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We investigate the phase diagram of the Sakaguchi-Kuramoto model with a higher-order interaction along
with the traditional pairwise interaction. We also introduce asymmetry parameters in both the interaction terms
and investigate the collective dynamics and their transitions in the phase diagrams under both unimodal and
bimodal frequency distributions. We deduce the evolution equations for the macroscopic order parameters
and eventually derive pitchfork and Hopf bifurcation curves. Transition from the incoherent state to standing
wave pattern is observed in the presence of the unimodal frequency distribution. In contrast, a rich variety of
dynamical states such as the incoherent state, partially synchronized state-I, partially synchronized state-II, and
standing wave patterns and transitions among them are observed in the phase diagram via various bifurcation
scenarios, including saddle-node and homoclinic bifurcations, in the presence of bimodal frequency distribution.
Higher-order coupling enhances the spread of the bistable regions in the phase diagrams and also leads to the
manifestation of bistability between incoherent and partially synchronized states even with unimodal frequency
distribution, which is otherwise not observed with the pairwise coupling. Further, the asymmetry parameters
facilitate the onset of several bistable and multistable regions in the phase diagrams. Very large values of the
asymmetry parameters allow the phase diagrams to admit only the monostable dynamical states.
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I. INTRODUCTION

Coupled nonlinear oscillators constitute an excellent
framework to unravel and understand a plethora of intriguing
collective dynamics and patterns observed in a wide variety of
natural systems [1–5]. In particular, the phenomenon of syn-
chronization has been widely studied in the past two decades
due to its manifestation in several natural and human-made
systems [4–7]. For instance, collective synchrony includes
synchronized firing of cardiac pacemaker cells [8], syn-
chronous emission of light pulses by groups of fireflies [9],
chirping of crickets [10], synchronization in ensembles of
electrochemical oscillators [11], synchronization in human
cerebral connectome [12], and synchronous clapping of audi-
ence [13]. Incredibly, the Kuramoto model has been employed
as a paradigmatic model to understand diverse emerging
nonlinear phenomena across various disciplines, including
physics, biology, chemistry, ecology, electrical engineering,
neuroscience, and sociology [1–5], as it allows for an exact
analytical treatment in most cases in explaining macroscopic
dynamics.

The Kuramoto model comprises of N globally coupled
phase oscillators with distributed natural frequencies interact-
ing symmetrically with one another through the sine of their
phase differences. Considering symmetric interaction in the
dynamics is only an approximation that may simplify the the-
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oretical analysis, which indeed may fail to capture important
phenomena occurring in real systems. In contrast to the stan-
dard Kuramoto model, interactions between oscillators may
be asymmetric, in general. For example, asymmetric interac-
tion leads to novel features such as families of traveling wave
states [14,15], glassy states, and super-relaxation [16], and so
forth, and has been invoked to discuss coupled circadian neu-
rons [17], dynamic interactions [18,19], etc. A generalization
of the Kuramoto model that accounts for asymmetric inter-
action is the so-called Sakaguchi-Kuramoto model, whose
dynamics can be described by the equation of motion [20–22]

dθ j

dt
= ω j + K

N

N∑
k=1

sin(θk − θ j + α), (1)

where 0 � α < π/2 is the asymmetry parameter. The model
(1) and its variants have been successfully employed to study
a variety of dynamical scenarios such as disordered Josephson
series array [23], multiplex network [24–27], time-delayed
interactions [28], hierarchical populations of coupled oscilla-
tors [29], chaotic transients [30], dynamics of pulse-coupled
oscillators [31], etc.

Majority of the investigations in either Kuramoto or
Sakaguchi-Kuramoto models were carried out with pair-
wise interactions. Nevertheless, in many realistic systems,
such as Huygens pendulum, neuronal oscillators, genetic
networks, globally coupled photochemical oscillators, etc.
[32–35], higher-order Fourier harmonics in the coupling
function [36,37] or higher-order couplings [38,39] play a
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predominant role in shaping the collective dynamics. Re-
cently, it has been shown that higher-order couplings lead to
added nonlinearity in the macroscopic system dynamics that
induce abrupt synchronization transitions via hysteresis and
bistability [35]. Further, higher-order interactions are shown
to stabilize strongly synchronized states even when the pair-
wise coupling is repulsive, which is otherwise unstable [40].
Abrupt or explosive synchronization was shown to manifest
in networks in which the degrees of the nodes are positively
correlated with the frequency of the node dynamics. In con-
trast, higher-order interactions are shown to be responsible for
the rapid switching to synchronization, leading to explosive
synchronization, in many biological and other systems with-
out the need for particular correlation mechanism between the
oscillators and the topological structure [41].

In this work, we unravel the influence of the asymmetry
parameters in the phase diagram of the Sakaguchi-Kuramoto
model with pairwise and higher-order couplings under the
influence of both the unimodal and bimodal distributions of
the natural frequencies. We employ two different asymme-
try parameters, namely α1 in the pairwise coupling and α2

