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Fast computation of matrix function-based centrality measures for layer-coupled multiplex networks
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Centrality measures identify and rank the most influential entities of complex networks. In this paper, we
generalize matrix function-based centrality measures, which have been studied extensively for single-layer
and temporal networks in recent years to layer-coupled multiplex networks. The layers of these networks
can reflect different relationships and interactions between entities or changing interactions over time. We use
the supra-adjacency matrix as network representation, which has already been used to generalize eigenvector
centrality to temporal and multiplex networks. With a suitable choice of edge weights, the definition of single-
layer matrix function-based centrality measures in terms of walks on networks carries over naturally to the
multilayer case. In contrast to other walk-based centralities, matrix function-based centralities are parameterized
measures, which have been shown to interpolate between (local) degree and (global) eigenvector centrality in
the single-layer case. As the explicit evaluation of the involved matrix function expressions becomes infeasible
for medium to large-scale networks, we present highly efficient approximation techniques from numerical
linear algebra, which rely on Krylov subspace methods, Gauss quadrature, and stochastic trace estimation.
We present extensive numerical studies on synthetic and real-world multiplex transportation, communication,
and collaboration networks. The comparison with established multilayer centrality measures shows that our
framework produces meaningful rankings of nodes, layers, and node-layer pairs. Furthermore, our experiments
corroborate the linear computational complexity of the employed numerical methods in terms of the network
size that is theoretically indicated under the assumption of sparsity in the supra-adjacency matrix. This excellent
scalability allows the efficient treatment of large-scale networks with the number of node-layer pairs of order
107 or higher.
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I. INTRODUCTION

The study of complex networks has been a thriving in-
terdisciplinary endeavor for many decades and some of the
most impactful results found their way into our daily life
[1–5]. Applications of network science range from biology,
chemistry, and physics over engineering and economics to the
social sciences, cf. Refs. [6,7] and the references therein. In
recent years, much effort has been devoted to the general-
ization of established network-based methods to the case of
multilayer structures, cf., e.g., Refs. [7–14]. These allow enti-
ties to interact in several different ways, reflect different types
of relationships or changing interactions over time leading to
ever more realistic models of highly complex phenomena.

The problem of identifying and ranking the most central
nodes, i.e., entities of a network has a long history. The variety
of established centrality measures includes degree centrality,
betweenness centrality [15], closeness centrality [16], eigen-
vector centrality [17], and variants of eigenvector centrality,
which were developed in the context of the early internet
[4,5,18]. To date, the study of centrality measures has become
a very active field of research and some recent works include
[11–13,19–32].
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This paper addresses the class of matrix function-based
centrality and communicability measures, which have been
studied intensively for single-layer networks [30,33–39] and
dynamic networks [21,23,24,31,32,40–42]. These parame-
terized measures can be tuned to emphasize subgraphs of
different sizes and have been shown to interpolate between
(local) degree and (global) eigenvector centrality in the single-
layer case [43].

The main contribution of this paper is twofold: we gener-
alize matrix function-based centrality measures to a general
class of multilayer networks and we present numerical meth-
ods for the fast computation of the involved matrix function
expressions. The latter relies on highly efficient techniques
from numerical linear algebra, which effectively scale to
large-scale networks.

The multilayer networks considered in this paper are
(node-aligned) layer-coupled multiplex networks in which the
layers can represent different relationships and interactions or
changing interactions between the same entities over time.
We differentiate between intralayer edges connecting nodes
from the same layer and interlayer edges connecting nodes
belonging to different layers and allow all edges to be directed
or undirected. In the case of directed networks we differentiate
between each entity’s role as broadcaster and receiver. While
it is not required from a theoretical perspective, we restrict
interlayer edges to only connect instances of the same phys-
ical node, i.e., copies of the same node in different layers.
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Furthermore, we fix the edge weights between pairs of layers
for all interlayer edges between them. This choice of mul-
tilayer network structure is particularly well-suited to create
meaningful multilayer networks from multiple single-layer
networks on the same set of nodes where no notion of inter-
layer edges is present in the data. For changing interactions
among the same set of entities over time, we incorporate
the description of dynamic centralities [21,23,24,31,32,40–
42] formulated in Ref. [21] into our more general multiplex
framework.

Choosing the linear algebraic representation of multi-
layer networks is a nontrivial task [7] and for this paper
we choose the supra-adjacency matrix as network repre-
sentation. This representation has been successfully used to
generalize eigenvector centrality to the case of temporal and
multiplex networks [11–13]. However, various other possible
network representations exist in the form of different matrix
or tensor formulations [7,9]. Examples for multilayer central-
ity measures using different matrix representations include
eigenvector centrality [11–13,44] and matrix function-based
centralities for dynamic networks [21,23,24,30,31,40]. Fur-
thermore, eigenvector centrality for multilayer networks
has been defined in terms of third- [25] and fourth-order
[10,22,29,45] tensors. Additionally, the authors of Ref. [10]
use fourth-order tensors to define classical random walk cen-
tralities for multilayer networks and the authors of Ref. [45]
define Katz centrality in terms of fourth order tensors, which
is an example of a matrix function-based centrality measure.
The development of general tensor function-based centrality
measures for tensor representations of multilayer networks is
an interesting road for future research.

Our choice of the supra-adjacency matrix as network
representation allows us to put well-studied methods from
numerical linear algebra to new use as it is currently done
in many data-driven applications [46]. In particular, Krylov
subspace methods for the approximation of matrix functions
provide highly efficient computational means to evaluate ma-
trix function-based centrality measures even for large-scale
problems [47–49]. We will discuss that under the assump-
tion of sparsity in the supra-adjacency matrix the runtime
of all presented centrality measures scales linearly in the
network size. A particularly elegant technique, which can be
applied to compute lower and upper bounds on certain matrix
function-based centralities uses the connection between Gauss
quadrature, the Lanczos method, and orthogonal polynomials
discussed by Golub and Meurant [50–53]. Besides network
science applications, this technique has been applied to classi-
cal numerical linear algebra problems, cf., e.g., Refs. [54,55].
For the computation of some matrix function-based central-
ities, however, the evaluation of a separate matrix function
expression for each entity is required, which becomes com-
putationally infeasible for medium to large-scale problems.
To this end, we employ existing numerical techniques for the
stochastic and deterministic approximation of the trace and
the diagonal of matrix functions [56–61]. Many of the pre-
sented computational methods have already been successfully
applied to the evaluation of matrix function-based centrality
measures on single-layer networks [30].

The remainder of this paper is organized as follows. In
Sec. II we introduce layer-coupled multiplex networks in-

cluding their supra-adjacency matrix representation. Sec. III
introduces existing matrix function-based centrality mea-
sures in the context of single-layer networks. In Sec. IV
we generalize these centrality measures to the case of
layer-coupled multiplex networks and employ aggregation
techniques, which allow the ranking of nodes, layers, and
node-layer pairs. Section V summarizes efficient numerical
methods for the approximation of all introduced centrality
measures for both directed and undirected as well as weighted
and unweighted networks. Finally, Sec. VI presents extensive
numerical experiments on synthetic and real-world networks
with the number of layers ranging from 3 to 124 and the
number of physical nodes ranging from 4 to 245 757.

II. MULTIPLEX NETWORK REPRESENTATION

We consider multilayer networks with one aspect (dimen-
sion), which consist of a set of L single-layer networks G (l ) =
(V (l ), E (l ) ), l = 1, . . . , L with V (l ) denoting the vertex sets
and E (l ) ⊂ V (l ) × V (l ) the edge sets of layers l = 1, . . . , L [7].
The different layers represent different kinds of interactions
or relationships between its entities or changing interactions
over time. We call xi a physical node, which is represented by
different instances x(l )

i ∈ V (l ) of itself in the different layers
called node-layer pairs. We assume all layers to be node-
aligned, i.e., to consist of the common vertex set Ṽ = V (1) =
· · · = V (L). This situation can always be enforced by adding
isolated nodes where necessary.

We distinguish intralayer edges connecting node-layer
pairs from the same layer and interlayer edges connecting
node-layer-pairs from different layers. In this paper, all edges
can be positively weighted or unweighted as well as directed
or undirected.

We define intralayer edge weights by weight functions
w(l ) : V (l ) × V (l ) → R�0, not necessarily equal for all l =
1, . . . , L. In the unweighted case, we define

w
(l )
i j =

{
1 if

(
x(l )

i , x(l )
j

) ∈ E (l ),

0 otherwise.

In the weighted case, we extend the definition to allow w
(l )
i j ∈

R>0 if (x(l )
i , x(l )

j ) ∈ E (l ). In either case, we define the single-

layer adjacency matrices A(l ) ∈ Rn×n
�0 for l = 1, . . . , L via

A(l )
i j = w

(l )
i j . (1)

Note that we have (A(l ) )T = A(l ) for undirected layers and
(A(l ) )T �= A(l ) when layer l contains at least one directed
intralayer edge.

Additionally, we define an interlayer edge set Ẽ ⊂ V (l ) ×
V (k) containing interlayer edges (x(l )

i , x(k)
j ) where l �= k. We

restrict ourselves to layer-coupled multiplex networks in
which each node-layer pair is only allowed to form an inter-
layer edge to instances of its physical node in other layers,
i.e., we only allow interlayer edges (x(l )

i , x(k)
j ) with l �= k and

i = j. Furthermore, we fix an interlayer edge weight Ãlk � 0
for each pair of layers l and k and we collect these weights
in the interlayer weight matrix Ã ∈ RL×L

�0 . The layer coupling
can then be represented by the Kronecker product Ã ⊗ I with
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FIG. 1. Example of a layer-coupled multiplex network with
4 nodes and 3 layers. Intralayer edges are marked red and interlayer
edges are marked blue.

the identity matrix I ∈ Rn×n. We have Ã
T = Ã in the case

of undirected interlayer edges and Ã
T �= Ã if at least one

interlayer edge is directed. The applicability of the methods
introduced in this paper to more general interlayer edges for
the case of undirected networks is studied in Ref. [62].

