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The role of dispersal on the stability and synchrony of a metacommunity is a topic of considerable interest in
theoretical ecology. Dispersal is known to promote both synchrony, which enhances the likelihood of extinction,
and spatial heterogeneity, which favors the persistence of the population. Several efforts have been made to
understand the effect of diverse variants of dispersal in the spatially distributed ecological community. Despite
that environmental change strongly affects the dispersal, the effects of controlled dispersal on the metacom-
munity stability and their persistence remain unknown. We study the influence of limiting the immigration
using two-patch prey-predator metacommunity at both local and spatial scales. We find that the spread of the
inhomogeneous stable steady states (asynchronous states) decreases monotonically upon limiting the predator
dispersal. Nevertheless, at the local scale, the spread of the inhomogeneous steady states increases up to a critical
value of the limiting factor, favoring the metacommunity persistence, and then starts decreasing for a further
decrease in the limiting factor with varying local interaction. Interestingly, limiting the prey dispersal promotes
inhomogeneous steady states in a large region of the parameter space, thereby increasing the metacommunity
persistence at both spatial and local scales. Further, we show similar qualitative dynamics in an entire class
of complex networks consisting of a large number of patches. We also deduce various bifurcation curves and
stability conditions for the inhomogeneous steady states, which we find to agree well with the simulation results.
Thus, our findings on the effect of the limiting dispersal can help to develop conservation measures for ecological
communities.
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I. INTRODUCTION

Synchrony, referring to the coherent behavior of coupled
systems [1], has been studied extensively in numerous fields,
such as neuroscience, physiology, biology, ecology [2–4], etc.
In population dynamics, synchrony has received a great deal
of attention since it can elevate a high risk of extinction [4–7].
Indeed, understanding the factors and mechanisms that gener-
ate population synchrony in ecology is of great importance
for conservation and ecosystem management. Three major
mechanisms of population synchrony are dispersal, environ-
mental variation, and trophic interactions [4,8,9]. Among
these, dispersal is a widely studied phenomenon in population
dynamics [3,7,10,11]. Interestingly, not only can dispersal
lead to synchronized behavior among the spatially distributed
populations, but it can also rescue populations through re-
colonization [12–14]. Consequently, dispersal can also act as
a stabilizing mechanism in diverse systems and has a huge
impact on the persistence of ecological communities [6,15]. In
this scenario, a small change or control over the dispersal can
have tremendous consequences on the stability and ecosys-
tem functioning. In this study, we present how limiting the
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dispersal of both predator and prey populations can affect the
stability and persistence of a spatially distributed community.

Climate change affects the stability of many ecologi-
cal communities by altering their dispersal pattern and the
associated responses [16–19]. Major ecological responses to
environmental changes include adaptation, migration, and
extinction [20–24]. Species that lack the adaptation for envi-
ronmental variation tend to migrate to suitable habitats. While
species migrate, they can face an additional mortality due
to failed migration, misdirected migration, and overcrowding
[25]. Typically, species immigration is reduced by habitat loss,
habitat fragmentation, and anthropogenic changes [20,21,26].
Indeed, climate change and other factors can also limit the
species dispersal. In this connection, theoretical studies ad-
dressing the effect of controlled dispersal are rare. Despite a
plethora of studies focused on understanding the role of dis-
persal on the metacommunity persistence, it remains unclear
how a limited dispersal affects the metacommunity stability.
Since coupled ecological oscillators constitute an efficient
framework to understand the dynamical effects of dispersal,
in this work we address (1) how a limited dispersal of both
predator and prey populations affects the stability and per-
sistence of a spatially distributed community and (2) how
a limited dispersal along with local and spatial interactions
influences the synchronized and asynchronized dynamics of
the metacommunity.
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In this study, we address the dynamical effects of lim-
iting the dispersal of a predator-prey ecological system.
In particular, we investigate the metacommunity persis-
tence using homogeneous (synchronized) and inhomogeneous
(asynchronized) dynamical behavior by limiting the predator
and prey dispersal. Our results reveal that a small change
in the predator dispersal monotonically reduces the inho-
mogeneous behavior as a function of the spatial interaction
(predator and prey dispersal rates). In contrast, for a varying
local interaction (carrying capacity), a small decrease in the
predator dispersal initially increases the inhomogeneous states
up to a critical value of the limiting factor, and eventually the
inhomogeneous states lose their stability resulting in a homo-
geneous dynamical state for further decrease in the degree of
the limited dispersal. Moreover, there exists a critical value of
the limiting factor below which the metacommunity persists
and above which the metacommunity has a risk of extinction.
On the other hand, limiting the prey dispersal manifests the
stable inhomogeneous steady states in a large region of the
parameter space, thereby increasing the metacommunity per-
sistence. We also consider an entire class of complex networks
of metacommunity to corroborate robustness of the results.
We also determine transcritical and Hopf bifurcation curves
along with stability condition for the inhomogeneous steady
state for a possible case. We find that the stability condition
agrees well with the simulation results. This study reveals that
a controlled dispersal strongly influences the metacommunity
persistence by altering the asynchronized dynamics.