in the higher-order coupling. The effect of interplay of the
asymmetry parameters and the higher-order coupling on the
collective dynamical behavior of the Sakaguchi-Kuramoto
model will be captured in the two parameter phase diagrams.
We consider five different cases, namely (i) α1 = α2 = 0; (ii)
α1 = α2 �= 0; (iii) α1 �= 0, α2 = 0; (iv) α2 �= 0, α1 = 0;
and (v) α1 > 0 and α2 > 0 to unravel the emerging col-
lective dynamics and their respective phase diagrams. We
observe incoherent state (IC), partially synchronized state-I
(PS-I), partially synchronized state-II (PS-II), and standing
wave (SW) in the phase diagrams along with various bistable
and multistable regions. We also deduce the evolution equa-
tions for the macroscopic order parameters by employing
the Ott-Antonsen ansatz [42,43]. We derive analytical stabil-
ity conditions for the incoherent state, which results in the
pitchfork and Hopf bifurcation curves, from the governing
equations of motion of the macroscopic order parameters.
Furthermore, we obtain the saddle-node and homoclinic bi-
furcation curves using the software package XPPAUT [44],
which leads to several bifurcation transitions across the vari-
ous dynamical states. We find that the higher-order coupling
essentially facilitates enlargement of bistable states. Higher-
order coupling also facilitates the onset of the bistability
between the IC and PS-I states even for the unimodal fre-
quency distribution, a phenomenon which cannot be seen in
the Sakaguchi-Kuramoto model with pairwise coupling and
unimodal distribution. Furthermore, a low value of α1 for
α2 = 0 and a large value of α2 for α1 = 0 facilitate the onset of
PS-II and bistable region R3 (bistability between PS-I and PS-
II) in the phase diagram. Very large values of α1 and α2 allow
the phase diagrams to admit only the monostable dynamical
states despite the fact that appropriate values of the asymmetry
parameters induce bistable and multistable states. It is to be
noted that bistable (multistable) regions are characterized by
abrupt transitions among the dynamical states.

The paper is organized as follows. We introduce the
Sakaguchi-Kuramoto model in Sec. II. We deduce the evo-
lution equations corresponding to the macroscopic order
parameters using the Ott-Antonsen ansatz in Sec. III. In

Sec. IV, we illustrate the phase diagrams of the model with
both unimodal and bimodal frequency distribution for various
possible combinations of the asymmetry parameters α1 and α2

and discuss the dynamical transitions across various bifurca-
tion scenarios demarcating the dynamical states in the phase
diagrams. Finally, we will provide a summary and conclusions
in Sec. V.

II. MODEL

The N-coupled Sakaguchi-Kuramoto model with a specific
higher-order interaction is governed by the set of N coupled
first-order nonlinear ordinary differential equations (ODEs),

θ̇i = ωi + k

[
1

N

N∑
j=1

sin(θ j − θi − α1)

+ 1

N3

N∑
j=1

N∑
k=1

N∑
l=1

sin(θ j + θk − θl − θi − α2)

]
,

i = 1, 2, . . . , N, (2)

where θi is the phase of the ith oscillator, ωi is its natural
frequency, which is typically assumed to be drawn from a
well-behaved distribution g(ω); α1 and α2 are the asymmetry
parameters of pairwise and higher-order interactions, respec-
tively, and k is the coupling strength of both pairwise and
higher-order interactions [36,39–41]. The Kuramoto model
with higher-order interactions is known to describe topolog-
ical structures such as higher-order simplexes or a simplicial
complex [45,46], which are relevant to brain dynamics, neu-
ronal networks, and biological transport networks [47,48].
In recent times, neuroscience studies have confirmed the
existence of higher-order interactions between neurons. For
example, astrocytes and other glial cells are thought to be a
biological source of high-order interactions since they interact
with hundreds of synapses and actively regulate their activity
[48,49].

We consider a bimodal frequency distribution for g(ω) in
our system. Specifically, we consider the Lorentzian distribu-
tion of unimodal and bimodal frequency distribution,

g(ω) = γ

π ((ω − ω0)2 + γ 2)
; γ > 0. (3)

g(ω) = γ

π

{
1

[(ω − ω0)2 + γ 2]
+ 1

[(ω + ω0)2 + γ 2]

}
, γ > 0.

(4)

Here γ is the width parameter (half width at half maximum)
of each peak and ±ω0 are the location of their peaks. A more
physically relevant interpretation of ω0 is that it defines the
detuning in the system (which is proportional to the separation
between the two central frequencies). Note that the form of
the distribution g(ω) given in (4) is symmetric about zero.
Another point to observe is that g(ω) is bimodal if and only
if the peaks are sufficiently far apart compared to their widths.
Specifically, one needs ω0 > γ/

√
3. Otherwise, the distribu-

tion is unimodal and the classical results still apply.
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III. EVOLUTION EQUATION OF THE MACROSCOPIC
ORDER PARAMETERS

In the thermodynamic limit (N → ∞), the system of
Eqs. (2) can be reduced to a finite set of macroscopic variables
in terms of the macroscopic order parameters governing the
dynamics of the original system of equations. In this limit,
the discrete set of equations can be extended to a continuous
formulation using the probability density function f (θ, ω, t ),
where f (θ, ω, t )dθ characterizes the fraction of the oscilla-
tors with phases between [θ, θ + dθ ] along with the natural
frequency ω at a time t .

The distribution is 2π periodic in θ and obeys the normal-
ization condition∫ 2π

0
dθ f (θ, ω, t ) = g(ω) ∀ ω. (5)

The evolution of f (θ, ω, t ) follows the continuity equation

∂ f

∂t
+ ∂ ( f v)

∂θ
= 0, (6)

where v(θ, ω, t ) = dθ
dt is the angular velocity at position θ at

time t . From Eq. (2), one can get

v(θ, ω, t ) = ω + k

2i
{[Ze−i(θ+α1 ) − Z�ei(θ+α1 )]

+ [Z2Z�e−i(θ+α2 ) − Z�2Zei(θ+α2 )]}, (7)

where Z (t ) is the macroscopic order parameter defined as

Z =
∫ ∞

−∞
g(ω)

∫ 2π

0
f (θ, ω, t )eiθ dθdω, (8)

and Z� is its complex conjugate. Expanding f (θ, ω, t ) in
Fourier series, we have

f (θ, ω, t ) = g(ω)

2π

{
1 +

∞∑
n=1

[an(ω, t )einθ ] + c.c.