With the above definitions, we define (node-aligned)
layer-coupled multiplex networks G = (Ṽ, E (1), . . . , E (L), Ẽ )
consisting of the common vertex set Ṽ , intralayer edge sets
E (1), . . . , E (L), and the interlayer edge set Ẽ . There is a multi-
tude of different multilayer network representations available
in the literature including matrix as well as third- and fourth-
order tensor representations, cf. Refs. [10,22,25,29,45] as well
as Ref. [7] for an overview. For this paper, we choose a
supra-adjacency matrix representation [[7], Sec. 2.3]. Note
that this representation corresponds to a special case of the
supracentrality matrix that has been used in Refs. [11–13] to
generalize eigenvector centrality to multiplex networks.

The supra-adjacency matrix A ∈ RnL×nL
�0 is defined as the

weighted sum of a multilayer intralayer adjacency matrix
Aintra ∈ RnL×nL

�0 containing the individual layer adjacency ma-
trices on its block diagonal and an interlayer adjacency matrix
Ainter ∈ RnL×nL

�0 representing the layer-coupling, i.e.,

A = Aintra + ωAinter

= blkdiag
[
A(1), . . . , A(L)

] + ωÃ ⊗ I

=
⎡
⎣A(1) . . . 0

...
. . .

...

0 . . . A(L)

⎤
⎦ + ω

⎡
⎣Ã11I . . . Ã1LI

...
. . .

...

ÃL1I . . . ÃLLI

⎤
⎦, (2)

where 0 ∈ Rn×n denotes the zero matrix and the coupling
parameter ω � 0 controls the relative importance of the two
types of edges. We discuss possible choices for the interlayer
weight matrix Ã in Sec. IV. Figure 1 shows an example
layer-coupled multiplex network with n = 4 physical nodes
and L = 3 layers. Note that we have AT = A if all A(l ) and Ã

are symmetric and AT �= A if at least one (intra- or interlayer)
edge is directed. Note also that from a computational point of
view A does not have to be formed explicitly as all information
is encoded in A(l ), l = 1, . . . , L as well as Ã.

III. MATRIX FUNCTION-BASED CENTRALITY
MEASURES

There is a multitude of centrality measures available
in the literature, which identify and rank the most cen-
tral nodes of a complex network, cf., e.g., Refs. [4,5,10–
13,15–19,22,25,28,29,44,45,63,64]. In this section, we mo-
tivate and define matrix function-based centrality measures,
which have been intensively studied for single-layer [30,33–
35,37,38] and dynamic networks [21,23,24,31,32,40–42] in
recent years at the example of undirected and unweighted
single-layer networks. In this situation, we have A = A(1) ∈
Rn×n

�0 and we drop the superscript (l ) indicating the layer
ID for all related quantities in the notation throughout this
section.

It is well-known from graph theory that for an unweighted
and undirected network the entry [Ak]i j denotes the num-
ber of walks of length k existing between nodes xi and x j

[6]. A walk of length k is defined by a sequence of k ad-
jacent nodes, which may contain repeated nodes, i.e., we
allow backtracking walks. For nonbacktracking walks we re-
fer the reader to Refs. [26,27,65]. In the special case i = j,
we speak of closed walks that start and end at node xi.
These entries correspond to the diagonal elements of the
adjacency matrix powers. Figure 2 illustrates the sparsity
structure of the adjacency matrix powers A, . . . , A9 for the
taxi layer of the Scotland Yard network, which is a connected
undirected single-layer network with n = 199 nodes, cf.
Sec. VI C for details.

Adjacency matrix powers can, e.g., be used to define
degree and eigenvector centrality. The degree centrality of
node xi is given by di = eT

i A1 where ei ∈ Rn denotes the ith
unit vector and 1 = [1, . . . , 1]T ∈ Rn the one vector. Eigen-
vector centrality is defined by the entries of the eigenvector
φ corresponding to the largest eigenvalue λmax of A. Under
mild conditions, this can, e.g., be obtained by a power iteration
approximating the limit limp→∞ Apv/‖Apv‖2 with a suitable
starting vector v ∈ Rn. Degree centrality can be viewed as a
local measure taking only direct neighbors into account while
eigenvector centrality depicts a global measure representing
the stationary distribution of walkers on the network.

The idea of matrix function-based centrality measures
is to interpolate between local degree and global eigen-
vector centrality by considering walks of all lengths (or
subgraphs of all sizes). This idea is formalized by the ad-
jacency matrix power series

∑∞
p=0 Ap. A number of works

by Estrada et al. [34–37] developed different scaling mech-
anisms, which assign less weight to longer walks leading to
the power series of the frequently used matrix exponential
function

∞∑
p=0

β p

p!
Ap = I + βA + β2

2
A2 + β3

3!
A3 + · · · = eβA, (3)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. Sparsity structure of the first nine adjacency matrix
powers A, . . . , A9 for the taxi layer of the Scotland Yard network,
which is a connected undirected single-layer network with n = 199
nodes, cf. Sec. VI C. The quantity ρ denotes the matrix density, i.e.,
the proportion of nonzero entries in the respective matrix power Ap ∈
R199×199

�0 . (a) A, ρ = 0.017, (b) A2, ρ = 0.044, (c) A3, ρ = 0.091,
(d) A4, ρ = 0.16, (e) A5, ρ = 0.245, (f) A6, ρ = 0.338, (g) A7, ρ =
0.434, (h) A8, ρ = 0.531, (i) A9, ρ = 0.626.

with the inverse temperature β > 0 [36] as well as the matrix
resolvent function

∞∑
p=0

αpAp = I + αA + α2A2 + · · · = (I − αA)−1, (4)

which is convergent for 0 < α < 1/λmax [37].
The centrality measures considered in this paper

[33–37,39] can be derived from certain matrix function
expressions, which are summarized in Table I. The diagonal
entries of the matrix functions eT

i f (A)ei can be viewed as
the weighted sum of closed walks starting and ending at
node xi. Similarly, the communicability between two nodes
xi and x j is measured by the weighted sum of walks starting
at xi and ending at x j . Entries of the row sum vector of the
matrix functions eT

i f (A)1, in turn, count all walks starting
at node xi regardless of the end point of the walk. Finally,
the Estrada index and total network communicability provide
scalar measures for the connectivity of the full network.

In the case of weighted adjacency matrices, the entries in
[Ak]i j can no longer be interpreted as the number of walks of
length k between nodes xi and x j . However, formally all above
definitions equally apply and the elements of the matrix pow-
ers still contain information about the relative connectivity of
pairs of nodes.

TABLE I. Overview of all defined matrix function-based cen-
trality measures categorized into more general matrix function
expressions. Note that throughout Sec. III we have assumed L = 1.

f (A)b Total communicability [39]
TC(i, β ) = eT

i eβA1
Katz centrality [33]

KC(i, α) = eT
i (I − αA)−11

uT f (A)u Subgraph centrality [35]
SC(i, β ) = eT

i eβAei

Resolvent-based subgraph centrality [37]
SCres(i, α) = eT

i (I − αA)−1ei

Estrada index [34]
EI (G, β ) = ∑nL

i=1 eT
i eβAei

Total network communicability [39]
T NC(G, β ) = 1

nL 1T eβA1

uT f (A)v Communicability [36]
C(i, j, β ) = eT

i eβAe j

In the case of directed networks, i.e., AT �= A we must dis-
tinguish between each node’s role as broadcaster and receiver.
Similarly to degree and eigenvector centrality we obtain
broadcaster centralities with the definitions from Table I and
receiver centralities by replacing A by AT [38]. However,
subgraph centrality and resolvent-based subgraph centrality,
which are defined as the diagonal elements [ f (A)]ii, can not
differentiate between broadcaster and receiver centrality as by
Ref. [[48], Theorem 1.13(b)] we have f (AT ) = f (A)T and
thus [ f (A)]ii = [ f (AT )]ii for all i = 1, . . . , n. In this case, we
can instead consider the symmetric bipartite representation of
a directed network [38], which is defined as

A =
[

0 A
AT 0

]
∈ R2n×2n

�0 , (5)

and obtain broadcaster centralities as [ f (A)]ii for i =
1, . . . , n and receiver centralities as [ f (A)]ii for i = n +
1, . . . , 2n for both f (A) = eβA and f (A) = (I − αA)−1.

IV. DEFINITION OF MULTIPLEX MATRIX
FUNCTION-BASED CENTRALITY MEASURES

We now generalize the matrix function-based centrality
measures introduced for single-layer networks in Sec. III to
the case of layer-coupled multiplex networks. To this end,
we return to the multiplex network representation specified in
Sec. II where each vertex x(l )

i represents a node-layer pair, i.e.,
the instance of physical node xi in layer l . Consequently, we
add layer indices to all quantities in Table I, e.g., KC(i, l, α)
or C(i, l, j, k, β ).

We propose to extend the interpretation of adjacency
matrix powers from the single-layer case to the supra-
adjacency matrix defined in Eq. (2). As this contains
information about both intra- and interlayer edges one step
of a walk on the multiplex network starting from node x(l )

i can
either follow an intralayer edge toward x(l )

j within the same

layer or an interlayer edge toward x(k)
i in another layer, given

that at least one such edge exists for i �= j or l �= k, respec-
tively. Consequently, both intra- and interlayer edge weights
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need to reflect the connectivity between node-layer pairs in
the multiplex network model. Depending on the application
these weights could, e.g., describe the ability of the network to
spread travelers, information, ideas, etc. The tradeoff between
intra- and interlayer edge weights is controlled by the cou-
pling parameter ω. More examples of walk-based centrality
measures that consider walks along intra- and interlayer edges
can, e.g., be found in Refs. [10,63,64].

Available knowledge from the particular application about
the coupling strength of the layers encoded in the interlayer
weight matrix Ã increases the quality of the network model.
However, if no such information is present in the data some
standard interlayer couplings can be used to create multiplex
networks from several single-layer networks. Two options of
such interlayer couplings are unweighted all-to-all coupling
with and without self-edges, which are represented by Ã =
11T and Ã = 11T − I, respectively. We illustrate in Sec. VI A
that this choice is better capable to reflect the underlying
structure of inherently multilayered networks than aggregated
networks. For temporal networks, we use the block matrix
formulation of dynamic centralities [21], which corresponds
to Ã being zero except for the super-diagonal. The latter
consists of the weights Ã(l−1),l = e−�tl , l = 2, . . . , L with �tl
the time difference between layers l − 1 and l , which reflects
the increased importance of more recent walks.

