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Many of the biological, social and man-made networks around us are inherently dynamic, with their links
switching on and off over time. The evolution of these networks is often observed to be non-Markovian, and the
dynamics of their links are often correlated. Hence, to accurately model these networks, predict their evolution,
and understand how information and other relevant quantities propagate over them, the inclusion of both memory
and dynamical dependencies between links is key. In this article we introduce a general class of models of
temporal networks based on discrete autoregressive processes for link dynamics. As a concrete and useful case
study, we then concentrate on a specific model within this class, which allows to generate temporal networks with
a specified underlying structural backbone, and with precise control over the dynamical dependencies between
links and the strength and length of their memories. In this network model the presence of each link is influenced
not only by its past activity, but also by the past activities of other links, as specified by a coupling matrix,
which directly controls the causal relations, and hence the correlations, among links. We propose a maximum
likelihood method for estimating the model’s parameters from data, showing how the model allows a more
realistic description of real-world temporal networks and also to predict their evolution. Due to the flexibility of
maximum likelihood inference, we illustrate how to deal with heterogeneity and time-varying patterns, possibly
including also nonstationary network dynamics. We then use our network model to investigate the role that, both
the features of memory and the type of correlations in the dynamics of links have on the properties of processes
occurring over a temporal network. Namely, we study the speed of a spreading process, as measured by the
time it takes for diffusion to reach equilibrium. Through both numerical simulations and analytical results, we
are able to separate the roles of autocorrelations and neighborhood correlations in link dynamics, showing that
not only is the speed of diffusion nonmonotonically dependent on the memory length, but also that correlations
among neighboring links help to speed up the spreading process, while autocorrelations slow it back down. Our
results have implications in the study of opinion formation, the modeling of social networks, and the spreading
of epidemics through mobile populations.
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I. INTRODUCTION

Much of the world we experience is governed by inter-
actions. Networks provide a natural way of modeling these
interactions, and as such the study of networks has been
central to the understanding of both natural phenomena and
man-made systems. Observably, many of the networks around
us change over time, as the interactions and connections
that define them come and go. Human contacts and social
interactions do not last forever [1–3], roads between towns
and cities can be closed or new ones build [4,5], financial
or economic agents trade each day with different counter-
parts [6], and even our brains undergo significant changes
throughout our lives [7–10]. Real-world examples of temporal
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networks are often found to have a set of very well-defined
structural and temporal features, many of which play key roles
in determining the dynamics and functioning of the systems
for which they form the backbone [11–18]. Various models
have been recently proposed to replicate such features. For
instance, models of human face-to-face interactions often rely
on the assumption that the agents move as random walkers in a
physical space and create a link whenever they are closer than
a certain distance [2,19]. Other models take a slightly more
abstract approach, introducing the notion of node activity to
control the presence of links [20–22]. The adaptations and
extensions of these models do directly specify the presence
of empirically observed features such as memory, by which
we here mean a dependence on some finite number of past
states. Indeed, memory has been seen to play an important
role in many real-world networks [8,23–25]. It can affect the
dynamics of social interactions [26] and the controllability of
temporal networks [27] and can also turn useful in the defini-
tion of flow-based communities [28–30]. An area of study in
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which memory has received a large attention is its relation to
spreading processes [31,32]. When considering the spreading
of an infection over a network, the presence of memory in
the link activities can have a considerable effect on the rate of
spreading of the disease, and can even cause dramatic changes
to the epidemic threshold [33–36]. In diffusive processes,
memory directly induces the slowing, or acceleration, of the
spread of information over the network [30,31,37–40]. This
has been studied in the context of higher-order networks, and
is often understood to be a result of the correlated bursts, and
the induced lasting interactions that the nonexponential in-
terevent times, which define memory, necessitate [31,41–45].
What has been done, however, does not form a full picture.
The presence of memory in the links that make up a network
naturally means that the state of each of these links at a
given time can depend on the past activity of the link. It is
common in real networks to have pairs of links which are
correlated with each other. Indeed, it seems natural to assume
that links in a temporal network can have memory of each
others past, rather than simply their own. The connections
between the rate at which information spreads across a net-
work and the memory of links are deep, as are the connections
between memory and link correlations. However, the way
in which interlink correlations and memory interact, and the
effects this interaction has on spreading and other dynami-
cal processes occurring over temporal networks is not well
understood.

The goal of this article is twofold. We first introduce a
general class of models of temporal networks, which are based
on a discrete autoregressive mechanism for link dynamics.
Then, as a case study, we concentrate on a specific genera-
tive model for temporal networks within this class in which
the backbone structure, temporal correlations, and memory
are all taken into account but can be precisely and sepa-
rately controlled. We will also present a method for inferring
the key parameters of the model from empirical data, si-
multaneously highlighting both the ability of the model to
describe real systems and the role played by both memory
and cross-interactions of links in the dynamics of real-world
networks and in the forecasting of links. Then we extend
further the range of applicability by showing how to account
for heterogeneity and time-varying patterns in link dynam-
ics, again validating the proposed generalization on data.
The second goal of the article is to investigate how the in-
terplay of the three key properties of a temporal network,
namely, the structure of its underlying backbone, the corre-
lations between the evolution of its links, and the memory
of its own past states, impacts dynamical processes over
the network. In particular, we will study the way in which
these properties affect a process of diffusion over a temporal
network.

This paper is organized as follows. In Sec. II we intro-
duce a general class of models of temporal networks based
on discrete autoregressive processes. As a concrete case, in
Sec. III we consider a specific model within this class that
allows for a controlled description and treatment of the cross-
interactions in link dynamics, the so-called correlated discrete
autoregressive network model of order p, or in short the
CDARN(p) model. We discuss our model in the context of
other existing generative models for temporal networks, and

we explain how the controllability, flexibility, and analytical
tractability of the model fill an important gap in the literature.
In Sec. IV we show how the CDARN(p) can be applied to
model real temporal networks presenting a maximum like-
lihood estimation framework to infer the key parameters of
the model from empirical data. In this section the role played
by both memory and cross-interactions of links in the dy-
namics of real-world networks will be evident, as well as
the ability of the CDARN(p) model to effectively reproduce
real features of temporal networks. Hence, we point out that
including cross-interactions allows us to better describe the
evolution of real-world temporal networks, specifically by
better predicting the appearance of a link between a given
couple of nodes. Moreover, we show how heterogeneous or
time-varying parameters can be considered in our setting,
due to the flexibility of maximum likelihood inference. In
particular we show the role played by both heterogeneous
and time-varying patterns in estimation of and forecasting
with the CDARN(p) model. In Sec. V we consider processes
occurring over temporal networks. As an example of a net-
work process, we study diffusion over temporal networks
generated by the the CDARN(p) model. We implement the
CDARN(p) model on a number of backbone topologies taken
from real-world systems, and we present numerical and an-
alytical results concerning how the various features of the
temporal network affect the diffusion process occurring over
it. In particular, we show that the average time taken for
diffusion to reach equilibrium on these networks is gener-
ally nonmonotonically dependent on the memory length, in
agreement with recent findings regarding a different type of
process, namely, epidemic spreading in temporal networks
with only self-correlated links activities [35]. Here, how-
ever, we find that the time taken to reach equilibrium is
additionally highly dependent on how links in the temporal
network are correlated. Moreover, and more importantly, we
study in detail the effects of link cross-correlations on dif-
fusion. We are able to explain the dependence of the time
to reach equilibrium on the types of correlations between
the activities of links in the temporal network. Specifi-
cally we find that when correlations between neighboring
links are strengthened when compared to link autocorrela-
tions, diffusion speeds up. This is a surprising complement
to some recent works: while autocorrelation in links slows
down diffusion, as explained by the induced burstiness of the
link processes, correlations between neighbor links speeds it
up [30,31,35,37–39,41,46–48].

Overall, our results demonstrate that the topology of a
temporal network interacts in a complex way with the dy-
namical properties (correlation and memory) of its links. Our
model provides a framework for systematic investigation of
this delicate interplay and for the description of real systems:
its simplicity allows for efficient numerical simulation and
analytical tractability, and its flexibility allows us to explore
and understand a wide range of observable phenomena relat-
ing to diffusion over temporal networks. Further, it proves to
be useful when investigating temporal networks observed in
the real world, where we cannot assume any ability to study
the effects of temporal correlations and memory in isolation,
thus making it an ideal building block for further studies of
empirical systems.
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II. A GENERAL CLASS OF DISCRETE AUTOREGRESSIVE
NETWORK MODELS

Models for temporal networks in which links are gov-
erned by a possibly correlated set of stochastic processes
allow for a great deal of control over various aspects of
their output, but can run the risk of being too abstract, and
thus their use in describing empirical systems can be limited.
For example, temporal networks in which links are specified
to have an interevent time with a Weibull distribution have
been seen to reflect empirical findings with respect to in-
fection spreading and clearly imply memory in the network;
however, it is not clear that they are a good model for tem-
poral networks in more general settings [49]. Activity-driven
network models [50], in particular those versions with link re-
inforcement process [21], allow us to describe non-Markovian
memory in links. Nevertheless, it is unclear how to estimate
activity-driven models on empirical data. State-space models
of temporal networks (see, for example, [51–53]) describe
nodes as evolving in a latent Euclidean space and interact-
ing depending on their “physical” distances in such a space.
The resulting link dynamics can display both non-Markovian
memory and cross-correlations among links. However, there
is no explicit control on both features. Modeling temporal
networks as Markov chains of generic memory order [18,34]
allows us to characterize the memory patterns displayed by
empirical data, however, at the expense of high computational
costs and the use of a large number of parameters. Finally,
maximum entropy models of temporal networks [54] permit
us, in principle, to describe many patterns of link dynamics,
also having a high level of control on the features of the
output network, as well as allowing applications to empirical
data. Recently introduced Markovian models of temporal net-
works [6,35] based on some opportune generalization of the
discrete autoregressive process [55] are to all effect maximum
entropy models, as shown in [56]. Here we show how the
multivariate and non-Markovian generalization of the discrete
autoregressive mechanism [55] is suited for a general descrip-
tion of the auto- and cross-correlation structure of temporal
networks described as time series of adjacency matrices. Such
a generalization allows us to define an alternative class of
models of temporal networks, which is highly flexible, largely
controllable, and analytically tractable at the same time.

The discrete autoregressive process DAR(p) [55], whose
properties have been largely studied in the statistics and
econometrics literature [57–59], describes the persistence
pattern of a stochastic process by means of the discrete au-
toregressive (copying) mechanism as

Xt = Qt Xt−Zt + (1 − Qt )Yt , (1)

with the following:
(1) Qt ∼ B(q) Bernoulli random variable with success

probability q
(2) Non-Markovian memory described by a random vari-

able Zt , which picks an integer value τ ranging from 1
to p with probability zτ (i.e., memory kernel), such that∑p

τ=1 zτ = 1
(3) Bernoulli marginal Yt ∼ B(y) with success proba-

bility y.
The DAR(p) model in Eq. (1) captures the positive auto-

correlation of a binary time series with memory of generic

order p by means of the copying mechanism mediated by
the Bernoulli random variable Qt . It is quite natural moving
from the description of a single binary time series to the
multivariate case of adjacency matrices, thus exploiting the
flexibility of the framework, to account also for the cross-
interactions of links and time-varying patterns in temporal
networks. For practical reasons, the multivariate generaliza-
tion of the DAR(p) process in Eq. (1) allows us to define an
alternative class of temporal networks, the so-called discrete
autoregressive network models, which combine the mecha-
nism of copying from the past with the sampling of links
according to some marginal, which is Bernoulli in the simplest
case. In particular, the latter can be interpreted to all effects
as the non-Markovian dynamic generalization of the Erdős-
Rényi random graph model when one parameter is controlling
for the density of the network.

In order to precisely define the discrete autoregressive net-
work models, let us consider a temporal adjacency matrix
A

t
= {ai j

t }, with t = 1, 2, . . .. If each link (i, j) is labeled by
a single index � ≡ (i, j), we can consider the vectorization
X

t
≡ {a�

t }�=1,...,L of the adjacency matrix {ai j
t }(i, j)∈B of the

network snapshot at time t , where L is the number of possible
links belonging to some subset B (i.e., the so-called backbone
of the temporal network) of all the N (N − 1)/2 couples of
nodes. We then consider the following discrete autoregressive
multivariate process (� = 1, . . . , L):

X �
t = Q�

t X M�
t

t−Z�
t
+ (

1 − Q�
t

)
Y �

t (2)

with the following:
(1) Q�

t ∼ B(q�
t ) Bernoulli random variable with, in gen-

eral, link-specific time-varying probability q�
t

(2) Non-Markovian memory described by a set of random
variables Z�

t which pick value τ running from 1 to p with
probability zτ (i.e., memory kernel), such that

∑p
τ=1 zτ = 1;

(3) Link cross-interactions described by a set of random
variables M�

t which pick values from 1 to L according to each
row of a coupling matrix C ≡ {c��′ }, a row stochastic (i.e.,∑

�′ c��′ = 1) matrix, which characterizes the correlations be-
tween pairs of links.

(4) Bernoulli marginals Y �
t ∼ B(y�

t ) with, in general, link-
specific time-varying probability y�

t .
The formulation in Eq. (2) is very general, account-

ing for time-dependent persistence patterns of links, with
non-Markovian memory, cross-interactions mediated by the
coupling matrix C, and possibly time-varying marginal prob-
abilities. In practice, some parametrization needs to be
considered, and it is possible to reduce the complexity of the
model and use it to focus, one by one, on the various specific
features of temporal networks.

Previous works have investigated the role of non-
Markovian memory in models of temporal networks that can
now be seen as limiting cases of the most general frame-
work proposed in Eq. (2). However, a very important aspect,
which has not yet received the deserved attention, is the
modeling of cross-interactions of links. For instance, the dy-
namics of spreading processes on temporal networks with
memory has been investigated in the DARN(p) model, a non-
Markovian model that can be seen as a limiting case of the
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model in Eq. (2) with constant parameters and with diagonal
coupling matrix C, i.e., under the very strong assumption that
only autocorrelations in the link dynamics are present [35].
The authors of Ref. [6] have instead proposed an empir-
ical application of link inference to the interbank market.
The have considered a model similar to that in Eq. (2) with
Markovian link-persistence patterns, again without explicit
cross-correlations of links, but combined with node-specific
time-varying marginals. Finally, Granger causality has been
investigated in a model with two time series, which corre-
sponds to a bivariate case (i.e., � = 1, 2) of the model in
Eq. (2) with constant parameters [60].

Here we focus on a crucial feature of real-world temporal
networks that has received less attention from a model-
ing point of view, namely, the cross-interactions of links
(i.e., the presence of dependencies in the time evolution of
pairs of different links). In particular, we will consider the
model in Eq. (2) with general memory kernels and opportune
parametrizations of the coupling matrix C. In this way we
will be able to study auto- and cross-correlated link dynamics
combined with non-Markovian memory, and in the presence
of a backbone network defining which links may be present
or not.

We point out the richness, versatility, and controllability
of our model of temporal networks, together with its low
computational costs in empirical applications, due to maxi-
mum likelihood methods for inference. In Sec. III we will
first consider the CDARN(p) model, a simplified version of
the model in Eq. (2) with constant parameters q�

t = q and
y�

t = y ∀t, �. Then, in Sec. IV due to the high flexibility of
the proposed framework, we will relax the last assumption by
allowing for heterogeneous parameters (i.e., link-specific q�

and y�) and we will exploit local likelihood methods [61] to
deal with time-varying parameters qt , ct , and yt . Finally, the
analytical tractability of our approach will come to light in
Sec. V in the study of the dynamics of spreading processes
over temporal networks generated by the model.

