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The severe neurological disorder epilepsy affects almost 1% of the world population. For patients who suffer
from pharmacoresistant focal-onset epilepsy, electroencephalographic (EEG) recordings are essential for the
localization of the brain area where seizures start. Apart from the visual inspection of the recordings, quantitative
EEG signal analysis techniques proved to be useful for this purpose. Among other features, regularity versus
irregularity and phase coherence versus phase independence allowed characterizing brain dynamics from the
measured EEG signals. Can phase irregularities also characterize brain dynamics? To address this question, we
use the univariate coefficient of phase velocity variation, defined as the ratio of phase velocity standard deviation
and the mean phase velocity. Beyond that, as a bivariate measure we use the classical mean phase coherence
to quantify the degree of phase locking. All phase-based measures are combined with surrogates to test null
hypotheses about the dynamics underlying the signals. In the first part of our analysis, we use the Rössler model
system to study our approach under controlled conditions. In the second part, we use the Bern-Barcelona EEG
database which consists of focal and nonfocal signals extracted from seizure-free recordings. Focal signals are
recorded from brain areas where the first seizure EEG signal changes can be detected, and nonfocal signals are
recorded from areas that are not involved in the seizure at its onset. Our results show that focal signals have
less phase variability and more phase coherence than nonfocal signals. Once combined with surrogates, the
mean phase velocity proved to have the highest discriminative power between focal and nonfocal signals. In
conclusion, conceptually simple and easy to compute phase-based measures can help to detect features induced
by epilepsy from EEG signals. This holds not only for the classical mean phase coherence but even more so for
univariate measures of phase irregularity.
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I. INTRODUCTION

Epilepsy is one of the most common neurological dis-
orders. It is characterized by epileptic seizures which are
related to abnormal excessive neuronal activity in the brain
[1]. For patients who suffer from pharmacoresistant focal-
onset epilepsy (around 9% of all epilepsy patients [2]), a
potential therapy is the neurosurgical resection of the brain
area where seizures start [2,3]. To plan epilepsy surgery,
the precise localization of this brain area is crucial. For this
purpose intracranial multichannel electroencephalographic
(EEG) recordings play an important role [4,5]. In particular,
one has to identify those channels where the first seizure EEG
signal changes can be detected. In this study, we analyze sig-
nals recorded during the seizure-free interval from these focal
channels as well as from nonfocal signals which are recorded
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from brain areas that are not involved in the seizure at its
onset. Nowadays, the visual inspection of these EEG record-
ings by clinicians is complemented by quantitative EEG signal
analysis techniques [6–46]. The aim of this multidisciplinary
analysis is to understand how epilepsy affects the dynamics of
the brain and help to arrive at valuable diagnostic information.
From a physics perspective, the dynamics of the brain area
where the seizure starts is altered, not only during seizures
[6–21] but also during seizure-free intervals [6–9,13,22–46].
Thus, the analysis of seizure-free EEG recordings can comple-
ment other techniques [47,48] in the diagnostics of epilepsy
patients. In order to promote the study of epilepsy, researchers
provide public domain EEG databases. In this study, we use
the Bern-Barcelona database, available in Ref. [49].

The Bern-Barcelona database was constructed and first
analyzed by Andrzejak et al. [39] applying univariate and
bivariate nonlinear signal analysis techniques. The mea-
sures were used together with the concept of surrogates to
test specific null hypotheses about the underlying dynam-
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ics [50]. The database contains focal and nonfocal signals
from seizure-free EEG recordings of patients suffering from
pharmacoresistant focal-onset epilepsy. These two groups of
signals demonstrated to have different dynamical character-
istics. For instance, determinism, nonlinear interdependence,
and stationarity were more evident in focal signals. Sub-
ramaniyam et al. [51] used recurrence network measures
together with surrogates which, in contrast to those used
in Ref. [39], preserve the dynamics’ nonstationarity. Their
results showed high levels of structural complexity and inter-
dependence in focal signals. Sharma et al. classified focal and
nonfocal signals by applying machine learning to different
entropy features [52–54]. In a recent study [54], Sharma et al.
achieved a diagnostic accuracy of 95%. Acharya et al. [55]
reviewed articles that used the Bern-Barcelona database and
proposed a computer-aided system for the detection of focal
and nonfocal signals.

An approach to distinguish focal and nonfocal signals is the
characterization of the dynamics’ regularity versus irregular-
ity [9,39,43,55–60] and interdependence versus independence
[23,38,39,51,61,62]. The study of irregularity [63–69] and
independence [70–73] can furthermore yield beneficial in-
formation in the study of other neurological diseases. The
features of irregularity and independence are often computed
by time-consuming signal analysis techniques, and computa-
tion time is particularly relevant when applied to long signals
or big databases. Moreover, these techniques are sometimes
difficult to interpret and several intermediate steps are needed
to reach the final result. Moreover, one has to be careful
with the selection of the primary observable used as input
for the signal analysis. EEG recordings are usually influ-
enced by the impedance between the electrodes and tissue
and can be affected by different artifacts of physiological or
technical origin during the measurement. Accordingly, EEG
amplitude signals are sometimes not very reliable, and signals
of instantaneous EEG phases can be more informative [74].
Beyond their application to EEG signals [38,75–78], instan-
taneous phase signals are used in different fields of signal
processing: telecommunication systems [79,80], electrocar-
diography [81,82], and geophysics [83,84], among others. The
instantaneous phase can be determined by means of several
techniques, e.g., the Hilbert transform [85], complex wavelet
transform [86], or the marker event method [87,88]. Here one
should note that Quian Quiroga et al. [89] showed that the
Hilbert transform together with filtering leads to equivalent
results like the wavelet method. After comparing these differ-
ent techniques in some preanalysis, we decided to extract the
phase using the Hilbert transform.