Figure 3 illustrates the sparsity structure of the matrix
powers A, . . . , A9 of the undirected layer-coupled Scotland
Yard multiplex network with n = 199 nodes and L = 4 layers,
cf. Sec. VI C for details, and all-to-all interlayer coupling
without self-edges, i.e., Ã = 11T − I ∈ R4×4. Note that layer
four in the bottom right block corresponds to the single layer
from Fig. 2 but the relative number of nonzeros in the matrix
powers Ap increases more rapidly than in the single-layer
case due to the high degree of connectivity in the interlayer
coupling although all three additional layers are very sparse
and nonconnected.

Applying the matrix function-based centrality measures
from Table I to the supra-adjacency matrix from Eq. (2) yields
centrality values for all node-layer pairs of the layer-coupled
multiplex network. This allows us to rank the node-layer pairs
in terms of their centrality in the network and to identify
the most central node-layer pairs. Following [11] we call
the resulting centrality value of the node-layer pair x(l )

i the
joint centrality JC(i, l ). Furthermore, we define marginal cen-
tralities [11]. Marginal node centrality MNC(i) denotes the
importance of a physical node xi by summing up the joint
centralities of its instances across all layers, i.e.,

MNC(i) =
L∑

l=1

JC(i, l ). (6)

Similarly, marginal layer centrality MLC(l ) denotes the im-
portance of layer l by summing up the joint centralities of all
nodes in this layer, i.e.,

MLC(l ) =
n∑

i=1

JC(i, l ). (7)

We illustrate in Sec. VI A that aggregation of the layers
and subsequent application of matrix function-based central-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. Sparsity structure of the first nine supra-adjacency
matrix powers A, . . . , A9 of the undirected layer-coupled Scotland
Yard multiplex network with n = 199 nodes and L = 4 layers, cf.
Sec. VI C, as well as all-to-all interlayer coupling without self-
edges, i.e., Ã = 11T − I. Layer four in the bottom right block
corresponds to the single-layer adjacency matrix from Fig. 2. The
quantity ρ denotes the matrix density, i.e., the proportion of nonzero
entries in the respective matrix power Ap ∈ R796×796

�0 . (a) A, ρ =
0.005, (b) A2, ρ = 0.017, (c) A3, ρ = 0.05, (d) A4, ρ = 0.11, (e)
A5, ρ = 0.2, (f) A6, ρ = 0.317, (g) A7, ρ = 0.458, (h) A8, ρ =
0.615, (i) A9, ρ = 0.767.

ity measures discards important structural information of the
network, which is preserved by the application of multiplex
matrix function-based centralities and subsequent summation
via marginal centralities.

V. EFFICIENT METHODS FOR COMPUTING MULTIPLEX
CENTRALITY MEASURES

Powerful numerical algorithms for the explicit evaluation
of functions of small matrices are available in the literature,
cf., e.g., Ref. [66] for the matrix exponential. These meth-
ods, however, become computationally infeasible for medium
to large-scale networks. For these problems, highly efficient
methods for approximating certain matrix function expres-
sions have been developed in numerical linear algebra. In this
section, we summarize mostly existing methods based on the
approximation of matrix functions by matrix polynomials. All
presented methods utilize the Krylov subspace

Kk (A, v) = span{v, Av, A2v, . . . , Ak−1v}, (8)

which is an intuitive approach to approximating the quantities
from Table I in view of Eqs. (3) and (4).
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The computational bottleneck of all numerical methods
presented in this section are matrix-vector products with the
matrix A ∈ RnL×nL [49]. Due to the typically encountered
sparsity in complex networks, the computational complexity
of these matrix-vector products can be assumed to be O(nL).
If this sparsity assumption is not fulfilled, then a linear com-
plexity can still be accomplished if the matrix A possesses
a low rank factorization or if its entries are determined by
certain kernel functions [14]. Dense supra-adjacency matrices
without exploitable structure, in turn, lead to a complexity of
O(n2L2) for each matrix-vector product.

A. Centrality measures based on the evaluation of f (A)b

In this section, we summarize established techniques for
the approximation of f (A)b with A ∈ RnL×nL, b ∈ RnL and
where the scalar function f is defined on the spectrum of A.
These techniques allow the efficient and accurate approxima-
tion of total communicability and Katz centrality.

The idea relies on simplifying the problem of computing
f (A)b to applying the matrix function f to a reduced matrix
Hk ∈ Rk×k with k 	 nL. It can be shown that if we find an
orthogonal matrix Qk ∈ RnL×k such that A ≈ QkHkQT

k we
obtain the reduced problem [48]

f (A)b ≈ Qk f (Hk )QT
k b. (9)

The columns of the matrix Qk can be obtained by the Arnoldi
method [49,67] for any real square matrix A by iteratively
constructing basis vectors of the Krylov subspace defined in
Eq. (8) by repeated multiplication of A with an iteration vector
as well as orthogonalization against the previously computed
basis vectors. The obtained small matrix Hk ∈ Rk×k has
Hessenberg form [49] and the quantity f (Hk ) ∈ Rk×k can
cheaply be computed explicitly by standard methods.

In the special case AT = A, i.e., undirected multiplex
networks the basis Qk can similarly be constructed by
the Lanczos method [49,68], which reduces A to A ≈
QkT kQT

k , where T k ∈ Rk×k has tridiagonal form. Any real
symmetric matrix T T

k = T k ∈ Rk×k has a real-valued eigen-
decomposition T k = Sk�kST

k with Sk ∈ Rk×k containing the
orthonormal eigenvectors and the diagonal matrix �k ∈ Rk×k

the eigenvalues of T k as diagonal entries. In this case, f (A)b
can be approximated via

f (A)b ≈ QkSk f (�k )ST
k QT

k b, (10)

where f (�k ) applies f elementwise to the eigenvalues of
T k [48,49].

The typically encountered linear computational complex-
ity of matrix-vector products with the matrix A ∈ RnL×nL

described at the beginning of Sec. V makes total communi-
cability and Katz centrality computable to high precision in a
matter of s even for networks with order 107 node-layer pairs
and the limiting factor of the maximally computable network
size typically becomes the memory required to store the dense
matrix Qk .

For the construction of Qk as well as the implementation
of Eqs. (9) and (10) we rely on the funm_kryl toolbox [69],
which supports restarted Lanczos and Arnoldi methods [70].

B. Centrality measures based on the evaluation of
uT f (A)u and uT f (A)v

This section summarizes mostly existing techniques for
the approximation or the computation of lower and upper
bounds on subgraph and resolvent-based subgraph centrality,
communicability, the Estrada index, and total network com-
municability, cf. Table I. In the symmetric case AT = A, i.e.,
undirected multiplex networks we use a well-known relation
between Gauss quadrature, the symmetric Lanczos method,
and orthogonal polynomials discussed by Golub and Meurant
[50–53]. In the nonsymmetric case AT �= A we encounter nu-
merical stability issues of standard methods. We describe two
existing approaches to circumvent these issues and propose a
third approach, which stabilizes the Arnoldi method by means
of a dense shift vector.

While we argued that quantities f (A)b can be computed
in O(nL), in this section, this is only true for total network
communicability. As we have to employ a separate O(nL)
algorithm to approximate each matrix function entry the com-
putational complexity of subgraph, resolvent-based subgraph
centrality and the Estrada index is O(n2L2) and even O(n3L3)
for the computation of all communicabilities. To circumvent
this issue for the trace and the diagonal of f (A) we present
alternative estimation techniques in Sec. V C, which are typi-
cally faster but less accurate.

1. The symmetric case

To find lower and upper bounds on quantities of the form
uT f (A)u for AT = A ∈ RnL×nL, u ∈ RnL, and f a smooth
(possibly C∞) function on a given interval on the real line we
follow the Gauss quadrature approach by Golub and Meurant
[50–53] and consider

uT f (A)u = uT �︸︷︷︸
=:pT

f (�) �T u︸︷︷︸
=:p

= pT f (�)p =
nL∑
i=1

f (λi)p2
i ,

(11)
for A = ���T , where � ∈ RnL×nL contains the eigenvectors
and � = diag[λ1, λ2, . . . , λnL] the eigenvalues λmin = λ1 �
λ2 � · · · � λnL = λmax of A. Note that this eigendecomposi-
tion always exists for symmetric A. Furthermore, Eq. (11) can
be written as the Riemann-Stieltjes integral

uT f (A)u =
∫ λmax

λmin

f (λ)dμ(λ)

=
k∑

j=1

w j f (t j ) +
M∑

m=1

vm f (zm) + R[ f ],

with the remainder R[ f ], and with the weights {w j}k
j=1 at the k

Gauss nodes {t j}k
j=1, the weights {vm}M

m=1, M ∈ {0, 1, 2} at the
prescribed (interval boundary) nodes {zm}M

m=1 ⊆ {λmin, λmax},
as well as the measure

μ(λ) =
⎧⎨
⎩

0, λ < λmin = λ1,∑i
j=1 p2

j , λi � λ < λi+1,∑nL
j=1 p2

j , λmax = λnL � λ.

Now, using a beautiful relation between Gauss quadra-
ture and orthogonal polynomials constructed from three-term
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recurrence relations [50–53] the Gauss nodes and weights do
not have to be computed explicitly but can be obtained from
a tridiagonalization of the matrix A, which can be constructed
using the Lanczos process, cf. Refs. [68], [[49], Sec. 10.1],
and Sec. V A. Given the tridiagonal matrix T k after k Lanczos
steps it can be shown [[51], Theorem 3.4] that

k∑
j=1

w j f (t j ) = eT
1 f (T k )e1,

with the unit vector e1 ∈ Rk where the eigendecomposition
T k = Sk�kST

k can be computed cheaply. We can then easily
evaluate f (T k ) = Sk f (�k )ST

k by elementwise application of
f to the eigenvalues �k . Alternatively, the Gauss nodes t j

are given by the eigenvalues of T k in �k and the Gauss
weights w j are given by the squares of the first entries of
the respective eigenvectors in Sk . This relation yields Gauss
quadrature rules, which corresponds to M = 0.