We organize the paper as follows. In the Models and
Methods section, we describe a two-patch predator-prey
metacommunity model with limiting factors in the diffusive
coupling. In the Results section, we present the effect of
limited predator and prey dispersal using local and spatial
interactions. We also deduce the stability condition for the
inhomogeneous steady (asynchronized alternative) states for
the possible scenario. Subsequently, we elucidate the exis-
tence of a critical value of the limited dispersal influencing
the synchronized behavior. Further, we extend our analysis
to the entire class of complex networks of metacommunity
to generalize our results. Finally, we discuss the ecological
significance of our findings in the Discussion section.

II. MODELS AND METHODS

A. A metacommunity model

We use the well-known Rosenzweig-MacArthur model
[27] to represent the prey-predator dynamics in each patch,
where the prey experiences logistic growth and the predator
exhibits a Holling type II functional response. We consider
two identical patches with diffusive coupling between them,
whose governing equation is represented as

dVi

dt
= rVi

(
1 − Vi

k

)
− aVi

Vi + b
Hi + dv (βVj − Vi ), (1a)

dHi

dt
= caVi

Vi + b
Hi − mHi + dh(αHj − Hi ), (1b)

where i, j = 1, 2 denote the patch number and i �= j. Vi and
Hi are the prey and predator population densities, respec-
tively. The parameter r denotes the intrinsic growth rate, k

denotes the carrying capacity, and a and c denote the max-
imum predation rate and predator efficiency, respectively. A
half-saturation constant is denoted by b and the mortality
rate of the predator by m. These parameters determine the
local dynamics of the prey and the predator in a given patch.
The spatial interactions of the prey and predator between
two patches are determined by the prey dispersal rate dv ,
predator dispersal rate dh, and the limiting factors α and β.
Dispersal between the patches is controlled by the limiting
factors, which can be decreased from 1 to zero. For α =
β = 1, the coupling is the usual diffusive coupling widely
employed in population ecology [7,11]. α < 1 accounts for
the limited predator dispersal by reducing the immigration of
the predator from patch j to patch i, while β < 1 accounts
for the limited prey dispersal by reducing the immigration
of the prey from patch j to patch i. Note that the cou-
pled Rosenzweig-MacArthur model with α = β = 1 has been
widely employed to understand the intriguing collective dy-
namical behaviors under various coupling scenarios [28–31].
In particular, the coexistence of a spatially synchronized state
and death state, leading to chimeralike state, has been reported
in a nonlocally coupled Rosenzweig-MacArthur model [28],
the phenomenon of rhythmogenesis including amplitude and
oscillation deaths has been reported under environmental cou-
pling [29], the effect of the trade-off between the mismatch in
the timescale of the species, dispersal, and external force on
the collective dynamics has been reported in the diffusively
coupled Rosenzweig-MacArthur model [30], and the effect of
prey-predator dispersal on the metacommunity persistence in
both constant and temporally varying environment has been
reported in spatially coupled Rosenzweig-MacArthur models
[31].

B. Rescaled version of coupled Rosenzweig-MacArthur model

The above coupled Rosenzweig-MacArthur model with α

and β limiting predator and prey dispersal rates, respectively,
can also be written as a rescaled model with standard diffusive
coupling represented as

dVi

dt
= reVi

(
1 − Vi

ke

)
− aVi

Vi + b
Hi + εv (Vj − Vi ), (2a)

dHi

dt
= caVi

Vi + b
Hi − meHi + εh(Hj − Hi ), (2b)

where, re = r − dv (1 − β ), ke = re
r k = 1 − dv

r (1 − β ), εv =
dvβ, me = m + dh(1 − α), and εh = dhα. Here re is the de-
creased growth rate, me is the increased mortality, ke is the
effective carrying capacity, and εv and εh are the rescaled
coupling coefficients. Since the range of β and α lies within
[1,0], re � r and me � m, resulting in a decreased prey growth
rate and increased predator death rate in the rescaled version
of the coupled Rosenzweig-MacArthur model. Note that the
results of both the rescaled model with standard diffusive
coupling and the original Rosenzweig-MacArthur model with
limiting predator and prey dispersal rates in the coupling
will be very similar to each other. In other words, the exact
mapping between these two models can also be interpreted
as that the observed results may not be a pure manifestation
of the topological features. However, we prefer to proceed
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FIG. 1. Homogeneous and inhomogeneous stable states of the metacommunity model: (a) homogeneous oscillatory state for dh = 0.2
and k = 0.2, (b) inhomogeneous oscillatory states are in in-phase for dh = 1 and k = 1.2, (c) inhomogeneous stable oscillatory states are in
antiphase for dh = 0.001 and k = 0.6, and (d) inhomogeneous steady states for dh = 0.45 and k = 0.6. Other parameters are r = 0.5, a = 1,
c = 0.5, b = 0.16, m = 0.2, dv = 0.001, and α = β = 1.

