows the
variance. Error bars are smaller than symbol sizes.

to the continuous-time case, there is no natural or neutral
timescale and we cannot set one of the probabilities to 1.
Therefore, the recovery probability is chosen to be u = 0.14
as a working basis in all simulations. Since we are still free
to choose A, the general results should not depend much on
the specific value of w, unless it approaches O or 1. Thus, the
task is to determine the critical transmission probability A,
of the epidemic threshold. For this purpose, we investigate
network sizes up to N = 3200. For each value of N, we
generated 200 000 random networks and performed outbreak
simulations for each network. Initially, only node 0O is infected,
while all other nodes are susceptible. Here, all outbreaks
are iterated until no infected node remains. We measure the
average cumulative fraction C(A) of infected nodes and also
calculated the variance o (C) for each combination (N, A).
Errors are estimated with bootstrap resampling [76]. For a
different number N of nodes the curves C(A) change so little,
that it would be hardly visible. We therefore only show an
example of this in Fig. 2.

We define the finite-size critical transmission A.(N) as the
peak of the variance o (C, N). To measure the peak of the
critical transmission, we fit Gaussian-shaped functions around
the maxima, respectively. We then apply standard finite-size
scaling to calculate the critical transmission rate A.(co) by
fitting

Ae(N) = Ao(00) +aN~° (7)

to the data, as shown in Fig. 3.

0.180
“ )\C |
0.179 || 1
e
¥
< 0178 |\ i
0.177 - > R
[ S S S
0.176 ‘ ‘
0 1200 2400 3600

FIG. 3. Critical transmission XA, for 4 = 0.14 as a function of the
number N of nodes with fit to A.(N) from Eq. (7).

Atgo

FIG. 4. The duration Afy, until the outbreaks are completely fin-
ished for 90% of the independent outbreak simulations as a function
of A, for different system sizes N. The largest and smallest value
of N are labeled. In between the values behave monotonously. The
used values are N € {200, 600, 1200, 4800, 9600}. The dashed line
indicates the value of A..

We obtain a value A.(c0) = 0.1763(2) for the critical
transmission. The other fit parameter were a = 0.24(24) and
b =0.91(21), with rather large error bars, but these values
are not of interest here. Note that fitting A.(N) = A.(c0) +
ay log(N)?* looks very similar and leads to a similar critical
transmission A.(00) = 0.1750(4).

B. Disease duration

For the large-deviation simulation, we cannot simply run
each outbreak simulation until the disease dies out, because
the MCMC scheme operates with a vector of random numbers
which must be of fixed length. Thus, we have to find a suitable
timescale for the duration of the outbreak simulations.

For this purpose, we performed simulations in the same
manner as described in the previous section and measured
the duration At it takes until no infected nodes remain, i.e.,
i(At) = 0, for each simulation. After this time, the state of
the nodes will not change because the outbreak dynamics are
finished. For each parameter set (N, A), we measured 100 000
randomly generated networks.

For each considered parameter set (N, 1) the characteristic
time At,, which describes how long it takes until p% of the
outbreak dynamics are finished, is calculated. As an exam-
ple we show the measured curves for Aty in Fig. 4. The
curves show the typical signs of a dynamical phase transition
accompanied by critical slowing down [77]. Critical slowing
down plays an important role for early warning signals of
infectious disease transitions [78]. Interestingly, the outbreak
takes longest well below the epidemic threshold A., which fits
with previous observations [79].

To investigate the worst-case scenario, we look at

At,‘)“‘”‘ (N) = mflx[Atp(N, M. ()

The result for Atg?*(N) can be found in Fig. 5. We used this
result to set up the length of the outbreak simulations within
the large-deviation approach, see below. But beyond this tech-
nical aspect, it is also interesting to investigate the scaling
behavior. Critical slowing down often leads to a power-law
behavior of the correlation length [80,81]. Since Atgy™ (V) can
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FIG. 5. Maximum Atg™ over all values of A of how long it
takes until 90% of outbreaks are finished, as a function of N. The
continuous line shows the fit to f(N), while the dashed line shows
the fit to f,—o(N).

be understood as correlation length we fitted a power law,
f(N) =a+ bN®, ©)]

to the Atg?* (V) data. This seems to describe the relation very
well. The fit parameter are a = —50(4), b = 36(2), and ¢ =
0.2824(43). That means that the time it takes until 90% of the
outbreaks are over scales roughly with the fourth root of the
system size.

The fit still works well with a fixed a = 0, i.e., for

fa=o(N) = bN®, (10)

which leads to b = 19.1(6) and ¢ = 0.340(4). Also note that
both fits work exceptionally well for all Az, except for p
very close to p =100% or p = 0%. It is even possible to
find simple functions for the fitting parameter, i.e., a(p), etc.
The functions which are obtained by using these functional
parameters, e.g., f(N|p) = a(p) + b(p)NP), also fit the data
reasonably well.

Still, as this is only preparation for our large deviation
sampling, we do not pursue this any further.

It is also interesting to look at the duration right at the
critical transmission. This can be found in Fig. 6. Here we set
a = 0 for the fit because the errors become unreasonably large
otherwise. The obtained parameters from the fit are b = 51(3)
and ¢ = 0.1555(8), which means that here the duration scales
roughly only with the 7th root of the system size.
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N

FIG. 6. The time Atg how long it takes until 90% of outbreaks
dynamics are finished as a function of the network size N for the
critical value A = 0.1763. The lines show the results of fits to f,—o(N)
and g(N).