Additionally, we obtain Gauss–Radau (M = 1) and
Gauss–Lobatto rules (M = 2) by prescribing the nodes zm

as eigenvalues to the matrix T k , cf. Ref. [[51], Sec. 3.1]
or Ref. [[53], Sec. 6.2] for the details. As the exponential
function f (x) = eβx and the resolvent function f (x) = 1

1−αx
with 0 < α < 1/λmax as well as all their derivatives are strictly
positive for x ∈ [λmin, λmax] we can determine the sign of
the remainder R[ f ] for all quadrature rules. More specifi-
cally, we obtain lower bounds on uT f (A)u by the Gauss rule
and the Gauss–Radau rule with zm = λmin as well as upper
bounds by the Gauss–Radau rule with zm = λmax and the
Gauss–Lobatto rule.

The case uT f (A)v with u �= v can be handled for AT =
A using the above methods together with the polarization
identity [53]

uT f (A)v = 1
4 [(u + v)T f (A)(u + v)

− (u − v)T f (A)(u − v)], (12)

at the cost of the evaluation of two quantities of the form
uT f (A)u.

2. The nonsymmetric case

As AT �= A is no longer guaranteed to be diagonaliz-
able Eq. (11) no longer holds in general. Instead, alternative
approaches exist, which are based on the construction of bi-
orthogonal polynomials, e.g., by the nonsymmetric Lanczos
method [[53], Sec. 6.5] or by the biconjugate gradient method
(BiCG) [71] for Gauss quadrature in the complex plane. Un-
fortunately, among the quantities uT f (A)u considered in this
section only total network communicability can reliably be
computed by these methods. For the remaining quantities, due
to the typically encountered sparsity of the supra-adjacency
matrix in combination with the sparsity of the unit vectors as
right vectors, we experience serious numerical stability issues
with the above methods as well as the Arnoldi method applied
only to f (A)u.

The described numerical stability issue has previously been
discussed in Ref. [72]. The author’s solution is to first employ
the nonsymmetric block Lanczos method with an additional
dense column in the block vector and then use Gauss and
anti-Gauss quadrature rules to obtain bounds on the desired

quantities. This first approach can be used to compute bounds
on quantities of the form eT

i f (A)ei in the nonsymmetric
case and we refer to Ref. [72] for the details. A pleasant
side-effect of this method is that we also obtain certain off-
diagonal matrix function entries, i.e., communicabilities for
free. However, this approach fails to differentiate between
each node-layer pair’s role as broadcaster and receiver.

As described in Sec. III a second approach considers the
bipartite representation, which exists for any directed network
[30,38] and which is given by the block supra-adjacency
matrix

A =
[

0 A
AT 0

]
∈ R2nL×2nL. (13)

Obviously, we have AT = A and thus we can employ the
quadrature rules from Sec. V B 1 to compute bounds on quan-
tities of the form uT f (A)u and in particular eT

i f (A)ei with
ei ∈ R2nL. Note that there are no stability issues in the sym-
metric case. The advantage of this approach is that we obtain
broadcaster centralities as the first nL entries of eT

i f (A)ei and
receiver centralities as the last nL entries of eT

i f (A)ei.
As a third approach we propose to utilize the Arnoldi

method to approximate y := f (A)u by adding and subtracting
a stabilizing dense shift vector, which ensures numerical sta-
bility. We then obtain the quantity of interest by the additional
inner product uT y = uT f (A)u. We choose the one vector
1 ∈ RnL as shift vector such that

eT
i f (A)ei = eT

i f (A)(ei + 1) − eT
i f (A)1. (14)

This choice has the advantage that the quantity eT
i f (A)1 cor-

responds to total communicability in the case of the matrix
exponential and to Katz centrality in the case of the matrix
resolvent function, which can be evaluated by one applica-
tion of the Arnoldi method, cf. Sec. V A. We thus obtain an
approximation of diag[ f (A)] at the cost of applying nL + 1
stable Arnoldi procedures. Furthermore, we obtain all off-
diagonal entries, e.g., communicabilities in the case of the
matrix exponential for free. This approach also fails to differ-
entiate between each node-layer pair’s role as broadcaster and
receiver, but numerical experiments reveal an interesting error
cancellation property: the approximation error of Eq. (14)
tends to be smaller than that of f (A)1 as the subtraction of the
two very similar quantities f (A)(ei + 1) and f (A)1 cancels
part of the approximation error. This behavior is illustrated in
the numerical experiments in Sec. VI C.

C. Estimation of the trace and diagonal of f (A)

When computing bounds on diagonal entries [ f (A)]ii

for i = 1, . . . , nL and the trace tr[ f (A)] = ∑nL
i=1[ f (A)]ii the

O(nL) computations for each of the nL node-layer pairs re-
sult in a total computational complexity of O(n2L2), which
becomes infeasible for medium to large-scale networks. The
authors of Ref. [73] propose an approach for the efficient
identification of the largest diagonal entries of f (A) for sym-
metric A by means of a low-rank approximation of the matrix
A. We describe alternative approaches, which rely on the
stochastic or deterministic estimation of the trace and the
diagonal of matrix functions and which are typically discussed
for symmetric A in the literature [56–61]. For nonsymmetric
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A, i.e., multiplex networks with at least one directed edge
we propose to apply the same techniques to the symmetric
bipartite network representation defined in Eq. (13), which
allows to obtain each node-layer pair’s broadcaster and re-
ceiver centrality.

The classical stochastic Hutchinson trace estimator [56]
uses the relation

tr[ f (A)] =
nL∑
i=1

[ f (A)]ii ≈ 1

s

s∑
k=1

vT
k f (A)vk, (15)

where the vk ∈ RnL are random Rademacher vectors contain-
ing the entries +1 and −1 with probability 1/2 each. The
goal is to obtain good approximations to tr[ f (A)] for s 	 nL.
Note that the entries of vk can alternatively be sampled from
any sub-Gaussian distribution, cf. Ref. [61] and references
therein. For symmetric A the accuracy of the approximation of
vT

k f (A)vk has been improved by utilizing the Gauss quadra-
ture techniques introduced in Sec. V B 1 for the positive
definite [59] and the indefinite case [60]. Recently, an im-
proved version of Hutchinson’s estimator has been proposed
by the inclusion of a low-rank approximation step [61]. Prob-
abilistic error bounds for the respective methods can be found
in Refs. [56,59–61].

The authors of Ref. [57] show that Hutchinson’s estimator
can be extended to approximate the individual diagonal entries
of the matrix f (A) by considering

diag[ f (A)] ≈ 1

s

s∑
k=1

vk � f (A)vk, (16)

where � denotes the elementwise vector product and where
the factor 1

s replaces the elementwise division from Ref. [[57],
Eq. (2)] in the case of vectors vk with entries ±1.

As Eq. (16) tends to converge slowly [57], an alternative
(deterministic) approach considers the expression

diag[ f (A)] ≈ 1

s

[
f (A) � VV T

]
1, (17)

which is equivalent to Eq. (16) and where the columns of
the matrix V ∈ RnL×s are constructed by repeated orthogonal
columns of Hadamard matrices [57]. We refer to the columns
of V as Hadamard vectors. In this case, the matrix VV T ∈
RnL×nL consists of zeros except for the main diagonal and
bands with a distance of a multiple of s to the main diagonal.
Hence, Eq. (17) computes the row sums of selected bands of
f (A), which converges to diag[ f (A)] as s → nL. However,
this approach yields good approximations or even exact re-
sults of the diagonal of diagonal-dominant or banded matrices
for s 	 nL. The numerical experiments in Sec. VI E show that
the top-ranked node-layer pairs, i.e., largest diagonal entries
can be identified even if approximation errors of the numerical
values are present. The computational complexity of O(snL)
resulting from approximating f (A)vk from Eq. (16) with the
Arnoldi method, cf. Sec. V A, compares favorably to O(n2L2)
for Gauss quadrature applied to each diagonal entry. Numeri-
cal experiments indicate that sufficiently accurate results can
be obtained with s <

√
nL.

In the case of f (A) = exp(βA) and f (A) = (I − αA)−1

applied to A ∈ RnL×nL
�0 defined in Eq. (2) we typically en-

counter a structure of f (A), which is dominated by entries
on the main diagonal as well as on the diagonals of the
off-diagonal blocks. In this situation, we often obtain good
approximations to diag[ f (A)] for s 	 nL when guaranteeing
that the nonzero bands of VV T do not coincide with the
diagonals of the blocks of A, i.e., we require s > L and that
n is not a multiple of s. As A has nonnegative entries it can
be seen from Eqs. (3) and (4) that the considered f (A) also
have nonnegative entries. Hence, in our case Eqs. (16) and
(17) yields upper bounds on diag[ f (A)].

Note that the described techniques have already been used
for estimating the trace and the diagonal of single-layer net-
works [58,61]. This work, however, is the first to employ
the concepts in the context of multiplex networks, which, to
the best of our knowledge, is true for all methods presented
in Sec. V.

VI. NUMERICAL EXPERIMENTS

We demonstrate that the proposed generalization of matrix
function-based centrality measures to layer-coupled multi-
plex networks produces meaningful results by applying our
methods to several synthetic and real-world multiplex net-
works. The evaluation of the quality of centrality rankings is
generally difficult as typically there is no ground truth avail-
able. We thus start our discussion with a synthetic undirected
and a synthetic directed temporal network, which are designed
to produce specific rankings and compare our results to ex-
isting centrality measures before we study the performance
of the presented numerical methods on several real-world
networks with up to 30 million node-layer pairs.

Matlab code implementing all presented numerical experi-
ments is publicly available at Ref. [74].