Since phase-based measures are conceptually simple and
easy to compute, we use them in this study to analyze EEG
signals from epilepsy patients to detect phase irregularities
and phase synchronization. Phase irregularities are present in
various nonlinear physiological systems, and their characteri-
zation is important to properly understand the functionality of
the organism [90]. Phase synchronization can be useful for the
study of physiological processes [91–93] as well as neuronal
diseases [76,94,95]. In particular, phase synchronization was
demonstrated to contribute to quantitative EEG analysis with
respect to the dynamics of seizures [38,96–99], the seizure-
free interval [31,32,38,96,100], and the distinction of focal

and nonfocal signals [38]. Therefore, the main question ad-
dressed in this study is the following. Given that the analysis
of phase synchronization was demonstrated to contribute posi-
tively to the study of EEG signals, can phase irregularities also
characterize brain dynamics? In particular, do they allow us to
differentiate focal and nonfocal signals even in the absence of
seizures?

To address this open question, we apply univariate and bi-
variate phase-based measures to the Bern-Barcelona database.
The univariate measure coefficient of phase velocity variation
is selected here to quantify phase irregularities of individ-
ual dynamics X from single signals x. This signal analysis
technique is based on diffusion measures [90,101,102], which
capture invariant phase characteristics. However, these mea-
sures cannot always be applied to empirical data since they
use ensemble averages across independent realizations of the
dynamics. In this study, we perform averages across time
since we have only single signals, i.e., single realizations.
As a bivariate approach, we use the mean phase coherence
to quantify the degree of phase synchronization between two
dynamics X and Y based on simultaneously measured signals
x and y [38,103]. Following previous work [31,38,41,104–
107], prior to applying these techniques to EEG recordings,
we test them on the low-dimensional nonlinear Rössler model
system. Despite that the Rössler dynamics is chaotic, it is
narrow banded in the frequency domain and therefore its
Hilbert phase is well defined. Accordingly, the Rössler model
system is very well suited to test phase-based measures under
controlled conditions. It should not, however, be mistaken
for a model of brain dynamics. While brain dynamics are
certainly not linear, they are not low dimensional, and EEG
signals are typically not narrow banded. On the other hand,
we reduce this gap somewhat in part of our analysis by adding
dynamical noise to the Rössler dynamics to have a system
more similar to real-world dynamics. We furthermore com-
bine the phase-based measures with the concept of surrogates
[8,45,50,108] to disentangle the impact of nonstationarities,
nonlinearities, and correlations on our measures. Doing so, we
design phase-based surrogate tests to study the consistency of
the dynamics underlying focal and nonfocal signals with the
surrogates’ null hypothesis.

II. MATERIALS AND METHODS

A. Rössler dynamics

We analyze a pair of bidirectionally coupled Rössler dy-
namics [109] which is a widely used chaotic nonlinear model
system [31,38,41,104–107]. The reason to select this model
system is because its trajectory rotates around a single center.
It is therefore straightforward to obtain the phase of the dy-
namics which allows us to evaluate the phase-based measures.
For the purpose of the joined evaluation of the coefficient of
phase velocity variation and the mean phase coherence we use
a pair of two coupled Rössler dynamics with dynamical noise:

dx1(t ) = (−ωxx2(t ) − x3(t )

+ εy→x(y1(t ) − x1(t )))dt + dηx(t ),

dx2(t ) = (ωxx1(t ) + 0.165x2(t ))dt + dηx(t ),

dx3(t ) = (0.2 + x3(t )(x1(t ) − 10))dt, (1)
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dy1(t ) = (−ωyy2(t ) − y3(t )

+ εx→y(x1(t ) − y1(t )))dt + dηy(t ),

dy2(t ) = (ωyy1(t ) + 0.165y2(t ))dt + dηy(t ),

dy3(t ) = (0.2 + y3(t )(y1(t ) − 10))dt . (2)

The dynamics are made nonidentical by using a mismatch
in the natural frequencies ωx = 0.89 and ωy = 0.85. Both
systems are coupled with coupling strength εx→y from X
→ Y and εy→x from Y → X . The noise terms ηx, ηy are
independent Gaussian δ-correlated noise with variance 2Ox,y

and zero mean: 〈ηx,y(t )ηx,y(t ′)〉 = 2Ox,yδ(t − t ′)δx,y. Thus, the
noise is uncorrelated for different times t �= t ′, and ηx and
ηy are always uncorrelated between X and Y and between
the first and second components. We apply noise only in the
first and second component for each system but not in the
third component which gives rise to the nonlinearity to the
dynamics. This is done since in preanalysis we found that
adding noise also to the third component quickly destabilized
the system and therefore did not allow us to study sufficient
noise level ranges. We define the noise level by the standard
deviation of ηx,y which is given by ξx,y = √

2Ox,y.
To integrate the dynamics we use the Euler method with

step size dt = 0.001 time units, where the noise is added
in every integration step. In order to have approximately 20
points per cycle of the Rössler dynamics, we down-sample by
a factor of 300, resulting in a sampling interval of �t = 0.3
time units. Starting from random initial conditions we inte-
grate a total of 100 000 data points from which we use only
the last 4096 data points to let transients fade away.

B. Intracranial EEG recordings

As recordings from epilepsy patients we use the publicly
available Bern-Barcelona EEG database [39], which consists
of EEG recordings performed at the Department of Neurology
of the University of Bern, Switzerland. These recordings were
done using electrodes each equipped with several recording
channels. These electrodes were implanted onto the surface of
the brain or in deeper brain structures. These intracranial EEG
recordings were obtained as part of the epilepsy diagnostics
prior to epilepsy surgery. The database contains recordings
from five patients suffering from pharmacoresistant focal-
onset epilepsy. In all cases clinicians located the seizure onset
in one of the two hemispheres. The recordings do not include
any seizure episode. Instead, they are from seizure-free pe-
riods, i.e., the time between seizures. The data were filtered
with a Butterworth filter between 0.5 and 150 Hz, and sam-
pled at 512 Hz. EEG signals were then re-referenced against
the median of all the channels free of permanent artifacts as
judged by visual inspection.