TABLE I. Parameters for the simulations: transmission probabil-
ity A, number of nodes N, the approach used, the number #N of
independent network realizations, the number #/ of intervals used
in the WL or REWL sampling, and the number B of exchanges
performed per MCMC attempt for the arrays &, and &, of random
numbers.

A N Approach #N #1 B

0.1763 200 WL 15 24 75
0.1763 400 WL 7 24 150
0.1763 800 WL 4 24 166
0.1763 1600 WL 1 24 900
0.1763 3200 WL 1 24 2048
0.1763 6400 WL 1 48 3072
0.1 3200 WL 1 24 1024
0.4 3200 REWL 1 27 256

Note that usually a power law with a small exponent cannot
be well distinguished from a logarithmic behavior. Therefore,
we also fitted a logarithmic function,

g(N) = alog(NB). Y

The quality of this fit is not good for the Azg™ data, but works
well for specific values of A, e.g., A = A, and is therefore
included in Fig. 6. In the latter case the obtained fit parameters
are o = 25.3(6) and 8 = 0.39(6).

VI. CUMULATIVE FRACTION C OF INFECTIONS

Using the large-deviation approach, we now present the
result for the distribution of the fraction C of cumulative
infected nodes. Note that the study of the large deviation refers
to the dynamics on a given network. Since in a real-world situ-
ation the contact network is given, we do not study rare-events
with respect to rare networks here. First, we present results
for the pdf of C. They are obtained by using Wang-Landau,
plus afterward refining the result with entropic sampling. If
necessary, i.e., in case we observed nonconvergence, then we
applied REWL instead.

The parameters we use for the simulations are presented in
Table I, for the different networks sizes N and values of the
transmission probability A. At the critical point A = A, we
study also finite-size scaling by considering different network
sizes. For the representative values smaller and larger than
the critical transition, A = 0.1 and A = 0.4, respectively, we
perform simulations only for a rather large system size of
N = 3200.

Note that we use a recovery probability of u = 0.14 ev-
erywhere, which, as a side note, is in the range of recovery
probabilities used to model the current corona virus pandemic
[6,12], although there is a wide variablilty of models leading
to other parameter values [82—85].

For small sizes, we perform the full large-deviation sam-
pling for a small number #N of few independently drawn
networks, while for the largest sizes, where we assume some
kind of self-averaging, we study only #N =1 generated
network. The latter case also corresponds somehow to the
real-life simulation, where only one contact network is given,
but the dynamics evolves randomly.
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FIG. 7. Probability density of total infections C for u = 0.14 and
A = 0.1763. Panel (a) shows the full distribution in logarithmic scale,
while panels (b) and (c) highlight the two peak regions in linear scale.
For panels (a) and (c) the largest and smallest values of N are labeled,
in between the values behave monotonically, except for a small area
around C = 0.8, where the order is reversed, see panel (c). The
used values were N € {800, 1600, 3200, 6400}. We also included the
typical-event sampling results for N = 6400 in red.

For the large-deviation simulation, we need to choose a
length of the vector of random numbers, which determines the
maximum time duration f,,, of an outbreak that can be cov-
ered. In theory, arbitrary long outbreaks are possible, so one
has to choose a cutoff time anyway. We have chosen as max-
imum outbreak time of fy. = 3A1™(N), the latter one as
determined in Sec. V B. To verify whether this is long enough,
we keep track, during the large-deviation sampling, of how
often the outbreak was unfinished after the given time. When
considering all the different network sizes, transmission prob-
abilities and intervals of E = C, the highest, i.e., worst-case
frequency f of observing a nonfinished outbreak occurred
for N = 3200 in the interval of £ € [0.47,0.56] with f. ~
1.4 x 107>, Typically, the frequency was much lower, e.g.,
the worst interval for N = 6400 exhibited f ~ 1.7 x 107%.
Since an unfinished outbreak constitutes only a few infected
nodes anyway, this shows that to observe extremely unlikely
events in terms of C, and clearly M anyway, one does not have
to cover extreme unlikely long durations of outbreaks and the
choice of #,, is sufficient.

In Fig. 7 the probability density P(C) is plotted for differ-
ent system sizes N. Note that here and in the following the
pdfs P(E), where E can be either of C and M, are always
normalized such that f £ P(E) = 1. Note also that we sample
the histograms with the highest possible resolution of one bin
per possible value of C. Whenever we average over different
networks, we calculate the pdfs for each of them and then
merge them by averaging the logarithmic probabilities and
normalizing again.