with our analysis without rescaling the original Rosenzweig-
MacArthur model but only by engineering the coupling strate-
gies even though limiting the predator and prey dispersal rates
effectively results in an increase in the predator’s death rate
me and a decrease in the prey growth rate re, respectively.

III. RESULTS

Before unraveling the effect of limited dispersal, we
illustrate various dynamical states admitted by the metacom-
munity model for distinct values of the system parameters in
Fig. 1. The limiting factors are fixed as α = β = 1, so that
the coupling is the regular diffusive coupling, which accounts
for the uncontrolled dispersal [31]. We numerically integrate
the governing equation of the metacommunity model using
the Runge-Kutta fourth-order algorithm with a step size of
h = 0.01. We have fixed the other parameters as r = 0.5,
a = 1, c = 0.5, b = 0.16, m = 0.2, and dv = 0.001 hereafter
unless otherwise specified. Note that we have chosen the
model parameters in order to get oscillatory dynamics in the
uncoupled model. Indeed, the uncoupled predator-prey model
exhibits the oscillatory dynamics when

k >
b[ac + m + (1 − α)dh]

ac + (α − 1)dh − m
.

The model (1) exhibits similar qualitative dynamics even for
other choices of the parameters. The homogeneous oscilla-
tory state is observed for the predator dispersal rate dh = 0.2
and for the carry capacity k = 0.2 as depicted in Fig. 1(a),
which has a high probability of extinction under environmen-
tal stochasticity during the epochs of low population density.
Phase synchrony (inhomogeneous oscillatory states) can be

observed for dh = 1.0 and k = 1.2 [see Fig. 1(b)], which is
also prone to global extinction like the homogeneous oscil-
latory state in Fig. 1(a), but with a lesser probability when
compared to the latter at low population density. Antiphase
synchronization (inhomogeneous oscillatory states) can be
observed in Fig. 1(c) for dh = 0.001 and k = 0.6, which has
a much lesser chance of extinction when compared to the
homogeneous and phase-synchronized populations. One can
also observe inhomogeneous steady states [see Fig. 1(d) for
dh = 0.45 and k = 0.6] of the populations, which usually
coexist with homogeneous (synchronized) oscillatory state,
resulting in alternative dynamical states for the population to
promote their persistence.

A. Limiting predator dispersal along with spatial interaction

In this section, we will unravel the effect of limiting
the predator dispersal on the dynamical transitions of the
metacommunity model as a function of spatial parameters
(predator and prey dispersal rates). We fix β = 1, so that the
preys are allowed to disperse completely, whereas only the
predator dispersal is controlled by decreasing the value of α.
Bifurcation diagrams, plotted using XPPAUT [32], illustrat-
ing the dynamical transitions as a function of the predator
dispersal rate are depicted in Fig. 2 for the carrying ca-
pacity k = 0.5. Extrema of stable homogeneous oscillatory
states are plotted as filled circles, while those of unstable
oscillatory states are represented by unfilled circles. Sta-
ble and unstable steady states are indicated by solid and
dashed curves (lines), respectively. For α = 1, the dispersal
among the metacommunity is the usual diffusive coupling
between the patches. Only stable homogeneous (synchro-
nized) oscillation among the populations is observed all along
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FIG. 2. Metacommunity dynamics for limiting the predator dispersal: Bifurcation diagram as a function of predator dispersal rate (dh) is
shown for different α values. Homogeneous and inhomogeneous states of the metacommunity are shown for (a) α = 1, (b) α = 0.985, and (c)
α = 0.98. For a small decrease in α, inhomogeneous stable steady states (red solid lines) become unstable. Here HB1 denotes Hopf bifurcation.
Other parameters are β = 1, r = 0.5, k = 0.5, a = 1, c = 0.5, b = 0.16, m = 0.2, and dv = 0.001

the low values of the predatory dispersal for α = 1, where
the homogeneous steady state is unstable [see Fig. 2(a)]. The
former prevails in the entire explored range of the predator
dispersal rate. Subcritical pitchfork bifurcation onsets at dh =
0.48 resulting in the coexistence of unstable homogeneous
and inhomogeneous steady states along with the homoge-
neous oscillatory state in the range dh ∈ [0.48, 0.597). A Hopf