III. The CDARN(p) MODEL OF TEMPORAL NETWORKS

Here we consider a simplified version of the general
model of temporal networks in Eq. (2), which is rich enough
to describe non-Markovian memory patterns, with precisely
controlled strength and length of the memory, while also
reproducing a key feature of real-world networks, namely,
correlations between the evolutions of links over time, as
produced by dependencies between their dynamics. Further-
more, we want to keep such a model as simple as possible,
with a small number of parameters, thus permitting also easy
application to empirical data by fitting the parameters of the
model on graph sequences from the real world. Hence, we take
the general setting given by Eq. (2) and consider a particular
parametrization that reflects the presence of two key features
of real systems [3,7,8,38,62]: (1) the existence of an under-
lying restriction, a so-called network “backbone” on which
links can occur and (2) the presence of cross-correlations in
link dynamics, i.e., of dynamical dependencies in the temporal
activities of different links.

We introduce the so-called correlated discrete autoregres-
sive network model of order p, or in short the CDARN(p)

model, which describes the dynamics of links with an in-
cluded mechanism for copying from the past: at each time,
a link (or no-link) can be copied from the past, either of the
link itself or the past of some other link on the backbone,
or sampled according to a Bernoulli marginal (Erdős-Rényi
model). This point in the past, from 1 to p steps behind, is
then randomly selected with uniform probability. The model
is, in effect, the multivariate generalization of the DARN(p)
model [35] with non-Markovian memory and both self- and
cross-interactions of links. In the following, for clarity, we
briefly review DARN(p) before introducing the CDARN(p)
model, while in the next section we show how to estimate the
model on real data, to infer the key parameters of the network
dynamics. Once estimated on data, the model can be used also
for link prediction. Moreover in Sec. V we will show how the
model parameters can be varied to study in a systematic and
controlled way the role that memory in the underlying tem-
poral network has on the rate at which information, or some
other quantity spreads throughout a system whose interactions
change over time.

A. The basic model

The DARN(p) model, originally introduced in [35], gen-
erates a temporal network with precisely controlled memory
features in the temporal sequence of each link. Namely, the
model considers N nodes and assigns to each of the N (N −
1)/2 pairs of nodes the presence or absence of a link as
ruled by independent, identical DAR(p) processes (discrete
autoregressive processes of order p) [6,55,63,64]. In this way
each link either will, at each time step, be generated randomly
with some fixed probability, or will copy a randomly chosen
state from its past p iterations. In terms of random variables,
this gives us a temporal adjacency matrix A

t
= {ai j

t }, with
t = 1, 2, . . ., where each link (i, j), with i, j = 1, . . . , N is
governed by the process

ai j
t = Qi j

t ai j

(t−Zi j
t )

+ (
1 − Qi j

t

)
Y i j

t , (3)

where, for each link (i, j) and time t , Qi j
t , Y i j

t , and Zi j
t are

random variables. In particular, Qi j
t ∼ B(q) and Y i j

t ∼ B(y)
are Bernoulli random variables, while Zi j

t is some random
variable which picks integers in the range {1, . . . , p}. Note
that no restriction is imposed to the memory kernel control-
ling for the probability of picking the integers in the range
{1, . . . , p}, as long as the probability sums to one. For exam-
ple, an uniform kernel describes equal probabilities of picking
past observations from lag 1 to lag p, whereas an exponen-
tial kernel describes probabilities exponentially decaying to
zero as the lag is increasing. Without loss of generality, here
we take Zi j

t ∼ Uniform(1, p). The networks created by the
DARN(p) model are undirected, and clearly non-Markovian,
with precise memory p.

The DARN(p) model assumes that links can occur between
any two nodes. This is not always the case in real-world
networks, where certain links may be unfeasible, or simply
impossible. For example, a plane may not be allowed to fly
between two particular airports, or a doctor may be responsi-
ble for a small number of patients, and therefore not interact
with others. We therefore say that these temporal networks
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have a “backbone”: a fixed set of possible links which restrict
the networks evolution. With this in mind we make our first
modification leading to a more general framework. First, we
define a backbone network with L links described by a static
N × N adjacency matrix B = {bi j}. Then a temporal network
on this backbone is represented by a N × N time-varying
adjacency matrix A

t
= {ai j

t }, so that ai j
t = 0 for all t if bi j = 0,

while if bi j = 1 then the link (i, j) can exist for any value of t .
In this way the presence of links can be appropriately limited
to reflect reality.

Since links in the DARN(p) model are generated by in-
dependent processes, there can be autocorrelations in the
temporal activity of each link but no cross-correlations
between different links. Conversely, correlations among dif-
ferent links are a natural feature of many systems. To further
our earlier analogy, an airline is unlikely to schedule two
flights between the same airports in close proximity to each
other but may prefer to schedule flights at appropriate times
to make connections. Similarly doctors may see patients in
a particular order each day, even if the duration of each
interaction is not so consistent. In order to allow for such
correlations, we introduce our second modification: when a
link in a DARN(p) model would pick from its own memory,
we now allow it to pick a link from the network at random,
possibly itself again, and copy a randomly chosen state of
that link instead. In this way, the dynamics of each link (i, j)
that belongs to the network backbone is governed by the
process

ai j
t = Qi j

t aMi j
t

(t−Zi j
t )

+ (
1 − Qi j

t

)
Y i j

t (4)

with i, j = 1, . . . , N and such that bi j = 1, and where at each
time t , Mi j

t is a (categorical) random variable which associates
to link (i, j) another link (i′, j′) among links which are present
in the backbone B, with an assigned probability distribution.

Note that for each time t and link (i, j), Mi j
t is independent

and identically distributed. That is to say, if a link is copied
from the past of another link, then which link it chooses is
completely independent on either the time, or the existence of
any other link.

Hence, the CDARN(p) model in Eq. (4) relies on the fol-
lowing input parameters. The first ingredient is the N × N
adjacency matrix B describing the structure of the underly-
ing network backbone of N nodes and L links, i.e., defining
which pairs of nodes can be connected by links and which
pairs cannot. The backbone has density D = 2L/N (N − 1),
if the network is undirected. However, at each time not all
the links of the backbone are necessarily present, and the
average link density within the backbone is controlled by the
parameter 0 < y < 1. Moreover 0 � q � 1 and p = 1, 2, . . .

are respectively the strength and length of the memory com-
ponent of the dynamics of the temporal network. Finally,
the structure of interactions among links is captured by the
random variable Mi j

t , which can be described by a L × L link
coupling matrix C, characterizing the correlations between
pairs of links. Labeling links with a linear index (i, j) �→ �,
(i′, j′) �→ �′, with �, �′ = 1, 2, . . . , L (see the Appendix A 1
for a full explanation), then Mi j

t can be characterized by the

probabilities

Prob(� draws from �′) = c��′
.

These probabilities define a L × L row-stochastic matrix C =
{c��′ }, which we call the coupling matrix. By tuning the entries
of this matrix we can specify the dependencies among links
existing in our temporal network. In practice, for each possible
link (i, j) and at each time t , Mi j

t will select another link
(i′, j′) among a set of possible links associated to (i, j), as

given by matrix C. Then the presence of the term aMi j
t

(t−Zi j
t )

in

Eq. (4) represents the state of link (i′, j′) at one of the previous
p temporal steps, and so will allow link (i, j) to copy its
state at time t from one of the p past states of link (i′, j′).
This is similar to building the line graph associated with the
original network, but in the temporal case and restricting to
pairs of links which are on the backbone. The choice of the
coupling matrix C is a crucial part of the CDARN(p) model,
as this defines which links dynamics are correlated. Since the
matrix has a large number of entries, it is advisable to choose
a parsimonious representation depending on a small number
of parameters. There are many ways one could structure the
matrix C, which we refer to as “coupling models.” Here we
will focus on the following three simple approaches: (1) only
link autocorrelations but no cross-correlations between differ-
ent links, (2) links are coupled to all other neighboring links in
the network backbone (as defined by B) with equal strength,
and (3) links are coupled to all other links in the backbone
with equal strength.

To summarize, given a backbone B with L links, we have
the three following coupling models:

(1) The no cross-correlation (NCC) coupling model,
where the coupling matrix reads C = Id (the identity matrix).

(2) The local cross-correlation (LCC) coupling model,
where the entries of the coupling matrix can be written
as c��′ = (1 − c)δ(�, �′) + χ (�′ ∈ ∂B�) c/|∂B�|, for coupling
strength c. Here χ is the indicator function, δ(�, �′) = 1 if
� = �′ and 0 otherwise, and ∂B� is the neighborhood of link �

in backbone B, i.e., for � = (i, j)∂B� = {�′ = (i′, j′) : bi′ j′ =
1 and i′ ∈ � or j′ ∈ �}.

(3) The uniform cross-correlation (UCC) coupling model,
where the entries of the coupling matrix can be written as
c��′ = (1 − c)δ(�, �′) + [1 − δ(�, �′)]c/(L − 1), for coupling
strength c.

Notice that the parameter 0 � c � 1 in the second and
third coupling model allows us to tune the contribution of the
cross-correlations with respect to that of the autocorrelations.
In particular the NCC model is the special case of the LCC
and UCC models with coupling strength c = 0.

Considering all the building blocks, we then have our full
model, which we name the correlated discrete autoregressive
network model of order p, or in short CDARN(p) model. This
model has the advantage of being able to introduce both auto-
and cross-correlations in the link activities in a controlled
way, allowing for a more realistic description of real-world
systems. It also retains much of the simplicity and tractability
of the DARN(p) model. Indeed, three of the key features of the
DARN(p) model that allow us to study a range of phenomena
are exactly the same. Namely, the (unconditional) probability
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of observing a link (restricted to the feasible connections
over the backbone) is y, similarly to ER graphs (see the
Appendix A 2) [65]. Moreover, in the limit of long memory,
as given by large p, the model is identical to a sequence
of uncorrelated ER graphs (see the Appendix A 3). Finally,
the interevent time distribution, also known as intercontact
time in human communication networks, is (approximately)
exponential, with a timescale that is bounded from above by
the DARN(p) model (see the Appendix A 18).

In summary, our model generates temporal networks
A

t
, t = 1, 2, . . ., with precisely controlled coupling among

links, given the following set of control parameters: network
backbone as specified by matrix B, link density y, mem-
ory strength q, memory length p, and link coupling matrix
C. For our purposes we will assume that the links in the
temporal network are undirected, we do this by identifying
ai j

t = a ji
t . Implicitly the backbone in any network will be

taken as undirected, implying that only symmetric matrices
B will be considered. The extension to directed networks
is, however, straightforward. Finally, an important assump-
tion of the CDARN(p) model is that the parameters p, q,
and y are the same for all the links of the backbone. Of
course, this choice is a simplification motivated only by the
need for control over the dynamics with a small number
of parameters, for both empirical application to real-world
networks and analytical study of the dynamics of spreading
processes over temporal networks. The CDARN(p) model
can in fact be easily generalized to the case of link-specific
or time-varying parameters, as done in the section below
or, for instance, in the simpler DARN(1) model presented
in [6].

B. Model generalizations

Real-world networked systems can be characterized by
heterogenous, i.e., link- or node-specific, and/or time-varying,
patterns of link dynamics. Realistic models of temporal net-
works need to be able to capture such patterns when we aim to
replicate empirically observed network dynamics. Such a gen-
eralization can easily be accounted for within our framework
by considering link-specific parameters y → y� and q → q�,
or promoting constant parameters q, c, and y to time-varying
parameters qt , ct , and yt , then introducing a method to esti-
mate them.

We have therefore considered an entire set of models that
generalize the simplified version of the CDARN(p) model, by
relaxing, step by step, some homogeneity assumptions:

(1) Ceteribus paribus, the probability of success y of the
Bernoulli marginal is not anymore equal for all links, but each
link � is described by a different probability y�, this allowing
for a different existence probability for each link

(2) Ceteribus paribus, the probability of copying from the
past q is not anymore equal for all links, but each link � is
more or less persistent depending on a specific parameter q�

(3) Parameters q, c, and y are not constant anymore during
the evolution of the network, but they can change in time, in
order to capture the presence of time-varying, possibly non-
stationary, patterns in link dynamics, e.g., link density and/or
correlations depending on the time of the day.

IV. NETWORK MODEL INFERENCE
AND LINK PREDICTION

In this section we introduce a method for estimating the
parameters of our models from real data. We will first focus
on the simplified version of the CDARN(p) model defined in
Eq. (4). The strength of our approach comes to light, since
the CDARN(p) model can be estimated on data by using
maximum likelihood methods [61], thus inferring case by
case the role played in the real world by both auto- and
cross-correlations of links. Then, due to the flexibility of the
maximum likelihood approach for inference, we show that our
method can also be used to estimate the parameters of gener-
alized models accounting for heterogeneous or time-varying
parameters, that can better capture the dynamics of real-world
networked systems. Last but not least, we prove empirically
that the inclusion of cross-interactions in the description of
the link dynamics is no small matter: cross-interactions of
links are essential in describing various types of real-world
temporal networks. In particular, we show, through a link
prediction study, that such correlation patterns are, indeed,
present in networks from the real world.

A. Parameter estimation

Assume we have observed a time series of network
snapshots {ai j

t }i, j=1,...,N
t=p+1,...,T with given initial p conditions

{ai j
t }i, j=1,...,N

t=1,...,p , then we ask for the values of parameters in
Eq. (4) which best describe the evolution of the temporal
network. Here we aim to obtain a point estimate of the pa-
rameters, which is, from a Bayesian inference perspective,
the value maximizing the posterior probability of parameters
given the data. By referring to the set of parameters as θ , due
to the Bayes theorem, we can write

P (θ |A) ∝ P (A|θ )P (θ ),

where A ≡ {A
t
}t=1,...,T . Without prior information on the pa-

rameters, we can assume uniform prior distribution P (θ ).
Thus, the point estimation corresponds to maximizing the
likelihood of data under the model with parameters θ , i.e.,
P (A|θ ), namely, the maximum likelihood estimator (MLE)
of the CDARN(p) model. The likelihood of data under the
CDARN(p) model reads as

P (A
p+1

, . . . , A
T
|A

1
, . . . , A

p
, q, c, y)

=
T∏

t=p+1

P (A
t
|A

t−1
, . . . , A

t−p
, q, c, y), (5)

by using the Markov property, and with {q, c, y} the model
parameters. The likelihood of the Markov chain then cor-
responds to the product of T − p conditionally independent
transition probabilities, each one describing the likelihood
of a network snapshot given the previous p observations,
because of the non-Markovian memory of the process.
The MLE of the parameters is thus obtained by maximiz-
ing Eq. (5), or equivalently the log-likelihood L(q, c, y) ≡
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logP ({A
t
}t=p+1,...,T |{A

τ
}τ=1,...,p, q, c, y), that is,

arg max
y,c,q

T∑
t=p+1

logP (A
t
|A

t−1
, . . . , A

t−p
, q, c, y),

q, c, y ∈ [0, 1]. (6)

The solution to Eq. (6) is the MLE {q̂, ĉ, ŷ} of the CDARN(p)
model. The explicit formulas for the MLE are found in the
Appendix A 17. Notice that the order p of the memory of the
Markov chain can be selected by finding the integer value
which maximizes the likelihood of data under CDARN(p),
since the number of parameters of the CDARN(p) model is
the same, independently from the order p, and thus there is
no need to penalize the use of more parameters. See [66]
for a study on the optimal selection of the (non-Markovian)
memory in temporal networks.