We are able to measure the probability density over the
whole range of its support, extending over up to 115 decades

0.045
0.040 + ,
0.035 + -
N = 200

0.030 |-
S 0.025
Z  0.020
0.015
0.010
0.005
0.000

FIG. 8. Rate function & as a function of total infections C for
different values of N. The smallest two and the biggest value of
N are labeled. In between, the values behave monotonically. The
values N € {200, 400, 800, 1600, 3200, 6400, oo} are used. N = oo
is gained by extrapolation and all other values are measured.

in probability. To put that into perspective, for N = 6400 we
calculated C about 3.1 x 10° times, once per MCMC attempt,
during entropic sampling and WL combined. That means,
if we use typical-event sampling to create a histogram and
estimate the probability density function with the same nu-
merical effort, we are only able to resolve probabilities with a
resolution of about 10~°. This is also shown in Fig. 7, where
we also see that the typical-event sampling results and the
large deviation results agree very well. To resolve the whole
density function with typical-event sampling, one would need
about 3 x 10'% times as much computational power as used
here. The computational advantage would grow even higher
for larger values of N.

Having the whole probability density function is interest-
ing from an insurance perspective. Let us assume there is a
cost function Cost(C). Using the pdf we measured one can
easily calculate the exact expected value of the cost function.
Even the very improbable cases will be relevant here because
they will likely be associated with very high costs, e.g., the
financial loss due to a pandemic.

As visible by the two peaks in the pdfs, the disease ei-
ther dies out very quickly, corresponding to the peak near
C =1/N =0, or about 80% will contract the disease over
the evolution of the outbreak. Intuitively this makes sense, as
only one node is infected in the beginning, thus the disease
dies out if that node recovers before infecting anyone. If the
disease does not die out quickly, however, then it will persist
until a good fraction of the network is immune. The observed
behavior becomes more pronounced for larger networks, as
visible by a decrease of P(C) for intermediate values of C.

To relate to mathematical large-deviation theory, we also
study the empirical rate functions, defined as

®(C,N) :=

In(P(C
-2 1 o, (12)

where @y = const = min¢ ( — I"(P#), such that the mini-
mum of the rate function occurs at & = 0. The calculated rate
functions are displayed in Fig. 8.

Since an apparent convergence is visible when increasing
network size N, we also estimate the rate function for N = oo
with finite-size scaling, in a similar way to the disease duration
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FIG. 9. Probability density of total infections C for . = 0.14 and
N = 3200 for different values of A, below, at, and above the critical
threshold. Linear scale in inset.

in Sec. V B. For this purpose we fit the function
k(N):= ®oo + N~ * (13)

for each value of C.

The errors of the fit are used as error bars and the result
is included in Fig. 8. The results show that the numerically
obtained rate function seems to converge well. This means
that the mathematical large-deviation principle holds, i.e., the
size dependence on N is in leading order given by P(C) ~
exp[—N®(C) + o(N)]. As a consequence of this “well be-
having,” analytical progress regarding P(C) might be feasible,
e.g., through application of the Gértner-Ellis theorem [41-44].

So far, we have considered only the critical point A & A..
A comparison with the other values of the transmission prob-
ability is shown in Fig. 9. As one would expect, higher values
of X lead to an increased probability for larger values of C.
Correspondingly, lower values of C become far more likely
for the lower transmission probabilities. Note that for all three
considered values of A, we observe rather high probabilities
for C ~ 0, since only one node is infected in the beginning.
But this is only an effect emerging from the initial condition
and can be ignored when discussing the main part of P(C).
Even if one started with a larger number of initially infected
nodes, this will only affect the height of the peak for small
values of C and the overall weight of the part for C >> 0, but
not the shape.

A. Correlations

We want to further analyze the properties of typical and
atypical outbreaks to obtain insight into their structure and
maybe even identify possible causes for extreme events. For
this purpose, we store during the entropic sampling for each
WL interval 200000 time evolutions of outbreaks, at steps
evenly spaced out in the entropic sampling Monte Carlo time.
We store for these time evolutions the fraction i of infected,
the fraction s of susceptible and the fraction ¢ of the total
fraction of so-far infected nodes during the time evolution, see
Sec. II. Below, T will denote either of these quantities, and we
call

T =(T[O0],..., T[tmax — 11) (14)

a time series.

0.20

T T 0.15 T~—
C=080 — | = . C=0-8
C=0.30 —— =
C=0.05 — 0.00 == L
0.15 - 7 0 100 200
T
_ 0.05 c=03
£ o010t 1 E
0.00 !
0 100 200
0.05 1 oo1 T
ey C=0.05
E
0.00 ‘ ‘ 0.00 £ !

0 50 l(_Jl_O 150 200 0 1(_)[_0 200

FIG. 10. Fraction of infected nodes i as function of time t for
three different values of C. The plot on the left shows a single time
series for each C value as examples, whereas the plots on the right
each show 250 time series for their respective C value.

Each time series is binned according to its energy E, i.e., C
here, or M in Sec. VII. We denote by bg the set of a number
Bp of time series collected for histogram bin E, i.e.,

be ={T,.... T4} (15)

As an example, in Fig. 10 we show a collection of time
series i(7) for three different values of the cumulative fraction
C of infected individuals, for N = 3200 and A = A.. One can
observe that the infection can last way longer for medium
values of C and dies out quicker for very large or low values
of C.

In the next subsection, we use heat maps to investigate how
similar the time series are when comparing them pairwise.
Afterward, we calculate other measurable quantities of the
time series to relate them to the values of C they exhibit,
respectively.

1. Disparity heat maps

To measure how similar the time series are to each other,
we first normalize each series by dividing through its maximal
value encountered during the outbreak. This way we can better
compare the shape of the time series and are not comparing
their magnitudes.