}
, (9)

where the prefactor of g(ω) ensures that the normalization (5)
is satisfied, an(ω, t ) is the nth Fourier coefficient, while c.c.
denotes the complex conjugation of the preceding sum within
the brackets. Using the Ott-Antonsen ansatz [42,43],

an(ω, t ) = [a(ω, t )]n, (10)

one can obtain
∂a

∂t
+ iωa + k

2
[(Za2e−iα1 − Z�eiα1 )

+ |Z|2(Za2e−iα2 − Z�eiα2 )], (11)

where

Z =
∫ ∞

−∞
a�(t, ω)g(ω)dω. (12)

A. Unimodel frequency distribution

The arbitrary function a(ω, t ) is assumed to satisfy
|a(ω, t )| < 1, together with the requirements that a(ω, t ) may
be analytically continued in the whole of the complex-ω plane
and it has no singularities in the lower-half complex-ω plane.
Further, |a(ω, t )| → 0 as Im(ω) → −∞. If these conditions

are satisfied for a(ω, 0), then as shown in (10), they continue
to be satisfied by a(ω, t ) as it evolves under Eqs. (11) and (12).
Expanding the unimodal frequency distribution g(ω), Eq. (3),
in partial fractions as

g(ω) = 1

4π i

{
1

[(ω − ω0) − iγ ]
− 1

[(ω − ω0) + iγ ]

}
, (13)

and evaluating Eq. (12) using the appropriate contour integral,
the order parameter becomes

Z (t ) = a�(ω0 − iγ , t ). (14)

Substituting the above in Eq. (11), one obtains a complex
ODE, describing the evolution of the suborder parameter,

∂Z

∂t
+ (γ + iω0)Z + k

2
Z{(|Z|2e−iα1 − eiα1 )

+ |Z|2[|Z|2e−iα2 − eiα2 ]} (15)

Rewriting the above equation in terms of r and ψ as Z = reiψ ,
one obtains the evolution equations for r and ψ as

ṙ = − γ r − k

2
r[(r2 − 1) cos(α1) + r2 cos(α2)(r2 − 1)]

ψ̇ = − ω0 − k

2
[(r2 + 1)sin(α1) + r2sin(α2)(r2 + 1)]. (16)

The above reduced low-dimensional equations describe the
dynamics of the model (2) with unimodal frequency distri-
bution. Then r(t ) = | 1

N

∑N
j=1 eiθ j (t )| takes either a null value,

when the dynamics corresponds to the incoherent state or os-
cillating values corresponding to the standing wave behavior
of the Sakaguchi-Kuramoto oscillators.

B. Bimodal frequency distribution

Now, we will deduce the governing equations for the
macroscopic variables for the model (2) corresponding to
the bimodal frequency distribution. Expanding the bimodal
frequency distribution g(ω), Eq. (4), in partial fractions as

g(ω) = 1

4π i

{
1

[(ω − ω0) − iγ ]
− 1

[(ω − ω0) + iγ ]

+ 1

[(ω + ω0) − iγ ]
− 1

[(ω + ω0) + iγ ]

}
, (17)

and evaluating Eq. (12) using the appropriate contour integral,
the order parameter becomes

Z (t ) = 1
2 [z1 (t ) + z2 (t )], (18)

where

z1,2 (t ) = a�(±ω0 − iγ , t ). (19)

Substituting the above in Eq. (11), one obtains two coupled
complex ODEs, describing the evolution of two suborder pa-
rameters,

ż1 = − (γ + iω0)z1 + k

4

{
(z1 + z2)e−iα1 − z2

1(z�
1 + z�

2)eiα1

+ |z1 + z2|2
4

[
(z1 + z2)e−iα2 − z2

1(z�
1 + z�

2)eiα2
]}

, (20)

034307-3



M. MANORANJANI et al. PHYSICAL REVIEW E 105, 034307 (2022)

ż2 = − (γ − iω0)z2 + k

4

{
(z1 + z2)e−iα1 − z2

2(z�
1 + z�

2)eiα1

+ |z1 + z2|2
4

[
(z1 + z2)e−iα2 − z2

2(z�
1 + z�

2)eiα2
]}

, (21)

where an overdot represents the time derivative. Rewrit-
ing Eqs. (20) and (21) in terms of r1,2 and ψ1,2 , as z1,2 =
r1,2 e−iψ1,2 and defining the phase difference as ψ = ψ1 −
ψ2 , the dimensionality can be further reduced to three
as follows:

ṙ1 = −γ r1 − k

16

(
r2

1
− 1

){(
r2

1 + r2
2 + 2r1r2 cos[ψ]

)
[cos(α2)r1 + cos(ψ + α2)r2] + 4[cos(α1)r1 + cos(ψ + α1)r2]

}
, (22a)

ṙ2 = −γ r2 − k

16

(
r2

2
− 1

){(
r2

1 + r2
2 + 2r1r2 cos[ψ]

)
[cos(ψ − α2)r1 + cos(α2)r2] + 4[cos(ψ − α1)r1 + cos(α1)r2]

}
, (22b)