bifurcation at dh = 0.597 leads to the onset of stable inho-
mogeneous steady (asynchronous) states, which coexist along
with unstable inhomogeneous oscillatory states. The onset of
the former gives rise to the emergence of alternative stable
states of the populations, thereby leading to an increase in the
degree of persistence of the metacommunity in the range of
dh ∈ [0.597, 1.0].
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FIG. 3. (a) Two-parameter bifurcation diagram in dh-dv space at different α values: the Hopf bifurcation (HB1) curve separates the region
into homogeneous and inhomogeneous stable states. The region below the curve indicates the spread of the inhomogeneous stable states, which
decreases for decreasing α. (b) The normalized area of the spread of the stable inhomogeneous steady states defined as R = S(α)/S(α = 1),
where S(α) denotes the spread of the stable inhomogeneous steady states for α. Other parameter values are β = 1, r = 0.5, k = 0.5, a = 1,
c = 0.5, b = 0.16, and m = 0.2.

We next control the dispersal rate of the predators using the
limiting factor α and investigate the effect of limited dispersal
on the metacommunity persistence. The dynamical transitions
of the prey density are depicted in Fig. 2(b) for α = 0.985.
It is evident from the figure that even a feeble decrease in
the limiting factor, which is a negligible fraction of decrease
in dispersal, results in drastic changes in the metacommunity
dynamics. The Hopf bifurcation, resulting from the onset of
alternative stable states, now emerges at a higher dispersal rate
at dh = 0.7745 reducing the tolerance of the metacommunity
persistence to a narrow range of the predator dispersal rate.
This effect of limiting dispersal increases to a larger degree
for further negligible decrease in the fraction of dispersal. As
a consequence, the alternative stable states lose its stability
in the explored range of dh even for α = 0.98, denoting a

very small decrease in the degree of the dispersal, endangering
the persistence of the metacommunity due to the presence of
the homogeneous (synchronous) oscillatory state as the only
dynamical state of the metacommunity, which is highly prone
to extinction. In the following, we will explore the effect
of controlling the predator dispersal on the metacommunity
dynamics as a function of the dispersal rate of both prey and
predator populations.

We have depicted the spread of the inhomogeneous steady
(asynchronous, alternative) states in the two-parameter bi-
furcation diagram in Fig. 3(a) for a different degree of the
dispersal by reducing the limiting factor α. A homogeneous
oscillatory state is stable in the entire parameter space, while
the inhomogeneous steady states are stable in the shaded
region, where both the former and the latter coexist. The
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transition from homogeneous to inhomogeneous steady state
is via the Hopf bifurcation as depicted in one-parameter
bifurcation diagrams in Fig. 2. Note that the Hopf bifurcation
curves are obtained from XPPAUT. The spread of the inho-
mogeneous steady states is at a maximum for α = 1, which
monotonically decreases for a further decrease in the degree of
the predator dispersal. Eventually, the inhomogeneous steady
states destabilized completely in the same parameter space,
where it was stable earlier, at a critical value of α resulting in
the homogeneous (synchronous) oscillatory state as the only
dynamical state of the metacommunity. The normalized area
of the spread of the stable inhomogeneous steady states de-
fined as R = S(α)/S(α = 1), where S(α) denotes the spread

of the stable inhomogeneous steady states for α, is depicted
in Fig. 3(b) as a function of α. It is evident from the fig-
ure that the spread of the stable inhomogeneous steady states
decreases monotonically and eventually vanishes at the crit-
ical value of α = αc ≈ 0.9818 corroborating the dynamical
transitions observed in the one- and two-parameter bifurcation
diagrams.

It is extremely difficult to extract the inhomogeneous
steady states and deduce the stability condition analytically
for finite values of prey dispersal rate dv . However, for dv = 0,
the inhomogeneous steady states (V ∗

1 , H∗
1 ,V ∗

2 , H∗
2 ) can be de-

duced as

V ∗
1 =

q1 +
√

q3 − q2
1

q2
,

V ∗
2 =

−
√

q2
4 − 4q5(αbkdh − bkdh − αbV ∗

1 dh − bkm + αkV ∗
1 dh − αV ∗2

1 dh) + q4

2q5
,

H∗
1 = − (b + V ∗

1 )
(
kV ∗

1 dv − kV ∗
2 dv − krV ∗

1 + rV ∗2
1

)

akV ∗
1

,

H∗
2 = − (b + V ∗

2 )
(
kV ∗

2 dv − kV ∗
1 dv − krV ∗

2 + rV ∗2
2

)
akV ∗

2

,

where

q1 = [
dh(2m − 2ac) + (m − ac)2 − (α2 − 1)d2

h

]
[ack + (α + 1)(b − k)dh + m(b − k)],

q2 = 2[ac + (α − 1)dh − m][ac − (α + 1)dh − m]2,

q3 = q2[ac − (α + 1)dh − m]{a2c2k2 + 2dh[ack(αb − k) + m(b2 + k2)] − 2ack2m − (α2 − 1)(b2 + k2)d2
h + m2(b2 + k2)},

q4 = −ack − bdh − bm + kdh + km, and

q5 = (−ac + dh + m).