We define a distance d for two normalized time series T, T’
as

tmax—1

d(T.T') =130 > T[e] - T'[x]]. (16)
=0

We define the disparity Vr (E, E’) between time series from
E and E’ as the averaged distance d(TF, TﬂE ") for pairs of time
series taken from the bins E and E’, respectively. Here, we
used 500 time series per bin, drawn randomly from all saved
time series that were collected for the respective bin. Hence a
total of up to 1600000 time series are used in each analysis.

In Fig. 11 we show the disparity V;, for the fraction of
infected, for A & A, color-coded, i.e., in form of a heat map.
Note that we are able to show the disparities over the full
range of possible values for C, which is only possible because
we applied the large-deviation approach. When using simple
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FIG. 11. Disparity V; of the time series i(t) of the fraction of
infected individuals for pairs of time series binned with respect to
their total fraction C of infections, for N = 3200, u = 0.14, and A =
0.1763.

sampling instead, only a very small range of values near
C ~ (0 and near C =~ 0.8 would be accessible. Here we are able
instead to identify three different regions. The first is located
in the range 0 < C < 0.1, the second is 0.1 < C < 0.5, and
the third for C > 0.5. Region one and three seem to consist of
time series where the shapes are similar to each other, within
the region, visible by the dark color around the diagonal in the
heat map. But they are quite different to other regions. Region
two seems to consist of different time series that are not even
that similar to time series from its own region, i.e., here we
observe strong fluctuations from time series to time series.
Note that in Fig. 10 the time series are selected from these
regions, and thus illustrate their behaviors. Fig. 10 tells us that
time series from the first region exhibit only small fractions
of infected and the outbreak dies out quickly. For the second
region, we observe medium strong outbreaks, but they may
take very long and the shapes and durations fluctuate strongly.
In the third region, many individuals get infected during the
outbreak, leading to an even larger fraction of individuals
infected at the same time, but the outbreak finished more
quickly than in region two.

For A = 0.1 the heatmap looks similar (not shown), though
now region 2 is shifted toward larger values of C, i.e., the
region is 0.15 < C < 0.8, and the other regions change ac-
cordingly.

For A = 0.4 the heatmap also looks similar (not shown).
Here the second region is much smaller, i.e., 0.075 < C <
0.21, and the other regions change accordingly.

In Fig. 12 we show the disparity heat map for the time
series of cumulative infections, i.e., V.. This heat map adum-
brates the three regions as well, though they are much less
pronounced. Thus, to compare the dynamics of infections,
the current fraction of infections allows for a better insight
compared to the cumulative fraction of infections. For A = 0.4
we see the same, though the region borders changed, as men-
tioned previously. For A = 0.1 the heat map also hints at the
regions previously mentioned; however, region 2 is very faint
and barely visible.

Ve

‘ 0.00
0.0 0.2 0.4 0.6 0.8 1.0
C

FIG. 12. Disparity V, of the time series c(t) of the fraction of
cumulative infections for pairs of time series binned with respect to
their total fraction C of infections for N = 3200, u = 0.14, and A =
0.1763.

2. Conditional density

To study the relation of other measurable properties Q of
the time series to their values of C, we study conditional den-
sities. Again we bin each time series according to its energy
E, here E = C [see Eq. (15)] and then obtain a normalized
histogram pr(QIE) of Q given E. Again T will be either i, s,
¢, or omitted, if suitable.

For the measurable quantities Q we considered

(i) M as defined above, i.e., the maximum of the fraction i
of currently infected nodes during an outbreak;

(ii) the time steps Tyax until the maximal value of the
fraction i of infected is reached. This measures the timescale
it takes for an outbreak to reach its maximum activity. This is
interesting for practical purposes, as it translates to the time
where the maximal healthcare capacity is required;

(iii) the time steps T, until the minimal value of the frac-
tion s of susceptible nodes is reached. This means that, after
this time, no additional nodes obtained an infection, although
the recovery of the remaining infected nodes still takes some
time. This quantity is a measure for the outbreak duration;

(iv) the number of time steps 119(()) it took such that the
fractions i or ¢ here, raised from 10% to 90% of its maximal
value, respectively. In the few cases where, for analyzing i,
this occurred several times, we only consider the duration of
the first occurrence. These timescales quantify how long the
outbreak is very active;

(v) the fraction f;,, of how many neighbors of an infected
node are infected through a long-range edge, i.e., along those
edges which were rewired during graph generation. Hence,

1 L;
fu=5 2 T (17)
i,I;>0

where /; is the number of neighbors of node i infected by node
i, and L; is the number of neighbors of node i infected through
long-ranging edges;

In Fig. 13 we show the distribution p;(tyi,|E) for the time
Steps Tmin it took until the minimum of susceptible nodes was
reached, conditioned to the value of C. As one would expect,
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FIG. 13. Conditional density p;(Tmin|C), which shows the prob-
ability of Ty, i.e., how many time steps it takes until the last node
got infected during an outbreak, for any given C. The system size
is N = 3200, the recover probability ; = 0.14 and the transmission
probability A = 0.1763.

this distribution is centered at small times for low values of
C. For 0.25 < C < 0.5 the disease survives the longest and
exhibits the largest spread in timescales. When increasing C
further, the life time of the disease decreases again. These
results support the insight gained for the different regions
from looking at the sample time series in Fig. 10.

