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Exchangeability is a desired statistical property of network ensembles requiring their invariance upon relabel-
ing of the nodes. However, combining sparsity of network ensembles with exchangeability is challenging. Here
we propose a statistical physics framework and a Metropolis-Hastings algorithm defining exchangeable sparse
network ensembles. The model generates networks with heterogeneous degree distributions by enforcing only
global constraints while existing (nonexchangeable) exponential random graphs enforce an extensive number
of local constraints. This very general theoretical framework to describe exchangeable networks is here first
formulated for uncorrelated simple networks and then it is extended to treat simple networks with degree
correlations, directed networks, bipartite networks, and generalized network structures including multiplex
networks and simplicial complexes. In particular here we formulate and treat both uncorrelated and correlated
exchangeable ensembles of simplicial complexes using statistical mechanics approaches.
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I. INTRODUCTION

Networks constitute the architecture of the vast majority
of complex systems ranging from the brain to finance [1,2].
Maximum entropy network ensembles [3–18] and in general
information theory and modeling frameworks [19–22] are key
to analyze such realistic networks, and can be used for a
wide variety of applications. Due to the deep relation between
information theory and statistical mechanics [23], maximum
entropy network ensembles can to a large extent be treated
as traditional statistical mechanics ensembles. Indeed recently
it was shown in Ref. [7] that network ensembles can be
distinguished between canonical and microcanonical network
ensembles enforcing respectively soft and hard constraints.
For instance, Erdős-Rényi networks of N nodes can enforce
either a given total number of links, L [giving rise to the
G(N, L) ensemble] or a given expected number of links [giv-
ing rise to the G(N, p) ensemble where p is the probability that
any two links are connected]. Erdős-Rényi random networks
are certainly important; however, in many applications it is ob-
served that nodes have heterogeneous degree distribution [24],
typically deviating from the Poisson degree distribution of
Erdős-Rényi networks in the sparse network regime. In order
to treat network ensembles with heterogeneous degree dis-
tribution, exponential random graphs [3,4,25] are considered
instead. Exponential random graphs are canonical network
ensembles enforcing a given expected degree sequence. While
the Erdős-Rényi ensembles impose a single global constraint
such as the expected total number of links, exponential ran-
dom graphs enforce an extensive number of local constraints
each given by the expected degree of a single node of the
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network. This feature of exponential random graphs makes
these ensembles significantly different from the Erdős-Rényi
ensembles. The first main difference is that these ensembles
are not any more equivalent to their conjugated microcanon-
ical network ensemble [26] (the configuration model), which
enforces a given degree sequence of the network. The second
main difference is that these ensembles are not any more ex-
changeable. Exchangeability is a notion originally introduced
by de Finetti [27] whose theorem states that a sequence of
random variables X1, X2, . . . is exchangeable if and only if
there exists a random probability measure � such that the Xi

are conditionally identically independent variables given �.
This notion has been then extended to 2-arrays (i.e., networks)
for which the Aldous-Hoover theorem applies [28–31].

Exchangeability is a desired statistical property of network
ensembles that ensures invariance of the model upon rela-
beling of the nodes. In network sampling, when the labels
of the nodes depend on the sampling order, exchangeability
ensures that the marginal probability of a link is unchanged
if nodes are sampled in a different order. Together with pro-
jectivity, implying that the marginal probability of a link does
not change if the network size increases, or if a part of the
network is hidden, exchangeability is a fundamental property
of network models that allows their reliable use for sampling
and for preserving privacy when processing real network data
[32–34]. In the dense network regime, graphons [30,35] have
been shown to be exchangeable and projective and are known
to allow a well-defined infinite graph limit [28,29]. Graphons
are dense in the sense that they have a number of links of
the same order of the number of nodes to the power 2, i.e.,
L = O(N2). However, this regime is seldom encountered in
real networks. The mathematics literature has recently pro-
posed several approaches to face the challenge of modeling
exchangeable networks with a number of links that scales like
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L = O(N1+α̂ ) with 0 < α̂ < 1 [31,36–38] and to define ways
to define the infinite network limit [37] for such models. All
these approaches are based on point processes on R2

+.
In this paper we propose a statistical physics approach

to model sparse exchangeable network ensembles of a given
number of nodes, N , and a number of links that scales as
L = O(N ). Therefore, these network ensembles cover the
scaling regime L = O(N ) which is important for the vast
majority of applications. The exchangeable network ensem-
bles are Hamiltonian and are not based on point processes.
These ensembles generate networks with given heterogeneous
degree distribution p(k) imposing only two global constraints:
the energy (expressing the value of a global exchangeable
Hamiltonian of the network ensemble) and the total number of
links. The proposed exchangeable sparse network ensembles
have the property that each link of the network has the same
marginal probability, still the network display and hetero-
geneous degree distribution. Moreover, the probability that
two nodes are connected, when conditioned on their degrees,
reduces to the probability of the exponential random graph
in the uncorrelated limit. Note that the model is not projec-
tive and in particular the marginal distribution of a link is
actually dependent on the network size. Therefore, we do not
consider the network generated in the limit N → ∞; instead
we take an equilibrium statistical mechanics approach and
we consider N finite but large. Indeed our result does not
contradict the Aldous-Hoover theorem [28–31] that states that
infinitely exchangeable sparse networks are empty. In fact
for our model in the limit N → ∞ the marginal probability
of any link goes to zero. Although this can be considered a
shortcoming with respect to graphons, this does not limit the
applicability of the model. Indeed many widely used network
models are not projective, and have a vanishing marginal in
the limit N → ∞, including the Erdős-Rényi networks and
the exponential random graphs. Here the sparse exchangeable
ensemble of simple networks is simulated with a constructive
Metropolis algorithm and is extended to network models with
degree correlations, to directed, to bipartite networks and to
generalized network structures such as multiplex networks
[8,39,40] and simplicial complexes [41–46].

II. FUNDAMENTAL PROPERTIES OF EXCHANGEABLE
NETWORK ENSEMBLES

A network ensemble is exchangeable if the probability
P(G) of a network G = (V, E ) is independent of the node
labels, i.e.,

P(G) = P(G̃), (1)

for any labeled network G̃ obtained from the network G by
permuting the node labels; in particular this includes all la-
beled networks G̃ isomorphic to G.

Assuming that each labeled network G is uniquely deter-
mined by the adjacency matrix a, and that the ensemble is
determined by the probability P(G) = P(a), we define the
marginal probability of a link (i, j) as

pi j =
∑

a

ai jP(a). (2)

From the definition of an exchangeable network ensemble
it follows that in an exchangeable network ensemble the
marginal probability pi j of a link between node i and node j
must be invariant under any permutation σ of the node labels,
i.e.,

pi j = pσ (i),σ ( j). (3)

Note, however, that this is a necessary condition for exchange-
able network ensembles and not a sufficient condition. Indeed
knowing the marginal probabilities of the link of a network
might not be enough to determine general network ensem-
bles for which P(G) does not factorize into independent link
probabilities (see, for instance, the two-star or the Strauss
model [2]). In an exponential random graph ensemble with
given expected degree sequence k = {k1, k2, . . . , kN } with
ki � K � KS = √〈k〉N the marginal distribution pi j takes the
well-celebrated expression

pi j = kik j

〈k〉N , (4)

where 〈k〉N =∑N
i=1 ki = 2L is twice the expected total num-

ber of links of the network. This network ensemble is not
exchangeable, unless the expected degree of each node is the
same. Indeed the marginal probability pi j is not invariant upon
permutation of the node labels if the expected degree distribu-
tion is heterogeneous. Only in the case in which the expected
degree of each node is the same, ki = 〈k〉, do we recover
the exchangeable expression of the marginal probability of a
sparse Poisson-Erdős-Rényi network pi j = 〈k〉/N . Note that
both the Erdős-Rényi network and the exponential random
graph are not projective. This is an immediate consequence
of the fact that the marginal probability pi j of the link (i, j)
depends on the network size N . Therefore, upon addition of
new nodes, leading to an increase of N , the marginal proba-
bility between two previously existent nodes changes.

In the following section we will propose an exchange-
able sparse network ensemble that imposes a heterogeneous
expected degree distribution p(k) enforcing only two global
constraints: the energy of the ensemble and the total number
of links. In this ensemble the marginal probability of a link
between node i and node j is given by the exchangeable
expression

pi j =
∑
k,k′

p(k)p(k′)
kk′

〈k〉N = 〈k〉
N

. (5)

In other words, the marginal probability of any link is the
same for every link, but when it is conditioned to the degree
of the two linked nodes it is given by the uncorrelated network
expression

pi j|ki=k,k j=k′ = p(k, k′) = kk′

〈k〉N . (6)

Therefore, this ensemble has the same marginal of the Erdős-
Rényi network but it can generate uncorrelated networks with
heterogeneous degree distribution p(k).

Note that as N → ∞ the marginal probability given by
Eq. (5) vanishes. This implies that our exchangeable sparse
network ensemble does not contradict the Aldous-Hoover the-
orem, according to which any sparse infinite exchangeable
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network should vanish. However, our approach provides finite
exchangeable network models with given degree distribution
for any large but finite value of N .

As we will see in subsequent sections this network ensem-
ble can be extended to sparse simple networks with degree
correlations, to directed, bipartite networks, and to gener-
alized network structures. In all these cases the marginal
probability of an interaction is the same for any possible
interaction of the network, yet the exchangeable ensembles
can give rise to networks with very heterogeneous topology.

III. EXCHANGEABLE SPARSE SIMPLE
NETWORK ENSEMBLES

In this section our goal is to construct ensembles of sparse
simple networks of N nodes with degree distribution p(k).
Here by sparse we imply that these networks display a min-
imum degree m̂ and a maximum degree (cutoff) K much
smaller than the structural cutoff KS , i.e., ki � K � KS =√〈k〉N for all i ∈ {1, 2, 3, . . . , N} with 〈k〉 indicating the
expected value over the p(k) distribution, 〈k〉 =∑k kp(k).
We assume that the nodes of the network can change their
degree and we assign to each possible degree sequence k =
{k1, k2, . . . , kN } of the network the probability

P(k) =
N∏

i=1

[p(ki )θ (K − ki )θ (ki − m̂)], (7)

where θ (x) indicates the Heaviside function with θ (x) = 1 for
x � 0 and θ (x) = 0 otherwise. Therefore, the probability of
a degree sequence results from the product of the probability
that each node has the observed degree. For keeping the model
general we assume that the minimum degree of the network
must be equal to or greater than m̂. For instance, if we want
to impose a power-law degree distribution p(k) = ck−γ this
allows us to impose a minimum degree m̂ � 1 and to exclude
isolated nodes for which p(k) is not defined. However, also
m̂ = 0 is allowed as long as p(k) is well defined for 0 � k �
K. In order to build an exchangeable network ensemble we
need to define a probability P(G) for any possible network
G = (V, E ) in the ensemble described by the adjacency matrix
a. In order to ensure sparsity we impose that the total number
of links, L, is fixed and given by L = 〈k〉N/2 and we impose
that the probability of getting a degree sequence k is P(k). To
this end we assume that the probability of a network given its
degree distribution, is uniform. Since the number of networks
N, with given degree sequence k can be expressed in terms
of the entropy �(k) of networks with degree sequence k as
[7] N = exp[�(k)], the probability of each single network G
displaying a degree sequence k is therefore taken to be

P(G) = P(k)e−�(k)δ

(
L,
∑
i< j

ai j

)
, (8)

where δ(x, y) indicates the Kronecker delta. For sparse
networks the entropy �(k) of networks with given degree
sequence with ki � KS obeys the Bender-Canfield formula
[7,26,47,48]

�(k) = ln

(
(2L)!!∏N

i=1 ki!

)
+ o(N ), (9)

where in Eqs. (8) and (9) we indicate with k =
{k1, k2, . . . , kN } the degree sequence with ki, the degree
of node i, given by ki =∑N

j=1 ai j . Note that the sparse
exchangeable network ensemble greatly differs from the net-
work ensemble with given expected degree sequence because
in the exchangeable ensemble the constraints are global and
not local. Indeed the expression for P(G) can be also given by

P(G) = e−H (G)δ

(
L,
∑
i< j

ai j

)
θ
(

K − max
i=1,...,N

ki

)

× θ
(

min
i=1,...,N

ki − m̂
)
, (10)

with Hamiltonian H (G) given by

H (G) = −
N∑

i=1

ln p(ki ) + �(k). (11)

Using Eq. (9) for �(k) we can derive the explicit expression
for H (G):

H (G) = −
N∑

i=1

ln[p(ki )ki!] + ln ((2L)!!). (12)

The Hamiltonian H (G) is clearly a global variable that
depends on all the nodes of the network where each node
is treated on equal footing. Therefore, the expression of
the Hamiltonian is clearly exchangeable as it is invariant
upon a permutation of the node labels. In order to show that
the marginal distribution is given by Eq. (5) we solve the
model using the saddle-point method applied to a free energy
expressed in terms of a functional order parameter. In order to
perform this calculation, let us write the probability P(G) as

P(G) = 1

(2L)!!