In empirical applications, some networked systems may
display some time-varying density pattern, related, for ex-
ample, to the activity of nodes, which may, crucially, affect
the estimation of the parameters q and c. For example, in
the presence of a seasonality pattern, i.e., a network density
depending on the time of the day, considering a constant
density parameter tends to overestimate correlations, thus the
MLE q̂ and ĉ. In our framework, any variation of network
density can be taken into account by letting y become a
time-varying parameter, y → yt , and using the (suboptimal)
estimator ŷt = L−1 ∑

(i, j)∈B ai j
t . Hence, when network density

is clearly not constant, a two-step estimation procedure can
be implemented. First, we estimate the time series of den-
sity parameters {ŷt }t=p+1,...,T . Second, the MLE q̂ and ĉ are
obtained by solving Eq. (6), but conditioning on the values
{ŷt }t=p+1,...,T . In the presence of some density pattern, we use
this method to obtain a genuine estimation of the memory
parameters.

B. Heterogenous and time-varying parameters

In the case of heterogenous parameters, the MLE problem
in Eq. (6) can be generalized and solved, similarly to what has
been done in [6]. We study explicitly such MLE problem in
the Appendix A 16.

In the case of time-varying parameters, we can use a non-
parametric technique based on local likelihood estimation to
infer the dynamics of qt , ct , and yt . The main idea relies on
considering observation weights, which are decaying in time,
in the maximum likelihood equations. Thus, to obtain a local
(in time) estimate of parameters at time t , we fit the model by
using those observations that are closer to the time snapshot
t . This localization is achieved via a weighting function or
kernel Kλ(t, s) with bandwidth λ, which assigns a weight
to s based on the time difference |s − t |. Here we use the
Epanechnikov quadratic kernel

Kλ(t, s) =
{

3
4

[
1 − ( |s−t |

λ

)2]
if |s−t |

λ
< 1

0 otherwise

insert math with λ = 40. For further details on the local
likelihood method see Ref. [61], while for a study of the
optimization of the bandwidth of the kernel see Ref. [67].

Hence, the local MLE problem at time t reads as

arg max
yt ,ct ,qt

T∑
s=p+1

Kλ(t, s) logP (A
s
|A

s−1
, . . . , A

s−p
, qt , ct , yt ),

(7)
with qt , ct , yt ∈ [0, 1]. The maximum likelihood equations to
solve follow as similar to the standard ones. Then, by rolling
the kernel over time t , a nonparametric reconstruction of the
dynamics of time-varying parameters is obtained.

C. Application to real temporal networks

In this empirical section, we consider the application of
the CDARN(p) model to temporal networks, described as
time series of adjacency matrices, each one capturing the
links between the nodes of the network, within a given time
resolution. Each link describes a particular interaction, typical
of the networked system under investigation. The following
data sets are considered:

(1) Transportation networks, i.e., bus (B), (underground)
rail (R), and train (T), designed for the public transport in
Berlin (B), Dublin (D), Helsinki (H), Paris (P), Rome (R),
Sydney (S), Venice (V), Winnipeg (W), namely, records for
the movements of public transport systems from stop to
stop [68], with time resolution of 1 minute. In particular,
a connection between two stops is associated with a time
interval, from the departure to the arrival, thus, within our
framework, a link appears at the network snapshot corre-
sponding to departure, then lasts up to the snapshot which
includes the arrival.

(2) Online social communication networks, in particular.
(a) Text message interactions between 101 col-

lege students (MSG), namely, messages sent between
(anonymized) student users of an online communication
platform at the University of California, Irvine, over a
period of seven months, with a time resolution of 1 hour.

(b) Email communications (EM), namely internal
email communications between 65 employees of a mid-
sized manufacturing company over a period of 9 months,
with time resolutions of 5, 10, 30 minutes, 1 hour, and
24 hours.
In both cases, a link is an instantaneous communication

between two nodes, and it is described by the entry of the
adjacency matrix associated with the network snapshot of all
communications within the considered time window.

(3) Social interaction or contact network (CN), which can
be seen also as a off-line social communication network,
namely, the interactions (measured by Bluetooth devices,
phones, carried by) of 94 students at MIT over eight months,
with time resolutions of 10, 30, 60, and 120 minutes. Here a
link is a contact between two nodes, lasting for the time of the
interaction, measured as the number of network snapshots at
which the link is present.

(4) Football networks, i.e., the temporal networks formed
by footballers (F) over a match, for two different games
(1, 2), and for both sides separately (home h, away a), with
time resolutions of 1, 2, 10, 30, and 60 seconds. A link is a
contact between two players, measured as a physical distance
between each other below a threshold of 10 meters. Thus, a
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FIG. 1. Link density as a function of time (left) and MLE of the parameters q and c of the CDARN(p) model (right), considering both
UCC (top right) and LCC (bottom right) coupling models, for the transportation network data sets.

link is described by an entry of the adjacency matrix asso-
ciated with the network snapshot at which the contact occurs.
Then a link lasts for all the time snapshots at which the contact
is present.

Finally, the backbone is built by considering the network
of all pairs connected at least once in the whole time period,
for each temporal network.

We then estimate the CDARN(p) model on these network
data sets, by considering the correction for the seasonality
or nonstationarity patterns displayed by link density for the
first three types of temporal networks (see the left panels
of Figs. 1–3), while no correction is applied to the foot-
ball networks, as supported by empirical evidence (see the
left panel of Fig. 4), but we have nevertheless solved the
original problem stated in Eq. (6). The maximum likelihood
estimators of the parameters q and c are shown in the right
panels of Figs. 1–4, for both the uniform cross-correlation
(UCC) and local cross-correlation (LCC) coupling models.
In both cases, the order p is selected by maximizing the
likelihood of observing the given data under the CDARN(p)
model.

(1) For transportation networks, the mechanism of copy-
ing from the past captures the observed link persistence
patterns (long-lasting connections between two stops) as well
as cross-interactions (transport connections at the stop), as
testified by the large values of q. However, cross-interactions
become significant only restricting to neighbor links over the
backbone; see the estimated values of c (red points) in the
right panels of Fig. 1, which are close to zero for UCC, signif-
icantly larger than zero for LCC (for almost all data sets). This
behavior is consistent with the underlying dynamics of the
considered transportation systems, where a link is a connec-
tion between two physical stops, and interactions may arise
only between incoming or outgoing transport connections
at the same stops. Furthermore, we can notice a significant

positive correlation between the estimated parameters q and
c in this case. Finally, the order p of the CDARN(p) model
is estimated as one (generating a Markovian network), for all
types of transportation and for all cities.

(2) Online social networks display less important mem-
ory patterns, as testified by small values of q and c; see the
right panels of Fig. 2. Here, differently from above, we do
not notice much difference between UCC and LCC coupling
models. However, non-Markovian effects characterize such
networks. In fact, for the UCC model we obtain p = 4 for
the MSG network, p = 5 for the EM data set with 5 minute
resolution, p = 4 for the EM with 10 minute resolution, p = 2
for the EM with 30 minute resolution, p = 1 for the EM
with both 1 hour and 1 day resolutions. For the LCC we
obtain p = 5 (MSG), p = 2 (EM5m), p = 2 (EM10m), p = 3
(EM30m), and p = 1 (EM1h and EM1d), respectively.

(3) Contact networks display a very important link per-
sistence pattern, as opposed to very small or zero cross
interactions between links, at any time resolution, as verified
by values of q close to one, but c close to zero (for both UCC
and LCC); see the right panels of Fig. 3. In fact, this social
network is an example of the stability pattern characterizing
some social ties, such as friendship. Furthermore, such social
systems are described by Markovian dynamics (p = 1).

(4) Football networks display both link-specific persis-
tence and cross interactions between links, with the two
patterns which are inversely correlated as functions of the time
resolution. For high resolution (1–2 seconds), we measure
large values of q, as opposed to small values of c. This is
the result of contacts between players lasting for longer than
the typical resolution and resulting in links persistent over
several network snapshots, thus described by the mechanism
of copying (itself) from the past. However, when time reso-
lution becomes lower than the typical duration of a contact,
link-specific persistence patterns disappear, in favor of some
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FIG. 2. Link density as a function of time (left) and MLE of the parameters q and c of the CDARN(p) model (right), considering both
UCC (top right) and LCC (bottom right) coupling models, for the online social communication network data sets.

cross-interactions between links, probably related to game
strategies in football which appear evident at that specific
timescale. In particular, this behavior results in lagged cross-
correlations for the link dynamics which are thus captured by

large values of the parameter c. This is an example of how
including cross-interactions is crucial to capture the dynam-
ics of the system. This is further confirmed with a simple
exercise of link prediction; see below. Finally, when time

FIG. 3. Link density as a function of time (left) and MLE of the parameters q and c of the CDARN(p) model (right), considering both
UCC (top right) and LCC (bottom right) coupling models, for the contact network data sets.
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FIG. 4. Link density as a function of time (left) and MLE of the parameters q and c of the CDARN(p) model (right), considering both
UCC (top right) and LCC (bottom right) coupling models, for the football network data sets.

resolution is too low (1 minute), the temporal information
is destroyed and the estimated parameters q and c are small
or close to zero for almost all data sets. For the football
networks, we do not notice much difference between the UCC
and the LCC coupling models, because of an almost full
backbone graph. Finally, the order of the CDARN(p) model
is selected equal to p = 1, for all football matches at any time
resolution.

D. Heterogenous and time-varying patterns in real networks

Real-world networked systems may display heterogenous
patterns in link dynamics. First of all, the probability for
the appearance of a link is, in general, link-specific. For
example, transports connecting different parts of a city are
more or less frequent depending on people traffic, thus there
are many buses crossing the main streets, while few buses
connect the periphery. Second, auto- and cross-correlations
of links may in general differ link by link. For example, in
football contacts between midfielders tend to be persistent
in time since the game is played largely in the midfield,
while any contact between the forward and the defensive
players is likely to be quick and short, for both scoring and
defense.

In our framework, we can study such behaviors in link
dynamics by considering the version of CDARN model with
heterogenous parameters. In order to point out the rele-
vance of the heterogeneous generalization, in the following
we consider the local cross-correlation coupling CDARN(1)
model with Markovian memory (as suggested by previous
results) with heterogeneous parameters y� and q� applied to

four network data sets: BD, MSG, CN30min, and F1h10s.
The estimation method in such cases is described in the
Appendix A 16. The results are shown in Fig. 5. It is interest-
ing to notice that some networked systems display a similar
marginal link probability among links, such as football or
contact networks, while others, such as transportation and
online social communication networks, are characterized by
some degree of heterogeneity. A similar result is obtained
by looking at the autocorrelation structure of networks, with
similar autocorrelations of links for transportation and contact
networks, while link-specific autocorrelation properties are
observed in the other cases. This is an analysis that suggests
time by time when the approximation with global parameters
is enough or not for the precise description of a given network
data set.

Heterogeneity in networked systems can be spatial as well
as temporal. In general, the correlation structure of a network
as well as link probability may change over time, thus display-
ing time-varying patterns in link dynamics. This behavior can
be captured by using the CDARN model with time-varying
parameters. In particular, we consider the LCC coupling
model with Markovian memory and exploit local likelihood
methods to estimate the dynamics of parameters. The results
for three network datasets (BD, CN30min, and F1h10s) are
shown in Fig. 6. Such a method is able to capture the (smooth)
dynamics of the marginal link probability (see left panels of
Fig. 6), similarly to the results of the previous section. More-
over, now we are able to describe the time-varying patterns of
both auto- and cross-correlations of link dynamics (see right
panels of Fig. 6). It is interesting to notice that some systems,
such as transportation and contact networks, display a quite
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FIG. 5. Distribution of y� (left) and q� (right) of the heterogeneous CDARN(1) (LCC) model estimated on temporal network data built for
four data sets as indicated in the legend. Parameters are estimated by solving Eqs. (A67) and (A68), respectively.

constant (around some mean value) correlation structure (ex-
cept for the periods of no link activity when the estimation
results as noisy, e.g., during night hours for transports). On the

other hand, systems like football networks display significant
time-varying patterns of link correlations, likely related to the
different phases of the game.

FIG. 6. Estimated dynamics of time-varying parameters of the CDARN(1) model, namely, yt in the left panels and qt and ct in the right
panels, obtained by using local likelihood methods for three network data sets, BD, CN30min, and F1h10s.
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E. The role of cross-interactions and time-varying
patterns in link prediction

Cross-interactions of links shape the dynamics of real-
world networks in many ways. A preliminary indication of
this comes from the values of the key parameter c we have
obtained above. Moreover, real-world systems may display
nonstationary patterns in link density as well as link corre-
lations, which can be captured by time-varying parameters, as
shown above. Such effects are significant not only for descrip-
tion, but also for forecasting. This can be made more evident
by devising a simple study of link prediction in empirical
networks based on the CDARN(p) model with constant and
homogenous parameters q, c, and y, opposed to the case of
heterogenous or time-varying parameters, as follows.

Assume that we have observed a temporal network up to
time t (and also that the backbone does not change in time)
and to try to predict the appearance of a link (i, j) at time t +
1 based on the information up to time t . The one-step-ahead
forecast (or prediction) is defined as the probability projected
at time t + 1 of observing the link (i, j),

Si j
t+1 ≡ P (ai j

t+1 = 1|{A
s
}s=t,t−1,...,t−p+1, q, c, y), (8)

for the CDARN(p) model with homogeneous and constant
parameters. In the case of heterogenous parameters, it is

Si j
t+1 ≡ P

(
ai j

t+1 = 1|{A
s
}s=t,t−1,...,t−p+1, q(i j), c, y(i j)), (9)

with link-specific parameters, as described above. In the case
of time-varying parameters, it is

Si j
t+1 ≡ P

(
ai j

t+1 = 1|{A
s
}s=t,t−1,...,t−p+1, qt , c, yt

)
, (10)

making sure to use a causal kernel (i.e., weighting only ob-
servations up to time t) in the estimation procedure. For the
related explicit formulas, see the Appendix A 17. The time
series of forecasts {Si j

t }, together with the realizations {ai j
t },

allow us to characterize the forecasting performance of the
model by using some binary classifier. Here we consider the
receiving operating characteristic (ROC) curve [61], which is
the plot of the true positive rate (TPR) (sensitivity) against
the false positive rate (FPR) (specificity) at various thresh-
old values. In practical terms, the better the model performs
in the forecasting, the higher the associated ROC curve is
in the unit square, or, equivalently, the larger the area un-
der the curve (AUC); see the Appendix A 17 for further
details.

As case study we have considered the football matches
network data set. We will show the results of the prediction
analysis for the network of game 2 away, although similar
results have been obtained for other matches. We aim to vali-
date the model performance, in particular to verify the effect
of including cross interactions to better capture the network
dynamics of real-world systems, together with the role played
by heterogenous and time-varying patterns in link prediction.
Thus, we compare the no cross-correlation (NCC) coupling
model, i.e., the DARN model, with the local cross-correlation
(LCC) specification of the CDARN model, with either homo-
geneous, heterogeneous, or time-varying parameters.