For A = 0.1 (not shown) the shape is similar, though flatter
and the range where the disease survives the longest stretches
now from 0.25 < C < 0.75. Also the disease generally sur-
vives longer, because the pool of susceptible nodes decreases
more slowly. For A = 0.4 (not shown) the shape looks even
more similar to the one shown in Fig. 13, though the maxi-
mum is now more pronounced and around C = 0.13 and the
disease dies out even faster, because it rushes more quickly
through the population.

In Fig. 14 the conditional distribution p;(ty.x|E) for the
time of the peak infection is shown. As one can see, the shape
is similar to the one from Fig. 13. From this similarity one
can conclude Tin ~ Tmax, 1.€., the longer the disease lasts, the
later the peak of the fraction of infected occurs. We find the
same results for A = 0.1 and A = 0.4 (not shown).

Looking back at the diagonals of Figs. 11 and 12 we notice
that we observe the largest value of 7, as well as the largest
variance of T,y for the range where the disparity V was the
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FIG. 14. Conditional density p;(Tmax|C), which shows the prob-
ability of T, i.e., how many time steps it takes to reach the peak
of the infection time series i(t), for any given value of C. The
system size is N = 3200, the recover probability u = 0.14 and the
transmission probability A = 0.1763.
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FIG. 15. Conditional density p;(M|C), which shows the proba-
bility of M, i.e., the maximum of the time series i(7), for any given
value of C. The system size is N = 3200, the recover probability
# = 0.14 and the transmission probability A = 0.1763.

highest, i.e., where the respective time series exhibited the
most variation. This makes sense intuitively and reminds one
of the behavior of systems near critical slowing down.

In Fig. 15 the conditional distribution p;(M|C) for the
maximum of nodes, which are in the infected state at the same
time, is shown. Here, the three regions, which where visible
in Figs. 13 and 14 are not apparent. Instead one observes
a generally monotonous relation between C and the center
of the distribution of M. Still, this is compatible with the
outbreak examples shown in Fig. 10. The same behavior can
be observed for A = 0.1 (not shown), though the peak value
M is generally lower and for A = 0.4 (not shown) the peak
value is higher.

In Fig. 16 we show the conditional density p;(z[y|C) for
the duration of the most-active phase of the outbreak. As one
can see, the spread of the duration times is the largest for
region two, where the time series also looked more chaotic
(see Fig. 10 for T = i). If we look at the 7} for T = ¢ (not
shown), the plot looks quite similar, though the durations are
a bit longer overall. For A = 0.1 the heat map looks similar,
but more like a half moon, and the values scatter most around
C =~ 0.5. Also the values are a bit higher overall. For A = 0.4
the basic shape also looks similar, but the slope is steeper at
the beginning. It also flattens out sharply at about C = 0.5,
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FIG. 16. Conditional density p;(z{g|C), which shows the prob-
ability of 7}, i.e., the duration between reaching 10% and 90% of
the maximum of i(t), for any given value of C. The system size
is N = 3200, the recover probability u = 0.14 and the transmission

probability A = 0.1763.
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FIG. 17. Conditional density p(fsw|C), which shows the prob-
ability of fi, for any given C. The system size is N = 3200, the
recover probability u = 0.14, and the transmission probability A =
0.1763.

i.e., at a relatively small value. The values are lower overall
compared to the other two values of A.

We are also interested in the effect of the long-ranging
connections. For this we measure the fraction of long-ranging
edges that caused an infection.

In Fig. 17, we show the conditional distribution p(fs|C) of
the fraction of infections through long-range edges, i.e., those
edges which are responsible for the small-world behavior. For
small values of C, the values of f;,, scatter strongly, because
here the disease dies out very quickly and thus f,, is obtained
by averaging over only very few contagions. Overall we see
a weak correlation of C and f,,, where f,, increases slightly
for larger C until C =~ 0.75. Thus, we see a weak effect that
to see a global pandemic, the spread has to go to a slightly
larger extend through long-range connections and spreads a
little bit less locally. This, even within such a simple model,
supports the often used real-word strategy to suppress with
higher priority long-distance traveling. Interestingly, because
this correlation is seen also for rather large values of C, this
would also help at least a bit even if a pandemic has broken
out already, not only in an early stage to prevent pandemic
outbreaks. However, to actually reach all individuals, i.e., for
even larger values of C, many local edges have to be involved
since there are still many nodes which only have local neigh-
bors. This explains the decrease visible for large values of C.
We first suspected that the overall weak correlation was due
to our high probability p = 0.1 of rewiring, because of which
one third of the nodes are adjacent to at least one long-range
edge.

The plots for A = 0.1 in Fig. 18 and A = 0.4 in Fig. 19,
however, paint a different picture. For the transmission prob-
ability (A = 0.1) below the critical value, we observe an anti
correlation between fi,, and C, whereas we see a correlation
for the transmission probability (A = 0.4) above the critical
value. The latter is what we expected, since the transmission
via long-ranging edges infects more distant nodes, which can
start new infection clusters.