A. Small synthetic undirected network

We start our discussion with the synthetic undirected layer-
coupled-multiplex network with n = 4 physical nodes and
L = 3 layers depicted in Fig. 4(a). The layers consist of
unweighted undirected star networks with x1 as center node
but with the edge to x4 and x3 removed in layers 2 and 3,
respectively. Therefore, by direct comparison of the role of
each physical node, the center node x1 can be considered most
central followed by x2. Considering only intralayer edges,
x3 and x4 have the same role in the network giving them
an equal centrality. Furthermore, layers 1 and 2 are coupled
with undirected edges of weight Ã12 � 0 and layers 1 and
3 are coupled with undirected edges of weight Ã13 � 0. In
Fig. 4(b) we illustrate the aggregated single-layer version of
the multiplex network in which intralayer edge weights are
summed up over the layers and the sum of interlayer edges is
added in the form of self-edges.

We apply total communicability and resolvent-based sub-
graph centrality to both networks and compare the obtained
marginal node centralities with rankings obtained from multi-
layer versions of degree and eigenvector centrality [45,75] as
well as HITS (hyperlink-induced topic search) [18,75]. Note
that due to the symmetry of A, HITS returns equal broadcaster
and receiver centralities. The variation of the parameters α

and β over the intervals α ∈ [0.01/λmax, 0.999/λmax] and
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FIG. 4. (a) Example of a layer-coupled multiplex network with
n = 4 physical nodes and L = 3 layers. Intralayer edges are un-
weighted and marked in red. Interlayer edges between layers 1 and 2
are weighted with Ã12 � 0 and marked in cyan and interlayer edges
between layers 1 and 3 are weighted with Ã13 � 0 and marked in
blue. (b) Aggregated single-layer version of the multiplex network
shown in panel (a). Intralayer edge weights are 3 between x1 and x2

and 2 between x1 and x3 as well as x1 and x4. In the aggregation,
interlayer edge weights are summed up and added as self-loops with
the common value (Ã12 + Ã13).

β ∈ [0.01/λmax, 20/λmax] produced qualitatively coinciding
results for the matrix function-based centrality measures. The
results depicted in Fig. 5 confirm the presumption that x1

gets ranked first and x2 second by all considered centrality
measures. The ranking of physical nodes x3 and x4 in the
multiplex network in Fig. 5(a), however, depends on the ratio
Ã12/Ã13 of interlayer weights: for all measures except degree
centrality (here, x3 and x4 have equal centrality independently
of Ã12 and Ã13), x3 and x4 have equal centrality only for
Ã12 = Ã13; for Ã12 > Ã13 x3 is more important than x4 and
vice versa for Ã12 < Ã13.

The information about this increased participation in walks
around the multiplex network when being connected with an
interlayer edge of high weight in the multiplex case is lost
when aggregating the network. Although all measures in the
aggregated network results in Fig. 5(b) also rank x1 first and
x2 second, x3 and x4 are ranked equally by all measures in the
aggregated network. This example illustrates that multilayer
networks are better capable of reflecting complex interactions
between its entities than single-layer networks are, that aggre-
gation can discard important structural information, and that
the summation of joint centralities to marginal node centrali-
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FIG. 5. (a) Marginal node multiplex centralities and (b) single-
layer centralities of three established and two matrix function-based
centrality measures of the networks depicted in Fig. 4. The parame-
ters were chosen ω = 1, α = 0.9/λmax, and β = 3/λmax and for each
value of Ã12/Ã13 one of the interlayer weights Ã12 and Ã13 was fixed
at 1. Note that eigenvector centrality and HITS are normalized to
have value 1 for the highest-ranked physical node.

ties can not be replaced by the summation of edge weights in
a network aggregation process.

B. Small synthetic temporal network

In this subsection, we consider a synthetic temporal
network with n = 200 physical nodes and L = 4 layers rep-
resenting different points in time. For the creation of the
network, we follow the procedure described in Ref. [[21],
Sec. 5.2]: intralayer edges are drawn randomly for all node-
layer pairs except for the “agenda setter” x(1)

1 from which
directed paths along four randomly chosen nodes in the four
layers distribute information more efficiently than random
edges would.

We use the temporal interlayer coupling described in
Sec. IV and apply Katz centrality with the set of pa-
rameters specified in Ref. [[21], Sec. 5.2]. This leads to
the results depicted in Fig. 6 in which dynamic commu-
nicability and marginal node Katz broadcaster centrality
are plotted against the marginal node out-degree centrality
of all physical nodes for forward (original) and backward
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FIG. 6. Comparison of (a) dynamic communicability and
(b) marginal node Katz broadcaster centrality using directed tempo-
ral coupling with marginal node out-degree centrality of a synthetic
temporal network with n = 200 and L = 4. The red stars represent
the “agenda-setting” physical node x1, blue dots represent the re-
maining physical nodes. The left plots denote the time layer ordering
1, 2, 3, 4 and the right plots denote the reversed order.

(time–reversed) evolving time. In this example, the directed
temporal coupling in our supra-adjacency matrix framework
successfully detects the “agenda-setting” property of physical
node x1 denoted by the red star in a similar way as dynamic
communicability does.

C. Numerical approximation error for small networks

To assess the approximation error of the numerical
methods presented in Secs. V A and V B, we consider
one undirected and one directed real-world multiplex net-
work whose sizes still permit the explicit evaluation of the
full matrix functions. We rely on Matlab’s expm function
and backslash operator for the computation of the “exact”
matrix function quantities. The results are, of course, subject
to rounding and approximation errors but can be assumed to
be highly accurate.

We choose the Scotland Yard transportation network cre-
ated by the authors from a board game as the undirected
example network. It consists of n = 199 physical nodes rep-
resenting public transport stops in the city of London and
L = 4 layers representing different modes of transportation
(boat, underground, bus, and taxi). We use all-to-all interlayer
coupling without self-edges.

As directed example network we create a temporal net-
work from the department 3 subset of the Email-EU data set
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FIG. 7. Infinity norm error plots of matrix function-based cen-
trality measures of (a) the symmetric supra-adjacency matrix of the
Scotland Yard network and (b) the nonsymmetric supra-adjacency
matrix of the temporal Email-EU network in dependence of the
number of Krylov subspace iterations in the respective methods
presented in Secs. V A and V B. The parameters are chosen ω = 1
and α = β = 0.5/λmax for all centrality measures.

[76]. Each layer represents a time period of 15 days result-
ing in L = 35 layers, which contain the number of Emails
exchanged between n = 89 members of a department of a
European research institution as weighted directed edges.
We use directed temporal interlayer coupling as described
in Sec. IV.

We consider the approximation error

max
i∈{1,...,n}
l∈{1,...,L}

|XC(i, l, γ ) − XCexact (i, l, γ )|, (18)

for XC ∈ {TC, SC, KC, SCres} and γ ∈ {α, β}, which corre-
sponds to the 	∞ norm error of the vectors of joint centralities.
Figure 7 illustrates this error for the two considered net-
works as a function of the number of iterations of the
respective Krylov subspace method. The plots show that all
methods obtain good approximations in only few Krylov
subspace iterations. In general, centrality measures computed
by Gauss quadrature rules from Sec. V B 1, e.g., SC and
SCres in Fig. 7(a) and SC bipartite and SCres bipartite in
Fig. 7(b) converge faster than the remaining measures relying
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TABLE II. Bounds on the multiplex Estrada index in dependence
of the number of Lanczos iterations for the unweighted undirected
European airlines data set with all-to-all interlayer coupling without
self-edges using Gauss (G), Gauss–Radau (GR), and Gauss–Lobatto
(GL) quadrature rules, cf. Sec. V B 1, with ω = 1 and β = 5/λmax.

# iterations 1 2 3 4 5

G (lower) 15 429 58 116 58 761 58 770.66 58 770.9769
GR (lower) 18 976 58 632 58 769 58 770.90 58 770.9832
GR (upper) 68 641 59 140 58 777 58 771.04 58 770.9846
GL (upper) 542 417 65 837 58 865 58 771.91 58 770.9906

on the approximation of a quantity f (A)b by a method from
Sec. V A or Sec. V B 2. This observation in line with the-
oretical results that after k Krylov iterations the methods
presented in Sec. V A to approximate f (A)b interpolate poly-
nomials of degree k − 1 exactly while the different Gauss
quadrature rules from Sec. V B 1 for quantities uT f (A)u in-
terpolate polynomials of degrees between 2k − 1 and 2k + 1
exactly [53].

Furthermore, for our choice of α = β the quantities based
on the matrix exponential converge faster than those based
on the matrix resolvent function. This is due to the factor 1

p!
in the power series of the matrix exponential, which lets the
contribution of high matrix powers decay more rapidly than
in the case of the matrix resolvent and thus enables better
approximations of f (A) with low-order polynomials.

Finally, the slightly faster convergence of SC shift com-
pared to TC and SCres shift compared to KC in Fig. 7(b) illus-
trates the error cancellation property described in Sec. V B 2:
the subtraction of two similar quantities of the form f (A)b in
Eq. (14) annihilates part of the approximation error.

D. Medium-sized European airlines network

The European airlines data set [77] consists of 450 physical
nodes representing European airports and L = 37 layers rep-
resenting European airlines. The network is unweighted and
undirected, i.e., the symmetric intralayer adjacency matrices
A(1), . . . , A(37) contain ones where the respective airline offers
a flight connection between two airports and zeros otherwise.
We choose all-to-all layer coupling without self-edges, i.e.,
Ã = 11T − 1 to reflect the effort added by changing airlines
on connecting flights between any pair of distinct airlines.
We only include the n = 417 airports belonging to the largest
connected cluster in the sum of the intralayer adjacency ma-
trices to be able to compare our results with eigenvector
centralities from Ref. [[13], Sec. 5.1]. While this selection is a
necessary requirement for the supra-adjacency matrix to sat-
isfy the assumptions of the Perron–Frobenius theorem, which
guarantees the unique existence of the largest eigenvector of
the matrix [[13], Theorem 3.7], this restriction would not be
required for our matrix function-based centrality framework.