The Bern-Barcelona database was constructed to contain
only signals with a minimal amount of artifacts. It contains
two types of signals. The first type are focal signals, which
were recorded from brain areas where the first ictal EEG
changes were detected. The second type are nonfocal signals,
recorded from brain areas that were not involved in the seizure
at its onset. In total the database contains 3750 pairs of fo-
cal signals and 3750 pairs of nonfocal signals. Each pair of
signals, which we refer to as x and y, was simultaneously

recorded from neighboring channels on one electrode. For
the univariate analysis we use only the signals x, whereas
for the bivariate analysis we use the pair of signals x and y.
Beyond this pairing and the information if the signals are focal
or nonfocal, the database was designed such that the signals
are randomized. In particular, the index of the signal pair is
not related to the identity of the patient or recording location
inside the patient’s brain. Every signal has 20 s corresponding
to 10 240 time points. We applied an eighth-order Butter-
worth low-pass filter with a cutoff frequency of 40 Hz and
a 40th-order Butterworth stop-band filter between 46.5 and
53.5 Hz. This was done to work with the same preprocessing
as performed in Ref. [39] for the nonlinear measures. For the
last part of the analysis we applied a sixth-order Butterworth
bandpass filter using the classical EEG frequency bands: δ

(0.5–4 Hz), θ (4–8 Hz), α (8–12 Hz), and β (12–31 Hz).
Figure 1 shows some exemplary pairs of focal and nonfocal
EEG signals.

C. Phase of a signal

We use the analytic signal concept based on the Hilbert
transform [85] to compute the instantaneous phase φ(t ).
Given a signal x(t ) extracted from a system X we obtain the
Hilbert transform xH(t ) as

xH(t ) = p.v.
∫ +∞

−∞

x(τ )

π (t − τ )
dτ, (3)

where p.v. denotes that the integral is done following the
Cauchy principal value. From Eq. (3) we see that xH(t ) is
a convolution of x(t ) with 1

πt in the time domain. In the
frequency domain this convolution translates to the product of
the complex-valued Fourier transforms. The Fourier transform
of 1

πt is

F
(

1

πt

)
=

⎧⎨
⎩

ei π
2 for − π < ω < 0

0 for ω = 0
e−i π

2 for 0 < ω < π

.

Recalling that the multiplication of two complex numbers
corresponds to multiplying their absolute value and summing
their phases and taking into account the Hermitian symmetry
of the Fourier transform of real-valued signals, we can see that
the Hilbert transform performs a shift of the original signal by
1
2π , maintaining the power spectrum [110].

An analytic signal xα (t ) can be expressed in the complex
plane with an imaginary unit i as

xα (t ) = x(t ) + ixH(t ) = A(t )eiφ(t ), (4)

where φ(t ) is the instantaneous phase and A(t ) is the instanta-
neous amplitude. Accordingly, we can extract φ(t ) by

φ(t ) = arctan
xH(t )

x(t )
. (5)

This function has values in the interval (−π, π ], and therefore
provides the phase wrapped to this interval. We denote the
continuous unwrapped phase by �(t ).
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FIG. 1. Exemplary pairs of (a), (b) focal and (c), (d) nonfocal EEG signals.

D. Phase-based measures

To numerically determine the phase-based measures it is
important to recall that we deal with signals consisting of
N samples taken at discrete times t j for j = 0, . . . , N − 1
separated by the sampling interval �t = t j+1 − t j .

1. Coefficient of phase velocity variation

We use the univariate coefficient of phase velocity variation
to characterize the irregularity of the individual dynamics X
based on measured signals x. For this purpose we analyze
the unwrapped phase �(t ). As the first step we define the
instantaneous phase velocity �(t j ) [111–113],

�(t j ) = �(t j+1) − �(t j )

�t
, (6)

the mean phase velocity M,

M = μ〈�(t j )〉 j=0,...,N−1, (7)

and the phase velocity standard deviation S,

S = σ 〈�(t j )〉 j=0,...,N−1, (8)

across the range of time indices indicated at the angular brack-
ets. To quantify deviations from the linear growth of the phase
we use the coefficient of phase velocity variation V :

V = S

M
. (9)

In our study, all systems are defined such that the mean phase
velocity M is positive. Furthermore, the phase velocity stan-
dard deviation S cannot be negative. Accordingly, the lowest

bound of V is zero, which is attained if and only if �(t j )
is constant across j = 0, . . . , N − 1. However, despite that
the coefficient of phase velocity variation V is divided by
the mean phase velocity M, it is neither normalized to one
nor bounded from above. We refer to the measures as such
using the corresponding symbols: V , M, and S. Whenever
referring to a specific system or signal, we add a subindex
to the symbol. For instance, Vx is used for coefficient of phase
velocity variation values of system X .

As examples, we use unwrapped phases �(t ) extracted
from exemplary signals from Rössler dynamics [Fig. 2(a)]
and EEG recordings [Fig. 2(b)], which result in intermediate
values of V . For the Rössler dynamics we get nonzero values
of S even in the absence of noise. The source of this phase
irregularity is the nonlinearity of the Rössler dynamics. Once
we add noise to the dynamics, the deviations from the linear
growth of �(t ) are higher, leading to increased values of S.
In contrast, in this example the mean phase velocity M is
not strongly affected by noise, and the increase of S directly
results in an increase of V . In summary, the case of the Rössler
dynamics shows that noise and/or nonlinearity can be source
of the phase irregularity as assessed by V .