The link prediction study is as follows: (1) we split the
sample period in two, the first half of the match is used

as a training set and the second half as out-of-sample pe-
riod, then (2) we estimate the parameters of each coupling
model on network data of the first half, by solving the
MLE problem (6) for q, c, y with data {A

t
}t=1,...,T half (or the

corresponding problems for heterogeneous or time-varying
parameters), and finally (3) we construct the time series of
forecasts, snapshot by snapshot, by considering a rolling win-
dow over the second half, i.e., from T half + 1 to 2T half , thus
obtaining {S�

t }�∈B
t=T half +1,...,2T half . Notice that in this exercise the

model parameters q, c, y, or q�, c, y� in the heterogenous case
are estimated by using only data from the first period, and
not updated each time the window rolls over new snapshots
of the second half. On the contrary, in the case of time-
varying parameters, every time the window rolls over a new
observation the estimate of qt , ct , yt is updated. The link
prediction exercise is restricted to all pairs which can be con-
nected on the backbone. In conclusion, we compare the time
series of forecasts {S�

t }�∈B
t=T half+1,...,2T half with the realizations

{X �
t }�∈B

t=T half +1,...,2T half , by evaluating the ROC curve. The results
are summarized in Fig. 7, for match 2-away with time resolu-
tion equal to 10 seconds (however, similar results are obtained
for different matches and time resolution). We can notice that
the LCC coupling specification of the CDARN model (blue
line in the left panel of Fig. 7), which accounts for both au-
tocorrelations and cross-interactions, always outperforms the
DARN model (black line), accounting only for the autocor-
relation of links. Moreover, accounting for the heterogeneity
pattern of link probability y� (red line) plays an important
role in link prediction of football data, largely outperforming
the case with heterogeneous correlations q� (magenta line).
The underperformance of the CDARN model with heteroge-
neous q� parameters w.r.t. the DARN model is a signal of
overfitting for the specific case of football networks. Finally,
when comparing the forecasting performances of CDARN
with constant or time-varying parameters (see the right panel
of Fig. 7), the benefit of accounting for time-varying patterns
in link prediction depends on the degree of specificity, i.e.,
false positives, we are willing to accept to obtain some given
degree of sensitivity, i.e., true positives. In any case, a more
timely estimation of parameters, associated with a tighter
kernel bandwidth λ, tends to produce better forecasting. In
conclusion, the football network is an example of the impor-
tance of taking into consideration lagged cross-correlations of
links, together with heterogenous or time-varying patterns, in
the description of the dynamics of networked systems.

V. DIFFUSION PROCESSES ON CORRELATED
TEMPORAL NETWORKS

One of the most important points when modeling a net-
worked system is understanding how information, or some
other quantity, spreads throughout the system, in particular the
rate of the diffusion and the time in reaching the equilibrium.
When links between nodes change over time, then the first
interest is on the role either memory and link dynamics play
in the diffusion process.

In order to study this in a systematic way, in this section we
will exploit the flexibility of the CDARN(p) model introduced
in Sec. III, which, as shown in Sec. IV, allows us to generate
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FIG. 7. Receiving operating characteristic curves built for the DARN(1) model (LCC) and the CDARN(1) with NCC specification, applied
to the football network associated with game 2, away with time resolution of 10 sec. We compare the standard version of the CDARN model
also with both the heterogeneous and the local generalizations. In the case of time-varying parameters, we use the causal Epanechnikov
quadratic kernel (i.e., weighting only past observations) for different bandwidths λ.

realistic temporal networks. The model allows us to fine tune
the strength and length of the memory, while also controlling
a key feature of real-world networks, namely, correlations
between the evolutions of links over time, as produced by
dependencies between their dynamics.

A. Quantifying diffusion on a temporal network

Diffusion is, in its original sense, the physical process
by which atoms and molecules move from regions of high
concentration to regions of low concentration. This process
has been seen as an analog to processes in several other
areas, such as opinion formation [69], the motions and social
interactions of people [70], and the movements of capital
through a financial system [71], and as such is among the most
common ways of describing spreading phenomena in these
areas. Indeed, diffusion finds uses in many other areas, where
it is used as a linear approximation to nonlinear systems, such
at the Kuramoto model [72].

Complex networks often form the backbone of many real-
world systems, and so it is natural to study diffusion over
them [73,74]. In a diffusive process on a network the flow
of information, or some material, over a link is proportional
to the difference in its concentrations at the two nodes. The
natural way to study diffusion on a network is in terms of
the so called Laplacian matrix, which forms the network ana-
log of the Laplace operator, which governs continuous-time,
continuous-space, diffusion. Suppose we have a static undi-
rected network with N nodes and adjacency matrix A = {ai j}.
The equation that governs the diffusion of some node-related
quantity d (s) ∈ RN over (continuous) time s can be written as

ḋ (s) = −μLd (s), (11)

where μ is the diffusion coefficient, which controls the
timescale of the diffusion process, and L = {Li j} is the graph
Laplacian matrix, whose entries can be written in terms of
the entries of A as Li j = δ(i, j)ki − ai j , where ki = ∑

j ai j

is the degree of node i [74]. Notice that this equation is in
continuous time; as a convention when a variable is con-
tinuously dependent on time s, the time will be in brackets
[e.g., A(s)], and for discrete time t it will be given as an index
(e.g., A

t
). On a temporal network the only thing that needs to

be changed in this equation is that the Laplacian matrix must
be allowed to vary over time, hence L �→ L(s) where L(s)
is the Laplacian matrix associated with the continuous time
adjacency matrix A(s). This system exists in continuous time,
and so the temporal network that underlies it must also exist
in continuous time. The solution of the above equation is then
clearly

d (T ) = exp

(
−μ

∫ T

0
L(s)ds

)
d (0).

However, the vast majority of models for temporal net-
works are discrete in time, and so, given a model for a discrete
time temporal network, we must first embed the network in
continuous time. To this end, we assume that the adjacency
matrix changes at discrete time steps of length 	t , taken,
without loss of generality, to be equal to 1. Thus the Lapla-
cian L(s) is piecewise constant and, according to the above
notation, will be denoted by L

t
(t = 1, .., T ). The solution of

the diffusion equation hence becomes

dT = exp

(
−μ

T∑
t=1

L
t

)
d0. (12)
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As stated, our purpose here is to study the effects that mem-
ory in a temporal network has on diffusion over that network.
This is a very general aim, and so we must be more specific
about what we wish to analyze. Rather than studying spread-
ing in terms of the full dynamics of diffusion on a temporal
network, i.e., the concentrations dt of material at each node at
each time step t , we can instead ask about how long it takes
for this diffusion to reach equilibrium. In particular, since the
changes in the network are responsible for any changes in
the rate of spreading, we focus on the number of network
evolutions (number of time steps 	t) before equilibrium. To
formalize this concept we first note that in general we will
not reach equilibrium in a finite number of time steps, and
so we instead fix some small positive ε, so that the time to
equilibrium is then defined as

τ = min
t∈N

(t : |d (t ) − u| < ε), (13)

where the vector u is the uniform vector with ui = 1/N , which
corresponds to the equilibrium state of the diffusion process
on a connected network with N nodes. For our purposes the
norm | · | will be taken to be the Euclidian norm. For our
purposes we will keep the value of ε fixed as ε = 10−3. The
temporal networks we will use here are generated by discrete-
time random processes, and so τ will be a random variable.
Given this, we will focus on finding the average of this value,
〈τ 〉, over several realizations of the system. Unfortunately,
〈τ 〉 will be highly dependent on the structure or size of any
temporal network being studied, and so it would be impossible
to draw conclusions about the influence of any model param-
eters in these systems. Our goal here is to study the effects
of memory on spreading rate, and so we must introduce some
way of comparing the time to equilibrium as a function of
this memory as given by different networks. To this end we
normalize τ by expressing it in terms of the time taken for a
diffusion to reach equilibrium on the same backbone, but with
a memoryless temporal network. In other words, we define the
rescaled time to equilibrium, Tp, given memory length p, in
terms of 〈τ p〉, the average time to equilibrium given memory
length p, as

Tp = 〈τ p〉
〈τ 0〉 . (14)

Notice that the CDARN(p) model does not directly allow for
p = 0, and so we define τ 0 to be the case where q = 0, and so
no memory is ever used. This allows us to compare the effects
that changing the memory length p and the coupling matrix C
have on different backbones.

B. Numerical results

We have first investigated the rescaled time to equilibrium
of a diffusion process on CDARN(p) temporal network mod-
els with different backbones by means of an extensive set of
numerical simulations. The value of the parameter μ allows
to tune the timescale of the diffusion process, while the three
parameters controlling the link density y, memory strength q,
and memory length p and the two matrices network backbone
B and link coupling matrix C control the properties of the
temporal network. To construct the backbones B we have

TABLE I. Key structural features for each backbone. The number
of nodes (N), average degree (〈k〉), density (D), and dominant (λN ),
and smallest nonzero (spectral gap, λ2) eigenvalues of the Laplacian
matrix for each backbone.

Backbone N 〈k〉 D λN λ2

Airport 143 2.030 0.0143 31.02 0.01696
Email 167 38.93 0.2345 140.0 0.3811
Tube 302 2.311 0.0078 8.432 0.005918

taken three real-world temporal networks, each with differ-
ent structural properties, and we have aggregated their links
over the extent of the available network data and discarded
the link weights. The three real temporal networks we have
considered are the following: (1) Flights between U.S. airports
(Airport) [75]; (2) email interactions between employees at
a manufacturing company (Email) [76]; and (3) journeys on
the London underground (Tube) [77]. The key features of
the three resulting backbones are summarized in Table I. The
number of nodes in the three networks ranges from about 100
to 300. With 302 nodes and an average degree 〈k〉 = 2.3 the
Tube is the backbone with the smallest link density, while
Email is a very dense backbone with links connecting 23% of
the possible pairs of nodes. Our aim here is to study not only
the effects of memory, but also the interplay between memory
and correlations in the dynamics of links. In order for us to
clearly observe the effects of these features we must be able to
compare different models: one in which the evolution of links
is correlated, and one in which links are independent. As such
we have simulated our system on each of the three different
backbones B for a range of different parameters p, q, y, and
μ, and, for the three different forms of the coupling matrix C;
see Sec. III A.

In our simulations, for each instance of diffusion on a
CDARN(p) model, i.e., for each different set of parameters μ,
and p, q, y, B,C, and c, we compute Tp. This is done directly
by estimating 〈τ p〉 and 〈τ 0〉, where the averages are taken
from multiple realizations of the diffusion process. In each
case the initial condition for the diffusion d0 is such that all
of the material to be diffused is placed at a random node j:
di

0 = δ(i, j) where j ∈ {1, . . . , N}. In this way we avoid any
bias that might be introduced by repeatedly choosing the same
starting node. Before any diffusion takes place on the temporal
network, we allow the CDARN(p) temporal model to evolve
until it has reached a steady state (see Appendix A 7).

In Fig. 8 we report the rescaled time to equilibrium Tp

given memory length p as a function of p, for each backbone
and with a number of different sets of model parameters.
Note that a semilog scale has been used. To ensure that mem-
ory plays a significant part in the evolution of the temporal
network we have fixed the memory strength q = 0.95, and
to ensure that the system has enough time for the effects
of memory to be observable we have fixed the link density
y = 0.1. We then vary the diffusion speed μ = 0.1, 0.5. All
of these results are shown for both the local cross-correlation
model, with the three values of the coupling strength c =
0.5, 0.3, 0.1, and the no cross-correlation model, i.e. the case
c = 0. For μ = 0.1, and hence slow diffusion, we observe
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FIG. 8. Rescaled time to equilibrium for diffusion on different network backbones as a function of the memory length p for a CDARN(p)
model with local (solid lines, LCC), and no (gray line, NCC) cross-correlations between different links. Memory strength q is kept constant
at 0.95 to ensure that memory plays a significant role in the evolution of the network and link density y is kept at 0.1 to ensure that there
is sufficient time for any effects of memory to be observed. The coupling strength c and diffusion speed μ are varied. The backbones were
taken from a collection of real data sets. Averages were taken over 2×104 realizations of the process. Note that a semilog scale has been
used.

that the equilibrium time is nonmonotonically dependent on
the memory length for all backbones, coupling strengths,
and for both coupling models. This nonmonotonicity is most
prominent when c = 0.1, but far less so when the coupling is
stronger. When we consider μ = 0.5, and hence faster diffu-
sion, the observed nonmonotonicity is far less apparent in all
but the NCC model, there is, however, still a clear dependence
on memory, particularly for lower values of c. Unsurprisingly,
there is a significant difference between the results for the
no correlation model and those with correlations: in all cases
local correlations speed up diffusion. What we do notice
though is that there is no marked difference between different
backbones. Since we have normalized each set of results this
is not entirely unexpected.

In summary, the rescaled equilibrium time shows a number
of interesting features as a function of the memory length
p, the coupling matrix C, and the backbone B. Most notable
among these features are the following:

(1) The rescaled time to equilibrium Tp is generally a
nonmonotonic function of the memory length p.

(2) Stronger local correlations, i.e., larger values of the
coupling strength c speed up diffusion.

(3) Correlations have a considerable effect on the influ-
ence of memory: when the coupling strength c is high then
diffusion properties are weakly dependent on the memory
properties of the network.

As we will show in the following, by understanding the
behavior in the limit of no cross-correlations, and by isolating
the effects of temporal correlations, we can get a clear picture
of the causes of our observations.

C. Analytical results in the no cross-correlations limit

In light of our numerical results, we now study the the-
ory which underpins both the CDARN(p) model and the
diffusion of material over it. We first study diffusion on the
simplest form of the CDARN(p) model, the limit of no cross-
correlation between the dynamics of links. This is precisely
the NCC coupling model that was previously introduced. In
such a limit the links of the CDARN(p) model are independent
processes, and so we can study them in isolation. In this case,
as we will show below, the model is analytically tractable and
it is possible to derive an analytical expression for the rescaled
time to equilibrium.

In order to analyze the dynamics of diffusion over a single
link of the CDARN(p) model, let us consider two nodes, one
of which has an amount of a material, and the other of which
has some other amount. The diffusion of this material out of
the first node is given by

ḋ1(s) = −μ[d1(s) − d2(s)]a1 2
t , (15)

where t = �s
, and the random variable a1 2
t describes the

presence of the link between node 1 and node 2 at discrete
time t = 0, 1, . . . as governed by the DAR(p) process defined
in Eq. (3). When combined with the conservation condition
d2(s) = 1 − d1(s) this describes the full dynamics of the dif-
fusion process. Given any set of initial conditions we can first
find the number τ of time steps before equilibrium is reached.
By noticing that, since when the link is not present there can
be no diffusion, we only need to count the number of times
that the link is present. If we were to take a1 2

t = 1 for all
t , then we can easily find τ = n, and express n in terms of
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μ,	t and ε (see Appendix A 4). Now let us associate with
a1 2

t the counting process Ft = ∑t
k=0 a1 2

k . We can then see that
for a link that changes in time τ = mint>0(t : Ft = n). This
allows us to rephrase our problem: we now want to find the
average time taken until a link governed by a DAR(p) process
has occurred n times. The DAR(p) process that governs the
link can be thought of as a pth-order Markov process with the
following transition matrix (see the Appendix A 5 for a full
explanation and discussion):

Tαβ =
[

q
h(α)

p
+ (1 − q)y

]
δ

(
β, 2p−1 +

⌊α

2

⌋)

+
[

1 − q
h(α)

p
− (1 − q)y

]
δ

(
β,

⌊α

2

⌋)
. (16)

Here α and β represent some indexing of the S = 2p possible
memory states, h(x) is the Hamming weight of the number
x (the number of 1’s in its binary representation), δ(x, y) = 1
if x = y and 0 otherwise, and �x
 is the largest integer value
smaller than x. If we break this matrix up into two parts, T L =
[1 − q h(α)

p − (1 − q)y]δ(β, �α
2 
) and T R = T − T L, then we

can find the average time kα ∈ RS
�1 taken for a link to occur

given that it started in state α as [78,79]

k = (Id − T L )−11, (17)

and the probability hαβ that when a link occurs it will occur in
state β, given that it started in state α as

h = (Id − T L )−1T R. (18)

Now let us define ωα as the probability that a link starts in
state α. We can then find the average time taken until the nth
link in a pth-order system as

〈τ p〉 = ωT

(
n−1∑
t=0

ht

)
k. (19)

We now have an explicit formula for the average number
of time steps to equilibrium. However, it is impossible to
compare values of 〈τ p〉 directly, as such values will be heavily
dependent on parameters of the model other than the memory
length p. Because of this, we look at the rescaled time to
equilibrium as defined in Eq. (14). The limiting behavior of
this quantity can be studied analytically. First, we note that
〈τ 0〉 can be found directly as n/y. Then, we observe that as
p → ∞, 〈τ p〉 → n/y (see the Appendix A 3 and A 8), mean-
ing that our large memory limit is exactly the same as the
no memory case, and because of this Tp is not intrinsically
bounded above (see the Appendix A 8). We can also directly
solve for p = 1, and in principle extend these calculations to
solve for small p (see the Appendix A 8). Finally we can show
that, when y is “small enough,” as it is in all of our cases,
〈τ p〉 � 〈τ∞〉, and hence that

Tp � 1. (20)

Hence, the rescaled equilibrium time in the large memory
limit acts as a lower bound for the case of arbitrary p (see
the Appendix 9), explaining the similar behavior observed in
the full system. It should be noted that in cases where y is not

FIG. 9. Rescaled time to equilibrium for diffusion over a link
in the limit of the CDARN(p) model with no cross-correlations as
a function of the memory length p. The dynamics of the link is
generated by a DAR(p) model with q = 0.95, for various values of
y. Two different values of diffusion constant μ were used.