∑
k

′ N∏
i=1

[
ki!p(ki )δ

(
ki,

N∑
j=1

ai j

)]

× δ

(∑
i, j

ai j, L

)
, (13)

where
∑′

k indicates the sum over all possible degree
sequences with a maximum degree equal to or smaller than K
and a minimum degree greater than or equal to m̂. Expressing
the Kronecker deltas in Eq. (13) with their integral form

δ(x, y) = 1

2π

∫ π

−π

dωeiω(x−y), (14)

the partition function Z = Z (h) can be expressed as

Z =
∑

a

P(G)e−h
∑

i< j ai j

= 1

(2L)!!

∑
a

∑
k

′ ∫
Dω

∫
dλ

2π
eG(λ,ω,k,h), (15)

with

G(λ,ω, k, h) =
N∑

i=1

[iωiki + ln(ki!p(ki ))] + iλL

+ 1

2

∑
i, j

ln(1 + e−iλ−iωi−iω j−h), (16)
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and Dω =∏N
i=1[dωi/(2π )]. Let us now introduce the

functional order parameter indicating the density of nodes
with degree ki = k and with ωi = ω [43,48,49],

c(ω, k) = 1

N

N∑
i=1

δ(ω − ωi )δ(k, ki ). (17)

By calculating the partition function Z in the sparse regime
(i.e., K � KS) with the saddle-point method (see Appendix A)
we can derive for the functional order parameter c(ω, k) when
h → 0 the expression

c(ω, k) = 1

2π
p(k)k!eiωk+e−iω

. (18)

This implies that the density of nodes of degree k is given by∫
dωc(ω, k) = p(k). (19)

Therefore, the degree of each node is fluctuating, but in
the large network limit the degree distribution is given by
p(k) as desired. We are now in the position to evaluate the
marginal probability pi j of a link between node i and node j.
A straightforward calculation (see Appendix A) leads to the
expression of the marginal probability pi j = 〈ai j〉 in terms of
the functional order parameter c(ω, k) leading to

pi j = 1

〈k〉N
∑

m̂�k�K,m̂�k′�K

∫ π

−π

dω

2π

∫ π

−π

dω′

2π
c(ω, k)

× c(ω′, k′)e−iω−iω′
.

From this expression, using Eq. (18) it follows immediately
the expression for the marginal given by Eq. (5) leading to
pi j = 〈k〉/N also if the marginal probability conditioned on
the node degree (see Appendix A for a detailed derivation)
is given by Eq. (6). Therefore, the marginal probability
pi j = 〈k〉/N is the same for every node of the network and it
is equal to the marginal probability in a Poisson-Erdős-Rényi
network, but the degree distribution is p(k); i.e., it can
significantly differ from a Poisson distribution.

IV. METROPOLIS-HASTINGS ALGORITHM

The exchangeable ensemble of sparse networks can be
obtained by implementing a simple Metropolis-Hastings algo-
rithm using the network Hamiltonian given by Eq. (12). The
Metropolis-Hastings algorithm for the exchangeable sparse
networks is outlined below.

(1) Start with a network of N nodes having exactly L =
〈k〉N/2 links and in which the minimum degree is greater than
or equal to m̂ and the maximum degree is smaller than or equal
to K .

(2) Iterate the following steps until equilibration:
(i) Choose randomly a random link � = (i, j) between

node i and j and choose a pair of random nodes (i′, j′)
not connected by a link. By indicating with a the (symmet-
ric) adjacency matrix of the network we have ai j = 1 and
ai′ j′ = 0.

1 2 4 6 8 10
k

10-3

10-2

10-1

100

p
(k

)

0 5 10 15 20
k

10-4

10-2

100

p
(k

)

(b)

(a)

FIG. 1. Degree distributions of the exchangeable uncorrelated
network ensembles generated by the Metropolis-Hastings algorithm.
(a) The case of exponential degree distributions p(k) = ce−k/k0 with
k0 = 2 (green squares), k0 = 4 (cyan circles), and k0 = 6 (purple
diamonds) (b) The case of power-law degree distributions with
p(k) = ck−γ and γ = 2.4 (green squares), γ = 3.0 (cyan circles),
and γ = 3.5 (purple diamonds). The dashed lines indicate the theo-
retical expectation. In all simulations the networks have N = 2000
nodes.

(ii) Draw a random number r from a uniform distribu-
tion in [0,1], i.e., r ∼ U (0, 1). Calculate the Hamiltonian
Hint = H (a) for the network with adjacency matrix a of
the network and calculate the Hamiltonian Hfin = H (a′) for
the adjacency matrix a′ in which the link between nodes
(i, j) is removed and the link between the nodes (i′, j′) is
inserted instead. If r < max(1, e−
H ) where 
H = Hfin −
Hint and if the move does not violate the conditions on the
minimum and maximum degree of the network, remove
the link (i, j) and insert the link (i′, j′); i.e., update the
following four elements of the adjacency matrix according
to the rules: ai j → 1 − ai j and a ji → 1 − a ji and ai′ j′ →
1 − ai′ j′ and a j′i′ → 1 − a j′i′ .
This algorithm can be used to generate exchangeable net-

work ensembles with different degree distributions such as
exponential distribution or power-law degree distribution (see
Fig. 1).

This approach can be directly extended to treat sparse
networks with given degree correlations, directed networks,
bipartite networks, and also generalized network structures
such as multiplex networks and simplicial complexes as we
will describe in the following sections.

V. EXCHANGEABLE NETWORK ENSEMBLES
WITH DEGREE CORRELATIONS

Degree correlations are an important characteristic of net-
works and have attracted large interest [50–53] because they
encode additional network information not captured by the
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degree distribution. In particular in the literature different
works have been proposed to model labeled networks with
given degree correlations [12,48,54,55].

Here our aim is to construct a sparse exchangeable network
ensemble of N nodes in which each node has degree k with
probability p(k) and every link between a node of degree k
and a node of degree k′ contributes to the probability of the
network G by a factor Q(k, k′) where Q(k, k′) = Q(k, k′) with
Q(k, k′) independent of N . As we will see in the following, by
changing the kernel function Q(k, k′) it is possible to select the
nature of the degree correlations modulating the probability
p(k, k′) of observing a link between a node of degree k and
a node of degree k′. In order to define the exchangeable en-
semble of correlated networks, we follow a derivation similar
to the one considered in the previous section and we assign to
each network G a probability P(G) given by

P(G) =
∏
i< j

[Q(ki, k j )]
ai j

N∏
i=1

p(ki )e
−�(k)δ

(
L,
∑
i< j

ai j

)

× θ
(

K − max
i=1,...,N

ki

)
θ
(

m̂ − min
i=1,...,N

ki

)
, (20)

where �(k) is the entropy of the ensemble of correlated net-
works with degree sequence k. The entropy �(k) has been
calculated in Refs. [48,56] and can be expressed as

�(k) = ln

(
(2L)!!

N∏
i=1

[γ (ki )]ki

ki!

)
+ o(N ), (21)

where γ (k) is a function that satisfies

γ (k) = 1

〈k〉
∑

k′
Q(k, k′)p(k′)

k′

γ (k′)
. (22)

The probability P(G) can be also written in Hamiltonian form
as

P(G) = e−H (G)δ

(
L,
∑
i< j

ai j

)
θ
(

K − max
i=1,...,N

ki

)

× θ
(

m̂ − min
i=1,...,N

ki

)
,

where the (exchangeable) Hamiltonian H (G) is given by

H (G) = −
∑
i< j

ai j ln Q(ki, k j ) −
N∑

i=1

ln p(ki ) + �(k), (23)

and �(k) is given by Eq. (21). By studying this correlated
network ensemble with statistical mechanics methods similar
to the ones we have used in the case of the exchangeable
uncorrelated network ensemble investigated earlier, we can
show (see Appendix B for details) that the degree distribution

is p(k) and that the marginal probability of each link can be
written as

pi j =
∑

m̂�k�K,m̂�k′�K

p(k)p(k′)p(k, k′) = 〈k〉
N

, (24)

with p(k, k′) indicating the probability of a link between a
node of degree k and a node of degree k′, with

pi j|ki=k,k j=k′ = p(k, k′) = 1

〈k〉N Q(k, k′)
kk′

γ (k)γ (k′)
. (25)

Note that for Q(k, k′) = 1 it follows immediately from
Eq. (22) that γ (k) = 1 and we recover the uncorrelated net-
work ensemble. Equations (24) and (25) clearly reveal the
exchangeable nature of this ensemble as the marginal prob-
ability of a link is independent of the node labels. However,
the ensemble retains the ability to model sparse networks with
arbitrary degree distribution and degree correlations.

VI. EXCHANGEABLE SPARSE DIRECTED
NETWORK ENSEMBLES

It is well known that a number of real networks including
prey-predator interactions in ecology, financial contracts be-
tween banks, the World Wide Web, or directed online social
networks like Twitter are actually directed. In directed net-
works a link (i, j) indicating a directed interaction from node
i to node j is distinguished from the link ( j, i). For instance,
the existence of a prey-predator interaction between a species i
(prey) and a species j (predator) is not typically reciprocated.
The main difference between simple and directed networks
is that in directed networks the adjacency matrix is not sym-
metric and for each node we can distinguish between the
in-degree and the out-degree. Assuming that ai j = 1 indicates
the presence of a directed link from node i to node j, the
in-degree and the out-degree of node i can be expressed as

kin
i =

N∑
j=1

a ji, kout
i =

N∑
j=1

ai j . (26)

Several previous work have modeled labeled directed network
ensembles using statistical mechanics approaches [3,57–60].
Here we define the exchangeable uncorrelated ensemble of
directed networks with joint degree distribution pd (kin, kout )
indicating the probability that a generic node i has degree
kin

i = kin and kout
i = kout. This distribution is arbitrary, but

needs to satisfy 〈kin〉 = 〈kout〉. In order to guarantee spar-
sity, we assume that the in-degree and the out-degree have
a maximum value equal to or smaller than K with K � Ks =√

〈kin〉N and that they have a minimum value equal to or larger
than m̂. The exchangeable uncorrelated ensemble of directed
networks assigns to each directed network G the probability
P(G) given by

P(G) =
N∏

i=1

pd
(
kin

i , kout
i

)
e−�(kin,kout )δ

(
L,
∑
i, j

ai j

)
θ
(

K − max
i=1,...,N

kin
i

)
θ
(

K − max
i=1,...,N

kout
i

)
θ
(

min
i=1,...,N

kin
i − m̂

)
θ
(

min
i=1,...,N

kout
i − m̂

)
,

where the entropy �(kin, kout ) is given by

�(k) = ln

[
L!∏N

i=1

[
kin

i !kout
i !
]
]

+ o(N ). (27)
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The probability P(G) admits a Hamiltonian expression as

P(G) = e−H (G)δ

(
L,
∑
i, j

ai j

)
θ
(

K − max
i=1,...,N

kin
i

)
θ
(

K − max
i=1,...,N

kout
i

)
θ
(

min
i=1,...,N

kin
i − m̂

)
θ
(

min
i=1,...,N

kout
i − m̂

)
, (28)

where the Hamiltonian H (G) of this ensemble is given by

H (G) = −
N∑

i=1

ln
(
pd
(
kin

i , kout
i

)
kin

i !kout
i !
)+ ln(L!). (29)

The statistical mechanics treatment of this model (see
Appendix C) shows that the density of nodes with in-degree
kin and out-degree kout is given by the desired joint distribution
pd (kin, kout ) although the marginal probability of each node is
equal for each node and given by

pi j =
∑

kin,kout

pin(kin)pout (k
out )

kinkout

〈kin〉N , (30)

where

pin(kin) =
∑
kout

pd (kin, kout ),

pout (k
out ) =

∑
kin

pd (kin, kout ). (31)

Note that although the marginal probability is the same for
each node the marginal probability of a directed link condi-
tioned on the in-degree and the out-degree of its two end nodes
is not; i.e.,

pi j|kout
i =kout,kin

j =kin = p(kin, kout ) = kinkout

〈kin〉N . (32)

VII. EXCHANGEABLE BIPARTITE
NETWORK ENSEMBLES

Bipartite networks are another notable class of networks
formed by two sets of nodes and interactions only existing
between nodes of one class and nodes of the other class.
Examples of bipartite networks are mutualistic networks in
ecology [61], social networks between individuals, and taste
or opinions, and in general can be used to partition a given
set of nodes in different groups [62]. Interestingly bipartite
networks are also called factor graphs and are widely used as
the architecture supporting graphical models [49,63].