Contrary to the Rössler examples [Fig. 2(a)], we see a
low and a high average slope in the unwrapped phases �(t )
of two EEG signals [Fig. 2(b)], resulting in differing values
of M for these two examples. For the EEG signals we also
have different values of V , similar to what we observe for the
Rössler dynamics. While the source of increased values S in
the Rössler dynamics can be noise and/or nonlinearity, for the
EEG signals it captures these and any other source of phase
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FIG. 2. Any deviation of �(t ) from the linear growth is detected by the coefficient of phase velocity variation V . (a) Unwrapped phases
�(t ) in a noise-free Rössler dynamics (black) and in a noisy Rössler dynamics (blue) with noise level ξ = 1. The inset shows a zoom into the
dashed rectangle. The coefficients of phase velocity variation V for these examples are Vblack = 0.29 and Vblue = 1.43. Values of mean phase
velocity: Mblack = 0.044 and Mblue = 0.045. Values of phase velocity standard deviation: Sblack = 0.013 and Sblue = 0.064. (b) Same as panel
(a) but for unwrapped phases �(t ) of two EEG signals (black and blue). Results for these examples are as follows. Coefficient of phase velocity
variation: Vblack = 2.18 and Vblue = 1.66. Mean phase velocity: Mblack = 0.080 and Mblue = 0.112. Standard deviation velocity: Sblack = 0.175
and Sblue = 0.186.

deviations. Recall from Eq. (9) that to compute the coefficient
of phase velocity variation V , values of S are divided by the
mean phase velocity M. Therefore, these particular examples
show that an increase of S does not necessarily have to result
in higher values of V .

The phase velocity standard deviation S and thereby the
coefficient of phase velocity variation V are based on diffusion
measures [90,101,102]. However, these diffusion measures
are typically based on ensemble averages across different
realizations of the dynamics. In our setting we only have in-
dividual realizations for each of our signals, and we therefore
perform averages across time. We are aware that the assump-
tions of stationarity and ergodicity which in principle underlie
temporal instead of ensemble averages are not fulfilled. This
does not invalidate our approach since we aim to characterize
any possible deviation from the strictly linear phase growth,
which can also include the degree to which the assumption
of stationarity is not fulfilled. Our averages across time also
avoid the necessity to use sophisticated techniques like in
Ref. [90].

2. Mean phase coherence

The mean phase coherence R quantifies the degree of phase
locking between two dynamics X and Y . We use the steps
described in Sec. II C to extract the instantaneous phases,
φx(t ) and φy(t ), from the signals x(t ) and y(t ), respectively,
and determine the relative phase difference ϕ(t ):

ϕ(t ) = φx(t ) − φy(t ). (10)

To measure the mean phase coherence, we assess the distribu-
tion of phase differences ϕ(t ) by means of the order parameter
[38,94,103]:

R =
∣∣∣∣∣

1

N

N−1∑
j=0

eiϕ(t j )

∣∣∣∣∣. (11)

The measure R is bounded in the interval [0,1]. If both dy-
namics are independent, R takes values close to zero. Only
when N goes to ∞, R goes to zero. In contrast, when we
have strong phase locking, meaning that the relative phase
difference ϕ(t ) is constant during all time t , we obtain R = 1.
In between these two boundaries, low and high values of R
indicate a weak and strong degree of phase synchronization,
respectively. For dynamics such as the Rössler [Eqs. (1) and
(2)], higher values of coupling typically lead to higher values
of phase synchronization and thereby higher values of R. The
stronger the mismatch in the natural frequencies, the stronger
needs to be the coupling to obtain phase synchronization
[87,114].

E. Surrogates

As stated above, for independent dynamics values of the
mean phase coherence R go to zero only for N to infinity.
However, in real-world data we never have an infinite number
of data points. Therefore, we do not know which values of R
to expect for independent dynamics. Furthermore, we cannot
know how the auto- and cross-correlations of the signals influ-
ence R. Similarly, we do not know which values of V to expect
if the only source of phase irregularity is the stochasticity of
the dynamics or measurement noise in the signals. To address
this problem, we can estimate values for R and V expected
under certain null hypotheses using surrogate signals [50].

The concept of surrogates allows us to test a broad va-
riety of null hypotheses H0 about the dynamics underlying
measured signals [50]. Surrogate signals are random versions
of original signals which maintain selected properties and
destroy others by a constrained randomization process. There-
fore, depending on the H0 we want to test, we use surrogates
which maintain different properties.

In this study, we use univariate and bivariate iterative am-
plitude adjusted Fourier transform (IAAFT) surrogates [115].
Univariate surrogates have the same amplitude distribution
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and autocorrelation that is practically indistinguishable from
the one of the individual original signals x. The Huni

0 rep-
resented by these surrogates is that the dynamics X is a
univariate stationary linear stochastic autocorrelated Gaussian
process [39,115]. Furthermore, we use bivariate surrogates
which have the same autocorrelation, cross-correlation, and
amplitude distributions as the original pairs of signals x and
y. The Hbi

0 represented by bivariate surrogates is that the
dynamics X and Y are a bivariate stationary linear stochastic
auto- and cross-correlated Gaussian process [39,116–118]. In
both cases, the measurement function by which the signals
are derived from the dynamics is assumed to be invertible
but potentially nonlinear, leading to non-Gaussian amplitude
distributions.