“small enough” we will observe the opposite effect: the large
memory limit will be an upper bound.

When plotting this rescaled time to equilibrium as a func-
tion of p for various μ and y, as in Fig. 9, we observe many of
the same traits we found in Sec. V B for the full CDARN(p)
model with cross-correlations. Principally, the following two
similarities needs to be noted. First, we see evidence for the
previously explained large memory limit, i.e. the rescaled time
to equilibrium is bounded below by the value obtained in
the limit of large p. Second, we see that Tp can be highly
nonmonotonic as a function of p.

In summary, the study of the CDARN(p) model in the limit
of no cross-correlations provides us with a good understand-
ing of the causes for two of the most notable phenomena
observed in the full network systems, and allows us to focus
on the role of correlations in inducing the remaining effects.

D. Derivation of the temporal correlation matrix

We will now present a general analytical approach to find-
ing the lagged cross- and autocorrelations for an arbitrary
coupling matrix C, which we will use in Sec. V E to explore
the interplay between correlations and memory in more depth
than would be possible through simulations alone. In particu-
lar, we will use it to isolate the effects that correlations among
neighboring links in the LCC coupling model have on the time
taken for diffusion processes on the temporal network to reach
equilibrium.

The results of Sec. V B clearly indicate that the presence of
coupling in the temporal dynamics of different links plays an
important role in the behavior of the rescaled time to equilib-
rium for a diffusion process on a temporal network. Indeed,
our claim is that, while the temporal autocorrelations of links
slow diffusion [30,31,37,39,41], as evidenced by the limit
of no cross-correlations case, temporal correlations among
neighboring links speeds it up. Fortunately, the CDARN(p)
model is analytically tractable enough for us to fully describe
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the correlations that are present for a general coupling matrix
C, without relying wholly on simulations.

Rather than working with the backbone network directly,
we will instead consider the corresponding graph in which
links are the nodes in the backbone, and we connect any
two nodes in the new graph if their links in the backbone
graph shared a node. For a backbone network with L possible
links, we assign each of these links with a linear index. Then
let us denote the correlations between link � and �′ at time
lag k as 〈a�

t a�′
t−k〉 = ρ��′

k . Given a coupling matrix C, ρ��′
k

can be found as the solution to the following Yule-Walker
equations [55,80]:

ρ
k

= q

p
C

p∑
a=1

ρ
k−a

. (21)

Note that we have dropped our indices, and so each element in
the equation is a matrix. We can show that, for general C, this
equation is solved by the composition of different functions
over supports k ∈ {np, . . . , (n + 1)p} for integer n. The first
of these can be found to be constant, while the following are
exponentially decaying (see Appendix A 10 and 11). Because
of this, we can characterize the correlations at all values of
k in terms of this initial constant, which we call ρ. We first

define the following tensor:

	��′�′′ = q

p

(
(p − 1)c��′′ + q

∑
b�=�′

c�bcb�′′
)

, (22)

then ρ��′
can be found as the solution to the following system

of linear equations (see the Appendix A 10):

ρ��′ =
L∑

�′′=1

	��′�′′
ρ�′′�′ + q

p
c��′

. (23)

The system can be greatly simplified in special cases (see the
Appendix A 11, 12, 13, and 14). For example, in the case of
the UCC coupling model, we show that ρ�� is constant for all
�, and similarly ρ��′

is constant for all pairs �, �′ such that � �=
�′, thus reducing the calculation of the correlation coefficients
to solving a pair of linear simultaneous equations. Given this
set of equations for ρ��′

, we can also then find the correlations
〈a�

t a�′
t 〉 = ρ��′

0 when � �= �′ as

ρ��′
0 = q

L∑
�′′=1

c��′′
ρ�′′�′

. (24)

This gives us a full picture of the correlations present in the
CDARN(p) model and allows us to calculate them directly.

E. Cross-interactions speed up the diffusion

We saw in our study of diffusion in the limit of no cross-
correlations that the rescaled time to equilibrium Tp is a
nonmonotonic function of the memory length p. It is also
widely understood that a way of characterizing memory of
a time series is by using the autocorrelation function. We
find for a CDARN(p) process the memory p is precisely the
value for the time lag k after which the correlation func-
tion ρ

k
decays exponentially (see the Appendix A 8 and

results in [35]). With this in mind we can now focus on
the comparison between autocorrelation coefficients of links
in a CDARN(p) temporal model and the cross-correlation
coefficients of neighboring links. This is done by studying
the constant values for the auto- and cross-correlation co-
efficients at time lags k � p. In order to do this effectively
for large networks we will average these quantities over all
links (and neighbors where appropriate) to gain the averaged
autocorrelation coefficient ρac and the averaged neighborhood
correlation coefficient ρncc. These are defined, given the ma-
trix of correlation coefficients ρ��′

for a backbone B with L
links derived in Sec. V D, as

ρac = 1

L

L∑
�=1

ρ��, ρncc = 1

L

L∑
�=1

1

|∂B�|
∑

�′∈∂B�

ρ��′
, (25)

where as before ∂B� is the set of links in the neighborhood of
� on the network backbone B.

For clarity, let us now restate our claim, as based on our
observations of the numerical simulations displayed in Fig. 8:
while autocorrelation of links slows down diffusion, correla-
tions between neighboring links speeds diffusion. While in
Fig. 8 we do see that diffusion is faster in the LCC model
than in the NCC model, the autocorrelations of links in the
two models are different. Further to this, while it would be
possible to tune the parameters of the NCC model so that it
produced links with the same autocorrelation coefficient as
the LCC model, as the NCC model does not have a coupling
strength, this could be achieved only by changing either the
memory strength q or the memory length p. Because of this
we cannot judge the influence of neighborhood correlations
from our previous results, and we cannot use the NCC model
to explore the effects of neighborhood correlations further.
In order to give a valid point of comparison, we can now
make use of our third coupling model, which allows us to
precisely control the average link autocorrelation, but also
removes any correlations between neighboring links. To re-
call, for a backbone with L links, the coupling matrix in the
UCC model C = {c��′ } is given by c��′ = (1 − c)δ(�, �′) +
(1 − δ(�, �′))c/(L − 1). The simplicity of this model lends
itself well to analytical calculations, and so we can now use
this model to isolate the effects of neighborhood correlations.
Indeed, we can show that in the limit of large numbers of
links L this model reduces to a DARN(p) temporal network
on a fixed backbone, in which links are independent (see the
Appendix A 14). First, we fix the parameters p, q, and y for
both the LCC and UCC models, this ensures that there is the
same memory strength and length, and the average degree of
the temporal networks produced are the same. We can then
fix the value of c for the LCC model, as shown in Fig. 10
(first row), and calculate the resulting value of ρac and ρncc, as
defined by Eqs. (22), (23), and (25). By then varying the value
of c used in the corresponding UCC model we obtain precisely
the same value for ρac, while leaving ρncc ≈ 0, because in the
considered network backbones the number of links L is large.
In Fig. 10 we plot both the values for ρac and ρncc, along with
the rescaled time until equilibrium for a diffusion process on
the corresponding temporal network. Note that the LCC and
UCC models have, by construction, exactly the same value of
ρac, and so only LCC is plotted in the upper panels, and the
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FIG. 10. Average autocorrelation and neighborhood correlation of a link, and rescaled time to equilibrium for diffusion for both the LCC
and UCC coupling models on different backbones as a function of the memory length p. The value of the average ρac (first row), and ρncc

(second row), where averages are taken over links in a CDARN(p) temporal network with local cross-correlation (solid line, LCC), uniform
cross-correlation (dashed line, UCC), and no cross-correlation (dash-dot line, NCC) coupling, for each backbone. The third and fourth rows
display the rescaled average time until equilibrium for a diffusion process on these networks with diffusion constants μ = 0.1 and μ = 0.5,
respectively. Note that UCC is not included in the first row (ρac) as its values are, by construction, precisely the same as those of the LCC
model. The NCC model is not included in the second row (ρncc) as its value is always zero. Memory strength q is kept constant at 0.95 to ensure
that memory plays a significant role in the evolution of the network and link density y is kept at 0.1 to ensure that there is sufficient time for
any effects of memory to be observed. The coupling strength c and diffusion speed μ are varied. Note that for the UCC model we assign the
curves the value cequiv rather than c; this is because we chose the values of c to match the value of ρac for the UCC and LCC coupling models,
as such cequiv refers to the value of c in the LCC model that is being matched. The backbones were taken from a collection of real data sets.
The rescaled times to equilibria were averaged over 2×104 realizations of the process.

NCC model must always have ρncc = 0, and so it is not plotted
in the lower panels.

We observe here that, as expected, the value of ρac in the
NCC model is significantly higher than for the LCC model.
We also see that both ρac and ρncc decay as the memory length
p increases, consistent with the DARN(p) temporal network
model. Most notably, there are significant differences between
the values of ρncc given for each backbone. While both the
Airport and Tube backbones display significant neighborhood
correlations in the LCC coupling model (though the values
are larger for the Tube backbone), the Emails backbone has
notable neighborhood correlations only for low values of p
and, indeed, at p = 30 is practically indistinguishable from
the NCC model. Also, as expected the value of ρncc for the

UCC model is always approximately 0. We have tested our
hypothesis by comparing the rescaled time to equilibrium
(see the lower two rows of Fig. 10) Tp for both the LCC
and UCC models, both generated and plotted in exactly the
same way as was done for Fig. 8. It is clear that when the
value of ρncc is large, as in the Tube backbone, diffusion
on the LCC coupling model is always faster. When ρncc is
lower, as in the Airports backbone, this is still true. Finally,
when there are little to no correlations between neighbors,
as with the Email backbone, diffusion on the LCC coupling
model is faster than on the UCC model only for small values
of p; after this point the value of ρncc is so small that its
effects are no longer apparent. While the results for the Email
backbone indicate that correlations among neighbors are not
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the only influence on behavior, it is clear that their pres-
ence does act to speed diffusion processes over the temporal
network.

Such a result is in effect more general and holds also
for other spreading processes taking place over tempo-
ral networks with correlated link dynamics. For example,
randomization-based studies [81] have shown that cross-
correlations of links can facilitate epidemics described by the
SI process [82] or more complex contagion dynamics [83].
A precise comparison between the two approaches to the
problem is left for future research.

VI. CONCLUSIONS

The influence that memory in temporal networks has on the
dynamics of the network links, as well as on processes that run
on a temporal network is increasingly seen as fundamental
to better understand our highly networked world. Different
mechanisms can lead to links depending on each others with
a given memory of the past in real-world networks. For ex-
ample, dynamic patterns of node activities may induce link
correlations, possibly non-Markovian, as well as link-specific
dependencies. In general, a full understanding of these mech-
anisms is still lacking, thus the development of models to
generate and study synthetic temporal networks with tunable
memory patterns in their link dynamics is key.

In the context of spreading processes on temporal net-
works, such as the transmission of diseases or the diffusion of
information, it has been observed that the presence of memory
can either speed up or slow down the spreading relative to
some memoryless case. Similar results in this direction have
been found here, in a manner that is reminiscent of other
recent findings. What is generally less well understood is
precisely how memory causes this change in the speed of
spreading and the role played by the multivariate structure of
interactions of the link dynamics. A great deal of work has
gone into the studying of how the correlated bursts in link
activity that are the result of nonexponential inter link times,
and hence memory, slow spreading processes. This, however,
does not yet give us a full picture.

In this article we have introduced a flexible and control-
lable class of generative models of temporal networks in
which the activity of a link is ruled by a discrete autoregres-
sive mechanism of copying the activity of a link from the
past, either itself (autocorrelations), or a different link (cross-
correlations). Such discrete autoregressive network models
allow for arbitrary backbone topologies, and precise control
over the memory strength, memory length, average degree,
and coupling strength. Within this class of models, we have
considered and studied in detail a simplified model with a
few parameters, which can be interpreted as the temporal
generalization of the Erdős-Renyi random graph with non-
Markovian memory, backbone structure, and both self- and
cross-interactions of links. Not only the model is simple
enough for some analytical results, but thanks to maximum
likelihood estimation methods, it also allows applications to
empirical data. Together with this baseline version of the
model, we have studied other generalizations that well capture
the heterogeneous and time-varying patterns that can charac-
terize real-world systems.

Hence, first of all, we have empirically proved that, de-
spite the simplicity of the baseline model, it is possible to
infer many memory patterns observed in the real world. By
estimating the model on a number of data sets, we have
shown that: transportation networks are Markovian systems
with significant cross-correlations of links capturing the pres-
ence of transport connections between the physical nodes, i.e.,
stops, of the network; social networks (both online and offline)
are in general non-Markovian with a memory order larger
than one, and display autocorrelations of links, as a result of
the stability pattern characterizing some social ties, such as
friendship; football networks are Markovian and display both
link-specific persistence and cross interactions between links,
with the two memory patterns which are inversely correlated
as functions of the time resolution, as a result of the underly-
ing contact dynamics of the game. We have then shown how
heterogenous patterns of memory strengths can be captured by
generalizing the baseline model with link-specific parameters.
This allows us, among other things, to point out that social
networks display spatial heterogeneity, i.e., heterogenous de-
gree distribution, but homogeneous and persistent contacts.
We have studied also the case of time-varying patterns in the
memory of links, by considering a generalized model with
dynamic parameters. While some empirical systems, such as
transportation and contact networks, display almost constant
memory over time, we have found instead that football net-
works are highly complex also from a dynamic point of view.
Finally, within our framework, we have further proved the im-
portance of describing the full structure of correlations of links
with a study of link prediction, in particular showing that we
are able to improve significantly the forecasting performance
when such effects are included.

The model is rich but flexible enough to allow the analyt-
ical treatment of a number of theoretical problems, including
finding the exact correlations between any two links. Given
this we have been able to study exactly how the memory and
coupling of the dynamics of different links in our model influ-
ence a spreading processes on the network. In doing this we
have provided a solution to the time taken for a diffusion pro-
cess to reach equilibrium in the limit of no cross-correlations
and as a function of the memory length p. This shows us
that the spreading time is nonmonotonically dependent on p,
and allows us to infer that the equivalent memoryless process
provides the fastest possible diffusion in our model. Looking
at networks we have shown that correlations play a subtler role
than might previously been expected. While we find, in accor-
dance with previous works, that nonexponentially decaying
autocorrelations among links do slow down diffusion, we,
surprisingly, see that the opposite is true of local correlations.
When links that share a node are correlated, this tends to
speed up diffusion. This is made clear by the fact that when
we observe a system in which links have fixed autocorre-
lation, but the correlations between neighboring links varies
(while all other parameters are kept constant), then diffusion
is faster when correlations among neighbors are higher. This
has strong implications for real-world systems. While it is
understood that memory and correlations between links have
an effect on the spreading of information, the observation that
correlations between neighbors and autocorrelations behave
in opposite ways directly contributes to our understanding
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of many empirical systems. For example, when considering
the diffusion of information over a social network, and any
consequent formation of opinions, correlations between two
different social ties must be considered as important as the
correlation of a social tie with its own history. In a more
general sense our findings also suggest that considering the
evolution of links as independent processes in a temporal
network means we loose a significant amount of information.
Hence, when assessing the properties of an empirical network,
correlations between the evolutions of links must be taken
into account. Finally, we have been able to test our model
using as backbones the topologies of real-world systems. The
differences in spreading behavior demonstrated among these
backbones show the important role that such topologies play.
It is clear that memory, correlations and backbone interact
in a complex manner, and when considering the study of
real-world systems one can not assume to study of any of
these features in isolation. Here, however, we have provided a
framework in which the interplay between these features can
be studied systematically, and how surprising results occur
when we do.