VII. MAXIMUM FRACTION M OF CURRENTLY
INFECTED

Next, we study the large-deviation properties with respect
to the maximum fraction M of simultaneously infected nodes,
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FIG. 18. Conditional density p(fiw|C), which shows the prob-
ability of fi, for any given C. The system size is N = 3200, the
recover probability u = 0.14, and the transmission probability A =
0.1.

in a similar way as we have done for C. Although we have
seen a strong relationship between C and M in Fig. 15, we will
show below that not all results obtained for E = C transfer
directly to the case E = M. Note that for obtaining these
results we had to perform completely independent large-scale
simulations with energy E = M to access also the outbreaks
which have a rare behavior with respect to M. For our largest
system size we evaluated M about 1.5 x 10'° times during
entropic sampling and Wang Landau combined, which is thus
the total number of local MC attempts.

The parameters we use for the simulations are presented in
Table II, for the different networks sizes N and values of the
transmission probability A.

For the noncritical values of A, namely, A = 0.1 and A =
0.4, we perform simulations only for a system size of N =
1600. We originally wanted to use a system size of N = 3200
here, though we encountered problems during the sampling
of A = 0.4. Note that we sample N = 6400 (A = A.) with a
combination of WL and REWL.

In Fig. 20 the probability density P(M) is shown for differ-
ent system sizes N and A = A.. Here, we never encountered
an outbreak that lasted longer than our simulation time #,x-
This means, we have chosen #y,,x large enough to understand
the behavior of M over the full range of possible values
sufficiently. Using the large deviation approach we are able
to measure probabilities ranging over 2500 decades. Thus, if
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FIG. 19. Conditional density p(f.w|C), which shows the prob-
ability of f;, for any given C. The system size is N = 3200, the
recover probability u = 0.14, and the transmission probability A =
0.4.
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TABLE II. Parameters for the simulations: transmission proba-
bility A, number of nodes N, the approach used, the number #I of
intervals used in the WL or REWL sampling, and the number B of
exchanges performed per MCMC attempt for the arrays &, and &, of
random numbers.

A N Approach #l B

0.1763 400 WL 8 66
0.1763 800 WL 20 166
0.1763 1600 REWL 24 512
0.1763 2400 WL 24 1024
0.1763 3200 WL 24 2048
0.1763 6400 WL 42 3072
0.1763 6400 REWL 6 4096
0.1 1600 REWL 24 512
0.4 1600 REWL 24 512

one were to sample the same distribution using only a typical-
event sampling approach, one would need at least 10>**° times
as much computational power as we used, which is clearly
infeasible.

We also include the typical-event sampling results for
N = 6400 where we use 10' samples. Looking at the
logarithmic probabilities the large deviation results and
typical-event sampling agree very well. However, at the peaks
in the linear scale, seem to be discrepancies. These come
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FIG. 20. Probability density of maximum fraction M of simulta-
neously infected for u = 0.14 and A = 0.1763. Panel (a) shows the
full distribution in logarithmic scale, while panels (b) and (c) high-
light the two peak regions in linear scale. For panels (a) and (c) the
largest and smallest values of N are labeled, in between the values
behave monotonically, except for a small area around M = 0.125,
where the order is reversed, see panel (c). The used values were
N € {800, 1600, 3200, 6400}. We also included the typical-event
sampling results for N = 6400 in red.
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FIG. 21. Probability density of the maximum fraction M of si-
multaneously infected for i = 0.14 and N = 1600 and different X.
Linear scale in inset.

from errors that accumulate during the gluing of the large
deviation intervals, which come inevitably into play because
of the sampling fluctuations. But the deviations are small: the
first peak would align perfectly if we add 0.04 to our typical-
event sampling data in the logarithmic range, while the second
peak would align perfectly if we subtract 0.015 from the
typical-event sampling data in the logarithmic range. Looking
at the number of magnitudes this measurements covers in the
probability density range, these errors are really rather small,
though they become noticeable in the linear range.

The probability density function exhibits a peak at M =
% ~ O for the same reasons as there is a peak at C ~ 0 in
P(C). We also observe a peak at about M = 0.125. This
means, if the infection survives the first few steps one can
assume that typically about 12.5% of the network will be
infected at the same time at some point of the outbreak. This
determines the capacity of the health care system required
to cope with typical outbreaks. If one wants to be prepared
for large atypical outbreaks, then the tails become important.
Nevertheless, for substantially larger values of M the prob-
ability density becomes very small. Unsurprisingly, the least
likely case is that the entire network is infected at the same
time at some point of the outbreak. Clearly, these extreme tails
of the distribution are not relevant for practical applications,
but from a fundamental and scientific viewpoint, it is pleasing
to be able to calculate the distribution over its full support.

In Fig. 21 the pdf is shown for different transmission
probabilities A. Note the kink for A = 0.4. We are only able
to resolve this interesting point where the distribution seems
to be not differentiable by using the replica exchange Wang-
Landau algorithm here. Unsurprisingly, larger transmission
probabilities A lead to an increase of the probability to observe
larger values of M.