Very few iterations of the methods described in Sec. V A
and V B 1 already achieve a notable precision. Table II illus-
trates lower and upper quadrature bounds on the Estrada index
defined in Table I for the parameters ω = 1 and β = 5/λmax,
which lead to λmax ≈ 38.37. Note that the Estrada index is
a sum of nL = 15 429 individually computed quantities of
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FIG. 8. Relative error of the stochastic (Rademacher) and de-
terministic (Hadamard) estimation of the Estrada index (trace) and
subgraph centrality (diagonal) for the European airlines network
with ω = 1, β = 5/λmax, and Ã = 11T − I. The abscissa s denotes
the number of Rademacher and Hadamard vectors, respectively,
cf. Sec. V C. For the relative error of the diagonal of f (A) we use
the 	2 norm of the vector of subgraph centralities. The results using
stochastic Rademacher vectors are averaged over 10 independent
runs.

the form uT f (A)u. The computations require a total of 87 s
using 5 Lanczos iterations per node-layer pair whereas Mat-
lab’s expm requires 460 s. All runtime measurements in this
subsection were performed on a laptop with 16 GB RAM and
an Intel Core i5-8265U CPU with 4 × 1.60–3.90 GHz cores
and Matlab R2020b.

Even lower runtimes can be achieved by employing
the trace and diagonal estimation techniques described in
Sec. V C. Fig. 8 demonstrates that an approximation of the
Estrada index to a relative error below 1% can be obtained
using the Hutchinson estimator from Eq. (15) with only s =
16 Rademacher vectors. This requires around 0.4 s runtime
when the funm_kryl toolbox for Matlab [69] with 20 Lanczos
iterations is used to evaluate matrix-vector products of the
matrix A with the Rademacher vectors to a precision of 10−12.
Increasing s leads to a linear increase in runtime such that
the computational cost of the estimation surpasses that of
applying Gauss quadrature to each diagonal entry for s = 212,
which requires around 95 s. Note that the relative error of
the Gauss–Radau bounds from Table II with 5 Lanczos itera-
tions is of order 10−8. Comparing Rademacher and Hadamard
vectors, Fig. 8 shows that while Rademacher vectors are bet-
ter suited for trace estimation with low s, Hadamard vectors
perform better in estimating the diagonal of f (A) if the con-
ditions on s discussed in Sec. V C are fulfilled. In Table III
we display the top 10 node-layer pairs of Katz centrality com-
puted with parameters ω = 1 and α = 0.5/λmax and compare
it with eigenvector [13,78] and degree centrality. The results
show that degree centrality ranks the centers of (almost) star
network layers like Atatürk airport in the Turkish airlines layer
highly while eigenvector centrality favors, e.g., Frankfurt and
Munich in the Lufthansa layer, which are themselves con-
nected to many other central node-layer pairs. As the matrix
function-based centrality measures interpolate between these
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TABLE III. Top 10 joint centralities of the unweighted undirected European airlines data set with all-to-all interlayer coupling and
parameter ω = 1. The columns contain Katz centrality with the parameter α = 0.5/λmax, eigenvector centrality computed with the codes
[78], and degree centrality where each degree includes L − 1 = 36 interlayer edges of weight 1 from interlayer coupling.

Katz centrality Eigenvector centrality [13] Degree centrality

(Stansted, Ryanair) 4.4231 (Frankfurt, Lufthansa) 0.0638 (Stansted, Ryanair) 121
(Munich, Lufthansa) 4.0939 (Munich, Lufthansa) 0.0631 (Atatürk, Turkish) 118
(Frankfurt, Lufthansa) 4.0652 (Amsterdam, KLM) 0.0564 (Munich, Lufthansa) 114
(Atatürk, Turkish) 4.0488 (Düsseldorf, Lufthansa) 0.0530 (Frankfurt, Lufthansa) 113
(Gatwick, easyJet) 3.7927 (Madrid, Iberia) 0.0504 (Gatwick, easyJet) 103
(Dublin, Ryanair) 3.6481 (Vienna, Austrian) 0.0490 (Vienna, Austrian) 100
(Vienna, Austrian) 3.5941 (Paris, Air France) 0.0485 (Amsterdam, KLM) 98
(Amsterdam, KLM) 3.5663 (Madrid, Ryanair) 0.0482 (Dublin, Ryanair) 90
(Bergamo, Ryanair) 3.3246 (Gatwick, easyJet) 0.0472 (Paris, Air France) 86
(Paris, Air France) 3.2446 (Fuimicino, Alitalia) 0.0471 (Fuimicino, Alitalia) 84

two established concepts [43] and the parameter α = 0.5/λmax

is chosen in the middle of its admissible interval, Katz cen-
trality rankings lie in between the results from degree and
eigenvector centrality. Note that subgraph and resolvent-based
subgraph centrality as well as total communicability similarly
interpolate between eigenvector and degree centrality.

It is interesting to note that the top three Katz marginal
node centralities include Madrid and Barcelona airport al-
though both airports do not enter the top joint centrality
rankings. This situation can only emerge in a constellation
where these two airport’s importance is well-spread over
many different layers, i.e., airlines.

For this network, the obtained marginal node and layer
rankings barely depend on the hyperparameters α, β, and ω.
The only exception from this behavior can be observed in the
limit α → 1

λmax

−
in which resolvent-based subgraph and Katz

centrality converge to eigenvector centrality [43]. Figures 9(a)
and 9(b) show that for α = 0.999/λmax the variation of the pa-
rameter ω in the medium coupling regime, i.e., values around
ω = 1 leads to a strong reordering in marginal node centrali-
ties. This qualitative behavior, which includes a clustering of
marginal node centralities in the weak coupling regime, i.e.,
ω → 0+ is similar to that observed for marginal node eigen-
vector centralities of multiplex networks in Ref. [[13], Fig. 5].
However, an interesting qualitative difference is the conver-
gence toward a common limit value in the strong coupling
limit, i.e., ω → ∞ in Fig. 9(b) compared to the convergence
toward different limit values in Ref. [[13], Fig. 5]. Marginal
layer centralities of matrix function-based and eigenvector
centrality measures behave very similarly including the domi-
nance of the Ryanair layer in the weak coupling regime, which
is caused by the fact that it contains by far the largest number
of intralayer edges.

The potential runtime gains of trace and diagonal esti-
mation techniques from Sec. V C compared to the explicit
evaluation of the matrix functions discussed earlier also
markedly come to light for the numerical methods from
Secs. V A and V B 1. The quantity f (A)b for Katz centrality
or total communicability can be approximated within 0.06 s
employing 30 Lanczos iterations using the funm_kryl toolbox
for Matlab [69] to a precision of 10−16. The 87 s runtime for
computing subgraph and resolvent-based subgraph centrality

for all nL = 15 429 node-layer pairs discussed earlier can be
reduced further by employing a very straightforward paral-
lelization using the parallel for-loop parfor from the Matlab
Parallel Computing Toolbox. Here, using four processors the

FIG. 9. (a) Marginal layer and (b) marginal node Katz central-
ities for the unweighted undirected European airlines data set with
all-to-all interlayer coupling without self-edges, α = 0.999/λmax,
varying coupling parameter ω, and l = 1, . . . , L and i = 1, . . . , n,
respectively.
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TABLE IV. Marginal node centrality ranks of selected physical
nodes (principals) of the temporal IMDb Sci-Fi network with ω =
10, α = 0.9/λmax, and β = 5/λmax. SC and SCres were computed via
diagonal estimation with s = 1024, cf. Sec. V C.

Broadcaster Receiver

Principals TC KC SC SCres TC KC SC SCres

Vance Major 1 1 1 1 1 1 1 1
Adam Mullen 2 2 2 2 2 2 2 2
Kevin MacLeod 15 3 17 17 15 3 16 16
Gene Roddenberry 16 4 16 16 16 4 17 17
George Lucas 29 19 60 50 29 19 57 48
William Shatner 41 29 52 47 41 29 52 45
Jack Kirby 38 27 63 42 38 27 65 68
H.G. Wells 43 25 66 49 43 25 79 78
Leonard Nimoy 99 56 128 134 100 56 108 84
Jules Verne 113 67 160 183 114 67 117 60
Kate Mulgrew 106 92 102 116 106 92 104 119
James Cameron 118 71 147 161 117 71 149 160
Stephen King 150 91 235 248 149 91 235 248
Patrick Stewart 164 108 257 294 164 108 252 293

total runtime reduces to 35 s plus a one-time setup of the
processes, which requires around 20 s.

E. Large temporal IMDb Sci-Fi network

As the final example network we consider the collabora-
tion network of the principal cast and crew members of all
science fiction (Sci-Fi) movies and series episodes from the
publicly available Internet Movie Database (IMDb) data set
[79]. A total of n = 245 757 principals is involved in 96 838
Sci-Fi movies or episodes with release dates between the
years 1895 and 2028 (some release dates lie in the future
as the IMDb contains records of unreleased but announced
titles). We build a temporal network with each layer rep-
resenting one release year. We exclude years in which no
collaboration took place, e.g., 1895 contains only one movie
with one principal. This leads to a total of L = 124 layers
and thus nL = 30 473 868 node-layer pairs. The undirected
intralayer edges are weighted with the number of collabora-
tions between all pairs of principals in the given year. For
Sci-Fi series we count seasons as collaborations as count-
ing episodes leads to an undesired dominance of series with
many episodes in the rankings. For the interlayer coupling
we use directed temporal coupling with the weights Ã(l−1),l =
e−�tl , l = 2, . . . , L with �tl denoting the time difference in
years between layers l − 1 and l .

As the directed interlayer edges make the supra-adjacency
matrix A nonsymmetric we separately consider broadcaster
and receiver centralities. However, as all intralayer edges are
undirected there are almost no differences between TC and
KC broadcaster and receiver centralities and SC and SCres

rankings also tend to be similar. Table IV lists marginal
node centrality rankings of selected principals for ω = 10,
which leads to λmax ≈ 74.6. Marginal layer centralities in-
crease with the increasing volume of produced Sci-Fi content
over the years but drop substantially in layers in which the
time difference to the following layer is more than one year.
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FIG. 10. Rankings of the top 50 joint broadcaster subgraph cen-
tralities of the temporal IMDb Sci-Fi network using Hadamard
diagonal estimation. Numerical values for s denote the employed
number of Hadamard vectors, cf. Sec. V C, and “Gauss” denotes
results computed to high precision with Gauss quadrature rules, cf.
Sec. V B 1. The parameters are chosen ω = 10 and β = 5/λmax.