In this section we consider exchangeable ensembles of
bipartite networks formed by two sets of nodes V and U with
|V | = N and |U | = M with the condition

M = αN, (33)

with α > 0 being a constant independent of N . We indicate
with i the nodes belonging to the set V and with μ the nodes
belonging to the set U . The structure of the bipartite network
is determined by the N × M incidence matrix biμ = 1 if there
is a link between node i and node μ; otherwise, biμ = 0. The
degree of the nodes in V and in U is determined from the

incidence matrix b according to the following equations:

ki =
M∑

μ=1

biμ, qμ =
N∑

i=1

biμ. (34)

Here we formulate the exchangeable sparse bipartite network
ensemble designed in order to obtain bipartite networks in
which the nodes in V have degree distribution p(k) and the
nodes in U have degree distribution p̂(q). These distributions
can be arbitrary but must obey N〈k〉 = M〈q〉 which implies
〈k〉 = α〈q〉. Moreover, these ensembles have fixed number of
links L = 〈k〉N and the degree k (q) of the nodes in V (U )
has a maximum smaller than or equal to K � Ks = √〈k〉N
(K̂ � KS = √〈k〉N) and minimum degree greater or smaller
than m̃ (m̂). The probability P(G) for each bipartite network
G is taken to be

P(G) =
N∏

i=1

p(ki )
M∏

μ=1

p̂(qμ)e−�(k,q)δ

(
L,
∑
i,μ

biμ

)

× θ
(

K − max
i=1,...,N

ki

)

× θ

(
K̂ − max

μ=1,...,M
qμ

)
θ
(

min
i=1,...,N

ki − m̃
)

× θ

(
min

μ=1,...,M
qμ − m̂

)
.

The entropy of this ensemble is given by

�(k, q) = ln

[
L!∏N

i=1 ki!
∏M

μ=1 qμ!

]
+ o(N ). (35)

This ensemble is Hamiltonian as P(G) can be expressed as

P(G) = e−H (G)δ

(
L,
∑
i,μ

biμ

)
θ
(

K − max
i=1,...,N

ki

)

× θ

(
K̂ − max

μ=1,...,M
qμ

)
θ
(

min
i=1,...,N

ki − m̃
)

× θ

(
min

μ=1,...,M
qμ − m̂

)

with the Hamiltonian H (G) given by

H (G) = −
N∑

i=1

ln (p(ki )ki!) −
M∑

μ=1

ln ( p̂(qμ)qμ!) + ln(L!).

(36)

This ensemble produces a network model that can be treated
using statistical mechanics methods (see Appendix D) which
clearly show that the nodes in V have degree distribution p(k)
and the nodes in U have degree distribution p̂(q). Both p(k)
and p̂(q) can be heterogeneous even if the marginal of every
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link is the same for every link and given by

piμ =
∑
k,q

p(k) p̂(q)
kq

〈k〉N . (37)

Note that the marginal probability piμ|ki=k,qμ=q = p(k, q) of a
link (i, μ) conditioned on the degrees ki = k and qμ = q in
this ensemble is given by

piμ|ki=k,qμ=q = p(k, q) = kq

〈k〉N . (38)

VIII. EXCHANGEABLE SPARSE MULTIPLEX NETWORKS

A large variety of complex systems including biological,
social networks, and infrastructures are better described by
multiplex networks [39,40,64] which are formed by a set
of nodes connected by two or more networks indicating in-
teractions of different nature and connotation. The different
networks forming the multiplex networks are also called the
layers of the multiplex network. Different works have investi-
gated ensembles of labeled multiplex networks with different
types of correlations between the layers, with weights of the
links and with nontrivial spatial embedding [8,65,66].

Here our goal is to propose and investigate the proper-
ties of exchangeable sparse multiplex networks. To this end
we can consider a multiplex network �G = (G1, G2, . . . , GM )
formed by M layers α ∈ {1, 2, . . . , M} each determined by
an adjacency matrix a[α] [39]. To keep the discussion sim-
ple we will assume that each adjacency matrix is undirected
and unweighted. The degree k[α]

i of each node i in layer
α ∈ {1, 2, . . . , M} is determined by the equation

k[α]
i =

N∑
j=1

a[α]
i j . (39)

An important feature of multiplex networks are multilinks
�m = (m[1], m[2], . . . , m[M] ) (with m[α] ∈ {0, 1}) [8] indicat-
ing the pattern of connection between any two nodes. For
instance, in a duplex network (M = 2) with two layers in-
dicating mobile phone and email interaction the two nodes
are connected by a multilink (1,0) if they only communicate
via mobile phone, they are connected by a multilink (0,1)
if they only communicate via email, and they are connected
by a multilink (1,1) if they communicate both via mobile
phone and email. In order to indicate if two nodes i and j
are connected by a multilink �m we can use the multiadjacency
matrices A �m [8,39] whose element A �m

i j indicates whether node
i and node j are connected by a multilink of type �m (A �m

i j = 1)
or not (A �m

i j = 0). The matrix elements of the multiadjacency
matrices are given by

A �m
i j =

M∏
α=1

[
a[α]

i j m[α] + (1 − a[α]
i j

)
(1 − m[α] )

]
. (40)

Since any two nodes can be connected only by a single multi-
link we have ∑

�m
A �m

i j = 1. (41)

Having defined the multiadjacency matrices, it is possible to
introduce the definition of the multidegree k �m

i as the sum of
multilinks �m incident to the node i [8], i.e.,

k �m
i =

N∑
j=1

A �m
i j . (42)

Using the approach described in this work we can either define
exchangeable sparse multiplex networks in which each layer
is independent of the other and has a given degree distribution
(eventually dependent on the choice of the layer) or we can
define exchangeable sparse multiplex networks in which the
multidegree distribution is kept fixed.

The first case can be modeled by drawing each layer of the
multiplex network independently from an exchangeable en-
semble of uncorrelated simple networks. Given the simplicity
of the approach here we neglect to treat this case in detail. The
latter case can be modeled by an exchangeable multiplex net-
work ensemble in which each node has a series of nontrivial
multidegrees k �m

i with �m �= �0 [e.g., k �m
i = (k(1,0)

i , k(0,1)
i , k(1,1)

i )
in the case of M = 2 layers] with multidegree distribution
π̃ (k �m

i ). Moreover, we impose that in the network there are
exactly L �m = 〈k �m〉N/2 multilinks of type �m �= �0 and that the
multiplex is sparse; i.e., the multidegree k �m

i has a minimum
value greater than or equal to m̂ and a maximum value smaller
than or equal to K �m with K �m � K �m

S =
√

〈k �m〉N . Therefore,
the ensemble is defined by associating to each multiplex net-
work of M layers �G = (G1, G2, . . . , GM ) the probability

P( �G) = P({k �m})e−�({k �m}) ∏
�m �=�0

[
δ

(
L �m,

∑
i< j

A �m
i j

)

× θ
(

K �m − max
i=1,...,N

k �m
i

)
θ
(

min
i=1,...,N

k �m
i − m̂

)]
, (43)

where {k �m} indicates the sequence of all the nontrivial multi-
degrees �m �= �0 of every node i of the multiplex network, and
where the entropy �({k �m}) is given by [8]

�({k �m}) = ln

⎛
⎝∏

�m �=�0

(2L �m)!!∏N
i=1 k �m

i !

⎞
⎠+ o(N ). (44)

Here P({k �m}) is given by the product of the probability that
each node has multidegrees k �m

i :

P({k �m}) =
N∏

i=1

π̃
(
k �m

i

)
. (45)

This exchangeable multiplex network ensemble is Hamilto-
nian as the probability P( �G) can be written as

P( �G) = e−H (G)
∏
�m �=�0

[
δ

(
L �m,

∑
i< j

A �m
i j

)
θ
(

K �m − max
i=1,...,N

k �m
i

)

× θ
(

min
i=1,...,N

k �m
i − m̂

)]
, (46)
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with Hamiltonian H (G) given by

H (G) = −
N∑

i=1

ln
(
π̃
(
k �m

i

))−
N∑

i=1

∑
�m �=�0

k �m
i ! +

∑
�m �=�0

ln((2L �m)!).

Using a statistical mechanics treatment of this ensemble (see
Appendix E) it can be shown that the marginal probability p �m

i j

of observing a multilink �m �= �0 between node i and node j is
given by

p �m
i j = 〈A �m

i j

〉 = ∑
k �m,k′, �m

π̃ (k �m)π̃ �m(k′, �m)p(k �m, k′, �m ), (47)

where the marginal probability p(k �m, k′, �m ) of observing a mul-
tilink �m �= �0 between node i of multidegree k �m

i = k �m and node
j of multidegree k �m

j = k′, �m is given by

pi j|k �m
i =k �m,k �m

j =k′, �m = p(k �m, k′, �m ) = k �m(k′, �m)

〈k �m〉N . (48)

IX. EXCHANGEABLE ENSEMBLE OF SPARSE
SIMPLICIAL COMPLEXES

In recent years there has been a surge of interest in higher-
order networks [41,42,45], including simplicial complexes
and hypergraphs. Higher-order networks are able to capture
the higher-order interactions present in a variety of com-
plex systems including brain networks, social networks, and
protein-interaction networks. Few works have proposed net-
work ensembles for labeled simplicial complexes [43,67].
In this section we will propose and study exchangeable
ensembles of sparse uncorrelated and correlated simplicial
complexes.

A. Uncorrelated exchangeable ensembles
of simplicial complexes

A d-dimensional simplex α is a set of d + 1 nodes α =
[i0, i1, . . . , id ] and indicates the higher-order interaction ex-
isting between these nodes. A pure d-dimensional simplicial
complex K is formed by a set of d-dimensional simplices and
by all the lower-dimensional simplices formed by any proper
subsets of the nodes of these d-dimensional simplices.

A pure d-dimensional simplicial complex K has a structure
that is fully determined by the adjacency tensor a of elements
aα = 1 if the d-dimensional simplex α = [i0, i1, . . . , id ] be-
longs to the simplicial complex, and with aα = 0 otherwise.
The generalized degree ki of the generic node i [43,68] in-
dicates the number of d-dimensional simplices incident to the
node i and it can be expressed in terms of the adjacency tensor
as

ki =
∑
α⊃i

aα =
∑

i1<i2<···<id

ai0i1i2··· id . (49)

The ensemble of labeled pure d-dimensional simplicial
complexes with given generalized degree sequence k =
(k1, k2, . . . , kN } was studied in Ref. [43]. Here we consider
the exchangeable ensemble of uncorrelated d-dimensional
simplicial complexes. We indicate with P(k) the probability

assigned to observing a generalized degree sequence k, with

P(k) =
N∏

i=1

[p(ki )θ (Ks − ki )θ (m̂ − ki )]. (50)

Therefore, the probability of the generalized degree sequence
k factorizes in the product of the probability p(ki ) that each
node i has a generalized degree ki = k. Moreover, we consider
that the simplicial complexes are sparse, i.e., they have a
structural cutoff [43]

KS =
(

(〈k〉N )d

d!

)1/(d+1)

. (51)

This implies that the generalized degree of the nodes ki has a
maximum value K � KS . Finally, we assume that each node
has a generalized degree equal to or greater than m̂. This en-
semble is generated by associating to each simplicial complex
K the probability P(K) given by

P(K) = P(k)e−�(k)δ

(
S,
∑
α∈K

aα

)
, (52)

where S = 〈k〉N/(d + 1) indicates the number of simplices in
the simplicial complex and where �(k) is the entropy of the
ensemble with generalized degree sequence k. In the presence
of the structural cutoff, the entropy �(k) of d-dimensional
simplicial complexes with generalized degree sequence k is
given by [43]

�(k) = ln

(
[(〈k〉N )!]d/(d+1) 1∏N

i=1 ki!
(d!)−〈k〉N/(d+1)

)
+o(N ).