In Fig. 22 we show the rate function as measured for
different system sizes. Clearly, the rate functions all agree very
well. Basically, no finite-size effects are visible in contrast to
the case of P(C). This means one can use the rate function
to predict the pdf for any system size N. We verified that by
using the rate function calculated for N = 3200 to accurately
predict the pdf for N = 400 and N = 2400. Thus, it is not
necessary to perform any extrapolation of the rate function.
This means that for P(M) our numerical results also indicate
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FIG. 22. Empirical rate function ®(M ) for multiple system sizes
N and u = 0.14 and A = 0.1763.

that the large-deviation principle is fulfilled. Nevertheless, the
kink visible for A = 0.4 hints that in the pandemic phase for
larger values of A, the mathematical properties of the rate
function could pose some problems to an analytic treatment.

A. Correlations
1. Disparity heat maps

Again we study the disparity of outbreaks, now for pairs of
times series of outbreaks classified according their values of
M, respectively. In Fig. 23 the disparity V; for the time series of
the fraction of infected is shown, see Sec. VI A 1. Asin Fig. 11,
we again see the three regions, first for very small values 0 <
M < 0.035, the second for 0.035 < M < 0.08 and the third
for M > 0.08. Hence, in contrast to the case of the cumulative
fraction C of infections, two of the three regions are visible
on a much smaller range of values. For A = 0.1 the heat map
(not shown) looks quite similar, though the second region is
shifted toward even lower M. Note that for A = 0.4 we are
only able to ensure convergence of the distribution for N =
1600 and therefore are comparing different system sizes. Still,
the differences of the disparity plots between such rather large
system sizes are very small, as we observe in general during

1.0 018
0.16
0.8 014
0.12
0.6
0.10
~
=
0.08
0.4
0.06
0.2 0.04
0.02
0.0 0.00

0.0 0.2 0.4 0.6 0.8 1.0
M

FIG. 23. Disparity V; of the time series i(t) of the fraction of
infected individuals for pairs of time series binned with respect to
their total fraction C of infections for N = 3200, © = 0.14 and A =
0.1763.
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FIG. 24. Disparity V, of the time series c(t) of the fraction of
cumulative infections for pairs of time series binned with respect to
their total fraction C of infections for N = 3200, © = 0.14, and A =
0.1763.

our study. The heat map (not shown) also looks rather similar,
though the second region is shifted toward larger M.

Figure 24 shows the disparity when comparing the time
series of the cumulative infections. It looks quite similar to
Fig. 23. This is also in contrast to the case of classifying the
outbreaks according C, where the two disparity heat maps V;
and V., appeared more different. For A € {0.1, 0.4} the heat
maps V; and V. (not shown) also look alike.

2. Conditional density

Although we have already studied p(M|C), we show in
Fig. 25 the distribution po(C|M) of C conditioned to the value
of M. See Sec. VI A 2 for details. Note that the nonzero values
must be located above the diagonal, because for every out-
break C > M holds by definition.

In general, C and M still are monotonously related. But
one can see, there is a sharp increase of C right between
regions two and three, near M = 0.08. In this small interval,
outbreaks with relatively small and relatively large values of
C lead to the same observed maxima M. Thus, the change
from region two to three coincides with a strong change and

o (CIM)

1.00 ______
0.75 0.8
0.6

& 0.50

0.4

0.25 02
0.00 0.0

0 025 05 075 1
M

FIG. 25. Conditional density p(C|M), which shows the proba-
bility of C, i.e., the total fraction of infections, for any given M. The
system size is N = 3200, the recover probability u = 0.14, and the
transmission probability A = 0.1763
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FIG. 26. Conditional density py(Tmin|M ), which shows the prob-
ability of Tpi,, i.e., how many time steps it takes until the last
node is infected during an outbreak. The system size is N = 3200,
the recover probability i = 0.14, and the transmission probability
A =0.1763.

large fluctuations, similar to the behavior of physical phase
transitions. This difference shows that when biasing with re-
spect to M one analyses the behavior in a different way than
when biasing with respect to C as in the previous section. The
reason is that in fact there is an underlying joint distribution
P(C, M), but for sampling this one even down to the tails,
one would have to apply a kind of two-dimensional rare-event
sampling approach which is currently out of reach for the
present problem and the considered graph sizes.

The observed behavior is even more pronounced for A =
0.4 (not shown). Here this behavior also corresponds to the
position of the kink in the pdfs from Fig. 21. With respect
to our algorithmic approaches, we believe that these large
fluctuations are a reason why our initially applied standard
Wang-Landau approach did not converge and we had to use
the replica exchange algorithm.

However, for A = 0.1 we do not see such a jump and
strong fluctuations in the conditional density (plot not shown).
Thus, in the nonpandemic phase, the behavior seems to be
simpler, even when including the large-deviation behavior in
the analysis.

In Fig. 26 we show for A = A, the conditional distribution
Ps(Tmin|M) of the timescale t;, it takes until the outbreak
stops to grow, see Sec. VIA 2. Here we see a sharp peak at
the position M, where the jump occurred for Fig. 25. This

p (r381M)
0.5

0.4
0.3
0.2
0.1

-~
0 0.25 0.5 0.75 1
M

0.0

FIG. 27. Conditional density p;(z;0|M), which shows the prob-
ability of 79, i.e., the duration between reaching 10% and 90% of
the maximum of i(t), for any given value of M. The system size is
N = 3200, the recover probability © = 0.14, and the transmission

probability A = 0.1763.
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FIG. 28. Conditional density p(fw|M), which shows the prob-
ability of f, for any given M. The system size is N = 3200, the
recover probability u = 0.14, and the transmission probability A =
0.1763.

is consistent with the above observations, where region two
was also associated with the longest outbreak durations. Also,
reaching heavy outbreaks in terms of the fraction M of in-
fections occurring at the same time, does not at all coincide
with long-lasting outbreaks, since most of the figure exhibits a
negative correlation. For A = 0.4 the result (not shown) looks
quite similar, though the outbreak dies down quicker overall
and the peak is shifted a small bit to larger values of M. For
A = 0.1 the plot (not shown) looks quit similar as well, though
the peak is shifted slightly toward smaller values of M.