The variation of the coupling parameter ω in the interval
[10−2, 102] shows a tendency that larger values of ω favor
principals active in early time layers. Its choice thus controls
the knock-on effect, i.e., the influence of early works on later
productions.

Albeit the large network size, the approximation of the
quantities TC and KC to a precision of 10−16 in funm_kryl
[69] can be achieved in 17.1 and 46.5 s for 30 and 80 Krylov
iterations, respectively. All runtime measurements in this sub-
section were performed on a computer with 32 GB RAM and
an Intel Core i7-4770 with 4 × 3.4 GHz cores and Matlab
R2021b.

The computation of one diagonal entry of f (A) for SC and
SCres using 10 Lanczos iterations requires 14.6 s. With this
approach the sequential computation of the full diagonal of
f (A) would require approximately 28.2 years corroborating
the infeasibility of this approach for large-scale networks. Em-
ploying the deterministic diagonal estimation from Sec. V C
leads to 31.8 s runtime per s, i.e., per Hadamard vector when
the matrix-vector products of f (A) with the Hadamard vec-
tors are computed to a precision of 10−12 using funm_kryl
[69]. Figs. 10 and 11 show that relatively small numbers s
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FIG. 11. Relative approximation error of the top 50 joint broad-
caster subgraph centralities of the temporal IMDb Sci-Fi network
using Hadamard diagonal estimation. The true centrality values are
computed to high precision with Gauss quadrature, cf. Sec. V B 1.
The abscissa s denotes the number of Hadamard vectors, cf. Sec. V C.
The parameters are chosen ω = 10 and β = 5/λmax.
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of Hadamard vectors achieve approximations, which reliably
identify the top-ranked node-layer pairs even when nonneg-
ligible diagonal estimation errors are present. However, for a
portion of the considered node-layer pairs, which increases
with increasing s, the centrality value is computed to high
precision, cf. Fig. 11. If the memory requirement of storing the
matrix V ∈ RnL×s, cf. Sec. V C, becomes a limiting factor in
the computations, then the columns of V can be assembled on-
the-fly using Kronecker products of small Hadamard matrices
as described in Ref. [57] at little extra cost. Accurate bounds
on a few pre-selected node-layer pairs can be computed rela-
tively cheaply using Gauss quadrature techniques.

VII. CONCLUSION AND OUTLOOK

We presented a general framework to apply matrix
function-based centrality measures to layer-coupled multiplex
networks using the supra-adjacency matrix as network repre-
sentation. We employed highly scalable numerical methods,
which enable the efficient treatment of medium to large-scale

networks. The application to several synthetic and real-world
multiplex networks and the comparison with established mul-
tilayer centrality measures indicate that our approach obtains
sensible rankings of nodes, layers, and node-layer pairs for
weighted and unweighted as well as directed and undirected
multiplex networks in competitive runtimes. The influence
of the involved hyper-parameters was discussed in various
example scenarios.

Besides the application to complex inherently multilayered
problems, future work could center around more general mul-
tilayer network models and different network representations,
e.g., in the form of tensors. Moreover, the influence of the
special structure of the supra-adjacency matrix on the conver-
gence of the numerical methods could be studied.

ACKNOWLEDGMENTS

M. Stoll acknowledges the funding of the BMBF Grant No.
01–S20053A. The authors thank all referees for their helpful
comments.

[1] S. Milgram, The small world problem, Psychol. Today 1, 61
(1967).

[2] D. J. Watts and S. H. Strogatz, Collective dynamics of “small-
world” networks, Nature (London) 393, 440 (1998).

[3] A.-L. Barabási and R. Albert, Emergence of scaling in random
networks, Science 286, 509 (1999).

[4] S. Brin and L. Page, The anatomy of a large-scale hypertex-
tual web search engine, Comput. Netw. ISDN Syst. 30, 107
(1998).

[5] L. Page, S. Brin, R. Motwani, and T. Winograd, The PageR-
ank citation ranking: Bringing order to the web, Tech. Rep.
(Stanford InfoLab, 1999)

[6] E. Estrada, The Structure of Complex Networks: Theory and
Applications (Oxford University Press, New York, NY, 2012).

[7] M. Kivelä, A. Arenas, M. Barthélemy, J. P. Gleeson, Y. Moreno,
and M. A. Porter, Multilayer networks, J. Complex Netw. 2, 203
(2014).

[8] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and
J.-P. Onnela, Community structure in time-dependent, multi-
scale, and multiplex networks, Science 328, 876 (2010).

[9] S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J.
Gómez-Gardenes, M. Romance, I. Sendina-Nadal, Z. Wang,
and M. Zanin, The structure and dynamics of multilayer net-
works, Phys. Rep. 544, 1 (2014).

[10] A. Solé-Ribalta, M. De Domenico, S. Gómez, and A. Arenas,
Random walk centrality in interconnected multilayer networks,
Physica D 323-324, 73 (2016).

[11] D. Taylor, S. A. Myers, A. Clauset, M. A. Porter,
and P. J. Mucha, Eigenvector-based centrality measures
for temporal networks, Multiscale Model. Simul. 15, 537
(2017).

[12] D. Taylor, M. A. Porter, and P. J. Mucha, Supracentrality anal-
ysis of temporal networks with directed interlayer coupling,
in Temporal Network Theory (Springer, Switzerland, 2019),
pp. 325–344.

[13] D. Taylor, M. A. Porter, and P. J. Mucha, Tunable eigenvector-
based centralities for multiplex and temporal networks,
Multiscale Model. Simul. 19, 113 (2021).

[14] K. Bergermann, M. Stoll, and T. Volkmer, Semi-supervised
learning for aggregated multilayer graphs using diffuse inter-
face methods and fast matrix-vector products, SIAM J. Math.
Data Sci. 3, 758 (2021).

[15] L. C. Freeman, A set of measures of centrality based on be-
tweenness, Sociometry 40, 35 (1977).

[16] L. C. Freeman, Centrality in social networks conceptual clarifi-
cation, Soc. Networks 1, 215 (1978).

[17] P. Bonacich, Power and centrality: A family of measures, Am.
J. Sociol. 92, 1170 (1987).

[18] J. M. Kleinberg, Authoritative sources in a hyperlinked environ-
ment, J. ACM 46, 604 (1999).

[19] D. F. Gleich, PageRank beyond the web, SIAM Rev. 57, 321
(2015).

[20] M. Aprahamian, D. J. Higham, and N. J. Higham, Match-
ing exponential-based and resolvent-based centrality measures,
J. Complex Netw. 4, 157 (2016).

[21] C. Fenu and D. J. Higham, Block matrix formulations for evolv-
ing networks, SIAM J. Matrix Anal. Appl. 38, 343 (2017).

[22] D. Wang, H. Wang, and X. Zou, Identifying key nodes in
multilayer networks based on tensor decomposition, Chaos 27,
063108 (2017).

[23] I. Chen, M. Benzi, H. H. Chang, and V. S. Hertzberg, Dynamic
communicability and epidemic spread: A case study on an
empirical dynamic contact network, J. Complex Netw. 5, 274
(2017).

[24] F. Arrigo and D. J. Higham, Sparse matrix computations
for dynamic network centrality, Appl. Network Sci. 2, 17
(2017).

[25] F. Tudisco, F. Arrigo, and A. Gautier, Node and layer eigenvec-
tor centralities for multiplex networks, SIAM J. Appl. Math. 78,
853 (2018).

034305-14

https://doi.org/10.1038/30918
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1126/science.1184819
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physd.2016.01.002
https://doi.org/10.1137/16M1066142
https://doi.org/10.1137/19M1262632
https://doi.org/10.1137/20M1352028
https://doi.org/10.2307/3033543
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1086/228631
https://doi.org/10.1145/324133.324140
https://doi.org/10.1137/140976649
https://doi.org/10.1093/comnet/cnv016
https://doi.org/10.1137/16M1076988
https://doi.org/10.1063/1.4985185
https://doi.org/10.1093/comnet/cnw017
https://doi.org/10.1007/s41109-017-0038-z
https://doi.org/10.1137/17M1137668


FAST COMPUTATION OF MATRIX FUNCTION-BASED … PHYSICAL REVIEW E 105, 034305 (2022)

[26] F. Arrigo, P. Grindrod, D. J. Higham, and V. Noferini, Non-
backtracking walk centrality for directed networks, J. Complex
Netw. 6, 54 (2018).

[27] F. Arrigo, P. Grindrod, D. J. Higham, and V. Noferini, On the
exponential generating function for non-backtracking walks,
Linear Algebra Appl. 556, 381 (2018).

[28] A. R. Benson, Three hypergraph eigenvector centralities, SIAM
J. Math. Data Sci. 1, 293 (2019).

[29] M. Wu, S. He, Y. Zhang, J. Chen, Y. Sun, Y.-Y. Liu, J. Zhang,
and H. V. Poor, A tensor-based framework for studying eigen-
vector multicentrality in multilayer networks, Proc. Natl. Acad.
Sci. USA 116, 15407 (2019).

[30] M. Benzi and P. Boito, Matrix functions in network analysis,
GAMM-Mitt. 43, e202000012 (2020).

[31] M. Al Mugahwi, O. D. L. C. Cabrera, C. Fenu, L. Reichel,
and G. Rodriguez, Block matrix models for dynamic networks,
Appl. Math. Comput. 402, 126121 (2021).

[32] F. Arrigo, D. J. Higham, V. Noferini, and R. Wood, Dynamic
Katz and related network measures, arXiv:2110.10526.

[33] L. Katz, A new status index derived from sociometric analysis,
Psychometrika 18, 39 (1953).

[34] E. Estrada, Characterization of 3D molecular structure, Chem.
Phys. Lett. 319, 713 (2000).