ψ̇ = −2ω − k

16r2

(
1 + r2

2

){
4r2 sin(α1) − 4r1 sin(ψ − α1) + [r2 sin(α2) − r1 sin(ψ − α2)]

(
r2

1 + r2
2 + 2r1r2 cos[ψ]

)}
− k

16r1

(
1 + r2

1

){
4r2 sin(ψ + α1) + 4r1 sin(α1) + [r2 sin(ψ + α2) + r1 sin(α2)]

(
r2

1 + r2
2 + 2r1r2 cos[ψ]

)}
. (22c)

The above system of three coupled nonlinear ordinary
differential equations are the evolution equations for the
macroscopic variables of the model (2) and describes its dy-
namics faithfully. Note that the partially synchronized states
and standing wave patterns of the Sakaguchi-Kuramoto model
(2) correspond to the periodic and quasiperiodic orbits, re-
spectively, in the above reduced model (that is the system
of three coupled ordinary differential equations governing the
evolution of the macroscopic order parameters) for nonzero
α1,2. However, for the null value of the asymmetry parameters,
the partially synchronized states and standing wave patterns
correspond to the steady states and periodic orbits, respec-
tively.

IV. PHASE DIAGRAMS OF THE SAKAGUCHI-KURAMOTO
MODEL WITH HIGHER-ORDER COUPLING

In this section, we will proceed to understand the dy-
namics of the generalized Sagakuchi-Kuramoto model by
constructing appropriate two parameter phase diagrams and
classifying the underlying states from a numerical analysis of
the evolution equations of the macroscopic order parameters
Eqs. (16) and (22) corresponding to unimodal and bimodal
frequency distributions, respectively. We also solve the asso-
ciated Sakaguchi-Kuramoto model by numerically integrating
Eq. (2) to verify the dynamical transitions in the phase di-
agrams. Specifically, we will unravel the phase diagrams of
the Sakaguchi-Kuramoto model with higher-order coupling
and unimodal frequency distribution and as well as that with
bimodal frequency distribution for various possible combina-
tions of the asymmetry parameters. The number of oscillators
is fixed as N = 104 and we use the standard fourth-order
Runge-Kutta integration scheme with integration step size
h = 0.01 to solve the Sakaguchi-Kuramoto model (2).

A. Unimodal frequency distribution

The reduced low-dimensional equations (16), describ-
ing the dynamics of the Sakaguchi-Kuramoto model with
higher-order coupling and unimodal frequency distribution, is
characterized by a trivial steady state (r = 0), corresponding
to the IC and an oscillatory state corresponding to the SW

nature of the Sakaguchi-Kuramoto oscillators. The stability
determining eigenvalues of the trivial steady state can be ob-
tained as

λ1,2 = −2γ + k cos(α1) ± √
�

2
, (23)

where � = k sin(α1)[4ω0 + k sin(α1)] + 4ω2
0. The stability

condition or curve for the onset of IC is obtained as

kHB = 2γ sec(α1). (24)

Phase diagrams of the Sakaguchi-Kuramoto model with
higher-order coupling and unimodal frequency distribution
for different combinations of the asymmetry parameters α1

and α2 are depicted in Fig. 1. The line connected by filled
squares corresponds to the Hopf bifurcation condition (24).
In the absence of both the asymmetry parameters, that is, for

ω
0/

γ

k/γ

 0

 1

 2

 1  2  3  4

ω
0/

γ

k/γ

 0

 1

 2

 1  2  3  4

ω
0/

γ

k/γ

 0

 1

 2

 1  2  3  4

ω
0/

γ

k/γ

 0

 1

 2

 1  2  3  4

(a)

IC SW

(b)

IC SW

IC SW

(d)

SW
IC

(c)
R1

FIG. 1. Phase diagrams in the (k/γ − ω0/γ ) plane. (a) α1,2 =
0; (b) α1 = α2; (c) α1 = 1.0, α2 = 0.0; and (d) α2 = 1.0, α1 = 0.0.
Incoherent state and standing wave are denoted by IC and SW, re-
spectively. Phase space with bistability (gray shaded region) between
IC and SW is denoted as R1. The Hopf bifurcation (line connected by
filled squares) curves are the analytical stability curves. Homoclinic
(dotted-dashed line) bifurcation curve is obtained from XPPAUT.
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FIG. 2. Order parameter (R), obtained from numerical analysis
of Eq. (2) for unimodal distribution, illustrating the nature of the
dynamical transitions for (a) α1,2 = 0 and (b) α1 = 1, α2 = 0.0.

α1 = α2 = 0, there is a transition from the incoherent state to
the standing wave pattern as a function of k [see Fig. 1(a)]
via the Hopf bifurcation curve. Similar dynamical transition
is also observed for the other choices of the asymmetry pa-
rameters, namely for α1 = α2 = 1.0 [see Fig. 1(b)] and for
α1 = 0 and α2 = 1.0 [see Fig. 1(d)] except for the region
shift. For α1 = 1.0 and α2 = 0.0, one can observe bistability
between the IC and SW (indicated by gray shaded region,
marked as R1) in Fig. 1(c). The bistable region is bounded
by the homoclinic (indicated by dotted-dashed line) and Hopf
bifurcation curves. Note that the homoclinic bifurcation curve
is obtained from XPPAUT. It is also to be noted that the
dynamical transition is independent of ω0 in this case of
unimodal frequency distribution, in general.