The codes for both simulation and estimation of the
CDARN(p) models proposed in this paper are available online
at [84]. Documentation can be found at [85].
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APPENDIX

1. Linear indexing for links

Throughout this work we frequently make use of a linear
indexing for links in a network, and, equivalently, entries in a
matrix. In practice this is a way to take a pair of indices for
either network nodes, or rows and columns of the adjacency
matrix, say (i, j), and map it to a single number �. As the
only requirement we need for such a mapping to be bijective,
that is each unique pair (i, j) corresponds to a unique value �.
As an example, the simplest way this can be done, assuming
i, j ∈ {1, . . . , N} for some value N , is to take � = N (i − 1) +
j element of a matrix as 1, then proceeding left to right line
by line.

2. Average degree of the CDARN(p) network

Our aim is to show that a CDARN(p) network on a com-
plete backbone has the same average degree as a DARN(p)

network, and hence as an Erdős-Renyi (ER) random graph.
To do this we need only show that the average value of an
arbitrary link is given by 〈ai j

t 〉 = y. Let us proceed by first
averaging over the left- and right-hand sides of Eq. (4) to get

〈
ai j

t

〉 = q
〈
aMi j

t

(t−Zi j
t )

〉
+ (1 − q)y, (A1)

where the symbols 〈·〉 denote temporal averages. If we now
label the link (i, j) with its linear index � = 1, 2, . . . , L, we
obtain the following:

〈
a�

t

〉 = q

p

p∑
s=1

L∑
�′=1

c��′ 〈
a�′

t−s

〉 + (1 − q)y,

= q
L∑

�′=1

c��′ 〈
a�′

t

〉 + (1 − q)y. (A2)

where c��′
are the entries of the coupling matrix C. In the

above we have made use of the stationarity of the sequence
a�

t to say that 〈a�
t−a〉 = 〈a�

t 〉. One can see also that 〈a�
t 〉 = ā,

for some constant ā, is a solution to the above equations.
The fact that C is row stochastic, and so its rows sum to
1, then gives us that ā = y is the unique solution. Hence,
we have obtained 〈a�

t 〉 = y, that is, we have shown that the
CDARN(p) produces networks with the same average degree
of the DARN(p) model.

3. The infinite memory limit

One of the key features of the DARN(p) model is that, as
p → ∞, it produces temporal networks that are indistinguish-
able from a sequence of independent ER graphs. Our aim now
is to show that this is true for the CDARN(p) model as well.
We start by writing the conditional probability for a single link
with linear index �:

Prob
(
a�

t = 1|{A
s
}t−p

s=t−1

) = (1 − q)y + qφt (p), (A3)

where {A
s
} is the random matrix representing the adjacency

matrix at time s, which we say has observed values a�
s . We

hence see that our problem can be reduced to a study of the
properties of some kernel function φ, defined as the probabil-
ity that a 1 is drawn from any point in the memory, i.e.,

φt (p) =
∑
�′

c��′ 1

p

p∑
k=1

a�′
t−k . (A4)

We recognize the sample expectation over the past p steps of
the time series, and so can see that φt (p) → y as p → ∞. For
completeness we must also check that any fluctuations away
from the mean can be ignored at finite times. First, we see the
following:

φt+1(p) − φt (p) =
∑
�′

c��′ 1

p

p∑
k=1

(
a�′

t−k+1 − a�′
t−k

)
,

= 1

p

∑
�′

c��′(
a�′

t−k+1 − a�′
t−k

)
. (A5)
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We then have that a�′
t−k+1 − a�′

t−k ∈ {−1, 0, 1}, and so

−1

p
� φt+1(p) − φt (p) � 1

p
, (A6)

⇒ y − t

p
� φt (p) � y + t

p
. (A7)

Hence, in the large p limit then the memory kernel φ tends to
0, and so the system is equivalent to one in which there is no
memory. This displays exactly the same behavior as is found
for the DARN(p) model: the CDARN(p) model does indeed
tend to a memoryless model in the limit of large memory. In
the memoryless case we note that Prob(a�

t = 1) = y, and so
must have an expected interlink time of 1/y, and correspond-
ingly the expected time until the nth link is n/y.

4. Time to equilibrium in a two-node system
with a permanent link

Consider the equations defining diffusion in continuous
time between two nodes, for which the link between them is
permanent (always present):

ḋ1(t ) = −μ[d1(t ) − d2(t )]. (A8)

If we impose conservation, i.e., d2(t ) = 1 − d1(t ) [and drop
the 1 so that d1(t ) → d (t )], we can rewrite this as

ḋ (t ) = μ − 2μd (t ). (A9)

Assuming d (0) = 1, the solution is

d (t ) = 1
2 (e−2μt + 1). (A10)

We say that this system has reached equilibrium at the first
time (in a continuous sense) t = τc where |d1(t ) − d2(t )| < ε

for some small positive ε. Again, imposing conservation this
can be rewritten as the first value of t such that 2d (t ) − 1 =
ε. With Eq. (A10) we can then find the (continuous) time to
equilibrium directly as

τc = − log ε

2μ
. (A11)

Hence, the number of full time steps τ of length 	t which
must occur before equilibrium is reached is given by

τ =
⌊− log ε

2μ	t

⌋
. (A12)

Note that for this system, for any given values of μ and 	t we
can always find μ̄ = μ	t , meaning that we may fix 	t = 1
and still recover the full range of possible values for μ̄ by
varying μ.

5. The transition matrix for a DAR(p) variable

Consider a stochastic process where the random variable
Xt is governed by the the DAR(p) model:

Xt = Qt X(t−Zt ) + (1 − Qt )Yt , (A13)

where, for each t , Qt ∼ B(q) and Yt ∼ B(y) are Bernoulli
random variables, while Zt picks integers uniformly from the
set {1, . . . , p}. This can be thought of as a pth-order Markov
chain, and so is equivalent to a first-order Markov chain in

an enlarged state space [80]. Accordingly, we define the so-
called “p-state” of link (i, j) at time t , by combining the
state of the link at time t along with its previous p − 1 states
in the vector St = (Xt , Xt−1, . . . , Xt−p+1). If we now define
the set S as the set containing all 2p possible p-states, then
for any α, β ∈ S we can look at the conditional probability
Prob(St+1 = β|St = α). This defines the entries Tαβ of the
pth-order 2p × 2p transition matrix. More details on the tran-
sition matrix of the DAR(p) model can be found in [35].

6. State indexing

When writing the matrix element Tαβ we are implicitly
associating an index to the p states α and β. Since elements of
a matrix are usually labeled by values i, j ∈ {0, . . . , I − 1} (or
i, j ∈ {1, . . . , I}) for some value of I , we must hence impose
an ordering on the states α, β ∈ S . This is done by associating
a linear index l (α) to each possible state α ∈ S (and similarly
for β). The simplest form of this labeling function in our case,
given a memory length of p, is

l (α) =
p∑

k=0

2kαk, (A14)

where αk is the kth entry in the p-state vector associated with
α. In practice this is equivalent to consider the sequence of 0’s
and 1’s, representing the link history corresponding to state
α, as a binary number and converting in into to a decimal
number. We will implicitly assume that wherever we use α,
or any state in S , we are referring to the label l (α), and that
the labeling function is as given in Eq. (A14).

7. Initializing CDARN(p) model simulations

When generating realizations of the CDARN(p) model for
the purposes of Monte Carlo simulation (or any other simula-
tion) it is important to ensure that the model is appropriately
initialized. In all of the simulations and calculations here we
require that the model be in a steady state, and so before any
simulated diffusion starts we do the following:

(1) For each link � ∈ {1, . . . , L} and for each time s ∈
{0, . . . , p − 1} assign to link state a�

s the value taken by a
random variable X �

s ∼ B(y). This gives us a set of preinitial
conditions from which simulation can be started.

(2) Simulate the CDARN(p) model for times p, . . . ., T0

using the previously generated states of the network, for some
large T0. T0 is chosen so that the network has reached a steady
state, as approximated by the point where the autocorrelations
〈a�

pa�
T0

〉 have decayed below some suitable threshold. Func-
tionally this has been set at approximately T0 = 500.

(3) Any simulation on top of the network can now start.
This process must be repeated for every simulated realization.

8. Average time to equilibrium for a single Markov link

The value 〈τ 1〉 of the average time until diffusion across a
single DAR(1) link reaches equilibrium, is central to any anal-
ysis of the rescaled times to equilibrium. Hence, we calculate
it explicitly here. We know that, given the value τ = n from
Eq. (A12) giving the number of time steps until equilibrium
in the two-node system where the link is always present, 〈τ 1〉
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will be precisely the time taken for a DAR(1) link to occur
n times. This can be found as the solution to the following
equation:

〈τ 1〉 = ωT

(
n−1∑
t=0

ht

)
k, (A15)

where ht denotes the tth power of the matrix h. Now h will be
a 2×2 matrix, and ω and k will be two-dimensional vectors.
Given the definition of hαβ as the probability that a system
starting in state α ends in state β, we can easily see that the
following must be true:

h =
(

0 1

0 1

)
, (A16)

and so
n−1∑
t=0

ht =
(

1 n − 1

0 n

)
. (A17)

Similarly we may find that ω1 = 1 − y and ω2 = y, and
k1 = [(1 − q)y]−1 and k2 = y−1. This gives us the equation

〈
τ 1

〉 =
(

1

1 − q
+ n − 1

)
1 − y

y
+ n. (A18)

It is then a simple matter to extend this result and calculate
the value of the rescaled time to equilibrium T1 directly. Given
that we know 〈τ p〉 → n/y as p → ∞, and this is precisely the
value of 〈τ 0〉, we then find

T1 = 〈τ 1〉
〈τ 0〉 =

(
1

1 − q
+ n − 1

)
1 − y

n
+ y. (A19)

It is easy to see that the maxima and minima of this function
in terms of n and y are finite and occur at their limiting values
(y = 0, 1 and n = 1,∞ respectively) if q �= 1. However, in
the limit q → 1 we see that T1 → ∞. In the q = 0 limit we
obtain the value T∞ = 1, as expected.

9. Rescaled time to equilibrium in the limit of large p

In the main text we claim that Tp � 1 for suitably sparse
initial conditions, i.e., when y is small, but that for y ≈ 1 the
opposite can be true. To understand this we first formalize
our statement: given an initial probability vector ω, we have
〈τ p〉 � 〈τ∞〉, provided that the entries representing states in
which no link is present (in our case ωα for α ∈ {0, . . . , 2p−1})
contain the majority of the probability mass. Recall, first, that
we are implicitly labeling our states α ∈ S according to the
labeling function given in Eq. (A14). Now, notice that, since
ω is a probability vector and h is a stochastic matrix, we can

define a vector k0 such that k0
α = 1/y for all α, and we can

write the following equation:

〈τ∞〉 = ωT

(
n−1∑
t=0

ht

)
k0. (A20)

Hence, we can write

〈τ p〉 − 〈τ∞〉 = ωT

(
n−1∑
t=0

ht
(
k − k0)). (A21)

By construction hαβ = 0 if β < 2p−1, and so if we define

ω̃T = ωT

(
n−1∑
t=0

ht

)
, (A22)

then, when β < 2p−1, we have ω̃β = ωβ . Hence, we see that
if ω0 ≈ 1 (the entry in ω representing an initial state with no
links), then we need only check that k0 > 1/y to show that
Tp � 1. This can be checked directly by analyzing the average
time taken to reach equilibrium kα , given some starting state
α, as defined by the following set of linear equations:

kα = 1 + Tαα′kα′ , (A23)

where α′ = �α/2
. From this we can directly obtain

k0 = 1 − qp−1

(1 − q)y
, (A24)

and hence confirm that k0 > 1/y when ω0 ≈ 1. We now want
to understand the conditions in which this breaks down, and
we instead observe Tp < 1. One can manually check that,
for any values of p or q, kα > 1/y for α = 0, 1, but that this
inequality does not generally hold for α = 4. As a specific
example of this, if we fix p = 3, y = 0.01 and q = 0.1, then
1/y = 100, but k4 ≈ 98.52. To understand this behavior, we
can then make use of the following two facts about kα . Given
a memory state α ∈ S ,

(1) If by αn we indicate the memory state with a 1 in the
nth entry, and zeros elsewhere, then the values of kαn are given
by solutions to the equation xn+1 = 1 + axn, with appropriate
values for a and x1.

(2) If β is the memory state obtained by taking memory
state α and replacing any of its 0 states with 1, then kβ < kα .

To prove the first of these statements, we directly analyze
Eq. (A23). This equation, in our α notation becomes kαn+1 =
1 + Tαn+1,αn kαn , but we also notice that Tαn+1,αn is invariant
of n, always taking the value Tαn+1,αn = 1 − q/p − (1 − q)y,
which we will now denote as T . To obtain the desired form
of difference equation, we now simply identify xn = kαn and
a = T . This can be easily solved to give the following:

kαn = T n

(1 − q)y
+ 1 − T n

1 − T
. (A25)

This equation must clearly be decreasing with n.
To prove the second of these statements consider two pos-

sible memory states α and β, where β is given by taking α

and replacing one of the zeros in its memory with a one.
Let us label the position of the state which we change with
t . Now let us now denote α(n) = �α(n−1)/2
, where α0 = α,
and similarly for β. To clarify, we can think of α(n) as being
the memory state α shifted back n times, or similarly what
happens to the memory state of a DAR(p) process if it starts in
state α and generates n zeros. We can then write the following
equation directly from Eq. (A23):

kα(n) − kβ (n) = Tα(n)α(n+1) kα(n+1) − Tβ (n)β (n+1) kβ (n+1) . (A26)

Given our definition in Eq. (16), and the fact that β is α with
a 1 added, we can rearrange this to give

kα(n) − kβ (n) = Tα(n)α(n+1) (kα(n+1) − kβ (n+1) ) + q

p
kβ (n+1) . (A27)
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From this we can see that if kα(n+1) � kβ (n+1) then we must
have kα(n) � kβ (n) . Now, by construction we know that α(n) =
β (n) ∀n � t , since this is the point at which the additional 1
in the memory is removed. In turn this means that kα(n) =
kβ (n) ∀n � t . Inductively this gives us that

kα(t−1) � kβ (t−1) , . . . , kα(n+1) � kβ (n+1) . (A28)

Thus, we have that kα(n) � kβ (n) . Hence, we have proved that
kα is decreased by adding a one at any point in the memory,
and, equally, increased by adding a zero at any point in the
memory.

The first statement gives us that, since we can not guarantee
that k4 > 1/y, we can not guarantee that, for any state α with a
single one in any position other than 1, kα > 1/y. The second
statement then tells us that, since any state α can be generated
by taking a state with only a single 1 somewhere, and adding
more 1’s to it, we can never guarantee that kα > 1/y for any
α � 4.