[35] E. Estrada and J. A. Rodriguez-Velazquez, Subgraph centrality
in complex networks, Phys. Rev. E 71, 056103 (2005).

[36] E. Estrada and N. Hatano, Communicability in complex net-
works, Phys. Rev. E 77, 036111 (2008).

[37] E. Estrada and D. J. Higham, Network properties revealed
through matrix functions, SIAM Rev. 52, 696 (2010).

[38] M. Benzi, E. Estrada, and C. Klymko, Ranking hubs and author-
ities using matrix functions, Linear Algebra Appl. 438, 2447
(2013).

[39] M. Benzi and C. Klymko, Total communicability as a centrality
measure, J. Complex Netw. 1, 124 (2013).

[40] P. Grindrod, M. C. Parsons, D. J. Higham, and E. Estrada,
Communicability across evolving networks, Phys. Rev. E 83,
046120 (2011).

[41] P. Grindrod and D. J. Higham, A matrix iteration for dynamic
network summaries, SIAM Rev. 55, 118 (2013).

[42] P. Grindrod and D. J. Higham, A dynamical systems view of
network centrality, Proc. R. Soc. Sect. A 470, 20130835 (2014).

[43] M. Benzi and C. Klymko, On the limiting behavior of
parameter-dependent network centrality measures, SIAM J.
Matrix Anal. Appl. 36, 686 (2015).

[44] L. Solá, M. Romance, R. Criado, J. Flores, A. García del Amo,
and S. Boccaletti, Eigenvector centrality of nodes in multiplex
networks, Chaos 23, 033131 (2013).

[45] M. De Domenico, A. Solé-Ribalta, E. Omodei, S. Gómez, and
A. Arenas, Ranking in interconnected multilayer networks re-
veals versatile nodes, Nat. Commun. 6, 6868 (2015).

[46] M. Stoll, A literature survey of matrix methods for data science,
GAMM-Mitt. 43, e202000013 (2020).

[47] Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM,
Philadelphia, PA, 2003).

[48] N. J. Higham, Functions of Matrices: Theory and Computation
(SIAM, Philadelphia, PA, 2008).

[49] G. H. Golub and C. F. Van Loan, Matrix Computations Vol. 3
(JHU Press, Baltimore, MD, 2013).

[50] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature
rules, Math. Comp. 23, 221 (1969).

[51] G. H. Golub and G. Meurant, Matrices, moments and quadra-
ture, Pitman Res. Notes Math. Ser. 303, 105 (1994).

[52] G. H. Golub and G. Meurant, Matrices, moments and quadra-
ture II: How to compute the norm of the error in iterative
methods, BIT Numer. Math. 37, 687 (1997).

[53] G. H. Golub and G. Meurant, Matrices, Moments and
Quadrature with Applications (Princeton University Press,
Princeton, NJ, 2009).

[54] M. Benzi and G. H. Golub, Bounds for the entries of matrix
functions with applications to preconditioning, BIT Numer.
Math. 39, 417 (1999).

[55] G. H. Golub, M. Stoll, and A. Wathen, Approximation of
the scattering amplitude and linear systems, Electron. Trans.
Numer. Anal. 31, 178 (2008).

[56] M. F. Hutchinson, A stochastic estimator of the trace of the
influence matrix for Laplacian smoothing splines, Commun.
Stat. B: Simul. Comput. 19, 433 (1989).

[57] C. Bekas, E. Kokiopoulou, and Y. Saad, An estimator for
the diagonal of a matrix, Appl. Numer. Math. 57, 1214
(2007).

[58] P. W. Staar, P. K. Barkoutsos, R. Istrate, A. C. I. Malossi, I.
Tavernelli, N. Moll, H. Giefers, C. Hagleitner, C. Bekas, and
A. Curioni, Stochastic matrix-function estimators: Scalable big-
data kernels with high performance, in Proceedings of the IEEE
International Parallel and Distributed Processing Symposium
(IPDPS) (IEEE, Piscataway, NJ, 2016), pp. 812–821.

[59] S. Ubaru, J. Chen, and Y. Saad, Fast estimation of tr( f (A)) via
stochastic Lanczos quadrature, SIAM J. Matrix Anal. Appl. 38,
1075 (2017).

[60] A. Cortinovis and D. Kressner, On randomized trace estimates
for indefinite matrices with an application to determinants,
Found. Comput. Math.1 (2021).

[61] R. A. Meyer, C. Musco, C. Musco, and D. P. Woodruff,
Hutch++: Optimal stochastic trace estimation, in Proceedings
of the Symposium on Simplicity in Algorithms (SOSA) (SIAM,
Philadelphia, PA, 2021), pp. 142–155.

[62] K. Bergermann and M. Stoll, Orientations and matrix function-
based centralities in multiplex network analysis of urban public
transport, Appl. Netw. Sci. 6, 90 (2021).

[63] S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C. J.
Pérez-Vicente, Y. Moreno, and A. Arenas, Diffusion Dynam-
ics on Multiplex Networks, Phys. Rev. Lett. 110, 028701
(2013).

[64] M. De Domenico, A. Solé-Ribalta, S. Gómez, and A. Arenas,
Navigability of interconnected networks under random failures,
Proc. Natl. Acad. Sci. USA 111, 8351 (2014).

[65] N. Alon, I. Benjamini, E. Lubetzky, and S. Sodin, Non-
backtracking random walks mix faster, Commun. Contemp.
Math. 09, 585 (2007).

[66] C. Moler and C. Van Loan, Nineteen dubious ways to compute
the exponential of a matrix, 25 years later, SIAM Rev. 45, 3
(2003).

[67] W. E. Arnoldi, The principle of minimized iterations in the
solution of the matrix eigenvalue problem, Q. Appl. Math. 9,
17 (1951).

[68] C. Lanczos, An iteration method for the solution of the eigen-
value problem of linear differential and integral operators,
J. Res. National Bureau Standards 45, 255 (1950).

[69] S. Güttel, funm kryl toolbox for matlab, Available at
http://guettel.com/funm_kryl.

034305-15

https://doi.org/10.1093/comnet/cnx025
https://doi.org/10.1016/j.laa.2018.07.010
https://doi.org/10.1137/18M1203031
https://doi.org/10.1073/pnas.1801378116
https://doi.org/10.1002/gamm.202000012
https://doi.org/10.1016/j.amc.2021.126121
http://arxiv.org/abs/arXiv:2110.10526
https://doi.org/10.1007/BF02289026
https://doi.org/10.1016/S0009-2614(00)00158-5
https://doi.org/10.1103/PhysRevE.71.056103
https://doi.org/10.1103/PhysRevE.77.036111
https://doi.org/10.1137/090761070
https://doi.org/10.1016/j.laa.2012.10.022
https://doi.org/10.1093/comnet/cnt007
https://doi.org/10.1103/PhysRevE.83.046120
https://doi.org/10.1137/110855715
https://doi.org/10.1098/rspa.2013.0835
https://doi.org/10.1137/130950550
https://doi.org/10.1063/1.4818544
https://doi.org/10.1038/ncomms7868
https://doi.org/10.1002/gamm.202000013
https://doi.org/10.1090/S0025-5718-69-99647-1
https://doi.org/10.1007/BF02510247
https://doi.org/10.1023/A:1022362401426
https://doi.org/10.1080/03610919008812866
https://doi.org/10.1016/j.apnum.2007.01.003
https://doi.org/10.1137/16M1104974
https://doi.org/10.1007/s10208-021-09525-9
https://doi.org/10.1007/s41109-021-00429-9
https://doi.org/10.1103/PhysRevLett.110.028701
https://doi.org/10.1073/pnas.1318469111
https://doi.org/10.1142/S0219199707002551
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1090/qam/42792
https://doi.org/10.6028/jres.045.026
http://guettel.com/funm_kryl


KAI BERGERMANN AND MARTIN STOLL PHYSICAL REVIEW E 105, 034305 (2022)

[70] M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Güttel, Im-
plementation of a restarted Krylov subspace method for the
evaluation of matrix functions, Linear Algebra Appl. 429, 2293
(2008).

[71] P. E. Saylor and D. C. Smolarski, Why Gaussian quadrature in
the complex plane? Numer. Algor. 26, 251 (2001).

[72] C. Fenu, D. Martin, L. Reichel, and G. Rodriguez, Block Gauss
and anti-Gauss quadrature with application to networks, SIAM
J. Matrix Anal. Appl. 34, 1655 (2013).

[73] C. Fenu, D. Martin, L. Reichel, and G. Rodriguez, Network
analysis via partial spectral factorization and Gauss quadrature,
SIAM J. Sci. Comput. 35, A2046 (2013).

[74] K. Bergermann and M. Stoll, Code release Multiplex
matrix function centralities available at https://github.com/
KBergermann/Multiplex-matrix-function-centralities (2021).

[75] M. De Domenico, M. A. Porter, and A. Arenas, MuxViz:
A tool for multilayer analysis and visualization of networks,
J. Complex Netw. 3, 159 (2015).

[76] A. Paranjape, A. R. Benson, and J. Leskovec, Motifs in
temporal networks, in Proceedings of the 10th ACM Interna-
tional Conference on Web Search and Data Mining (2017),
pp. 601–610.

[77] A. Cardillo, J. Gómez-Gardenes, M. Zanin, M. Romance, D.
Papo, F. Del Pozo, and S. Boccaletti, Emergence of network
features from multiplexity, Sci. Rep. 3, 1344 (2013).

[78] D. Taylor, Code release: Supracentrality, Available at https://
github.com/taylordr/Supracentrality (2021).

[79] The authors downloaded the files name.basics, title.basics,
title.episode, and title.principals from https://datasets.imdbws.
com.

034305-16

https://doi.org/10.1016/j.laa.2008.06.029
https://doi.org/10.1023/A:1016612909180
https://doi.org/10.1137/120886261
https://doi.org/10.1137/130911123
https://github.com/KBergermann/Multiplex-matrix-function-centralities
https://doi.org/10.1093/comnet/cnu038
https://doi.org/10.1038/srep01344
https://github.com/taylordr/Supracentrality
https://datasets.imdbws.com