It follows that the exchangeable ensemble of d-dimensional
simplicial complexes can be obtained by considering the
Hamiltonian simplicial complex ensemble

P(K) = e−H (G)e−�(k)δ

(
S,
∑
α∈K

aα

)
θ
(

KS − max
i=1,2,...,N

ki

)

× θ
(

min
i=1,2,...,N

ki − m̂
)
, (53)

with Hamiltonian H (G) given by

H (G) = −
N∑

i=1

ln p(ki ) + �(k). (54)

This ensemble is exchangeable and the marginal probability
for each simplex α is given by (see Appendix F for the deriva-
tion)

pα =
∑

{k0,k1,...,kd

[
d∏

r=0

p(kr )

]
p(k0, k1, . . . , kd ) = d!

〈k〉
Nd

, (55)

where the marginal probability p(k0, k1, . . . , kd ) =
p(α = [i0, i2, . . . , id ]|kir = kr ) of a simplex α =
[i0, i2, . . . , id ] with the generic node ir having degree kir = kr

is given by the uncorrelated expression [43]

p(α = [i0, i2, . . . , id ]|kir = kr ) = p(k0, k1, . . . , kd )

= d!

∏d
r=0 kr

(〈k〉N )d
. (56)
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B. Correlated exchangeable simplicial complex ensemble

The final example of exchangeable ensemble is the ensem-
ble of sparse correlated d-dimensional simplicial complexes
in which each node has generalized degree k with probability
p(k) and each d simplex between d + 1 nodes of generalized
degrees kα = (k0, k1, . . . , kr ) contributes to the probability of
the simplicial complex by a term Q(k0, k1, . . . , kd ) = Q(kα ),
where Q(kα ) is invariant under any permutation of its argu-
ments. Here we impose that the total number of d simplices is
S = 〈k〉N/(d + 1) and that the maximum generalized degree
of the simplicial complex is below or equal to K ensuring
sparsity and the minimum generalized degree of the simplicial
complex is greater than or equal to m̂. To this end, we assign
to each simplicial complex K a probability P(K) given by

P(K) =
∏
α∈K

[Q(kα )]aα

N∏
i=1

p(ki )e
−�(k)δ

(
S,
∑
α∈K

aα

)

× θ
(

K − max
i=1,...,N

ki

)
θ
(

m̂ − min
i=1,...,N

ki

)
, (57)

where �(k) is the entropy of the ensemble of correlated net-
works with degree sequence k that can be expressed as

�(k) = ln

(
[(〈k〉N )!]d/(d+1)(d!)−〈k〉N/(d+1)

N∏
i=1

[γ (ki )]ki

ki!

)

+ o(N ),

where γ (k) is defined self-consistently by the equation

γ (k) = 1

〈k〉d

∑
k1,k2,...,kd

Q(k, k1, k2, . . . , kd )

×
d∏

r=1

[
p(kr )

kr

γ (kr )

]
. (58)

The marginal probability of this ensemble is given by the
exchangeable expression (see Appendix F for the statistical
mechanics derivation)

pα =
∑

k0,k1,...,kd

[
d∏

r=0

p(kr )

]
p(k0, k1, . . . , kd ) (59)

with p(k0, k1, . . . , kd ) expressing the marginal probability of a
simplex connecting d + 1 nodes with degrees (k0, k1, . . . , kd ):

p(k0, k1, . . . , kd ) = d!

(〈k〉N )d

∑
k0,k1,k2,...,kd

Q(k0, k1, k2, . . . , kd )

×
d∏

r=0

[
kr

γ (kr )

]
.

X. CONCLUSIONS

In this work we propose a statistical mechanics frame-
work able to define sparse exchangeable network ensembles
of a given number of nodes, N . Here by sparse we mean
that the networks have a structural cutoff. This hypothesis
is necessary for fully treating the model analytically but it
can be removed as long as the entropy �(k) is known and
numerically estimated for every possible degree sequence

k of the network. The network ensemble can be generated
by a simple Metropolis-Hastings algorithm. This statistical
mechanics approach is based on enforcing two global con-
straints, such as the total number of links and the value of the
exchangeable Hamiltonian of the ensemble. Although every
link has the same marginal probability, the ensemble can gen-
erate networks with very heterogeneous degree distribution.
This implies that in order to impose a heterogeneous degree
distribution we do not need as for the exponential random
graphs to impose an extensive number of local constraints but
two global constraints are actually sufficient. This approach
is here shown to be generalizable to networks with degree
correlations, to directed and bipartite networks, and to gen-
eralized network structures such as multilayer networks and
simplicial complexes. This work provides a physical point
of view for addressing the challenging problem of modeling
exchangeable (but not projective) network ensembles. The
model has wide applications as a null model of unlabeled
networks. Indeed in applications it is true that exchangeabil-
ity can be achieved by randomization of the network labels
that can be performed by implementing a label reshuffling
procedure; however, our theoretical contribution introduces
sparse exchangeable network ensembles that are analytically
tractable. In physics, one could think of obtaining the Maxwell
distribution of velocity of the particles of a gas by drawing
for each particle a velocity from a Gaussian distribution and
then reshuffling the particle labels, yet being able to treat the
gas without having to perform the node reshuffling procedure
numerically has many advantages. Similarly, here we provide
a statistical mechanics and analytically treatable formulation
of exchangeable networks that can be potentially combined to
other network analysis tools coming from statistics, network
science, or machine learning.

In conclusion, we hope that this work will stimulate fur-
ther theoretical and applied research at the frontier between
physics, mathematics, and applications of network science as
the formulation of a sparse exchangeable network model that
is also projective would have applications in a number of fields
ranging from data analysis and machine learning to sampling
of networks, with profound ramifications in mathematics.

APPENDIX A: EXCHANGEABLE ENSEMBLE
OF SPARSE SIMPLE NETWORKS

1. Treatment of the exchangeable ensemble
of uncorrelated networks

In this section our goal is to solve the partition function
Z (h) [which for construction it is expected for h = 0 to take
the value Z (0) = 1] for the exchangeable ensemble of simple
networks given by Eq. (15). using the saddle-point equa-
tion deriving the expression of the functional order parameter
c(ω, k).

Let us start by recalling the expression given in the main
text for the partition function Z (h) of this network ensemble,

Z (h) =
∑

G

P(G)e−h
∑

i< j ai j

= 1

(2L)!!

∑
a

∑
k

′ ∫
Dω

∫
dλ

2π
eG(λ,ω,k,h), (A1)
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with

G(λ,ω, k, h) =
N∑

i=1

[iωiki + ln(ki!p(ki ))] + iλL

+ 1

2

∑
i, j

ln(1 + e−iλ−iωi−iω j−h), (A2)

and with Dω =∏N
i=1[dωi/(2π )]. In Eq. (A1) and in the fol-

lowing we use the notation
∑′

k to indicate the sum over all
the possible values of the degree of each node i satisfying

m̂ � ki � K � Ks = √〈k〉N . Note that by construction we
have Z (h = 0) = 1.

Let us now introduce the functional order parameter
[43,48,49]

c(ω, k) = 1

N

N∑
i=1

δ(ω − ωi )δ(k, ki ), (A3)

by enforcing its definition with a series of delta functions.
Therefore, by assuming a discretization in ω in intervals of
size 
ω we introduce for any value of (ω, k) the term

1 =
∫

dc(ω, k)δ

(
c(ω, k) − 1

N

N∑
i=1

δ(ω − ωi )δ(k, ki )

)

=
∫

dĉ(ω, k)dc(ω, k)

2π/(N
ω)
exp

[
i
ωĉ(ω, k)[Nc(ω, k) −

N∑
i=1

δ(ω − ωi )δ(k, ki )]

]
.

After performing these operations, by imposing 2L = 〈k〉N where 〈k〉 =∑k kp(k), the partition function reads, in the limit

ω → 0,

Z (h) = 1

(2L)!!

∑
k

′ ∫
Dc(ω, k)

∫
Dĉ(ω, k)

∫
dλ

2π
eN f (λ,c(ω,k),ĉ(ω,k),h)

with

f (λ, c(ω, k), ĉ(ω, k), h) = i
∫

dω
∑

m̂�k�K

ĉ(ω, k)c(ω, k) + iλ〈k〉/2 + � + ln
∫

dω

2π

∑
m̂�k�K

p(k)k!eiωk−iĉ(ω,k) (A4)

where � is given by

� = N

2

∫
dω

∫
dω′ ∑

m̂�k�K,m̂�k′�K

c(ω, k)c(ω′, k′) ln(1 + e−iλ−iω−iω′−h)

and where Dc(ω, k) is the functional measure Dc(ω, k) =
lim
ω→0

∏
ω

∏N
k [dc(ω, k)

√
N
ω/(2π )] and similarly

Dĉ(ω, k) = lim
ω→0
∏

ω

∏N
k [dĉ(ω, k)

√
N
ω/(2π )]. Per-

forming a Wick rotation in λ and assuming z/N = e−iλ real
and much smaller than one, i.e., z/N � 1 which is allowed
in the sparse regime K � KS , we can linearize the logarithm
and express � as

� = 1
2 zν2e−h, (A5)

with

ν =
∫

dω
∑

m̂�k�K

c(ω, k)e−iω. (A6)

The saddle-point equations determining the value of the par-
tition function can be obtained by performing the (functional)
derivative of f (λ, c(ω, k), ĉ(ω, k), h) with respect to c(ω, k),
ĉ(ω, k), and λ, obtaining for h → 0

−iĉ(ω, k) = zνe−iω,

c(ω, k) =
1

2π
p(k)k!eiωk−iĉ(ω,k)∫

dω′
2π

∑
m̂�k′�K p(k′)k′!eiω′k′−iĉ(ω′,k′ )

,

zν2 = 〈k〉. (A7)

Let us first calculate the integral∫
dω

2π

∑
m̂�k�K

p(k)k!e−iωk−iĉ(ω,k)

=
∫

dω

2π

∑
m̂�k�K

k!p(k)eiωk+zνe−iω
,

where we have substituted the saddle-point expression for
ĉ(ω, k). This integral can be also written as∫

dω

2π

∑
m̂�k�K

k!p(k)eiωk
∞∑

h=0

(zν)h

h!
e−iωh =

∑
m̂�k�K

p(k)(zν)k

= 〈(zν)k〉.
Therefore, c(ω, k) at the saddle-point solution can be ex-
pressed as

c(ω, k) = 1

2π

k!p(k)eiωk+(zν)e−iω

〈(zν)k〉 .

With this expression, using a similar procedure we can express
ν as

ν =
∫

dω
∑

m̂�k�K

c(ω, k)e−iω. (A8)
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Combining this equation with the third saddle-point equation

zν2 = 〈k〉, (A9)

it is immediate to show that zν = 1 is the solution with

z = 1

〈k〉 , ν = 〈k〉. (A10)

By inserting this expression in Eq. (A8) we get Eq. (18), i.e.,

c(ω, k) = 1

2π
k!p(k)eiωk+e−iω

. (A11)

Calculating the partition function at the saddle point, we get
Z (h → 0) = 1.

2. Calculation of the marginal probability of a link

For calculating the marginal probability pi j of a link
between node i and node j in the exchangeable network
ensemble we first note that given that the ensemble has an
exchangeable Hamiltonian, the marginal probability of a link
should be the same for every link of the network, i.e., pi j = p̃.
In order to obtain p̃ we can simply derive the free energy
F = N f with f given by Eq. (A4) with respect to the auxiliary
field h obtaining

N (N − 1)

2
p̃ = − ∂ (N f )

∂h

∣∣∣∣
h=0

= − ∂ (N�)

∂h

∣∣∣∣
h=0

= N

2
z
∫

dω

∫
dω′

×
∑

m̂�k�K ;m̂�k′�K

c(ω, k)c(ω′, k′)e−iω−iω′
,

from which, inserting the saddle-point value of c(ω, k) and z
and performing the integrals, we get, for N � 1,

pi j = p̃ =
∑

m̂�k�K

∑
m̂�k′�K

p(k)p(k′)
kk′

〈k〉N = 〈k〉
N

. (A12)

3. Expression of the marginal probability of a link conditioned
on the degrees of its two end nodes

In this paragraph our goal is to derive the expression of
the probability pi j|ki=k,k j=k′ = p(k, k′) of a link between node
i and node j in the exchangeable network ensemble condi-
tioned on the degree of the two end nodes. The expression for
pi j|ki=k,k j=k′ can be obtained by showing that the probability
π̂i j that node i is connected to node j in any network ensemble
enforcing a given degree sequence k (the configuration model)
is given by

π̂i j =
∑

a

ai j

N∏
r=1

δ

(
kr −

N∑
s=1

ars

)
δ

(
L −

∑
r<s

ars

)
e−�(k)

= kikr

〈k〉N
as long as the maximum degree of the network, K , is much
smaller than the structural cutoff, i.e., K � KS . Since π̂i j only
depends on the degrees ki and k j of its two end nodes, in this
ensemble the probability π̂ (k, k′) of any link between any two

nodes of degree k and degree k′ takes the expression

π̂i j|ki=k,k j=k′ = π̂ (k, k′) = kk′

〈k〉N , (A13)

as long as K � KS . The exchangeable network model is es-
sentially an ensemble in which we can get very different
degree distributions but each network G with a given distri-
bution k is weighted by P(k) exp[−�(k)]. Therefore, the we
can express pi j|ki=k,k j=k′ as

pi j|ki=k,k j=k′ = p(k, k′) =
∑

k|ki=k,k j=k′
∏N

r=1 p(kr )π̂ (ki, k j )

p(k)p(k′)

= π̂ (k, k′) = kk′

〈k〉N . (A14)

Let us now derive Eq. (A13) for the ensemble in which we fix
the degree sequence of the network (for the other examples of
ensemble the derivation is similar and we will omit for space
constraints). To this end we consider the partition function

Z̃ (h) =
∑

a

exp

[
−
∑
i< j

hki,k j ai j

][
N∏

r=1

δ

(
kr −

N∑
s=1

ars

)]

×δ

(
L −

∑
r<s

ars

)
e−�(k), (A15)

where we have introduced some auxiliary fields h = {hk,k′ }
where each different auxiliary field hk,k′ is associated to the
links between nodes of degree k and degree k′. Here the
entropy �(k) of the network with given degree sequence with
ki � KS obeys the Bender-Canfield formula [7,26,47,48]

�(k) = ln

(
(2L)!!∏N

i=1 ki!