Because of this we see that for small y we must have 〈τ p〉 �
〈τ∞〉, and hence we must have 〈τ p〉 � 〈τ 0〉, finally giving us
that Tp � 1. However, for larger y this may not be the case.

10. Correlations in the CDARN(p) model

By introducing the possibility that a link in a DARN(p)
network can draw from the memory of another link, and
hence creating the CDARN(p) model, we have introduced
correlations among the activities of different links. As we will
show in this section, the extent of these correlations can be
completely characterized analytically. If we have a network
with L possible links, each with its own linear index, let us
denote the correlations between link � and �′ at time lag k as
〈a�

t a�′
t−k〉 = ρ��′

k . Following the procedures in [35,55], we can
derive the Yule-Walker equations:

ρ��′
k = q

p

p∑
a=1

L∑
b=1

c�bρb�′
k−a, (A29)

where the elements c�b are taken from the coupling matrix
assigning the probability of a link � drawing from the memory
of link b. This can be written more compactly in terms of the
corresponding matrices ρ

k
= {ρ��′

k } and C = {c��′ } as

ρ
k

= q

p
C

p∑
a=1

ρ
k−a

. (A30)

These equations can be solved given a suitable closure. Fol-
lowing [35], we can rewrite this expression for values of k < p
as

ρ
k

= q

p
C

(
k−1∑
a=1

ρ
a
+

p−k∑
a=1

ρ
a
+ ρ

0

)
, (A31)

for some value ρ
0
. This equation can be seen to have a con-

stant solution ρ, which satisfies

ρ = q

p
C((p − 1)ρ + ρ

0
). (A32)

Now we need to find a suitable expression for ρ
0
. We know

that, by definition, ρ��
0 = 1. The off-diagonal entries, however,

are given by the Yule-Walker equation

ρ��′
0 = q

p

p∑
a=1

L∑
b=1

c�bρb�′
a . (A33)

But we know that the value of ρ
a

must be a constant ρ, and

so the off-diagonal elements of ρ
0

will be the same as the

off-diagonal elements of

ρ̄
0

= q

p

p∑
a=1

Cρ,

= qCρ. (A34)

Putting everything together we get the equation

ρ��′ = q

p

(
(p− 1)

L∑
b=1

c�bρb�′ + q
∑
b�=�′

L∑
�′′=1

c�bcb�′′
ρ�′′�′ + c��′

)
.

(A35)
This can be rearranged to give

ρ��′ = q

p

[
L∑

�′′=1

(
(p − 1)c��′′ + q

∑
b�=�′

c�bcb�′′
)

ρ�′′�′ + c��′
]
.

(A36)
This can be further simplified by constructing the tensor 	 as

	��′�′′ = q

p

(
(p − 1)c��′′ + q

∑
b�=�′

c�bcb�′′
)

. (A37)

The system of equations given in Eq. (A32) can then be
written as

ρ��′ =
L∑

�′′=1

	��′�′′
ρ�′′�′ + q

p
c��′′

. (A38)

This form is more easily dealt with in numerical applications,
as a simple dimensional reduction (flattening) yields a more
traditional form for a system of linear equations. Importantly,
this solution relies on no properties of the coupling matrix
other than stochasticity, which it must have by definition. In
special cases, such as those where coupling is uniform or sym-
metric, we can simplify these equations further by analyzing
the symmetries that arise in C and 	.

11. Evolution of the autocorrelation function

We wish to now show that the full extent of the autocorrela-
tions in our model are described by the constant value ρ, given

over the first p time steps. We first notice that from Eq. (A30)
we can obtain the following:

ρ
k
− ρ

k−1
= q

p
C

(
p∑

t=1

ρ
k−t

−
p∑

t=1

ρ
k−t−1

)
,

= q

p
C(ρ

k−1
− ρ

k−p−1
), (A39)

and hence

ρ
k
−

(
Id + q

p
C

)
ρ

k−1
= −q

p
Cρ

k−p−1
. (A40)
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However, we know that for k ∈ {1, . . . , p} the autocorrelation
is a constant ρ

k
= ρ, meaning that for k ∈ {p+1, . . . , 2p+1}

Eq. (A40) becomes

ρ
k
−

(
Id + q

p
C

)
ρ

k−1
= −q

p
Cρ. (A41)

This is now a first-order inhomogeneous difference equa-
tion with the solution

ρ
k

= ρ − ek log (1+ q
pC)R, (A42)

where R is a constant matrix. By noticing that ρ
p+1

= qCρ we

obtain the expression

R = (1 − q)ρ

(
1 + q

p

)−(p+1)

. (A43)

With this solution we see that the equation governing the
values of ρ

k
, for k in the range p + 1 to 2p + 1, is of the form

ρ
k
− q̄ρ

k−1
= −A + e−λkB, (A44)

where q̄, A, B, and λ are constant matrices. This equation has
a general solution

ρ
k

= A′ − e−λkB′, (A45)

where A′ is a constant matrix, and B′ is a matrix that is constant
over every interval k ∈ [np + 1, (n + 1)p + 1]. Moreover, in
our specific case we find that A′ = ρ and λ = log(1 + q

pC).

This implies that not only is the autocorrelation function for
the CDARN(p) process exponentially decreasing for all val-
ues of k larger than p + 1, but also that this decay varies
according to a single parameter B′ every p time steps. This
gives us a full picture of the autocorrelations for a CDARN(p)
process.

12. Special case: Totally symmetric cross-correlation

The simplest type of correlation in the CDARN(p) model
occurs when the coupling matrix C is such that c��′ =
1/L∀�, �′, i.e. regardless of the pair of links in question. We
can immediately notice that our tensor 	 now takes the form

	��′�′′ = q

p

(
(p − 1)

1

L
+ q

L − 1

L2

)
, (A46)

which is invariant over the three indexes �, �′, and �′′. Con-
sequently ρ��′

must be invariant over � and �′. Hence all of
the lagged correlations have the same value, and we can write
ρ��′ = ρ and 	��′�′′ = 	, giving us the following equation:

ρ = L	ρ + q

Lp
. (A47)

Solving for ρ gives

ρ =
[

Lp

(
1

q
− 1

)
+ (1 − q)L + q

]−1

. (A48)

This provides a full picture of the lagged correlations present
in the system. All that remains is to find the time 0 correlations

ρ��′
0 when � �= �′. This can be done as follows:

ρ��′
0 = q

Lp

p∑
a=1

L∑
b=1

ρb�′
a = q

Lp
L

p∑
a=1

ρa = qρ. (A49)

Here the last line is given by the fact that for a = 1, . . . , p we
have ρa = ρ, the constant value given in Eq. (A48). Hence,
when � �= �′, ρ��′

0 = qρ.
Note first that if L = 1 then we recover the autocorrelation

function of a DAR(p) process. Also note that as L increases
this value must decrease, meaning that for large networks both
correlations and autocorrelations are removed, and so memory
no longer has any effect on the evolution of the system.

13. Special case: Uniform cross-correlation (UCC)

The second special case we will consider is that of uniform
cross-correlation (UCC), as induced by a symmetric coupling
matrix. Specifically this means that we require that C be
symmetric, with c�� = 1 − c for all values of � and some
given value of c, and c�� = c̄ for � �= �′ with c̄ = c/(L − 1).
Going back to the general case in Eq. (A38) we notice that
these conditions ensure that ρ�� is invariant with respect to
�, and when � �= �′ρ��′

is invariant with respect to � and �′.
This means that all of the values of ρ��′

can be found as the
solutions to the two following equations (note that � �= �′ is
assumed here):

ρ�� =
∑
�′′ �=�

	���′′
ρ�′′� + 	���ρ�� + q

p
(1 − c),

ρ��′ =
∑

�′′ �=�,�′
	��′�′′

ρ�′′�′ + 	��′�ρ��′ + 	��′�′
ρ�′�′ + q

p
c̄.

(A50)

Hence we need only find the relevant values of 	 to proceed.
Given the definition of 	 and c and c̄ we can find the follow-
ing:

	��� = q

p
[(p − 1)(1 − c) + q(L − 1)c̄2] =: 	1,

	���′′ = q

p
{(p − 1)c̄ + qc̄[(1 − c) + (L − 2)c̄]} =: 	2,

	��′� = q

p
{(p − 1)(1 − c) + q[(1 − c)2 + (L − 2)c̄2]}

=: 	3,

	��′�′ = 	���′′ =: 	2,

	��′�′′ = q

p
{(p − 1)c̄ + qc̄[2(1 − c) + (L − 3)c̄]} =: 	4.

(A51)

Noticing that 	���′′
and 	��′�′′

are invariant of �, �′, and �′′
(down to excluded values) we then obtain the following pair
of equations:

ρ�� = (L − 1)	2ρ��′ + 	1ρ�� + q

p
(1 − c),

ρ��′ = [	3 + (L − 2)	4]ρ��′ + 	2ρ�� + q

p
c̄. (A52)

This gives us a simple, solvable pair of equations. Note that
while the full solution in terms of q, p, c, and L is easy to
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obtain now, we will not write it here due to its length. To find
the time 0 correlations we can use Eq. (A34) to obtain

ρ��′
0 = q{[(1 − c) + (L − 2)c̄]ρ��′ + c̄ρ��}. (A53)

Competing the description of the correlations for the UCC
model.

14. Uniform cross-correlation in the large network limit

The uniform cross-correlation (UCC) model for
CDARN(p) networks was introduced to evenly distribute
any temporal cross-correlations between links over the entire
network. In doing this we minimize the cross correlations, i.e.,
ρ��′

where � �= �′, for fixed values of p, q, y, and c. In turn this
minimizes the influence that any such cross-correlations have
on the diffusion process over the network. What we now show
is that when the backbone of the temporal network has a large
number of links then the UCC model is indistinguishable
from a DARN(p) model that has been restricted to the same
backbone, and hence temporal cross-correlations between
links are completely removed.

Consider a temporal network given by time varying adja-
cency matrix A

t
with observed value {a�

t }, and with L links,
generated by the CDARN(p) model with link density y, mem-
ory strength q, memory length p and coupling matrix C as
in the UCC case. The conditional probability of a link �

occurring at time t , given the past p states of the network can
be thought of in terms of contributions from the memory of
the link itself, the memory of all other links, and some back-
ground contribution. This can hence be written as follows:

Prob
(
a�

t |{As
}t−p

s=t

) = (1 − q)y + q[(1 − c)φself + cφother],
(A54)

where φself and φother represent the contributions to the condi-
tional probability Prob(a�

t |{{As
}t−p

s=t ) from the past p states of
the link � and every other link, respectively.

For links to be effectively independent then we require that
as L → ∞, φother tends to a constant, and hence the link � has
no memory of the past states of any other link. To show this
we study the memory kernels φself and φother directly as

φself = (1 − c)

p

p∑
k=1

a�
t−k, φother = c

(L − 1)p

∑
�′ �=�

p∑
k=1

a�′
t−k .

(A55)

We need focus only on φother. First, let us consider the av-
erage value 〈a�′

t−k〉�′ . The CDARN(p) network is taken to be
in a stationary state, and so the symmetry of the links under
any relabeling guarantees us that Prob(a�′

t−k ) is the same for
each link �′ and for each time t − k. Hence, we can write
Prob(a�′

t−k ) = ā∀�′ for some constant ā. Then we must have,
for any of the L − 1 possible values of �′,〈

a�′
t−k

〉
�′ = Prob

(
a�′

t−k

) = ā. (A56)

Now φother can be rewritten as follows:

φother = 1

p

p∑
k=1

1

L − 1

∑
�′ �=l

a�′
t−k . (A57)

Then by the law of large numbers we can express this in terms
of the sample average:

φother = 1

p

p∑
k=1

〈a�′
t−k〉�′ ,

= 1

p

p∑
k=1

ā,

= ā. (A58)

Hence, φother → ā as L → ∞. Indeed, we can further see that
ā = y. Since there are no terms containing links other than �

in φself , then we can conclude that the conditional probability
is such that, in the same limit L → ∞,

Prob
(
a�

t = 1|{{A
s
}t−p

s=t

) → Prob
(
a�

t = 1|{a�
s }t−p

s=t

)
, (A59)

and so any memory of other links is lost. To show that this is
equivalent to a DARN(p) network we need only look at the
conditional probability of obtaining a link in such a network
with memory strength q̄, memory length p, link density ȳ, and
adjacency matrix E

t
with observed values {e�

t }:

Prob
(
e�

t = 1|{{E
s
}t−p

s=t

) = (1 − q̄)ȳ + q̄

p

p∑
k=1

e�
t−k . (A60)

Now, by setting the values of q̄ and ȳ, in terms of the values q,
y, and c from the CDARN(p) model, to be

q̄ = q(1 − c), ȳ = y, (A61)

we obtain that

Prob
(
e�

t = 1|{{A
s
}t−p

s=t

) = Prob
(
a�

t = 1|{{A
s
}t−p

s=t

)
. (A62)

Hence, the UCC model is precisely a DARN(p) model in the
limit of L → ∞.

15. MLE of the CDARN(p) model

The CDARN(p) model can be estimated by the maximum
likelihood method. First of all, consider the vectorization
X

t
≡ {a�

t }�=1,...,L, with L the number of links on the backbone,

of the adjacency matrix {ai j
t }(i, j)∈B of the network snapshot

at time t . That is, {X
t
}t=1,...,T describes the binary random

sequences associated with the dynamics of the L links on the
backbone. Then the log likelihood of data (by conditioning
on the first p observations) under CDARN(p), as defined in
Sec. IV, reads as

L(q, c, y) ≡ logP ({X
t
}t=p+1,...,T |{X

s
}s=1,...,p, q, c, y)

=
∑
t,l

log
[
q
[
(1 − c)D�

t + cC�
t

]

+ (1 − q)yX �
t (1 − y)1−X �

t
]
, (A63)

where t runs from p + 1 to T , while � from 1 to L, with

D�
t =

p∑
τ=1

zτ δ
(
X �

t , X �
t−τ

)
, C�

t =
∑
�′ �=�

λ��′
p∑

τ=1

zτ δ
(
X �

t , X �′
t−τ

)
,

where δ(a, b) is the Kronecker delta, taking a value equal to
one if a = b, zero otherwise, zτ is the probability of picking τ

in the range of integers (1, . . . , p) (it is zτ = 1/p if we assume
uniform probability), and λ��′

is the following:

034301-25



WILLIAMS, MAZZARISI, LILLO, AND LATORA PHYSICAL REVIEW E 105, 034301 (2022)

(1) λ��′ = 0 ∀�, �′ = 1, . . . ., L with � �= �′, for the no
cross-correlation (NCC) coupling model;

(2) λ��′ = 1/|∂B�| with |∂B�| the number of neighbors
of link � if �′ ∈ ∂B�, zero otherwise, for the local cross-
correlation (LCC) coupling model;

(3) λ��′ = 1/(L − 1) with � �= �′, for the uniform cross-
correlation (UCC) coupling model.

The MLE of the CDARN(p) model can be then obtained by
maximizing the log likelihood in Eq. (A63), or, equivalently,
by solving the following system of nonlinear equations:

∂L

∂y
=

∑
t,�

2X �
t − 1

q
[
(1− c)D�

t + cC�
t

]+ (1− q)yX �
t (1− y)1−X �

t
= 0,

∂L

∂q
=

∑
t,�

((1− c)D�
t + cC�

t )− yX �
t (1− y)1−X �

t

q
[
(1− c)D�

t + cC�
t

] + (1 − q)yX �
t (1− y)1−X �

t
= 0,

∂L

∂c
=

∑
t,�

C�
t − D�

t

q
[
(1− c)D�

t + cC�
t

]+ (1 − q)yX �
t (1 − y)1−X �

t
= 0.