Now the time-averaged order paramter R =
limT →∞ 1

T

∫ T
0 dt ′r(t ′) estimated from the simulation of

the Sakaguchi-Kuramoto model, by numerically integrating
Eq. (2), for the unimodal frequency distribution is depicted in
Fig. 2 for two different values of the asymmetry parameters.
The line connected by open circles corresponds to the forward
trace, while the line connected by filled circles corresponds
to the backward trace. For α1 = α2 = 0, there is a transition
from the incoherent state (characterized by the null value
of R) to the standing wave pattern, corroborated by a finite
value of R [see Fig. 2(a)], which is in accordance with
the phase diagram in Fig. 1(a) that is obtained from the
reduced low-dimensional systems (16). The dotted line is the
analytical Hopf bifurcation curve kHB across which there is
a transition. A similar dynamical transition will be observed
for the other combinations of the asymmetry parameters
except for the region shift as in the phase diagrams (see
Fig. 1) and hence they are not shown here to avoid repetitions.
Nevertheless, there is a bistability between IC and SW
as in the phase diagram for α1 = 1.0 and α2 = 0.0 [see
2(b)] bounded by the homoclinic and Hopf bifurcation
curves. Thus, direct numerical simulation of the model
equation agrees well with the dynamical transitions observed
from their reduced low-dimensional equations corresponding
to the macroscopic order parameters.

B. Bimodal frequency distribution

1. Case I (α1 = α2 = 0)

In order to appreciate and understand the effect of the
asymmetry parameters α1 and α2 on the dynamics as repre-

ω
0/

γ

k/γ

 0

 1.5

 3

 2  4  6

IC

R1
R2

PS-I

SW

FIG. 3. Phase diagram in (k/γ − ω0/γ ) plane for α1 = α2 = 0.
Incoherent state, partially synchronized state-I and standing wave
are denoted by IC, PS-I, and SW, respectively. Phase space with
bistability between IC and PS-I states is denoted as R1 and that
between SW and PS-I is denoted as R2. The pitchfork (solid black),
Hopf bifurcation (line connected by filled squares), and saddle-
node (dashed line) curves are the analytical stability curves. The
homoclinic (dotted-dashed line) bifurcation curve is obtained from
XPPAUT.

sented by the phase diagram, one should first be familiar with
the phase diagram of the Sakaguchi-Kuramoto model with
higher-order coupling and bimodal frequency distribution in
the absence of the asymmetry parameters. The phase diagram
in the (ω0/γ -k/γ ) plane for the case α1 = α2 = 0 is depicted
in Fig. 3. The dynamical states in the phase diagram are
distinguished by features which are essentially based on the
asymptotic behavior of r(t ). The IC, partially synchronized
state (PS-I) and SW along with the bistable regimes (R1
and R2) among the observed dynamical states are depicted
in the phase diagram. The parameter space marked as R1
corresponds to the bistable regime between IC and PS-I states,
while that indicated as R2 corresponds to the bistable regime
between SW and PS-I states. The null value of r(t ) character-
izes the incoherent state, while a finite value of r(t ) indicates
partially synchronized states. The oscillating nature of r(t )
confirms the standing wave.

The stable regions of the incoherent state in the phase
diagram can be inferred from the dynamical equations of
the reduced macroscopic variables given in Eqs. (20) and
(21). The phases of the oscillators are uniformly distributed
between 0 to 2π for the incoherent state and hence it is charac-
terized by z1 = z2 = 0. Performing a linear stability analysis
of the fixed point (z1, z2) = (0, 0), one obtains the condition
for stability as

kPF = 2
(
γ 2 + ω2

0

)
γ

, for ω0/γ < 1, (25)

kHB = 4γ for ω0/γ � 1. (26)

Here KPF corresponds to the pitchfork bifurcation curve across
which the fixed point (z1, z2) = (0, 0) (incoherent state)
loses its stability leading to the inhomogeneous steady state
(PS-I state), while KHB corresponds to the Hopf bifurcation
curve across which the incoherent state loses its stability re-
sulting in the standing wave pattern. The pitchfork bifurcation
curve, indicated by the solid line in Fig. 3, serves as the
boundary between the incoherent and partially synchronized
state for ω0/γ < 1. The Hopf bifurcation curve, denoted
by the line connected by filled squares, demarcates the inco-
herent state and standing wave region of the phase diagram.
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FIG. 4. Order parameter (R), obtained from numerical analysis of (2) with bimodal distribution, illustrating the nature of dynamical
transitions for α1,2 = 0 for various ratios of ω0/γ : (a) 0.75, (b) 1.5, and (c) 2.

The dashed line in Fig. 3 corresponds to the saddle-node
bifurcation curve, while the homoclinic bifurcation curve is
denoted as the dotted-dashed line. The latter is obtained from
the software XPPAUT [44], while the former is determined as
follows. The inhomogeneous steady state of the PS-I region
in the phase diagram is characterized by r1 = r2 = r = const
and ψ1 = −ψ2 = φ, and hence from Eqs. (22) one can obtain

sin(2φ) = 8ω0

k(1 + r2)[2 + r2 + r2 cos(2φ)]
, (27a)

cos(2φ) = k − kr2 − a

[kr2(r2 − 1)]
, (27b)

where a =
√

k2 − 2k2r2 + 8kγ r2 + k2r4 − 8kγ r4. The
above equations give the following solutions for the stationary
r and φ:

1 = 64ω2
0(r2 − 1)2

(r2 + 1)2(k − kr2 + a)2
+ (kr4 − k + a)2

[k2r4(r2 − 1)2]
, (28a)

tan(2φ) = 8kω0r2(r2 − 1)2

(r2 + 1)(k − kr2 + a)(kr4 − k + a)
. (28b)

Now one can numerically solve the above equations for fixed
values of the parameters to obtain r and φ, which can be
substituted back in the original equation of motion of the order
parameters, Eqs. (22), to deduce the characteristic eigenvalue
equation. The resulting eigenvalues determine the saddle-node
bifurcation curves in the (ω0/γ -k/γ ) parameter space.