)
+ o(N ), (A16)

where in Eqs. (A15) and (A16) we indicate with ki the degree
of node i given by ki =∑N

j=1 ai j . Expressing the Kronecker
delta in Eq. (A15) in integral form we get for the partition
function Z̃ (h) of this network ensemble

Z̃ (h) = 1

(2L)!!

∑
a

∫
Dω

∫
dλ

2π
eG̃(λ,ω,k,h), (A17)

with

G̃(λ,ω, k, h) =
N∑

i=1

[iωiki + ln(ki!)] + iλL

+ 1

2

∑
i, j

ln(1 + e−iλ−iωi−iω j−hki ,k j ), (A18)

and with Dω =∏N
i=1[dωi/(2π )] in Eq. (A17). By indicating

with Nk the fraction of nodes with degree k, let us introduce
the functional order parameters [43,48,49]

ck (ω) = 1

Nk

N∑
i=1

δ(ω − ωi )δ(k, ki ), (A19)

determining the fraction of nodes of degree k that are associ-
ated to ωi = ω. Therefore, by assuming a discretization in ω

in intervals of size 
ω we introduce for any value of ω and k
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the term

1 =
∫

dck (ω)δ

(
ck (ω) − 1

Nk

N∑
i=1

δ(ω − ωi )δ(k, ki )

)

=
∫

dĉk (ω)dck (ω)

2π/(Nk
ω)
exp

[
i
ωĉk (ω)

[
Nkck (ω) −

N∑
i=1

δ(ω − ωi )δ(k, ki )

]]
.

After performing these operations, by imposing 2L = 〈k〉N where 〈k〉 =∑k kp(k), the partition function reads, in the limit

ω → 0,

Z̃ (h) = 1

(2L)!!

∫
Dck (ω)

∫
Dĉk (ω)

∫
dλ

2π
eN f̃ (λ,ck (ω),ĉk (ω),k,h)

with

f̃ (λ, ck (ω), ĉk (ω), k, h) = i
∫

dω
∑

m̂�k�K

P̃(k)ĉk (ω)ck (ω) + iλ〈k〉/2 + � +
∑

m̂�k�K

P̃(k) ln
∫

dω

2π
k!eiωk−iĉk (ω), (A20)

where we have indicated with P̃(k) = Nk/N and where � is given by

� = N

2

∑
m̂�k�K,m̂�k′�K

P̃(k)P̃(k′)
∫

dω

∫
dω′ck (ω)ck′ (ω′) ln(1 + e−iλ−iω−iω′−hk,k′ )

and where Dck (ω) is the functional measure Dck (ω) =
lim
ω→0

∏
ω

∏
k[dck (ω)

√
Nk
ω/(2π )] and similarly

Dĉk (ω) = lim
ω→0
∏

ω

∏
k[dĉk (ω)

√
Nk
ω/(2π )]. Per-

forming a Wick rotation in λ and assuming z/N = e−iλ real
and much smaller than one, i.e., z/N � 1, which is allowed
in the sparse regime K � KS , we can linearize the logarithm
and express � as

� = 1

2
z
∑

m̂�k�K

∑
m̂�k′�K

P̃(k)P̃(k′)νkνk′e−hk,k′ , (A21)

with

νk =
∫

dωck (ω)e−iω. (A22)

For later convenience let us also define ν as

ν =
∑

m̂�k�K

P̃(k)
∫

dωck (ω)e−iω. (A23)

The saddle-point equations determining the value of the par-
tition function can be obtained by performing the (functional)
derivative of f (λ, ck (ω), ĉk (ω), k, h) with respect to ck (ω),
ĉk (ω), and λ, obtaining for hk,k′ → 0

−iĉk (ω) = zνe−iω,

ck (ω) =
1

2π
k!eiωk−iĉk (ω)∫

dω′
2π

k!eiω′k−iĉk (ω′ )
,

zν2 = 〈k〉. (A24)

Let us first calculate the integral

∫
dω

2π
k!e−iωk−iĉk (ω) =

∫
dω

2π
k!eiωk+zνe−iω

, (A25)

where we have substituted the saddle-point expression for
ĉk (ω). This integral can be also written as∫

dω

2π
eiωk

∞∑
h=0

(zν)h

h!
e−iωh = (zν)k . (A26)

Therefore, ck (ω) at the saddle-point solution can be expressed
as

c(ω, k) = 1

2π

k!eiωk+(zν)e−iω

(zν)k
. (A27)

With this expression, using a similar procedure we can express
ν as

ν =
∫

dω
∑

m�k�K

P̃(k)ck (ω)e−iω

=
∑

m̂�k�K

kP̃(k)

(zν)
= 〈k〉

zν
. (A28)

Therefore, this equation reduces to the third saddle-point
equation,

zν2 = 〈k〉. (A29)

It is immediate to show that zν = 1 is a solution with

z = 1

〈k〉 , ν = 〈k〉. (A30)

By inserting this expression in Eq. (A27) we get Eq. (18), i.e.,

ck (ω) = 1

2π
k!eiωk+e−iω

. (A31)

The marginal probability π̂ (k, k′) of a link between a node of
degree k and a node of degree k′ can be expressed as

NkNk′ π̂ (k, k′) = ∂N f̃

∂hk,k′

∣∣∣∣
h=0

, (A32)

034310-12



STATISTICAL PHYSICS OF EXCHANGEABLE SPARSE … PHYSICAL REVIEW E 105, 034310 (2022)

leading to

π̂ (k, k′) = z

N

∫
dω

∫
dω′ck (ω)ck′ (ω′)e−iω−iω′ = kk′

〈k〉N .

It follows that

p(k, k′) = π̂ (k, k′) = kk′

〈k〉N . (A33)

APPENDIX B: EXCHANGEABLE ENSEMBLE OF SPARSE
SIMPLE NETWORKS WITH DEGREE CORRELATIONS

Treatment of the exchangeable ensemble of sparse correlated
simple networks

In this section our goal is to treat the exchangeable en-
semble of sparse correlated networks in which each node has
degree k with probability p(k) and each link between a node
of degree k and a node of degree k′ contributes to the partition
function by a term Q(k, k′) = Q(k′, k). Here we impose that
the total number of links L = 〈k〉N/2 and that the maximum
degree of the network is below or equal to K and the minimum
degree of the network is greater than or equal to m̂. For
simplicity of notation we take the auxiliary field h = 0 from
the beginning and we express the partition function Z of the
exchangeable ensemble of sparse correlated networks as

Z =
∑

a

∑
k

′∏
i< j

Q(ki, k j )]
ai j e−�(k)

N∏
i=1

δ

(
ki,

N∑
j=1

ai j

)

× δ

(
L,
∑
i< j

ai j

)
,

with the entropy �(k) given by

�(k) = ln

(
(2L)!!

N∏
i=1

[γ (ki )]ki

ki!

)
+ o(N ), (B1)

where γ (k) is determined by the self-consistent equation

γ (k) = 1

〈k〉
∑

m̂�k′�K

Q(k, k′)p(k′)
k′

γ (k′)
. (B2)

By expressing the Kronecker deltas in integral form,

δ(x, y) = 1

2π

∫ π

−π

dωeiω(x−y), (B3)

we get

Z = 1

(2L)!!

∑
k

′ ∫
Dω

∫
dλ

2π
eG(ω,λ,k), (B4)

where G(ω, λ, k) is given by

G(ω, λ, k) =
N∑

i=1

[iωiki + ln(ki!p(ki )) − ki ln γ (ki )] + iλL

+ 1

2

∑
i, j

ln(1 + Q(ki, k j )e
−iλ−iωi−iω j ), (B5)

and where Dω =∏N
i=1[dωi/(2π )]. Let us now introduce the

functional order parameter [43,48,49]

c(ω, k) = 1

N

N∑
i=1

δ(ω − ωi )δ(k, ki ), (B6)

by enforcing its definition with a series of delta functions.
Therefore, by assuming a discretization in ω in intervals of
size 
ω we introduce for every (ω, k) the term

1 =
∫

dc(ω, k)δ

(
c(ω, k) − 1

N

N∑
i=1

δ(ω − ωi )δ(k, ki )

)

=
∫

dĉ(ω, k)dc(ω, k)

2π/(N
ω)
ei
ωĉ(ω,k)[Nc(ω,k)−∑N

i=1 δ(ω−ωi )δ(k,ki )].

(B7)

After performing these operations, by imposing 2L = 〈k〉N
where 〈k〉 =∑k kp(k), the partition function reads in the limit

ω → 0

Z = 1

(2L)!!

∑
k

′ ∫
Dc(ω, k)

∫
Dĉ(ω, k)

∫
dλ

2π
eN f (λ,c(ω,k),ĉ(ω,k))

with

f (λ, c(ω, k), ĉ(ω, k)) = i
∫

dω
∑

m̂�k�K

ĉ(ω, k)c(ω, k)

+ iλ〈k〉/2 + � + ln
∫

dω
∑

m̂�k�K

p(k)
k!

[γ (k)]k
eiωk−iĉ(ω,k), (B8)

where � is given by

� = N

2

∫
dω

∫
dω′ ∑

m̂�k�K,m̂�k′�K

c(ω, k)c(ω′, k′)Q(k, k′) ln(1 + e−iλ−iω−iω′
), (B9)

where Dc(ω, k) and Dĉ(ω, k) have the same definition then in the simple uncorrelated case. Performing a Wick rotation in λ

and assuming z/N = e−iλ real and much smaller than one, i.e., z/N � 1, which is allowed in the sparse regime K � KS , we can

034310-13



GINESTRA BIANCONI PHYSICAL REVIEW E 105, 034310 (2022)

linearize the logarithm and express � as

� = z

2

∫
dω

∫
dω′ ∑

m̂�k�K,m̂�k′�K

c(ω, k)c(ω′, k′)Q(k, k′)e−iω−iω′
.

The saddle-point equations determining the value of the partition function read

−iĉ(ω, k) = ze−iω
∫

dω′ ∑
m̂�k′�K

Q(k, k′)c(ω′, k′)e−iω′
,

c(ω, k) =
1

2π
p(k) k!

[γ (k)]k eiωk−iĉ(ω,k)

1
2π

∫
dω′∑

m̂�k′�K p(k′) k′!
[γ (k′ )]k′ eiω′k′−iĉ(ω′,k′ )

,

z
∫

dω

∫
dω′ ∑

m̂�k�K,m̂�k′�K

c(ω, k)c(ω′, k′)Q(k, k′)e−iω−iω′ = 〈k〉. (B10)

Let us define γ̃ (k) as

γ̃ (k) = z
∫

dω′ ∑
m̂�k′�K

Q(k, k′)c(ω′, k′)e−iω′
. (B11)

With this definition we have

−iĉ(ω, k) = γ̃ (k)e−iω. (B12)

Let us first calculate the integral

1

2π

∫
dω

∑
m̂�k�K

p(k)
k!