F. Testing procedure

To perform a univariate phase-based test, we calculate the
coefficient of phase velocity variation V [Eq. (9)], the mean
phase velocity M [Eq. (7)], and the phase velocity standard
deviation S [Eq. (8)] for the original time series and 19 uni-
variate surrogates. We denote these tests as V , M, and S ,
respectively. For each measure separately we reject Huni

0 by
means of the corresponding test if the result from the original
signal is lower than the minimal value from the set of surro-
gates (significance level α = 0.05). To denote the fraction of
times we get a rejection we use the symbols V , M, and S
with the subindex 1. Whenever needed we use an additional
subindex to distinguish between systems or signal types. For
instance, Vx,1 means the fraction of rejections in system X ,
and M f ,1 denotes the fraction of rejections for focal signals.

We run a bivariate phase-based test, determining the mean
phase coherence R [Eq. (11)] for the pair of original signals
x and y and 19 pairs of bivariate surrogate signals. We reject
Hbi

0 of this mean phase coherence test R if R for the original
signal pair is higher than the maximal R value from the set
of bivariate surrogate signal pairs (α = 0.05). We use R1 to
denote the fraction of times we get a rejection. Unlike in the
case of univariate phase-based tests, since we are working
with pairs of signals, we do not have to include subindices
to distinguish between systems X and Y , but only for focal
and nonfocal signals.

Results for exemplary pairs of EEG signals are as fol-
lows: Fig. 1(a), rejection of univariate tests and bivariate test;
Fig. 1(b), rejection of univariate tests and no rejection of
bivariate test; Fig. 1(c), no rejection of univariate tests and
bivariate test; and Fig. 1(d), no rejection of univariate tests and
rejection of bivariate test. The same outcomes are obtained for
signals x and y. In our study for univariate phase-based tests
we just work with signal x.

III. RESULTS

A. Phase-based measures in Rössler dynamics

In this section we study under controlled conditions how
noise affects the phase-based measures in model dynamics.
Figure 3 shows the coefficient of phase velocity variation V
and the mean phase coherence R applied to a pair of coupled
nonidentical Rössler dynamics for different noise levels 0 �
ξx,y � 2. These results are averaged across 50 realizations.

For Figs. 3(a)–3(c) we apply bidirectional coupling εy→x =
εx→y = 1, i.e., with the same strength in both directions
[Eqs. (1) and (2)]. Even in the absence of noise (ξx,y = 0),
the coefficient of phase velocity variation V attains nonzero
values. This result of V reflects irregularities in the phases
which are caused by nonlinearities of the Rössler dynamics.
Despite the irregularity of individual phases we get strong
locking between them as detected by the mean phase coher-
ence R equal to 1 for the noise-free case. Upon increasing
ξx,y, we obtain higher values of Vx,y and lower values of R,
reflecting the increased phase irregularity and decreased phase
coherence, respectively. For system X [Fig. 3(a)], we obtain
increased values of Vx for higher values of ξx. Moreover, due
to the coupling εy→x, higher values of Vx are also obtained for
higher values of ξy. An analogous situation is found with the
role of systems X and Y exchanged [Fig. 3(b)]. Results from
Figs. 3(a) and 3(b) are different due to the mismatch of both
systems in their natural frequencies.

The results illustrating the influence of dynamical noise
on Rössler dynamics using bidirectional coupling with un-
equal coupling strengths in the two directions are shown in
Figs. 3(d)–3(f). The coupling strength εx→y = 2 is higher as
compared to the previous analysis shown in Figs. 3(a)–3(c).
As a consequence of this stronger influence of the system X
on the system Y , increasing the values of ξx leads to higher
values of Vy [compare Fig. 3(e) to Fig. 3(b)]. In contrast, in
system X [Fig. 3(d)] the increase of the noise in the opposite
system ξy increases Vx to a lesser degree as compared to the re-
sults obtained for bidirectional coupling with equal strengths
[Fig. 3(a)]. Finally, the results of R in this simulation are not
affected strongly by the increase of εx→y [compare Fig. 3(f) to
Fig. 3(c)].

Now we consider the case of unidirectional coupling,
where system X has an effect on system Y via εx→y = 1.5, but
receives no feedback from it because εy→x = 0 [Figs. 3(g)–
3(i)]. Therefore, values of Vx are not affected by changes in the
noise level in the opposite system ξy [Fig. 3(g)]. With regard
to system Y , higher values of ξx cause higher values of Vy but
only for values of ξy below approximately 1 [Fig. 3(h)]. On
the contrary, for values of ξy higher than 1, the increase of
Vy is not monotonic with regard to increasing noise ξx. For
example, at ξy = 1.5 and increasing values of ξx up to 0.7, Vy

at first decreases. Then, for values of ξx higher than 0.7, Vy

increases. The results of R [Fig. 3(i)] are qualitatively very
similar to the ones from Vy [Fig. 3(h)].

Accordingly, in this third setting of the coupling we find
that for a certain range of noise levels, more noise leads to
less phase irregularity and more phase synchronization. This
behavior resembles the stochastic resonance phenomenon,
which occurs in nonlinear systems when noise can enhance
the phase coherence between two dynamics [119]. Recall
that our two Rössler systems are nonidentical in their natural
frequencies, and in this setting the system with the higher
natural frequency (system X ) is the one driving the system
exhibiting stochastic resonance (system Y ). If we drive the
faster system X with the slower system Y , we do not get
stochastic resonance (results not shown). This is in accordance
with Ref. [120], because a particular match between the driv-
ing frequency and the range of noise levels is needed to get
stochastic resonance.
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FIG. 3. While in general higher levels of noise ξx,y lead to higher values of the coefficient of phase velocity variation V and lower values of
the mean phase coherence R, we also find results resembling stochastic resonance. Mean values of V and R are obtained from 50 realizations
of two coupled noisy nonidentical Rössler dynamics in dependence on the noise levels ξx,y. (a)–(c) Bidirectional coupling with equal coupling
strengths εx→y = εy→x = 1. (d)–(f) Bidirectional coupling with unequal coupling strengths εx→y = 2 and εy→x = 1. (g)–(i) Unidirectional
coupling εx→y = 1.5 and εy→x = 0. Panels (a), (d), and (g) show values of the coefficient of phase velocity variation for system X (Vx). The
corresponding results for system Y (Vy) are shown in (b), (e), and (h). Panels (c), (f), and (i) represent values of R quantifying the mean phase
coherence between systems X and Y .