The corresponding Jacobian matrix can be given as

A =

⎛
⎜⎜⎝

−dv + r(1 − 2V ∗
1

k ) + s1 − s2 −s5 dv 0
cs2 − cs1 cs5 − dh − m 0 αdh

dv 0 −dv + r(1 − 2V ∗
2

k ) + s3 − s4 −s6

0 αdh cs4 − cs3 cs6 − dh − m

⎞
⎟⎟⎠,

where, s1 = ah1V ∗
1

(b+V ∗
1 )2 , s2 = ah1

b+V ∗
1

, s3 = ah2V ∗
2

(b+V ∗
2 )2 , s4 = ah2

b+V ∗
2

, s5 =
aV ∗

1
b+V ∗

1
, and s6 = aV ∗

2
b+V ∗

2
. One can deduce the characteristic equa-

tion from the Jacobian as

λ4 − Tr(A)λ3 + a2λ
2 − a3λ + Det(A) = 0. (3)

The condition for the stability of the inhomogeneous steady
(alternative) states can be obtained in terms of the system
parameters as

Fα (a, b, c, k, m, r, α, dh ) = a3[Tr(A)a2 − a3]

− Tr(A)2Det(A) > 0. (4)

The inhomogeneous steady state is stable for Fα > 0 and
unstable for Fα < 0. F̂ = Fα/F1 is depicted in Fig. 4 as a
function of the limiting factor for three predator dispersal

rates dh = 0.8, 0.9, and 1. The value of the limiting factor
α at which F̂ = 0 corresponds to the critical value α = αc,
where there is a switch in the stability of the inhomogeneous
steady state. The Hopf bifurcation curves plotted using XP-
PAUT in Fig. 3(a) for the critical values of the limiting factor
αc = 0.984 and 0.982 coincide with the predator dispersal rate
(x axis where dv = 0) nearly at dh = 0.8 and 0.9, respectively,
corroborating the critical value of the limiting factor, at which
there is a change in the stability of the inhomogeneous steady
state, obtained using the analytical stability curve in Fig. 4.

B. Limiting predator dispersal along with local interaction

In this section, we investigate the influence of the limited
predator dispersal and a local parameter (carrying capacity) on
the dynamics of the metacommunity for β = 1. The predator
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FIG. 4. Analytical stability curve for different predator dispersal rates. The values of the parameters are the same as in Fig. 3.

density is depicted in the bifurcation diagram as a function of
the carrying capacity k (see Fig. 5). The prey and predator
dispersal rates are fixed as dv = 0.001 and dh = 1, respec-
tively. The dynamical states are the same as in Fig. 2. The
trivial steady state loses its stability via a transcritical bifur-
cation at k = kT B leading to a nontrivial homogeneous steady
state, which undergoes a supercritical Hopf bifurcation (HB1)
resulting in stable homogeneous oscillation and an unstable
steady state at k = 0.4 for α = 1 [see Fig. 5(a)]. Using the
standard linear stability analysis around the homogeneous
steady state ( kr+kdv (β−1)

r , 0,
kr+kdv (β−1)

r , 0), the transcritical bi-
furcation at k = kT B can be deduced as

kT B = b(dh + m − αdh)

ac + dh(α − 1) − m
.

Similarly, one can obtain the Hopf bifurcation

kHB = b[ac + m + (1 − α)dh]

ac + (α − 1)dh − m

by performing a linear stability analy-
sis around the homogeneous steady state
(V ∗, H∗,V ∗, H∗), where V ∗ = bm+bdh (1−α)

ac−m−dh (1−α) , H∗ =
bc{ack[r+dv (β−1)]−[br+kr+kdv (β−1)][m+dh (1−α)]}

k[ac−m+dh (α−1)]2 . Note that for
β = α = 1, the Hopf and pitchfork bifurcation points and
curves can be reduced to those in Ref. [31]. The stable
homogeneous oscillatory state prevails in the entire explored
range of k ∈ [0.4, 2]. A subcritical Hopf bifurcation (HB2)
emerges at k = 0.458 resulting in unstable inhomogeneous
oscillations and stable inhomogeneous steady states in
the range k ∈ [0.458, 1.043) leading to the existence of
alternative stable states of the metacommunity. The latter
loses its stability via a supercritical Hopf bifurcation (HB3)
at k = 1.043 resulting in stable inhomogeneous oscillations
in the range k ∈ [1.043, 1.226) and unstable inhomogeneous
steady states in the range k ∈ [1.043, 2.0], leaving behind
the synchronized oscillatory states as the only stable states

of the metacommunity A saddle-node bifurcation emerges
at k = 1.226. In the following, we will unravel the effect of
limited dispersal as a function of the carrying capacity.