[γ (k)]k
eiωk−iĉ(ω,k) = 1

2π

∫
dω

∑
m̂�k�K

k!

[γ (k)]k
p(k)eiωk+γ̃ (k)e−iω

, (B13)

where we have substituted the saddle-point expression for ĉ(ω, k). This integral can be also written as∫
dω

∑
m̂�k�K

k!

γ (k)k
p(k)eiωk

∞∑
h=0

(γ̃ (k))h

h!
e−iωh =

∑
m̂�k�K

p(k)

(
γ̃ (k)

γ (k)

)k

.

Let w indicate the value of this integral, i.e.,

w =
∑

m̂�k�K

p(k)

(
γ̃ (k)

γ (k)

)k

. (B14)

The functional order parameter c(ω, k) at the saddle-point
solution can be expressed as

c(ω, k) = 1

2πw

k!p(k)

[γ (k)]k
eiωk+γ̃ (k)e−iω

. (B15)

With this expression, using a similar procedure we can express
γ̃ (k) as

γ̃ (k) = z
∫

dω′ ∑
m̂�k′�K

Q(k, k′)c(ω′, k′)e−iω′

= z

w

∑
m�k′�K

Q(k, k′)p(k′)
k′

γ̃ (k′)

(
γ̃ (k′)
γ (k′)

)k′

. (B16)

Combining this equation with the third saddle-point equa-
tion we get

z
∫

dω

∫
dω′ ∑

m̂�k�K

∑
m̂�k′�K

Q(k, k′)c(ω, k)c(ω′, k′)e−iω−iω′

= 1

w

∑
m�k�K

p(k)k

(
γ̃ (k)

γ (k)

)k

= 〈k〉. (B17)

Given that γ (k) is defined through Eq. (B2), it follows that

γ̃ (k) = γ (k), w = 1, z = 1

〈k〉 . (B18)

Finally using Eqs. (F32) we can derive the final expression
for c(ω, k) given by

c(ω, k) = 1

2π

k!p(k)

[γ (k)]k
eiωk+γ (k)e−iω

. (B19)

From this equation of the functional order parameter we can
derive the marginal for each link of the network which is given
by

pi j = 1

N

∫
dω

∫
dω′ ∑

m̂�k�K,m̂�k′�K

c(ω, k)c(ω′, k′)Q(k, k′)

× e−iω−iω′
,

yielding

pi j =
∑

m̂�k�K,m̂�k′�K

p(k)p(k′)p(k, k′). (B20)

Here p(k, k′) indicates the probability of a link between node
i and node j conditioned to the degree of the two nodes ki = k
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and k j = k′, i.e.,

pi j|ki=k,k j=k′ = p(k, k′)

= 1

〈k〉N Q(k, k′)
kk′

γ (k)γ (k′)
. (B21)

Note that for Q(k, k′) = 1 it follows that γ (k) = 1, and for
Q(k, k′) = kk′ it follows that γ (k) = k and hence in both
cases we recover the exchangeable network ensemble of
simple uncorrelated networks.

APPENDIX C: EXCHANGEABLE ENSEMBLE OF SPARSE
DIRECTED NETWORKS

Derivation of the marginal probability

In this section our goal is the solve the partition function Z
for the exchangeable ensemble of directed networks using the
saddle-point equation expression for the marginal probability
of a link. For simplicity for this ensemble we put the auxiliary
fields h = 0 from the beginning and we express the partition
function Z as

Z =
∑

a

∑
kin

′∑
kout

′
e−H (G)

N∏
i=1

[
δ

(
kin

i −
N∑

j=1

a ji

)
δ

(
kout

i −
N∑

j=1

ai j

)]
δ

(
L,
∑
i, j

ai j

)
. (C1)

By expressing the Kronecker delta’s in integral form,

δ(x, y) = 1

2π

∫ π

−π

dωeiω(x−y), (C2)

we get

Z = 1

L!

∑
a

∑
kin

′∑
kout

′ ∫
Dω

∫
Dω̂

∫
dλ

2π
eG(λ,ω,ω̂,kin,kout ),

with

G(λ,ω, ω̂, kin, kout ) =
N∑

i=1

[
iωik

in
i + iω̂ik

out
i + ln

(
kin

i !kout
i !pd

(
kin

i , kout
i

))]+ iλL +
∑
i, j

ln(1 + e−iλ−iωi−iω̂ j ), (C3)

and withDω =∏N
i=1[dωi/(2π )], andDω̂ =∏N

i=1[dω̂i/(2π )]. Let us now introduce the functional order parameter [43,48,49]

c(ω, ω̂, kin, kout ) = 1

N

N∑
i=1

δ(ω − ωi )δ(ω̂ − ω̂i )δ
(
kin, kin

i

)
δ
(
kout, kout

i

)
,

by enforcing its definition with a series of delta functions by introducing the conjugated order parameter ĉ(ω, ω̂, kin, kout ) and by
imposing L = 〈kin〉N = 〈kout〉N where 〈kin〉 =∑kin,kout kin pd (kin, kout ), 〈kout〉 =∑kin,kout kout pd (kin, kout ). The partition function
reads

Z = 1

L!

∑
kin

′∑
kout

′ ∫
Dc(ω, ω̂, kin, kout )

∫
Dĉ(ω, ω̂, kin, kout )

∫
dλ

2π
eN f (C4)

with

f = i
∫

dω

∫
dω̂

∑
m̂�kin�K,m̂�kout�K

ĉ(ω, ω̂, kin, kout )c(ω, ω̂, kin, kout ) + iλ〈kin〉

+� + ln
∫

dω

2π

∑
m̂�kin�K ;m̂�kout�K

pd (kin, kout )kin!kout! exp[iωkin + iω̂kout − iĉ(ω, ω̂, kin, kout )], (C5)

where � is given by

� = N

2

∫
dω

∫
dω′ ∑

m̂�kin�K,m̂�kout�K

∑
m̂�k′,in�K,m̂�k′,out �K

c(ω, ω̂, kin, kout )c(ω′, ω̂′, k′,in, k′,out ) ln(1 + e−iλ−iω−iω̂′
),

and where Dc(ω, ω̂, kin, kout ) and Dĉ(ω, ω̂, kin, kout ) are functional measures. Performing a Wick rotation in λ and assuming
z/N = e−iλ real and much smaller than one, i.e., z/N � 1, which is allowed in the sparse regime K � KS , we can linearize the
logarithm and express � as

� = zνν̂, (C6)
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with

ν =
∫

dω

∫
dω̂

∑
m̂�kin�K ;m̂�kout�K

c(ω, ω̂, kin, kout )e−iω,

ν̂ =
∫

dω

∫
dω̂

∑
m̂�kin�K ;m̂�kout�K

c(ω, ω̂, kin, kout )e−iω̂. (C7)

The saddle-point equations determining the value of the partition function can be obtained by performing the (functional)
derivative of f (λ, c(ω, k), ĉ(ω, k)) with respect to c(ω, ω̂, kin, kout ), ĉ(ω, ω̂, kin, kouy ), and λ, obtaining

−iĉ(ω, ω̂, kin, kout ) = zν̂e−iω + zνe−iω̂,

c(ω, ω̂, kin, kout ) =
1

(2π )2 pd (kin, kout )kin!kout! exp [iωkin + iω̂kout − iĉ(ω, ω̂, kin, kout )]∫
dω′
2π

∫
dω̂′
2π

∑
m̂�k′,in�K ;m̂�k′,out �K pd (k′,in, k′,out )k′,in!k′,out ! exp [iω′k′,in + iω̂′k′,out − iĉ(ω′, ω̂′, k′,in, k′,out )]

,

zνν̂ = 〈kin〉. (C8)

Let us first calculate the integral∫
dω

2π

∫
dω̂

2π

∑
m̂�kin�K ;m̂�kout�K

pd (kin, kout )kin!kout! exp[iωkin + iω̂kout − iĉ(ω, ω̂, kin, kout )], (C9)

where we have substituted the saddle-point expression for ĉ(ω, k). Expanding the exponential and proceeding as in the simple
uncorrelated case we get∫

dω

2π

∫
dω̂

2π

∑
m̂�kin�K ;m̂�kout�K

pd (kin, kout )kin!kout! exp[iωkin + iω̂kout − iĉ(ω, ω̂, kin, kout )]

=
∑

m̂�kin�K

∑
m̂�kout�K

pd (kin, kout )(zν̂)kin
(zν)kout = 〈(zν̂)kin

(zν)kout 〉. (C10)

Therefore, c(ω, k) at the saddle-point solution can be expressed as

c(ω, k) = 1

(2π )2

kin!kout!pd (kin, kout )eiωk+(zν̂ )e−iω+(zν)e−iω̂

〈(zν̂)kin (zν)kout 〉 . (C11)

With this expression, using a similar procedure we can express ν as

ν = 1

〈(zν̂)kin (zν)kout 〉
∑

m̂�kin�K

∑
m̂�kout�K

kin pd (kin, kout )(zν̂)kin−1(zν)kout
,

ν̂ = 1

〈(zν̂)kin (zν)kout 〉
∑

m̂�kin�K

∑
m̂�kout�K

kout pd (kin, kout )(zν̂)kin
(zν)kout−1. (C12)

Combining this equation with the third saddle-point equation

zνν̂ = 〈kin〉 = 〈kout〉, (C13)

it is immediate to show that zν = zν̂ = 1 is a solution with

z = 1

〈kin〉 , ν = ν̂ = 〈kin〉 = 〈kout〉. (C14)

By inserting this expression in Eq. (C11) we get

c(ω, ω̂, kin, kout ) = 1

(2π )2
kin!kout!pd (kin, kout ) exp[iωkin + iω̂kout + e−iω + e−iω̂]. (C15)

From this equation we can conclude that the networks of these ensembles have heterogeneous degree distribution, as the density
of nodes of in-degree kin and out-degree kout is given the desired joint probability distribution, i.e.,∫

dω

∫
dω̂c(ω, ω̂, kin, kout ) = pd (kin, kout ). (C16)

However, the marginal for each link is the same and given by Eq. (30) with the marginal probability of a link conditioned on the
degrees of its two end nodes given by Eq. (32).
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APPENDIX D: EXCHANGEABLE ENSEMBLE OF SPARSE BIPARTITE NETWORKS

Derivation of the marginal probability

In this section our goal is the solve the partition function Z for the exchangeable ensemble of bipartite networks using the
saddle-point equation expression for the marginal probability of a link. The partition function Z of this network ensemble, where
for simplicity we have put the auxiliary field h = 0 from the beginning, is given by

Z =
∑

a

∑
k

′∑
q

′
e−H (G)δ

(
L,
∑
i,μ

aiμ

)
N∏

i=1

[
δ

(
ki −

M∑
μ=1

biμ

)]
M∏

μ=1

[
δ

(
qμ −

N∑
i=1

biμ

)]
. (D1)

By expressing the Kronecker delta’s in integral form,

δ(x, y) = 1

2π

∫ π

−π

dωeiω(x−y), (D2)

we get

Z =
∑

a

P(G) = 1

L!

∑
a

∑
k

′∑
q

′ ∫
Dω

∫
Dω̂

∫
dλ

2π
eG(λ,ω,ω̂,k,q),

with

G(λ,ω, ω̂, k, q) =
N∑

i=1

[iωiki + ln(ki!p(ki )] +
M∑

μ=1

[iω̂μqμ + ln(qμ! p̂(qμ))] + iλL +
∑
i,μ

ln(1 + e−iλ−iωi−iω̂μ ), (D3)

and with Dω =∏N
i=1[dωi/(2π )], and Dω̂ =∏M

μ=1[dω̂i/(2π )]. Let us now introduce the two functional order parameters
[43,48,49]

c(ω, k) = 1

N

N∑
i=1

δ(ω − ωi )δ(k, ki ), σ (ω̂, q) = 1

M

M∑
μ=1

δ(ω̂ − ω̂μ)δ(q, qμ), (D4)

by enforcing their definition with a series of delta functions involving c(ω, k) and σ (ω, k) and their conjugated order param-
eters ĉ(ω, k) and σ̂ (ω, k). Imposing also L = 〈k〉N = 〈q〉M where 〈k〉 =∑k kp(k), 〈q〉 =∑q qp̂(q), the partition function
reads

Z = 1

L!