The standing wave pattern loses its stability across the
homoclinic bifurcation curve resulting in the PS-I state. On
decreasing the value of k/γ in the phase diagram, the PS-I
state (inhomogeneous steady states of z1 and z2) loses its
stability via the saddle-node bifurcation curve resulting in the
incoherent state (z1 = z2 = 0) up to ω0/γ = 1.6 and in the
standing wave patterns for ω0/γ > 1.6. Hence, the bistability
between the IC and PS-I states is enclosed by the saddle-
node and pitchfork bifurcation curves in the phase diagram
in the region denoted as R1. Saddle-node and homoclinic
bifurcation curves enclose the bistable region between the
standing wave and PS-I state, which is denoted as R2 in the
phase diagram. It is to be noted that the phase diagram of the
Sakaguchi-Kuramoto model with higher-order coupling and
bimodal frequency distribution in the absence of asymmetry
parameters resembles closely that of the Sakaguchi-Kuramoto
model with pairwise interactions and bimodal frequency
distribution [50]. The higher-order coupling has essentially

enlarged the bistable regions of the phase diagram. Further,
the Sakaguchi-Kuramoto model with higher-order coupling
and bimodal frequency distribution is characterized by PS-
I, R1, and R2 when compared to the Sakaguchi-Kuramoto
model with higher-order coupling and unimodal frequency
distribution [compare Figs. 3 and 2(a)]. Similar rich dynam-
ical states are also observed for the other choices of the
asymmetry parameters in the presence of bimodal frequency
distribution as will be elucidated in the following cases.

Now the order parameter R estimated from the Sakaguchi-
Kuramoto model by numerically integrating Eq. (2) for the
bimodal frequency distribution is depicted in Fig. 4 for the
asymmetry parameters α1 = α2 = 0 and for three different
values of ω0/γ . Here the line connected by open circles cor-
responds to the forward trace, while the line connected by
filled circles corresponds to the backward trace as in Fig. 2.
The dotted vertical line in Fig. 4(a) corresponds to the an-
alytical pitch-fork bifurcation curve, the dotted-dashed line
corresponds to the analytical saddle-node bifurcation curve,
and the dashed line in Fig. 4(b) corresponds to the analytical
Hopf bifurcation curve, while the solid line corresponds to
the homoclinic bifurcation curve obtained using XPPAUT.
There is a transition from the incoherent state to the stand-
ing wave via the pitch-fork bifurcation during the forward
trace, whereas there is a transition from the SW to IC via the
saddle-node bifurcation during the reverse trace [see Fig. 4(a)]
for ω0/γ = 0.75. Similarly, there is a transition from IC
(SW) to SW (IC) via the homoclinic (saddle-node) bifurcation
curve during the forward (backward) trace for ω0/γ = 1.5
as depicted in Fig. 4(b). For ω0/γ = 2.0, there is a similar
transitions via the homoclinic and saddle-node bifurcation
curves during the forward and backward traces, respectively.
These transitions, obtained by numerically solving the model
equation (2), perfectly correlate with the dynamical transi-
tions observed in the phase diagram (see Fig. 3), which are
obtained by solving the reduced low-dimensional evolution
equations for the macroscopic order parameters (22).

2. Case II (α1 = α2 �= 0)

In order to analyze the effect of the asymmetry parameters
on the phase diagram (see Fig. 3), we have next considered
the case where the asymmetry parameters α1 = α2 = α

for simplicity. We have depicted the corresponding phase
diagrams in the (k/γ − ω0/γ ) plane in Figs. 5(a)–5(c) for
α = 0.1, 0.5, and 1, respectively. The dynamical sates and the
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FIG. 5. Phase diagrams in the (k/γ − ω0/γ ) plane for α1 = α2 = α. (a) α = 0.1, (b) α = 0.5, and (c) α = 1.0. Bifurcation curves and
dynamical states are represented similar to those in Fig. 3. PS-II is observed in the region enclosed by pitchfork, Hopf, and saddle-node
bifurcation curves [see Fig. 5(a)]. PS-II and R3 in Fig. 5(b) are enclosed by saddle-node bifurcation curves. Here R3 corresponds to the region
of bistability between the IC and PS-II states.

bifurcation curves are similar to those in Fig. 3 without any
asymmetry parameter. However, for α = 0.1, PS-II is char-
acterized by a different set of inhomogeneous steady states

corresponding to nonzero values of (z1, z2) in addition to the
dynamical states observed in Fig. 3. A linear stability analysis
of the fixed point (z1, z2) = (0, 0) results in the stability
condition

ω2
0 = (32γ 3k + γ k3) cos(α1) − 32γ 4 − 6γ 2k2 − 4γ 2k2 cos(2α1)

32γ 2 + k2 − 16γ k cos(α1) + k2 cos(2α1])
. (29)

The above algebraic expression can be further simplified as

γ k3 cos(α1) − 32γ 4 − 6γ 2k2 + 32γ 3k cos(α1)

− 2ω2
0[k cos(α1) − 4γ ]2 − 4γ 2k2 cos(2α1) = 0, (30)

which actually corresponds to the pitchfork bifurcation curve
across which the fixed point (z1, z2) = (0, 0) (incoherent
state) loses its stability leading to the partially synchronized
states PS-I and PS-II. Note that the incoherent state loses it
stability only through the pitchfork bifurcation curve in the
entire explored range of ω0/γ [see Fig. 5(a)]. All other bifur-
cation curves are obtained from XPPAUT. One may observe
that the PS-II state is enclosed by pitchfork, Hopf and homo-
clinic bifurcation curves, whereas the region corresponding
to the bistability between PS-I and PS-II (denoted by R3)
is enclosed by pitchfork, Hopf, and saddle-node bifurcation
curves. The other dynamical transition and bistable regions
are similar to that discussed in Fig. 3 in the absence of
the asymmetry parameters. Thus, a rather low value of the
asymmetry parameters results in an additional partially syn-
chronized state (PS-II state) with a region of multistability
between PS-I and PS-II.