B. Hypothesis testing for Rössler dynamics

We now extend the simulation based on bidirectional cou-
pling with unequal coupling strengths [see again Figs. 3(d)–
3(f)]. For each noise level ξx,y and each of the 50 realizations,
we carry out the tests V , M, and S for signal x. Recall from
Sec. II F that these tests consist of combining each of the
univariate phase-based measures (V , M, and S) with univariate
surrogates to test the null hypothesis Huni

0 of a stationary
linear stochastic autocorrelated Gaussian process measured by
an invertible but potentially nonlinear measurement function.
This allows us to compare the sensitivity of the measures for
the alternative hypothesis, since Huni

0 is not correct for the
Rössler dynamics.

Results of the measures (Vx, Mx, and Sx) and the fractions
of times we get a rejection for the tests (Vx,1, Mx,1, and Sx,1)

are shown in Fig. 4. As a consequence, Fig. 4(a) is a replica
of Fig. 3(d). Comparing rejection rates, the overall highest
values are obtained for Mx,1, followed by Sx,1 and then Vx,1.
Accordingly, M has the highest sensitivity for the complement
of Huni

0 . In all three cases, for higher values of noise we get less
rejections of Huni

0 . When the null hypothesis was not rejected
we found that the result for the original signal was typically
within the results for the set of surrogate signals. Only for
two combinations of noise levels was Vx for the original signal
higher than for the maximum of the set of surrogates (results
not shown).

To understand the test outcomes, we look at the values
of Vx, Mx, and Sx in Figs. 4(a)–4(c). As we pointed out in
Sec. III A, higher noise levels ξx lead to higher values of the
coefficient of phase velocity variation Vx [Fig. 4(a)]. Since
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FIG. 4. The measure mean phase velocity M shows higher robustness against noise as compared to the coefficient of phase velocity
variation V and phase velocity standard deviation S. (a)–(c) Mean values of Vx , Mx , and Sx from 50 realizations of two coupled nonidentical
Rössler dynamics in dependence on the noise levels ξx,y. We here use bidirectional coupling with unequal coupling strengths: εx→y = 2 and
εy→x = 1. (d)–(f) Same as (a)–(c), but here for the fractions of rejections of Huni

0 (Vx,1, Mx,1, and Sx,1).

we have bidirectional coupling with unequal strengths (2 =
εx→y > εy→x = 1), noise ξy affects Vx to a lower degree. For
the phase velocity standard deviation Sx [Fig. 4(c)], the noise
dependence is similar to the one obtained for Vx. In Fig. 4(b),
values of mean phase velocity Mx increase with higher values
of ξx. To a lesser degree, Mx decreases for higher values of ξy

most prominently at both high and low values of ξx. In general,
lower counts of rejections (Vx,1, Mx,1, and Sx,1) are found for
those ranges of the noise ξx,y which lead to high values of the
measures [Figs. 4(d)–4(f)].

C. EEG signals from Bern-Barcelona database

We apply the univariate phase-based tests (V , M, and
S) and the bivariate phase-based test (R) to the 3750 focal
and the 3750 nonfocal EEG signals constituting the Bern-
Barcelona database. Recall that the database contains pairs of
signals x and y, and for the univariate phase-based tests we
only use signal x. In Fig. 5 we show the distributions of the
values for the coefficient of phase velocity variation V , mean
phase velocity M, phase velocity standard deviation S, and
mean phase coherence R for both types of signals. Values of
V have a higher mean and lower variability for focal signals
[Fig. 5(a)] as compared to nonfocal signals [Fig. 5(e)]. For M
values, focal signals have lower values on average [Fig. 5(b)]
as compared to nonfocal signals [Fig. 5(f)]. Moreover, nonfo-
cal signals have a more flat distribution with a not clear peak.
With regard to S, we find on average higher values for nonfo-

cal signals [Fig. 5(g)] as compared to focal signals [Fig. 5(c)].
For the bivariate phase-based test we apply the mean phase
coherence R to pairs of signals x and y from the database. We
get higher values of R for focal signals on average [Fig. 5(d)]
than for nonfocal signals [Fig. 5(h)]. Moreover, for nonfocal
signals, the distribution of R is bimodal with a prominent peak
for values close to 1.

In Fig. 5 we show the frequency of null hypothesis rejec-
tions of each phase-based test on dependence of the values
of the underlying measures. Since the univariate tests reject
Huni

0 if the measures’ value for the original signal is lower
than the minimum from the set of surrogates, we get more
rejections in the left parts of the distributions. Using the mean
phase velocity test M we get the highest contrast between
focal and nonfocal signals with regard to the frequency of
Huni

0 rejections. A similar situation is obtained for the phase
standard deviation test S , although for this measure we have
more rejections in nonfocal signals as compared to M. Fi-
nally, using the coefficient of phase velocity variation test V
the frequency of null hypothesis rejections is similar for both
groups of signals. As a consequence of these results, from the
univariate tests we select the mean phase velocity test M for
the subsequent analysis. Regarding the bivariate mean phase
coherence test R we get a higher number of Hbi

0 rejections in
the middle and right parts of the distributions. This is because
the bivariate test is rejected if the measures’ value for the
original pair of signals is higher than the maximum from
the surrogates. As compared to the results for the univariate
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FIG. 5. Lower phase velocity and higher phase coherence is found for focal signals. Values for coefficient of phase velocity variation V ,
mean phase velocity M, phase velocity standard deviation S, and mean phase coherence R for (a)–(d) focal signals and (e)–(h) nonfocal signals.
Normalized distributions are shown in black, and error bars represent mean values and two standard deviations. The grey parts of the stacked
bars depict the subfraction of counts for which the null hypotheses are not rejected for each test (V , M, S, and R). For the red and blue
subfractions, the null hypotheses are rejected.

phase-based measures, here we get overall more rejections
in both focal and nonfocal signals. However, the contrast
between these two groups seems low.