∑
k

′∑
q

′ ∫
Dĉ(ω, k)

∫
Dc(ω, k)

∫
Dσ̂ (ω̂, q)

∫
Dσ (ω̂, q)

∫
dλ

2π
eN f (D5)

with

f = i
∫

dω
∑

m̂�k�K

ĉ(ω, k)c(ω, k) + iα
∫

dω̂
∑

m̂�q�K̂

σ̂ (ω̂, q)σ (ω̂, q) + iλ〈k〉

+� + ln
∫

dω

2π

∑
m̃�k�K

p(k)k! exp [iωk − iĉ(ω, k)] + α ln
∫

dω̂

2π

∑
m̂�q�K̂

p̂(q)q! exp [iω̂q − iσ̂ (ω̂, q)], (D6)

and � is given by

� = αN

2

∫
dω

∫
dω̂

∑
m̃�k�K,m̂�q�K̂

c(ω, k)σ (ω̂, q) ln(1 + e−iλ−iω−iω̂ ),

where Dĉ(ω, k), Dc(ω, k), Dσ̂ (ω̂, q), and Dσ (ω̂, q) are functional measures. Performing a Wick rotation in λ and assuming
z/N = e−iλ real and much smaller than one, i.e., z/N � 1, which is allowed in the sparse regime K � KS , we can linearize the
logarithm and express � as

� = zανν̂, (D7)

with

ν =
∫

dω
∑

m̂�k�K

c(ω, k)e−iω, ν̂ =
∫

dω̂
∑

m̂�q�K̂

σ (ω̂, q)e−iω̂. (D8)

The saddle-point equations determining the value of the partition function can be obtained by performing
the (functional) derivative of f (λ, c(ω, k), ĉ(ω, k)) with respect to c(ω, ω̂, kin, kout ), ĉ(ω, ω̂, kin, kout ), and λ,
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obtaining

−iĉ(ω, k) = αzν̂e−iω, c(ω, k) =
1

(2π ) p(k)k! exp [iωk − iĉ(ω, k)]∫
dω′
2π

∑
m�k′�K p(k′)k′! exp [iω′k′ − iĉ(ω′, k′)]

,

−iσ̂ (ω̂, q) = zνe−iω̂, σ (ω̂, q) =
1

2π
p̂(q)q! exp [iω̂q − iσ̂ (ω̂, q)]∫

dω̂′
2π

∑
m̂�q′�K̂ p̃(q′)q′! exp [iω̂′q′ − iσ̂ (ω̂′, q′)]

, zανν̂ = 〈k〉. (D9)

Let us first calculate the integrals∫
dω

2π

∑
m̂�k�K

p(k)k! exp [iωk − iĉ(ω, k)] =
∑

m̃�k�K

p(k)(αzν̂ )k = 〈(αzν̂)k〉,
∫

dω̂

2π

∑
m̂�q�K̂

p̂(q)q! exp [iω̂q − iσ̂ (ω̂, q)] =
∑

m̂�q�K̂

p̂(q)(zν̂)q = 〈(zν)q〉, (D10)

where we have substituted the saddle-point expression for ĉ(ω, k) and σ̂ (ω̂, q) and we have followed the same procedure as for
calculating the corresponding integrals in the previous case. It follows that c(ω, k) and σ (ω̂, q) at the saddle-point solution can
be expressed as

c(ω, k) = 1

2π

k!p(k)eiωk+(αzν̂ )e−iω

〈(αzν̂)k〉 , σ (ω̂, q) = α

2π

q! p̂(q)eiω̂q+(zν)e−iω̂

〈(zν)q〉 . (D11)

With this expression, using a similar procedure as in the precedent integrals, we can express ν as

ν = 1

〈(αzν̂)k〉
∑

m̃�k�K

kp(k)(αzν̂ )k−1, ν̂ = 1

〈(zν)q〉
∑

m̂�q�K̂

qp̂(q)(zν)q−1. (D12)

Combining this equation with the third saddle-point equation

αzνν̂ = 〈k〉 = α〈q〉, (D13)

it is immediate to show that zν = αzν̂ = 1 is a solution with

z = 1

〈k〉 , ν = 〈k〉, ν̂ = 〈q〉. (D14)

By inserting this expression in Eq. (D11) we get

c(ω, k) = 1

2π
k!p(k) exp[iωk + e−iω], σ (ω̂, q) = 1

2π
q! p̂(q) exp[iω̂q + e−iω̂]. (D15)

From this equation we can conclude that the networks of these ensembles have heterogeneous degree distribution, as the density
of nodes in V with degree k is given by p(k) while the density of nodes in U having degree q is given by p̂(q), i.e.,∫

dω

∫
dω̂c(ω, ω̂, k) = p(k),

∫
dω

∫
dω̂σ (ω, ω̂, 1) = p̂(q). (D16)

However, the marginal for each link is the same and given by Eq. (37) with the marginal probability of a link conditioned on the
degrees of its two end nodes given by Eq. (38).

APPENDIX E: EXCHANGEABLE ENSEMBLE OF SPARSE MULTIPLEX NETWORKS

Treatment of the exchangeable ensemble of sparse multiplex networks

In this section our goal is the solve the partition function Z for the exchangeable ensemble of multiplex networks. The partition
function Z of this multiplex network ensemble is given by

Z (h) =
∑

A

∑
{k �m}

′
e−H (G)e−∑i j

∑
�m �=�0 h �mA �m

i j

∏
�m �=�0

[
δ

(
L �m,

∑
i, j

A �m
i j

)
N∏

i=1

δ

(
k �m

i −
N∑

j=1

A �m
ji

)]
. (E1)

Here and in the following we use the notation
∑′

k to indicate the sum over all the possible values of the degree of each node i
satisfying m̂ � k �m

i � K �m � K �m
s =

√
〈k �m〉N . By expressing the Kronecker delta’s in integral form,

δ(x, y) = 1

2π

∫ π

−π

dωeiω(x−y), (E2)
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we get for the partition function Z of this network ensemble

Z (h) = 1∏
�m �=�0(2L �m)!!

∑
A

∑
{k �m}

′ ∫
Dω

∫
dλ

2π
eG(λ,ω,k �m,h), (E3)

with

G(λ,ω, {k �m}, h) =
N∑

i=1

⎧⎨
⎩
∑
�m �=�0

[
iω �m

i k �m
i + ln

(
k �m

i !
)]+ ln π̃

(
k �m

i

))⎫⎬⎭+ i
∑
�m �=�0

λ �mL �m + 1

2

∑
i, j

ln

⎛
⎝1 +

∑
�m �=�0

e−iλ �m−iω �m
i −iω �m

j −h �m

⎞
⎠,

and withDω =∏N
i=1

∏
�m �=�0[dω �m

i /(2π )]. Let us now introduce the functional order parameter [43,48,49]

c(ω, k �m) = 1

N

N∑
i=1

∏
�m �=�0

δ
(
ω �m − ω �m

i

)
δ
(
k �m, k �m

i

)
, (E4)

by enforcing its definition with a series of delta functions. By imposing 2L �m = 〈k �m〉N , where 〈k �m〉 =∑k �m k �m p(k �m), we get

Z (h) = 1∏
�m �=�0(2L �m)!!

∑
{k �m}

′ ∫
Dc(ω, k �m)

∫
Dĉ(ω, k �m)

∫
dλ

2π
eN f (λ,c(ω,k �m ),ĉ(ω,k �m ),h) (E5)

with

f (λ, c(ω, k �m), ĉ(ω, k �m), h)) = i
∫

dω
∑
k �m

′
ĉ(ω, k �m)c(ω, k �m) + i

∑
�m �=�0

λ �m〈k �m〉/2 + �

+ ln
∫

dω

(2π )W

∑
k �m

′
π̃ (k �m)

⎡
⎣∏

�m �=�0
k �m!eiω �mk �m

⎤
⎦e−iĉ(ω,k �m ), (E6)

where W = 2M − 1 indicates the number of nontrivial multilinks �m �= �0 and � is given by

� = N

2

∫
dω

∫
dω

′ ′∑
k �m,k′, �m

c(ω, k �m)c(ω′, k′, �m ) ln

⎛
⎝1 +

∑
�m �=�0

e−iλ �m−iω �m−iω′ �m−h �m

⎞
⎠

and where Dc(ω, k) and Dĉ(ω, k) are functional measures. Performing a Wick rotation in λ and assuming z �m/N = e−iλ �m
real

and much smaller than one, i.e., z �m/N � 1, which is allowed in the sparse regime K �m � K �m
S , we can linearize the logarithm and

express � as

� = 1

2

∑
�m �=�0

z �m[ν( �m)]2e−h �m
, (E7)

with

ν( �m) =
∫

dω
∑
k �m

′
c(ω, k �m)e−iω �m

. (E8)

The saddle-point equations determining the value of the partition function can be obtained by performing the (functional)
derivative of f (λ, c(ω, k �m), ĉ(ω, k �m)) with respect to c(ω, k �m), ĉ(ω, k �m) and λ �m, obtaining, for h �m → 0,

−iĉ(ω, k �m) =
∑
�m �=�0

z �mν( �m) exp[−iω �m − h �m],

c(ω, k �m) =
1

(2π )W π̃ (k �m)
∏

�m �=�0[k �m! exp[iω �mk �m]] exp[−iĉ(ω, k �m)]∫
dω′

(2π )W

∑′, �m
k′ π̃ (k′ �m)

∏
�m �=�0 [k′, �m! exp[iω′, �mk′ �m]] exp[−iĉ(ω′, k′, �m )]

,

z �m[ν( �m)]2 = 〈k �m〉. (E9)

By proceeding like in the previous examples, we can perform the integral∫
dω

(2π )W

∑
k

′
π̃ (k �m)

∏
�m �=�0

[k �m! exp[−iω �mk �m]] exp[−iĉ(ω, k �m)] =
∑
k �m

′
π̃ (k �m)

∏
�m �=�0

(z �mν( �m))k �m = w. (E10)
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Therefore, c(ω, k �m) at the saddle-point solution can be expressed as

c(ω, k �m) = 1

(2π )W w
π̃ (k �m)

∏
�m �=�0

exp[iω �mk �m + z �mν( �m)e−iω �m
].

With this expression, using a similar procedure we can express ν( �m) as

ν( �m) =
∫

dω
∑

k

′
c(ω, k �m)e−iω �m = 1

a

∑
k

′
π̃ (k �m)k �m[z �mν( �m)]k �m−1

∏
�m′ �= �m,�0

[z �m′
ν( �m′)]k

�m′
. (E11)

Combining this equation with the third saddle-point equation, it is immediate to show that z �mν( �m) = 1 is a solution with

z �m = 1

〈k �m〉 , ν( �m) = 〈k �m〉, w = 1. (E12)

By inserting this expression in Eq. (E11) we get

c(ω, k �m) = 1

2π
π̃ (k �m)

∏
�m �=�0

{k �m! exp[iω �mk �m + e−iω �m
]}. (E13)

From this expression, by proceeding like in the simple network case, we can derive that each node of the network has
multidegrees k �m with a probability π̃ (k �m) and that the marginal probability of multilinks is given by Eqs. (47) and (48).

APPENDIX F: EXCHANGEABLE ENSEMBLE OF SPARSE SIMPLICIAL COMPLEXES

1. Derivation of the marginal probability of a simplex in the uncorrelated exchangeable simplicial complex ensembles

In this section our goal is the solve the partition function Z (h) [which for construction is expected to take the value Z (h =
0) = 1] for the exchangeable ensemble of uncorrelated simplicial complexes. Let us start by defining the partition function Z (h)
of this simplicial complex ensemble as

Z (h) =
∑

a

P(K)e−h
∑

α∈K aα = Ĉ
∑

a

∑
k

′ ∫
Dω

∫
dλ

2π
eG(λ,ω,k,h), (F1)

with Ĉ = ([d!]〈k〉N/(d+1)/[(〈k〉N )!]d/(d+1)) and

G(λ,ω, k, h) =
N∑

i=1

[iωiki + ln(ki!p(ki ))] + iλ〈k〉/(d + 1) +
∑
α∈K

ln(1 + e−i
∑

r⊂α ωr−iλ−h), (F2)

and with Dω =∏N
i=1[dωi/(2π )]. In Eq. (F1) and in the following we use the notation

∑′
k to indicate the sum over all the

possible values of the generalized degree of each node i satisfying m � ki � K � KS . Let us now introduce the functional order
parameter [43,48,49]

c(ω, k) = 1

N

N∑
i=1

δ(ω − ωi )δ(k, ki ), (F3)

by enforcing its definition with a series of delta functions. By assuming a discretization in ω in intervals of size 
ω we then
introduce for each choice of (ω, k) the term

1 =
∫

dc(ω, k)δ

(
c(ω, k) − 1

N

N∑
i=1

δ(ω − ωi )δ(k, ki )

)

=
∫

dĉ(ω, k)dc(ω, k)

2π/(N
ω)
exp

[
i
ωĉ(ω, k)[Nc(ω, k) −

N∑
i=1

δ(ω − ωi )δ(k, ki )]

]
.