The bifurcation diagram elucidating the dynamical tran-
sitions of the metacommunity for α = 0.95 is depicted in
Fig. 5(b). The dynamical states and their transitions are almost
similar to that discussed in Fig. 5(a) for α = 1.0. Nevertheless,
it is evident from the figure that the spread of the stable in-
homogeneous steady (asynchronous alternative states) states
increased to a larger extent, thereby increasing the degree of
persistence of the metacommunity. However, this tendency,
enhancing the spread of stable inhomogeneous steady states,
of the degree of the dispersal persists up to a critical value, and
then the steady states lose their stability eventually resulting in
the homogeneous (synchronous) oscillatory state as the only
dynamical state as illustrated in Fig. 5(c) for α = 0.9. The
spread of the stable inhomogeneous steady states for different
values of α is depicted in Fig. 6 as a function of the carrying
capacity k. It is also evident from the figure that the degree of
the spread of inhomogeneous steady states increases initially
for a small decrease in the dispersal and eventually decreases
for further decrease in the dispersal beyond a critical value of
α. The spread of the homogeneous and inhomogeneous states
is shown in Fig. 7 as two-parameter bifurcation diagrams in
(k, dh) parameter space for different degrees of the predator
dispersal. The homogeneous state prevails in the entire param-
eter space, whereas the stable inhomogeneous steady states
prevail only in the shaded regions leading to multistability. It
is also evident from the figures that the spread of the stable
inhomogeneous steady states increases for a small decrease in
the degree of the predator dispersal up to a critical value of
α, and then it starts decreasing as a function of α. The stable
inhomogeneous steady states eventually destabilized from the
entire parameter space, where it was stable, resulting in the
homogeneous states as the only dynamical states of the meta-
community. Thus, the degree of limiting the predator dispersal
results in increasing the persistence of the metacommuntiy
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FIG. 5. Metacommunity dynamics for limiting the predator dispersal: Bifurcation diagram as a function of the carrying capacity (k) is
shown for different α values. Homogeneous and inhomogeneous states of the metacommunity are shown for (a) α = 1, (b) α = 0.95, and
(c) α = 0.9. For a decrease in α, inhomogeneous stable steady states (red solid lines) become unstable. Here TB, HB, and SN correspond to
transcritical bifurcation, Hopf bifurcation, and saddle-node bifurcation, respectively. Other parameters are r = 0.5, a = 1, c = 0.5, b = 0.16,
m = 0.2, dv = 0.001, and dh = 1.

until a critical value, above which it is endangered by the
presence of homogeneous (synchronous) states as the only
dynamical states of the metacommunity.

C. Limiting prey dispersal

Now we will investigate the effect of limiting the prey
dispersal on the metacommunity dynamics as a function of

the spatial parameter. For complete dispersal of the predators,
that is, for α = 1, the effect of limiting the prey dispersal on
the metacommunity dynamics can be seen only in a narrow
range of the parameter space. Hence, we have fixed α = 0.985
and depicted the two-parameter bifurcation diagram in the
(dh, dv ) parameter space, where the effect of limiting the
prey dispersal is well pronounced, as evident from Fig. 8. A
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FIG. 6. Inhomogeneous states of the metacommunity for different α values: Each horizontal bar denotes the parameter range of k where the
metacommunity exhibits inhomogeneous stable steady (asynchronous alternative) states. Other parameters are β = 1, r = 0.5, a = 1, c = 0.5,
b = 0.16, m = 0.2, dv = 0.001, and dh = 1.

homogeneous oscillatory state is stable in the entire param-
eter space, while the inhomogeneous steady states are stable
only in the shaded region. Transition from the homogeneous
oscillatory state to inhomogeneous steady states is via the
supercritical Hopf bifurcation (HB1) curve, which is obtained
from XPPAUT. It is to be noted that for β = 1, that is, for
uncontrolled prey dispersal, the spread of the inhomogeneous

steady states is rather limited to smaller values of dv . However,
decreasing β, that is, limiting the prey dispersal, manifests
the stable inhomogeneous steady states in a larger region of
the (dh, dv ) parameter space. For instance, the spread of the
stable inhomogeneous steady states is depicted in Fig. 8 for
β = 0.7 and 0.5. Thus, limiting the prey dispersal results in
a large degree of the metacommunity persistence in contrast