We now quantify this contrast between the frequencies
with which the null hypothesis is rejected for focal and non-
focal signals. Using the fractions of rejections for the mean
phase velocity test for focal (M f ,1) and nonfocal signals
(Mn,1) we define the relative difference λM :

λM = M f ,1 − Mn,1

M f ,1 + Mn,1
. (12)

Analogously, we define the relative difference λR for the mean
phase coherence test:

λR = R f ,1 − Rn,1

R f ,1 + Rn,1
. (13)

The values of λM and λR are bounded in [−1, 1], and we
get positive values when the frequency of rejections for focal
signals is higher than the one for nonfocal signals. Figure 6
shows the fraction of rejections for the phase-based tests M
and R for both groups of signals and their respective relative
differences λM and λR. The fraction Mn,1 is close to the
chance level of 5%, whereas the other fractions are above. For
both tests we obtain higher fractions of rejections for focal
signals compared to nonfocal signals, resulting in λM > 0
and λR > 0, where we get a higher contrast for the former
(λM > λR).

The EEG is a broadband signal and therefore its phase
is not well defined using the Hilbert transform. A possible
solution is to filter the EEG signal prior to the extraction of
the phase [89]. To study this aspect, we bandpass filter the
signals in the ranges of the classical EEG frequency bands:
δ, θ , α, and β. Figure 7 depicts the fractions of rejections for
the phase-based tests M and R for these different frequency
bands. In general, M f ,1 has decreased and in consequence
also λM gets lower values as compared to Fig. 6. Therefore,

the prefiltering actually decreases the contrast between the
focal and nonfocal signals. For the mean phase coherence test
R a different picture is obtained for the α band and β band
where higher values of λR are obtained. This analysis was also

FIG. 6. The mean phase velocity test M gives the higher contrast
between focal and nonfocal signals. Rejection fractions for nonfocal
(blue) and focal signals (red) for the mean phase velocity test M
and the mean phase coherence test R. By construction the bar rep-
resenting Mn,1 corresponds to the sum of all blue subfractions in
Fig. 5(f), and analogously for the other quantities. The λM and λR

values represent the relative difference for every pair of rejection
fractions. The dashed line represents the significance level of the
tests. The error bars and the numbers in brackets correspond to the
95% confidence interval (see Ref. [39]).
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FIG. 7. Relative difference λM decreases while λR partly increases after prefiltering to different frequency bands. Same as Fig. 6 but after
prefiltering using the frequency bands (a) δ (0.5–4 Hz), (b) θ (4–8 Hz), (c) α (8–12 Hz), and (d) β (12–31 Hz).

performed using a bandpass filter in ranges of 2 Hz and they
lead to qualitatively similar results as shown in Fig. 7 (results
not shown).

IV. DISCUSSION

In this study we use univariate and bivariate phase-based
measures to detect different features of EEG signals from
epilepsy patients. We here present the univariate coefficient
of phase velocity variation V based on the relative vari-
ability of instantaneous phase velocities to quantify phase
irregularities from times series. This is done by dividing
the phase velocity standard deviation S by its mean M. To
the best of our knowledge, there are no studies applied to
EEG signals from epilepsy patients analyzing phase irreg-
ularity measures. In agreement with previous studies [38]
using bivariate measures, we find that focal signal pairs are
more phase coherent than nonfocal signals as assessed by
the mean phase coherence R. Furthermore, focal signals are
less phase variable in absolute terms (phase velocity stan-
dard deviation S) but more in relative terms (coefficient of
phase velocity variation V ). Moreover, focal signals have
lower mean phase velocity as assessed by M. When com-
bined with surrogates, using the measures S, M, and R for
the phase-based tests we get more null hypothesis rejections
for focal signals as compared to nonfocal signals. In par-
ticular, the measure M gives the highest contrast between
focal and nonfocal signals. Therefore, focal signals are less
consistent with the null hypotheses of univariate and bivariate
surrogates than nonfocal signals. Furthermore, under con-
trolled conditions based on Rössler dynamics, the measure
M showed the highest sensitivity for features not included
in Huni

0 .

We now compare our results with those from previous
studies based on the Bern-Barcelona EEG database. An-
drzejak et al. determined contrast values λ analogously to
Eqs. (12) and (13) but based on a randomness test, a nonlinear-
independence test, and a stationarity test [39]. They obtained
λ values of 0.19, 0.15, and −0.09, respectively. Naro and col-
leagues applied a randomness test based on a novel rank-based
nonlinear predictability score [43]. However, the authors did
not specify the resulting λ value in Ref. [43]. Nonetheless,
the authors of both Ref. [39] and Ref. [43] made the results
for each signal publicly available at Refs. [49,121]. Thanks
to this availability of the detailed results, we can compute
the λ = 0.21 value from Naro et al. without the necessity
of recomputing the results for each signal using the source
code available as well at Ref. [49]. Accordingly, our value
of λ = 0.6 obtained from the mean phase velocity test M
outperforms the results obtained in previous work. To further
sustain this policy of open science, we provide our source
codes and detailed results in the public domain [49,122].