(A64)

The system of nonlinear equations can be solved iteratively by
adopting an iterative proportional fitting procedure. This con-
sists in solving one by one each equation for each parameter,
but conditioning on the values of the other parameters, up to
convergence. Such a procedure can be initialized randomly in
the parameter space; however, a natural initialization for the
parameter y is the average link density of the network. For
further details on the method see also [6].

16. MLE of the heterogeneous CDARN(p) model

In the case of link-specific parameters y� or q� with � =
1, . . . , L, the log likelihood of data under CDARN(p) with
heterogenous parameters is generalized quite naturally as

L(q, c, y) ≡ logP ({X
t
}t=p+1,...,T |{X

s
}s=1,...,p, q, c, y)

=
∑
t,�

log
[
q
[
(1 − c)D�

t + cC�
t

]

+ (1 − q)(y�)X �
t (1 − y�)1−X �

t
]

(A65)

and

L(q, c, y) ≡ logP ({X
t
}t=p+1,...,T |{X

s
}s=1,...,p, q, c, y)

=
∑
t,�

log
[
q�

[
(1 − c)D�

t + cC�
t

]

+ (1 − q�)yX �
t (1 − y)1−X �

t
]
, (A66)

respectively, for y� and q�. Then, similarly to before, the MLE
of the CDARN(p) model with heterogenous parameters is
obtained by solving

∂L

∂y�
=

∑
t

2X �
t − 1

q
[
(1− c)D�

t + cC�
t

]+ (1− q)(y�)X �
t (1− y�)1−X �

t

= 0,

∂L

∂q
=

∑
t,�

(
(1− c)D�

t + cC�
t

)− (y�)X �
t (1− y�)1−X �

t

q
[
(1− c)D�

t + cC�
t

]+ (1− q)(y�)X �
t (1− y�)1−X �

t

= 0,

∂L

∂c
=

∑
t,�

C�
t − D�

t

q
[
(1− c)D�

t + cC�
t

]+ (1− q)(y�)X �
t (1− y�)1−X �

t

= 0, (A67)

and

∂L

∂y
=

∑
t,�

2X �
t − 1

q�
(
(1 − c)D�

t + cC�
t

) + (1 − q�)yX �
t (1 − y)1−X �

t

= 0,

∂L

∂q�
=

∑
t

(
(1 − c)D�

t + cC�
t

) − yX �
t (1 − y)1−X �

t

q�
(
(1 − c)D�

t + cC�
t

) + (1 − q�)yX �
t (1 − y)1−X �

t

= 0,

∂L

∂c
=

∑
t,�

C�
t − D�

t

q�
(
(1 − c)D�

t + cC�
t

) + (1 − q�)yX �
t (1 − y)1−X �

t

= 0, (A68)

respectively.

17. Link prediction in the CDARN(p) model

Once estimated on data by solving the MLE problem (6),
the CDARN(p) model can be used for link prediction: assume
that we observe a temporal network up to time t and are asking
for the prediction of the network snapshot at time t + 1 (by
using only the information up to time t). The one-step-ahead
forecast (or prediction) of link � is defined as

S�
t+1 ≡ P

(
X �

t+1 = 1|{X
s
}s=t,t−1,...,t−p+1, q, c, y

)
= q

[
(1 − c)D̃�

t+1 + cC̃�
t+1

] + (1 − q)y, (A69)

with

D̃e
t+1ll =

p∑
τ=1

zτ δ
(
1, X �

t−τ+1

)
,

C̃�
t+1 =

∑
�′ �=�

λ��′
p∑

τ=1

zτ δ
(
1, X �′

t−τ+1

)
.

The one-step ahead forecast in Eq. (A69) is described by
a real value in the unit interval, representing the probabil-
ity projected at time t + 1 of observing a link, then the
prediction itself, namely, the binary value X̃ �

t+1 ∈ {0, 1}, is
obtained according to some threshold value. The time series
of forecasts {S�

t }, together with the realizations {X �
t }, allow

us to characterize the forecasting performance of the model
by using some binary classifier. A possibility is construct-
ing the receiving operating characteristic (ROC) curve [61],
which is the plot of the true positive rate (TPR) (sensitivity)
against the false positive rate (FPR) (specificity) at various
threshold values of the link probability. In particular, the
threshold values are selected implicitly by the inputs them-
selves: by moving from zero to one in the unit interval,
each time the sensitivity is increasing or the specificity is
decreasing, the corresponding value is considered as a thresh-
old. In practical terms, the better the model performs in the
forecasting, the higher the associated ROC curve is in the
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FIG. 11. Scatter plots of the mean link density (left), autocorrelation (middle), and cross-correlation (right) (at lag equal to one) of the
empirical temporal networks built with the data sets described in the main text vs the same statistics computed on simulations of the CDARN(1)
model (LCC) with constant parameters, which are estimated on the temporal networks themselves.

unit square, or, equivalently, the larger the area under the
curve (AUC).

18. Network statistics

Once estimated on data, the CDARN(p) model in its
standard version with constant parameters and for a given
coupling specification, captures the average link density of
a temporal network, together with the average auto- and
cross-correlations of links. In particular, it captures the cross-
correlations of neighboring links on the backbone, e.g., all
links that are incident to the same nodes for the LCC speci-
fication. Thus, the observed statistics match (on average) their
expectations according to the CDARN(p) model, eventually
computed by using simulations. For validation purposes, this
is shown in Fig. 11 for all the datasets described in Sec. IV

by considering the CDARN(1)-LCC model with constant pa-
rameters, which are estimated on data by using maximum
likelihood methods described above.

More interestingly, other networks statistics that are not
explicitly described by CDARN models, can be computed
within the proposed framework, in particular the interevent
time between the occurrence of two subsequent links between
two nodes at two different times. For instance, it has been
observed in temporal networks of human communication that
the duration between two contacts is often bursty and deviates
from the uniform distribution expected in the case of memo-
ryless processes [12]. This quantity is of great interest, e.g.,
when studying a spreading process over a temporal network,
such as the diffusion process considered in the present work.
In our setting, the interevent time can be defined as the num-
ber τ of observed time snapshots X �

t+1, . . . , X �
t+τ for which

FIG. 12. Comparison of the interevent time (IET) distributions between DARN(1) and CDARN(1) (LCC) models (left), and of the
DARN(p) models for different p (right). IET is obtained by using simulations of time series of length T = 105 of the models, with y = 0.1,
q = 0.75, and c as indicated in the plots (for CDARN).
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FIG. 13. Interevent time (IET) distribution for four temporal networks, BH, EM1d, F2a10s, and PROX60min, compared with IET
distributions for the CDARN(1) model with LCC specification based on numerical simulations, and with the theoretical IET distribution
for the DARN(1) model, which as we explain can be computed analytically.

the generic link � is zero, after an observation X �
t = 1. The

distribution of τ conditional to the observation X �
t = 1 for the

CDARN(1) model (with constant parameters) is equivalent to
compute the following joint probability:

p
(
τ |X �

t = 1
)

≡ P
(
X �

t+1 = 0, . . . , X �
t+τ = 0

∣∣X �
t = 1

)
= P

(
X �

t+1 = 0
∣∣X �

t = 1
) τ−1∏

i=1

P
(
X �

t+1+i = 0
∣∣X �

t+i = 0
)

=
[

qc
∑
�′ �=�

λ��′
δ
(
0, X �′

t

) + β

]

×
τ−1∏
i=1

{
q

[
(1 − c) + c

∑
�′ �=�

λ��′
δ
(
0, X �′

t+i

)] + β

}
,

(A70)

with β = (1 − q)(1 − y).
In general, a closed form solution cannot be obtained

because of nondiagonal interaction terms mediated by the
couplings matrix λ. Except for the NCC specification of
the model, i.e., the DARN(1) model, which sets to zero the
cross-correlations, i.e., c = 0. In this case, the probability
distribution of the interevent time can be easily derived and
is equal to

p(τ ) = e− τ−1
σ , τ = 1, 2, . . . , (A71)

with σ = (log 1
q+β

)−1.

Notice that the probability distribution (A71) of the
DARN(1) model represents an upper bound for the
CDARN(1) model: when c > 0 in Eq. (A70), there exists
always a probability larger than zero of copying one past
neighboring link (whatever the coupling matrix λ), instead
of copying the past itself, i.e., a zero, with probability
one. This reduces the probability of observing a number
τ of successive zeros, thus resulting in an (approximate)
exponential distribution of interevent times with a timescale
smaller than σ , see the left panel of Fig. 12. Finally, the
non-Markovian case p > 1 is not analytically tractable as
long as p increases further and further. However, for the NCC
specification of the CDARN(p) model, i.e., DARN(p), it is
easy to gather that p(τ ) = O[exp(−(τ − p)/σ )] when τ � p,
by following similar computations leading to Eq. (A70). This
is confirmed numerically in the right panel of Fig. 12. We
can conclude that the interevent time distribution of the
CDARN(p) model is an approximate exponential with a
timescale equal or smaller than σ .

Finally, in Fig. 13 we show the empirical distribution of the
interevent time of four real-world temporal networks, com-
pared with the corresponding distribution for the CDARN(1)
model with LCC coupling specification, obtained numerically
by means of simulations, and with the theoretical one (A71)
for the DARN(1) model. In both cases, the parameters of the
model has been obtained by maximum likelihood estimation.
In all cases, the CDARN(1) can be seen as an approximation
of the empirical distributions of the interevent time for small
τ , while the fatter tails (excluding the football network) are
not captured by the model.

034301-28



NON-MARKOVIAN TEMPORAL NETWORKS WITH … PHYSICAL REVIEW E 105, 034301 (2022)

[1] M. C. González, C. A. Hidalgo, and A.-L. Barabási,
Nature (London) 453, 779 (2008).

[2] M. Starnini, A. Baronchelli, and R. Pastor-Satorras, Phys. Rev.
Lett. 110, 168701 (2013).

[3] E. Yoneki, D. Greenfield, and J. Crowcroft, in Proceedings of
the 2009 International Conference on Advances in Social Net-
work Analysis and Mining, Athens, Greece (IEEE, Piscataway,
NJ, 2009), pp. 356–361.

[4] R. Murcio, A. P. Masucci, E. Arcaute, and M. Batty, Phys. Rev.
E 92, 062130 (2015).

[5] D. Li, B. Fu, Y. Wang, G. Lu, Y. Berezin, H. E. Stanley,
and S. Havlin, Proc. Natl. Acad. Sci. USA 112, 669
(2015).

[6] P. Mazzarisi, P. Barucca, F. Lillo, and D. Tantari, Eur. J. Oper.
Res. 281, 50 (2020).

[7] M. Valencia, J. Martinerie, S. Dupont, and M. Chavez,
Phys. Rev. E 77, 050905(R) (2008).

[8] F. D. V. Fallani, V. Latora, L. Astolfi, F. Cincotti, D. Mattia,
M. G. Marciani, S. Salinari, A. Colosimo, and F. Babiloni,
J. Phys. A: Math. Theor. 41, 224014 (2008).

[9] A. P. Millán, J. Torres, S. Johnson, and J. Marro, Nat. Commun.
9, 2236 (2018).

[10] D. R. Chialvo, Nat. Phys. 6, 744 (2010).
[11] P. Grindrod and D. J. Higham, Proc. R. Soc. London A 466, 753

(2010).
[12] P. Holme and J. Saramäki, Phys. Rep. 519, 97 (2012).
[13] L. R. Lambiotte and M. N. Masuda, A Guide to Temporal

Networks (World Scientific, Singapore, 2021).
[14] L. Gauvin, A. Panisson, and C. Cattuto, PLoS ONE 9, e86028

(2014).
[15] M. Zanin, L. Lacasa, and M. Cea, Chaos 19, 023111 (2009).
[16] V. Nicosia, J. Tang, M. Musolesi, G. Russo, C. Mascolo, and V.

Latora, Chaos 22, 023101 (2012).
[17] T. Weng, J. Zhang, M. Small, R. Zheng, and P. Hui, Sci. Rep. 7,

41951 (2017).
[18] T. P. Peixoto and M. Rosvall, Nat. Commun. 8, 582 (2017).
[19] A. Buscarino, L. Fortuna, M. Frasca, and V. Latora, Europhys.

Lett. 82, 38002 (2008).
[20] M. Starnini and R. Pastor-Satorras, Phys. Rev. E 89, 032807

(2014).
[21] M. Karsai, N. Perra, and A. Vespignani, Sci. Rep. 4, 4001

(2014).
[22] L. Alessandretti, K. Sun, A. Baronchelli, and N. Perra,

Phys. Rev. E 95, 052318 (2017).
[23] P. Singer, D. Helic, B. Taraghi, and M. Strohmaier, PLoS ONE

9, e114952 (2014).
[24] M. Szell, R. Sinatra, G. Petri, S. Thurner, and V. Latora,

Sci. Rep. 2, 457 (2012).
[25] R. Lambiotte, M. Rosvall, and I. Scholtes, Nat. Phys. 15, 313

(2019).
[26] A. Moinet, A. Barrat, and R. Pastor-Satorras, Phys. Rev. E 98,

022303 (2018).
[27] Y. Zhang, A. Garas, and I. Scholtes, J. Phys. Complex. 2,

015007 (2021).
[28] V. Salnikov, M. T. Schaub, and R. Lambiotte, Sci. Rep. 6, 23194

(2016).
[29] J. T. Matamalas, M. De Domenico, and A. Arenas, J. R. Soc.

Interface 13, 20160203 (2016).
[30] M. Rosvall, A. V. Esquivel, A. Lancichinetti, J. D. West, and R.

Lambiotte, Nat. Commun. 5, 4630 (2014).

[31] T. Hiraoka and H.-H. Jo, Sci. Rep. 8, 15321 (2018).
[32] A. Sapienza, A. Barrat, C. Cattuto, and L. Gauvin, Phys. Rev. E

98, 012317 (2018).
[33] I. Z. Kiss, G. Röst, and Z. Vizi, Phys. Rev. Lett. 115, 078701

(2015).
[34] T. P. Peixoto and L. Gauvin, Sci. Rep. 8, 15511 (2018).
[35] O. E. Williams, F. Lillo, and V. Latora, New J. Phys. 21, 043028

(2019).
[36] A. Moinet, R. Pastor-Satorras, and A. Barrat, Phys. Rev. E 97,

012313 (2018).
[37] N. Masuda, K. Klemm, and V. M. Eguíluz, Phys. Rev. Lett. 111,

188701 (2013).
[38] J.-C. Delvenne, R. Lambiotte, and L. E. Rocha, Nat. Commun.

6, 7366 (2015).
[39] I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C. J. Tessone, and

F. Schweitzer, Nat. Commun. 5, 5024 (2014).
[40] X.-X. Zhan, A. Hanjalic, and H. Wang, Sci. Rep. 9, 6798

(2019).
[41] H.-H. Jo, J. I. Perotti, K. Kaski, and J. Kertész, Phys. Rev. E 92,

022814 (2015).
[42] R. Burioni, E. Ubaldi, and A. Vezzani, J. Stat. Mech. (2017)

054001.
[43] H. Kim, M. Ha, and H. Jeong, Eur. Phys. J. B 88, 315 (2015).
[44] N. Georgiou, I. Z. Kiss, and E. Scalas, Phys. Rev. E 92, 042801

(2015).
[45] I. Scholtes, in Proceedings of the 23rd ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining
(ACM Press, New York, 2017), pp. 1037–1046.

[46] R. Lambiotte, V. Salnikov, and M. Rosvall, J Complex Netw. 3,
177 (2015).

[47] C. L. Vestergaard, M. Génois, and A. Barrat, Phys. Rev. E 90,
042805 (2014).

[48] E. R. Colman and D. Vukadinović Greetham, Phys. Rev. E 92,
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