FIG. 7. Two-parameter bifurcation diagram in (k, dh ) parameter space for different α values. Here the shaded region indicates the
parameter space where the metacommunity exhibits inhomogeneous stable states. Outside the shaded region, metacommunity exhibits only a
homogeneous state. For decreasing α, inhomogeneous region is increased at first, and then decreased. Other parameters are r = 0.5, α = 1,
β = 0.5, B = 0.16, m = 0.2, and dv = 0.001.
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FIG. 8. Two-parameter bifurcation diagram in dh-dv space at different β values: the Hopf bifurcation (HB1) curve separates the region
into homogeneous and inhomogeneous stable states. Other parameter values are r = 0.5, k = 0.5, a = 1, c = 0.5, b = 0.16, m = 0.2, and
α = 0.985.

to the effect of limiting the predator dispersal. It is also to be
noted that for different degrees of local parameter (carrying
capacity), limiting the prey dispersal results in an increase in
the metacommunity persistence.

D. Limiting predator dispersal in a larger network

To elucidate the generic nature of our results, we consider
an arbitrary network consisting of N patches, whose govern-
ing equation is represented as

dVi

dt
= rVi

(
1 − Vi

k

)
− aVi

Vi + b
Hi + dv

d j

N∑
j=1

gi j (βVj − Vi ),

(5a)

dHi

dt
= caVi

Vi + b
Hi − mHi + dh

d j

N∑
j=1

gi j (αHj − Hi ), (5b)

where i = 1, . . . , N . gi j encodes the topology of the un-
derlying network. gi j = g ji = 1 if ith and jth oscillators
are connected, otherwise gi j = g ji = 0. d j = ∑N

j=1 gi j corre-
sponds to the degree of the jth oscillator. The other parameters
are the same as in Eq. (1). We have fixed the values of
the parameters as β = 1.0, r = 0.5, a = 1, c = 0.5, b = 0.16,
m = 0.2, dh = 1 k = 0.5, and dv = 0.001. Here we have fixed
N = 20 patches. The dynamics of a random (Erdős-Rényi)
network is depicted as spatiotemporal and time series plots
in Fig. 9 for different degree of the predator dispersal. The
network exhibits a ten-cluster state, corresponding to ten sta-
ble steady states, for α = 1 as evident from the spatiotemporal
and time series plots in Fig. 9(a). Nevertheless, decreasing the
degree of dispersal to α = 0.99 results in an increase in the
number of clusters [see Fig. 9(b)]. Note that the multicluster
state corresponds to the alternative states of the metacommu-
nity elucidating a high degree of their persistence. However,

further decrease in the degree of the dispersal decreases the
number of multicluster and eventually manifests as a single-
cluster state, as depicted in Fig. 9(c) for α = 0.9, at a critical
value of α signaling a low degree of the metacommunity
persistence.

The number of clusters is depicted as a function of the
limiting factor α in Fig. 10(a) for the same values of the
parameters as in Fig. 9. The size of the multicluster states
initially varies for small decrease in the limiting factor
and eventually decreases resulting in a single-cluster state
(homogeneous state) at a critical value of α = αc = 0.907.
Thus, it is evident that the observed results of the two-patch
metacommunity hold for a random network of metacommu-
nity thereby corroborating the generic nature of the results.

Next denote ρ j ( j = 1, 2, . . . , N) as the eigenvalues of the
connectivity matrix gi j , characterizing an arbitrary network,
which can be ordered as 1.0 = ρ1 � ρ2 � · · · � −1/(N −
1) � ρN � −1.0 [33]. The smallest bounding eigenvalue of
the connectivity matrix gi j corresponding to the random net-
work employed in Figs. 9 and 10(a) is found to be ρN =
−0.987. It is known that the role of coupling topology on
the stability of the homogeneous steady state is determined by
ρN [34,35], which completely characterizes the effect of the
connection topology corresponding to an arbitrary network.
We have depicted the critical value of the limiting factor
αc as a function of ρN [36] in Fig. 10(b), which elucidates
that our results are generic to any arbitrary network. Note
that the entire range of ρN ∈ [−1, 0] captures all possible
coupling topologies. It is to be noted that limiting the prey
dispersal rate always results in multicluster states (an inhomo-
geneous steady state) promoting metacommunity persistence,
and hence the above analysis of calculating αc cannot be
applied to this case.

Further, different networks can be constructed for the same
probability of rewiring p from complex networks perspective.
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FIG. 9. Spatiotemporal dynamics of a random (Erdős-Rényi) network consisting of 20 patches: Top panel shows the spatial dynamics of
the metacommunity, whereas the bottom panel shows the respective time series. The metacommunity shows dynamical transitions from 10
clusters to 15 clusters, which are further organized into a single cluster for decreasing degree of the limiting factor (α). Here initial conditions
are the same for each α value. Other parameters are fixed as β = 1, r = 0.5, a = 1, c = 0.5, b = 0.16, m = 0.2, and dv = 0.001.