For the interpretation of our results shown in Figs. 4–7, it
is important to keep in mind that the outcome of any surrogate
test cannot prove the nature of the underlying dynamics (see
Ref. [39] and references therein). The specific null hypotheses
Huni

0 and Hbi
0 used here are composed by different assumptions

about the dynamics. To test these hypotheses the randomiza-
tion process performed to construct the surrogates destroys
any nonlinear deterministic, any nonlinear interdependence
and nonstationarity present in the original signals. Therefore,
from a rejection of the null hypothesis Huni

0 , for example,
one cannot conclude nonstochastic phase irregularity. That is
because the null hypothesis could well be rejected because the
dynamics are nonstationary. In Ref. [39] Andrzejak and col-
leagues used different conditioned surrogate tests to arrive at
more specific conclusions about the dynamics underlying the
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signals. Nonetheless, even combining the results of Ref. [39],
using other kinds of surrogates (see Ref. [51]) and the results
presented here, it remains impossible to understand totally the
nature of the dynamics. Other types of surrogates, such as
twin surrogates [123], can be applied for the study of brain
dynamics [124].

It is also important to recall that one cannot conclude from
the mean phase coherence obtained for a pair of signals to
a coupling between different brain areas from which the sig-
nals were measured. A common driving from an unmeasured
source is only one of several possible reasons that would im-
pede such a conclusion. This limitation is also not overcome
by using surrogates, which only help to reduce the influence of
linear correlations and non-Gaussianity in the amplitudes. A
detection of causal interactions in human epilepsy networks
requires much more elaborate approaches (see for example
Refs. [125,126]). The key point is that we do not aim at detect-
ing a coupling or even estimating a coupling strength. We only
compare the mean phase coherence and our other measures as
well as the rejection rates of the corresponding surrogate tests
obtained for focal versus nonfocal signal pairs. Any type of
bias unrelated to epilepsy can be expected to affect the results
obtained for focal and nonfocal signal pairs in the same way.
Accordingly, the contrasts we find between these two signal
classes can be attributed to the impact that epilepsy has on the
EEG signal during the seizure-free interval.

The Bern-Barcelona EEG database which we analyzed in
this study contains only relatively short EEG signal pairs
cut from recordings performed during the seizure-free inter-
val. Future work should analyze long-term multichannel EEG
recordings also including epileptic seizures. Seizures are not
a steady-state dynamics. Both the EEG frequency content
(e.g., Ref. [127]) and the degree of synchronization (e.g.,
Refs. [128,129]) show a complex temporal evolution across
the duration of the seizure. This calls for the application of
time-resolved measures to optimally capture evolving seizure
dynamics. Prior to applying an interaction measure such as
the mean phase coherence to sources reconstructed from scalp
EEG or magnetoencephalographic (MEG) data with the aim
to study long-range interactions among cortical processes,
spurious correlations caused by instantaneous field spread and
volume conduction must be carefully considered [130].

For the results shown in Figs. 3 and 4, we work under
controlled conditions applying dynamical noise to two non-
identical coupled Rössler dynamics for different symmetric
and asymmetric coupling schemes. For unidirectional cou-
pling and intermediate noise levels we obtain high levels of
mean phase coherence R and low values of the coefficient of
phase velocity variation V . This means that under certain con-
ditions noise can help both systems to synchronize and reduce
phase irregularities. Accordingly, we observe results resem-
bling stochastic resonance in both phase-based measures. This
consistency between the two measures under controlled con-

ditions further supports that the coefficient of phase velocity
variation V allows for a meaningful characterization of the
dynamics underlying experimental signals.

We extract the phase from observable data using the Hilbert
transform, and some studies consider it as a not well-defined
phase because it might not evolve uniformly in time [88].
Therefore, in Ref. [88] this phase extracted from the Hilbert
transform is used only as a preliminary variable to then obtain
a genuine phase. However, this genuine phase is defined for
limit-cycle oscillators [88] and is therefore not applicable to
the dynamics we study here. In any case, a better defined
phase can be obtained by filtering the signal to narrow fre-
quency bands. Therefore, in order to study the influence of
prefiltering, we select the classical frequency bands δ, θ , α,
and β and bands with a width of 2 Hz. We find that the
performance of the univariate test decreases due to the filter-
ing. It is important also to note that while filtering generally
facilitates the extraction of a phase, it relies on the assumption
that the dynamics can be fully decomposed into narrow-band
oscillations. However, this assumption does not account for
the presence of aperiodic components in neural power spectra
(see, for example, Refs. [131–133]). This consideration and
the decreased performance of the univariate tests for filtered
data reinforce our approach to deliberately use the phase ex-
tracted from unfiltered broadband signals directly by means
of the Hilbert transform. It is this approach which allows us
to characterize any possible deviation from the strictly linear
phase growth, such as nonlinearity, nonstationarity, chaoticity,
and noise. In contrast, for the bivariate test the performance
increases for certain frequency bands showing that in order
to assess phase synchronization narrow-band signals are more
suited.

The phase-based measures are conceptually simple and
easy to compute and this can help when analyzing big
databases. Despite this simplicity they give relevant infor-
mation about the underlying dynamics of focal and nonfocal
EEG signals from epilepsy patients. Even in the absence of
seizures we can detect different features induced by epilepsy.
We compare different univariate and bivariate phase-based
measures under controlled conditions. The univariate measure
mean phase velocity gives the highest sensitivity in a surro-
gate test. This is translated to a high contrast between focal
and nonfocal signals in the rejections of the surrogates’ null
hypotheses. From a clinical point of view, the simplicity of
the definition and computation of our phased-based measures
can be useful in the presurgical evaluation of epilepsy.
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