However, a slight increase in the values of the asymmetry
parameters results in drastic changes in the phase diagram [see
Fig. 5(b) for α = 0.5]. It is evident from the figure that the
bistable regions (R2 and R3) and the parameter space with
standing wave are reduced drastically with increase in the PS-I
state. The PS-II state coexists with the PS-I state in the region
enclosed by the two saddle-node bifurcation curves, while the
bistable region R1 is completely wiped off from the phase
diagram. A large asymmetry parameter results in the loss of
bistable regions and standing wave regions completely from
the phase diagram, while retaining only the incoherent state
and partially synchronized state-I as illustrated in Fig. 5(c) for

α = 1. Further increase in the asymmetry parameter results in
similar phase diagrams as in Fig. 5(c).

3. Case III (α1 �= 0; α2 = 0)

Now, we analyze the nature of the phase diagram with
asymmetry parameter only in the pairwise coupling by switch-
ing off the asymmetry parameter in the higher-order coupling,
so that α1 �= 0 and α2 = 0. The phase diagrams for α1 =
0.1, 0.5, 1, and 1.5 are shown in Figs. 6(a)–6(d), respectively.
For α1 = 0.1, the dynamics and the dynamical transitions in
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FIG. 6. Phase diagrams in the (k/γ − ω0/γ ) plane for α2 = 0
and for various values of the asymmetry parameter in the pairwise
coupling. (a) α1 = 0.1, (b) α1 = 0.5, (c) α1 = 1.0, and (d) α1 =
1.5. Bifurcation curves and dynamical states are similar to those in
Fig. 5(a). Here R4 corresponds to the region of multistability between
IC, PS-I, and PS-II states.
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the phase diagram [see Fig. 6(a)] are similar to those observed
in Fig. 5(a) for α1 = α2 = 0.1, which elucidates that the
onset of PS-II state is facilitated by the asymmetry parameter
in the pairwise coupling and is independent of the asymme-
try parameter in the higher-order coupling. Increasing α1 to
α1 = 0.5 results in an enhancement of the PS-II state and the
bistability between both the partially synchronized states in
the phase diagram [see Fig. 6(b)]. It is to be noted that R3
is enclosed by the saddle-node and Hopf bifurcation curves.
The spread of SW and R2 in the phase diagram is decreased
appreciably for increasing values of α1, whereas that of PS-I
remains almost unaffected. The bistability between the IC and
PS-I (region R1) states is completely destroyed.

Next, the phase diagram for α = 1 is depicted in Fig. 6(c),
where the spread of SW and R2 is completely eliminated.
Further, the spread of R3 enclosed by the saddle-node bifur-
cation curves in the phase diagram is considerably reduced.
It is to be noted that there is a reemergence of the bistable
region R1 even for ω0/γ < 1/

√
3, where bimodal frequency

distribution becomes unimodal, which elucidates that the
bistable region R1 has its manifestation in the phase diagram
essentially due to the higher-order coupling. Otherwise, the
phase diagram is almost equally shared by IC and PS-I states.
Further increase in the asymmetry parameter in the pairwise
coupling results in the increase in the R1 region to a large
extent, where IC and PS-I states coexist and are bounded by
the saddle-node and pitchfork bifurcation curves. It is to be
noted that a new multistable region enclosed by the saddle-
node bifurcation curves appears [denoted as R4 in Fig. 6(d) for
α = 1.5], where the IC, PS-I, and PS-II states coexist. Thus,
it is evident that the asymmetry parameter in the pairwise
coupling facilitates several interesting multistable states in the
phase diagram mediated by various types of bifurcations.

4. Case IV (α2 �= 0; α1 = 0)

In order to analyze the effect of the asymmetry parame-
ter in higher-order interactions alone, we have fixed α1 = 0
and depicted the phase diagrams in Figs. 7(a)–7(d) for α2 =
0.1, 0.5, 1.0, and 1.5, respectively. The phase diagram [see
Fig. 7(a)] for α2 = 0.1 is similar to the phase diagram in
Fig. 3, which is depicted for the choice α1 = α2 = 0 but now
with an enlarged bistable region R2 enclosed by saddle-node
and homoclinic bifurcation curves. Thus, it is again evident
that the asymmetry parameters largely contribute to the onset
of multistability and facilitate the latter to a large extent.
Note that the PS-II state and consequently the region R3 are
absent in the phase diagram for α1 = 0, which is actually
facilitated by intermediate values of α1 [see Figs. 6(a) and
6(b)]. Increasing α2 to 0.5 [see Fig. 7(b)], the spread of
the bistability region shrinks compared to that in Fig. 7(a).
Further increase in the value of the asymmetry parameter in
the higher-order coupling results in a decrease in the spread
of R2 with the onset of R3, where PS-I and PS-II coexist,
via the saddle-node bifurcation as depicted in Fig. 7(c) for
α = 1.0. For further larger values of α2, the spread of R1 and
R3 in the phase diagram decreases to a large extent resulting
in the monostable regions of IC, PS-I, PS-II, and SW states
as depicted in Fig. 7(d) for α = 1.5. The spread of R2 is
completely wiped off from the phase diagram for α2 = 1.5.
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FIG. 7. Phase diagrams in the (k/γ − ω0/γ ) plane for α1 = 0
and for various values of the asymmetry parameter in the higher-
order coupling. (a) α2 = 0.1, (b) α2 = 0.5, (c) α2 = 1.0, and (d) α2 =
1.5. Bifurcation curves and dynamical states are similar to those in
Fig. 5(a).