In Fig. 27 we show the conditional density pi(tfg|M ) for
the duration ;0 of the highest-activity outbreak phase, see
Sec.VIA2. We can also see a peak which corresponds to
region two. Beyond the peak, 119(()) is negatively correlated,
which appears meaningful, since the larger the peak of the
infections in the epidemic phase, the less time it takes for the
outbreak to evolve. For A = 0.4 the plot (not shown) looks
quite similar, though, as one would expect, the durations are
shorter over all. Also the peak is shifted toward larger M
again. For A = 0.1 the plot (not shown) looks almost identical
to the plot for A = 0.1763.

The conditional density p(fsw|M) can be found in Fig. 28.
In contrast to the case when conditioning to C, we see a
clear monotonous correlation here: the higher the maximum
M of the i(7) time series, the higher the average fraction of
infections which proceeded through long-range edges. This
makes intuitively sense: As we have seen in Figs. 27 and 26 a
higher peak of i(t), i.e., higher value of M, is correlated with
faster outbreaks. An infection via long-range edges should
accelerate global spread and thus the infection process, lead-
ing to larger values of M. The same is observed for A = 0.4
(not shown). For A = 0.1, however, we again see the anti
correlation we also observed when conditioning to C. Note
that we use the exact same graph for M and C for all three A
values.

VIII. SUMMARY AND OUTLOOK

We investigated outbreak dynamics for diseases described
by the standard SIR model. Our intention was to investi-
gate typical, extremely mild, and extremely severe outbreaks
in principle for arbitrary choices of the transmission proba-
bility A and recovery probability u. Here we considered a
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fixed value of u and three representative values of A in the
local-outbreak phase, in the pandemic phase, and near the
pandemic threshold A, respectively. To achieve this, we used
large-deviation algorithms, in particular a suitably adapted
Wang-Landau approach. We were able to numerically mea-
sure, by separate sets of large-scale simulations, the pdfs of
the fraction C of cumulative infected individuals and the peak
value M of the fraction of infected individuals over the whole
range of their support for multiple system sizes. This allowed
us to obtain results with probability densities as small as
10729 Fyrthermore, we were able to estimate the rate func-
tions for the distributions of these quantities, showing that the
results are compatible with the mathematical large-deviation
property. This means that the SIR process belongs to a mild
or standard class with respect to the large deviations, such that
mathematical tools like the Gértner-Ellis theorem might be
utilized to obtain analytical progress.

More specifically, we studied networks from the small-
world ensemble for various system sizes up to N = 6400
nodes. To gauge our simulation requirements and parameter-
space, we first performed simulation of standard SIR dy-
namics, i.e., without the large-deviation approach, to obtain
the critical transmission probability A. and investigated the
disease duration Afg, i.e., how long it takes until 90% of the
outbreaks were finished.

Beyond obtaining the pdfs, by comparing the time series
that are characteristic for different regions of the pdfs, we
were able to see three distinct types of outbreaks: Very mild
outbreaks (first region) as well as very severe pandemic out-
breaks (third region), with respect to C or M or both, which
also evolve very quickly. However, outbreaks in the second
region, for intermediate values of C and M, behave somehow
chaotic, and here we observe the largest times until they die
down.

In this study, we have investigated the most simple case
for the SIR model, with the intention to provide a case study
proving the feasibility of using large-deviation techniques for
epidemic simulations. Clearly, the approach is not limited to

the standard case. In the future we plan, e.g., to investigate
the effect of disease preventing measures, like lock downs
or government orders to wear masks. This can be achieved
technically by changing the transmission probability dynami-
cally during an outbreak simulation. The time of change can
be static or depend on the outbreak dynamics. Any change of
the outbreak behavior will be visible in the measured pdfs, not
only in the typical part, but also in the tails, the structure of the
different outbreak dynamics and the measured correlations. In
a similar way, the effect of vaccinations can in principle easily
be measured.

Clearly, the large-deviation approach is also feasible for
extensions of the SIR model, e.g., when other states are in-
troduced, like infected but not infectious or in quarantine, or
for spatial models, where the mobility plays a role. Within a
longer perspective, this approach can also be used to study
the rare jump of, e.g., a virus between populations. This can
be achieved by studying two networks simultaneously, i.e., a
multilevel network. One network represents an animal popu-
lation, while the second one represents a human population.
Usually the probability of an animal infecting a human is
substantially smaller than the probability for human-human
and animal-animal infections. Thus, such a transfer leading
to a pandemic is a rare event for each single disease. Hence,
this case is ideally suited to be target by a large-deviation
approach.
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