After performing these operations, by imposing (d + 1)S = 〈k〉N where 〈k〉 =∑k kp(k), the partition function reads, in the
limit 
ω → 0,

Z (h) = [d!]〈k〉N/(d+1)

[(〈k〉N )!]d/(d+1)

∑
k

′ ∫
Dc(ω, k)

∫
Dĉ(ω, k)

∫
dλ

2π
eN f (λ,c(ω,k),ĉ(ω,k),h) (F4)
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with

f (λ, c(ω, k), ĉ(ω, k), h) = i
∫

dω
∑

k

ĉ(ω, k)c(ω, k) + iλ〈k〉/(d + 1) + � + ln
∫

dω

2π

∑
m̂�k�K

p(k)k!eiωk−iĉ(ω,k),

where � for K � KS can be approximated by

� = Nd

(d + 1)!
e−h−iλ

d∏
r=0

[ ∑
m�kr�K

∫
dωrc(ωr, kr )e−iωr

]

and where Dc(ω, k) is the functional measure Dc(ω, k) = lim
ω→0
∏

ω

∏N
k [dc(ω, k)

√
N
ω/(2π )] and similarly Dĉ(ω, k) =

lim
ω→0
∏

ω

∏N
k [dĉ(ω, k)

√
N
ω/(2π )]. Performing a Wick rotation in λ and assuming z/Nd = e−iλ real and much smaller

than one, i.e., z/Nd � 1, which is allowed in the sparse regime K � KS , we can linearize the logarithm and express � as

� = 1

(d + 1)!
zνd+1e−h, (F5)

with

ν =
∫

dω
∑

m̂�k�K

c(ω, k)e−iω. (F6)

The saddle-point equations determining the value of the partition function can be obtained by performing the (functional)
derivative of f (λ, c(ω, k), ĉ(ω, k), h) with respect to c(ω, k), ĉ(ω, k), and λ, obtaining for h → 0

−iĉ(ω, k) = z

d!
νd e−iω, c(ω, k) =

1
2π

p(k)k!eiωk−iĉ(ω,k)∫
dω′
2π

∑
m�k′�K p(k′)k′!eiω′k′−iĉ(ω′,k′ )

,
z

d!
νd+1 = 〈k〉. (F7)

Let us first calculate the integral∫
dω

2π

∑
m̂�k�K

p(k)k!e−iωk−iĉ(ω,k) =
∫

dω

2π

∑
m̂�k�K

k!p(k)eiωk+(zνd /d!)e−iω
, (F8)

where we have substituted the saddle-point expression for ĉ(ω, k). This integral can be also written as∫
dω

2π

∑
m̂�k�K

k!p(k)eiωk
∞∑

h=0

(zνd/d!)h

h!
e−iωh =

∑
m̂�k�K

p(k)
( z

d!
νd
)k

=
〈(

z

d!
νd

)k〉
. (F9)

Therefore, c(ω, k) at the saddle-point solution can be expressed as

c(ω, k) = 1

2π

k!p(k) exp[iωk + (zνd/d!)e−iω]

〈(zνd/d!)k〉 . (F10)

With this expression, using a similar procedure we can express ν as

ν =
∫

dω
∑
k�K

c(ω, k)e−iω = 1

〈(zνd/d!)k〉
∑
k�K

kp(k)(zνd/d!)k−1.

Combining this equation with the third saddle-point equation

z

d!
νd+1 = 〈k〉, (F11)

it is immediate to show that zνd/d! = 1 is a solution with

z = d!

〈k〉d
, ν = 〈k〉. (F12)

By inserting this expression in Eq. (F10) we get

c(ω, k) = 1

2π
k!p(k)eiωk+e−iω

. (F13)

Calculating the partition function at the saddle point, we get Z (h → 0) = 1. For calculating the marginal distribution pα of a
simplex α in the exchangeable network ensemble we first note that given that the ensemble has an exchangeable Hamiltonian,
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the marginal probability of a simplex should be the same for every simplex of the simplicial complex, i.e., pα = p̃. In order to
obtain p̃ we can simply derive the free energy F = N f with f given by Eq. (F5) with respect to the auxiliary field h, obtaining

(
N

d + 1

)
p̃ = − ∂ (N f )

∂h

∣∣∣∣
h=0

= − ∂ (N�)

∂h

∣∣∣∣
h=0

= N

(d + 1)!
z

[∫
dω

∑
m̂�k�K

c(ω, k)e−iω

]d+1

, (F14)

from which, by approximating the binomial (
N

d + 1

)
� Nd+1

(d + 1)!
(F15)

for N � 1 and d finite, and inserting the saddle-point value of c(ω, k) and z, we get, for N � 1,

pα = p̃ =
∑

{kr}|m�kr�K

[
d∏

r=0

p(kr )

]
p(k0k1, . . . , kd ), (F16)

with

pα=[i0,i1,...,id ]|kir =kr = p(k0k1, . . . , kd ) = d!

∏d
r=0 kr

(〈k〉N )d
. (F17)

2. Derivation of the marginal probability of a simplex in the correlated sparse exchangeable ensemble of simplicial complexes

The partition function of the exchangeable ensemble of sparse correlated simplicial complexes can be written as

Z (h) =
∑

a

e−h
∑

α aα

∑
k

′ ∏
α∈K

Q
(
ki0 , ki1 , . . . , kid

)]aα e−�(k)δ

(
ki,

N∑
i1<i2<...id

ai,i1,...,id

)
δ

(
S,
∑
α∈K

aα

)
, (F18)

with the entropy �(k) given by

�(k) = ln

(
(〈k〉N )!]d/(d+1) 1

(d!)−〈k〉N/(d+1)

)
+ ln

(
N∏

i=1

[γ (ki )]ki

ki!

)
+ o(N ), (F19)

where γ (k) is determined by the self-consistent Eq. (58). By expressing the Kronecker delta’s in integral form,

δ(x, y) = 1

2π

∫ π

−π

dωeiω(x−y), (F20)

we get

Z (h) = (d!)−〈k〉N/(d+1)

(〈k〉N )!]d/(d+1)

∑
k

′ ∫
Dω

∫
dλ

2π
eG(ω,λ,k,h), (F21)

where G(ω, λ, k) is given by

G(ω, λ, k, h) =
N∑

i=1

[iωiki + ln(ki!p(ki )) − ki ln γ (ki )] + iλ〈k〉/(d + 1) +
∑
α∈K

ln(1 + Q(k0, k1, . . . , kd )e−iλ−i
∑

r⊂α ωr−h),

and whereDω =∏N
i=1[dωi/(2π )]. Let us now introduce the functional order parameter [43,48,49]

c(ω, k) = 1

N

N∑
i=1

δ(ω − ωi )δ(k, ki ), (F22)

by enforcing its definition with a series of delta functions introducing for each choice of (ω, k) the term

1 =
∫

dc(ω, k)δ

(
c(ω, k) − 1

N

N∑
i=1

δ(ω − ωi )δ(k, ki )

)
=
∫

dĉ(ω, k)dc(ω, k)

2π/(N
ω)
ei
ωĉ(ω,k)[Nc(ω,k)−∑N

i=1 δ(ω−ωi )δ(k,ki )]. (F23)

After performing these operations, by imposing (d + 1)S = 〈k〉N where 〈k〉 =∑k kp(k), the partition function reads

Z = 1

N
∑

k

′ ∫
Dc(ω, k)

∫
Dĉ(ω, k)

∫
dλ

2π
eN f (λ,c(ω,k),ĉ(ω,k),h)
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with

f (λ, c(ω, k), ĉ(ω, k), h) = i
∫

dω
∑

k

ĉ(ω, k)c(ω, k) + iλ〈k〉/(d + 1) + � + ln
∫

dω
∑

m̂�k�K

p(k)
k!

[γ (k)]k
eiωk−iĉ(ω,k),

where � is given by

� = Nd

(d + 1)!

∑
k=(k0,k1,...,kd )|m�kr�K

∫
dD̂ω

∏
r

c(ωr, kr )Q(k0, k1, . . . , kd ) ln(1 + e−iλ−h−i
∑

r⊂α ωr ), (F24)

where Dc(ω, k) and Dĉ(ω, k) are functional measures. Performing a Wick rotation in λ and assuming z/Nd = e−iλ real and
much smaller than one, i.e., z/Nd � 1, which is allowed in the sparse regime K � KS , we can linearize the logarithm and
express � as

� = z

(d + 1)!

∑
k=(k0,k1,...,kd )|m�kr�K

Q(k0, k1, . . . , kd )
d∏

r=0

ν(kr ),

where

ν(k) =
∫

dωc(ω, k)e−iω. (F25)

The saddle-point equations determining the value of the partition function read for h → 0

−iĉ(ω, k) = e−iωγ̃ (k), c(ω, k) =
1

2π
p(k) k!

[γ (k)]k eiωk−iĉ(ω,k)

1
2π

∫
dω′∑

m̂�k�K p(k) k!
[γ (k)]k eiω′k−iĉ(ω′,k)

, � = 〈k〉
d + 1

, (F26)

where γ̃ (k) is

γ̃ (k) = z

d!

∑
k=(k1,...,kd )|m̂�kr�K

Q(k, k1, . . . , kd )
d∏

r=1

[∫
dωrc(ωr, kr )e−iωr

]
. (F27)

Let us first calculate the integral

1

2π

∫
dω

∑
m̂�k�K

p(k)
k!

[γ (k)]k
eiωk−iĉ(ω,k) = 1

2π

∫
dω

∑
m̂�k�K

k!

[γ (k)]k
p(k)eiωk+γ̃ (k)e−iω

,

where we have substituted the saddle-point expression for ĉ(ω, k). This integral can be also written as∫
dω

∑
m̂�k�K

k!

γ (k)k
p(k)eiωk

∞∑
h=0

(γ̃ (k))h

h!
e−iωh =

∑
m̂�k�K

p(k)

(
γ̃ (k)

γ (k)

)k

.

Let w indicate the value of this integral, i.e.,

w =
∑

m̂�k�K

p(k)

(
γ̃ (k)

γ (k)

)k

. (F28)

The functional order parameter c(ω, k) at the saddle-point solution can be expressed as

c(ω, k) = 1

2πw

k!p(k)

[γ (k)]k
eiωk+γ̃ (k)e−iω

. (F29)

With this expression, using a similar procedure we can express γ̃ (k) as

γ̃ (k) = z

d!wd

∑
k=(k1,k2,...,kr )|m̂�k′�K

Q(k0, k1, . . . , kd )
d∏

r=1

[
p(kr )

kr

γ̃ (kr )

(
γ̃ (kr )

γ (kr )

)kr
]
. (F30)

Combining this equation with the third saddle-point equation, we get

� = 1

w

∑
m�k�K

[
p(k)k

(
γ̃ (k)

γ (k)

)k]
= 〈k〉. (F31)

Given that γ (k) is defined through Eq. (58), it follows that

γ̃ (k) = γ (k), w = 1, z = d!

〈k〉d
. (F32)
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Finally using Eqs. (F32) we can derive the final expression for c(ω, k) given by

c(ω, k) = 1

2π

k!p(k)

[γ (k)]k
eiωk+γ (k)e−iω

. (F33)

From this equation of the functional order parameter we can derive the marginal for each link of the network, which is given by

pα = d!

(〈k〉N )d

∑
k=(k0,k1,...,kd )|m̂�kr�K

Q(k0, k1, . . . , kr )
d∏

r=0

[∫
dωrc(ωr, kr )e−iωr

]
, (F34)

yielding

pα =
∑

k|m̂�k�K

[
d∏

r=0

p(kr )

]
p(k0, k1, . . . , kr ). (F35)

Here P(k0, k1, . . . , kr ) indicates the probability of a link between node i and node j conditioned to the degree of the two nodes
ki = k and k j = k′, i.e.,

pα=[i0,i1,...,id ]|k(ir )=kr = p(k0, k1, . . . , kr ) = d!

(〈k〉N )d
Q(k0, k1, . . . , kr )

d∏
r=0

[
kr

γ (kr )

]
. (F36)

Note that for Q(k0, k1, . . . , kr ) = 1 it follows that γ (k) = 1, and for Q(k0, k1, . . . , kr ) =∏d
r=0 kr it follows that γ (k) = k and

hence in both cases we recover the exchangeable ensembles of uncorrelated simplicial complexes.
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