Thus, it is evident that large values of α2 facilitate the onset of
PS-II and eventually R3, while smaller values of α2 favor the
spread of bistable regions to a large extent.

5. Case V (α1 > 0 and α2 > 0)

Now we consider α1 > 0 and α2 > 0 in order to analyze
the dynamical states and their transitions due to the trade-
off between the asymmetry parameters in both pairwise and
higher-order couplings. Phase diagrams in the asymmetry pa-
rameter (α1, α2) space for ω0/γ = 2 and for two different
values of k/γ are depicted in Figs. 8. The dynamical states
and their bifurcation transitions are found to be similar to
those in the previous figures. For low values of α2, there is
a transition from R2 to R3 via the homoclinic bifurcation and
then to PS-II state via the saddle-node bifurcation and finally
to IC state through the pitchfork bifurcation as a function of
α1. For larger values of α2, there is a transition from SW to
PS-II via the homoclinic bifurcation and then to IC via the
pitchfork bifurcation as a function of α1. Small to intermediate
values of α1 and α2 favor bistable states R2 and R3, while
larger values of the asymmetry parameters α1 and/or α2 result
in monostable states (see Figs. 8 and 5). Increasing k/γ from

α 2
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SW
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FIG. 8. Phase diagrams in the (α1-α2) plane for ω0/γ = 2.
(a) k/γ = 4.5 and (b) k/γ = 5.0. Bifurcation curves and dynamical
states are similar to those in Fig. 5(a).
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4.5 to 5 results in increase in the spread of bistable regions R2
and R3 [compare Figs. 8(a) and 8(b)].

V. SUMMARY AND CONCLUSION

Higher-order interactions have physical relevance in
physics and neuroscience and they have gained recent in-
terest in network theory. In this work, we have investigated
the phase diagrams of the Sakaguchi-Kuramoto model along
with a higher-order interaction and unimodal and bimodal
distributions of the natural frequencies of the individual phase
oscillators. We have also introduced asymmetry parameters
both in the pairwise and higher-order couplings to eluci-
date their role in the dynamical transitions in the phase
diagram. We have investigated the effects of five possible
combinations of the asymmetry parameters α1 and α2 on
the phase diagram along with the higher-order interaction.
Using the Ott-Antonsen ansatz, we have obtained the cou-
pled evolution equations corresponding to the macroscopic
order parameters. We have deduced the analytical stability
condition for the linear stability of the incoherent state, re-
sulting in the pitchfork bifurcation curve, using the governing
equations of the macroscopic order parameters. Further, we
have also analytically deduced the Hopf bifurcation curve
for α1 = 0, while the saddle-node and homoclinic bifurcation
curves are obtained using the software package XPPAUT.
The Sakaguchi-Kuramoto model along with a higher-order
interaction and unimodal frequency distribution displays only
IC and SW states and bistability among them for α1 = 1.0 and
α2 = 0.0. In contrast, we have observed rich phase diagrams
with dynamical states such as the IC, PS-I, PS-II, and SW
states along with the bistable (R1, R2, and R3) and multistable
(R4) states with the bimodal frequency distribution.

In the absence of asymmetry parameters, higher-order cou-
plings favor the spread of the bistable states R1 and R2 to
a large extent when compared to the Sakaguchi-Kuramoto
model with pairwise coupling alone and bimodal frequency
distribution. Further, the asymmetry parameters favor the on-
set of the bistable regions R3 and R4 which are generally

absent in the Sakaguchi-Kuramoto model with pairwise cou-
pling and bimodal frequency distribution. It is to be noted
that rather low values of the asymmetry parameter in the
pairwise coupling for α2 = 0 and relatively larger values of
the asymmetry parameter in the higher-order coupling for
α1 = 0 favors the onset of PS-II state and eventually the
region R3 in the phase diagrams. However, very large values
of both the asymmetry parameters render the phase diagram
only with monostable dynamical states. It is to be noted that
there exists bistable region R1 even for ω0/γ < 1/

√
3 in

the phase diagrams, where the bimodal frequency distribution
breaks down to unimodal one, which is purely a manifestation
of the higher-order coupling as the bistable region R1, which
has not yet been observed in the Sakaguchi-Kuramoto model
with pairwise coupling only along with unimodal frequency
distribution. We sincerely believe that the above results, with
rich phase diagrams comprising of bistable and monostable
regions of the Sakaguchi-Kuramoto model due to the trade-off
between the asymmetry parameters and the higher-order cou-
pling, provide valuable new insights on the dynamical nature
of the model. Note that the presence of bistable (multistable)
regions denote the regions across which abrupt dynamical
transition occurs, a typical nature of biological systems and, in
particular, in neuroscience where bistability and fast switching
between states are very relevant.
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