Noted that the range of p ∈ [0, 1] covers the entire class
of network topologies from regular, small world to random
(scale-free) networks [37]. The critical value of α is depicted
in Fig. 11 as a function of p with error bars characterizing
the effect of various network sizes N . Specifically, we have
chosen N = 20 to 500 in steps of 10. The mean of all the
critical values of the limiting factor corresponding to each N is
indicated by the filled circle for each p, while their variance is
denoted by the error bars. The inset in Fig. 11 clearly depicts
the error bars. The critical value of the limiting factor in the
entire range of p again corroborates the generic nature of our
results.

IV. DISCUSSION

In this study, we have addressed how limiting both predator
and prey dispersal of a spatially distributed community affects
its stability and persistence. Using the homogeneous (syn-
chronized) and inhomogeneous (asynchronized) dynamical
states of a diffusively coupled predator-prey metacommunity,
we have elucidated the importance of controlled dispersal at
local and spatial scales. At spatial scale, a small decrease in
the predator immigration through the limiting factor reduces
the metacommunity persistence by inducing the homogeneous
state. On the other hand, at local scale, metacommunity per-
sistence is increased for a small decrease in the predator
immigration up to a critical value and then decreases for
further increase in the degree of the limited predator disper-
sal. Moreover, our findings reveal that there exists a critical
value for the limiting factor, below which metacommunity
persists and above which metacommunity goes to a high-risk
state. However, limiting the prey dispersal promotes inho-
mogeneous steady states in a large region of the parameter
space, thereby increasing the metacommunity persistence at

both spatial and local scales. Further, we have showed the
similar qualitative dynamics for an entire class of complex
networks consisting of a large number of patches illustrating
the robustness of our results, which remains unaltered in a
large range of model parameters. Thus, our findings reveal that
dispersal-dependent responses strongly influence the meta-
community persistence. Note that the spread of homogeneous
and inhomogeneous steady states in the one-parameter bifur-
cation diagrams and two phase diagrams get rescaled only for
the rescaled model (2).

Dispersal is a fundamental process for structuring natural
ecosystems, and it is widely recognized in conservation and
ecosystem management [3,11]. Since dispersal can rescue
local populations from complete extinction, it is an important
stabilizing mechanism for various ecological communities.
However, dispersal induces synchrony among spatially con-
nected populations which can elevate a high risk of extinction
as compared to asynchronized dynamics [4,6]. Hence, theo-
retical understanding of population synchrony controlled by
dispersal has received significant attention. Numerous theo-
retical studies have addressed the factors and mechanisms of
synchrony using various coupling strategies [7,9,29,38]. Our
study reveals the synchronized and asynchronized dynamics
of the metacommunity through a control on the diffusive
dispersal. In particular, a decrease in the species immigra-
tion destabilizes the metacommunity through synchronized
behavior. Dispersal stabilizes the metacommunity through a
source-sink behavior whereby some patches have a high popu-
lation abundance and others have a low population abundance
[39]. Various inhomogeneous dynamical states shown in this
study represent the source-sink behavior, which in turn influ-
ences the metacommunity persistence.

“Paradox of enrichment,” referring to the existence of high-
amplitude extinction-prone cycles due to increasing carrying
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FIG. 10. (a) Number of clusters as a function of the limiting factor α for a random network of 20 nodes showing the transition from
inhomogeneous steady states to homogeneous steady state, and (b) αc as a function of the least bounding eigenvalue ρN ∈ [−1, 0] of the
connectivity matrix gi j , characterizing the entire class of complex networks.

capacity, can destabilize the ecological community [40]. Our
findings on varying carrying capacity with a controlled dis-
persal elucidated the solution to the “paradox of enrichment.”
In particular, our results are in line with previous studies that
dispersal can prevent the extinction-prone cycles by creating
inhomogeneous states and provide a solution to the paradox
of enrichment [41–43]. In addition, our findings reveal that
the inhomogeneous states can be manifested as homogeneous
state by limiting the dispersal. Thus, limiting the dispersal
offers insights to understand the stability and persistence of
a spatially distributed community through synchronized and
asynchronized dynamics.

In summary, this study presents the effect of limiting
dispersal on metacommunity persistence at local and spa-
tial scales. The dynamics that we observe may apply to
other ecological scenarios such as environmental stochas-
ticity, spatial heterogeneity, and higher tropical interactions

(i.e., foodwebs). Since these ecological scenarios increase the
complexity of systems, further investigation is required to un-
derstand how limiting the dispersal influences the stability of
ecological communities. Overall, this study offers insights on
the stability and persistence of spatially distributed ecological
communities.
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