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Emerging chimera states under nonidentical counter-rotating oscillators
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Frequency plays a crucial role in exhibiting various collective dynamics in the coexisting corotating and
counter-rotating systems. To illustrate the impact of counter-rotating frequencies, we consider a network of non-
identical and globally coupled Stuart-Landau oscillators with additional perturbation. Primarily, we investigate
the dynamical transitions in the absence of perturbation, demonstrating that the transition from desynchronized
state to cluster oscillatory state occurs through an interesting partial synchronization state in the oscillatory
regime. Following this, the system dynamics transits to amplitude death and oscillation death states. Importantly,
we find that the observed dynamical states do not preserve the parity (P) symmetry in the absence of perturbation.
When the perturbation is increased one can note that the system dynamics exhibits a kind of transition which
corresponds to a change from incoherent mixed synchronization to coherent mixed synchronization through
a chimera state. In particular, incoherent mixed synchronization and coherent mixed synchronization states
completely preserve the P symmetry, whereas the chimera state preserves the P symmetry only partially. To
demonstrate the occurrence of such partial symmetry-breaking (chimera) state, we use basin stability analysis
and discover that partial symmetry breaking exists as a result of the coexistence of symmetry-preserving and
symmetry-breaking behavior in the initial state space. Further, a measure of the strength of P symmetry is
established to quantify the P symmetry in the observed dynamical states. Subsequently, the dynamical transitions
are investigated in the parametric spaces. Finally, by increasing the network size, the robustness of the chimera
state is also inspected, and we find that the chimera state is robust even in networks of larger sizes. We also show
the generality of the above results in the related reduced phase. model as well as in other coupled models such
as the globally coupled van der Pol and Rössler oscillators.

DOI: 10.1103/PhysRevE.105.034211

I. INTRODUCTION

Coupled nonlinear oscillators are effective tools for study-
ing the collective behaviors of many complex dynamical
systems in nature. The interaction of coupled elements, prop-
erties of an isolated system, and coupling topologies result
in a variety of collective dynamical states such as desynchro-
nization, synchronization, clusters, traveling waves, solitary
states, and oscillation death states [1–5]. Among all these
states, the coexistence of spatially coherent and incoherent dy-
namical behavior known as “chimera” has been investigated
vigorously during the past couple of decades. It is a fasci-
nating hybrid dynamical state having a strong resemblance
with many real-world phenomena, including unihemispheric
slow-wave sleep [6–8], bump states in neural networks [9],
power grid blackouts [10,11], social networks [12], etc. The
chimera state is also related to various brain diseases such
as Parkinson’s disease, epileptic seizures, Alzheimer’s dis-
ease, schizophrenia, and brain tumors [13]. Originally, the
coexistence of coherent and incoherent oscillatory dynamics
has been reported in a network of nonlocally coupled os-
cillators by Kuramoto [14]. Later, it was named a chimera
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by Abrams and Strogatz [15]. Eventually, the chimera state
has also been realized in locally and globally coupled oscil-
lators in various numerical models [16–19]. Also, a variety
of chimera states including breathing chimera [20], ampli-
tude chimera [21], frequency chimera [19], traveling chimera
[22,23], imperfect chimera [24], etc. have been reported
through different models. Also, besides numerical studies,
various experimental evidence for chimera states exists, such
as optical coupled-map lattices [25], coupled chemical os-
cillators [26], metronomes [24,27], and squid metamaterials
[28,29].

On the other hand, coexisting corotating and counter-
rotating dynamical activity has a wide range of applications
in diverse fields, including physical [30,31], biological [32],
and fluid dynamics [33–35] contexts. For instance, counter-
rotating spirals can be found in biological media, such as
Physarum plasmodium protoplasm [32]. In physical systems,
such as magnetohydrodynamics of plasma flow [36], and
Bose-Einstein condensates [37], counter-rotating vortices are
purposefully formed for practical reasons [38]. As a con-
sequence, examining the collective behaviors induced by
counter-rotation becomes intriguing. The coexistence of coro-
tating and counter-rotating oscillators was initially identified
by Tabor [39]. This is followed by a series of work done
with corotating and counter-rotating oscillators. The exis-
tence of antisynchronization has been reported in coupled
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chaotic Lorentz systems [40]. Subsequently, the mixed syn-
chronization and its universal occurrence were investigated in
both limit-cycle and chaotic oscillators [41]. Later the real-
izations of mixed synchronization were also revealed in both
experimental and theoretical systems [42]. Further, the break-
ing of rotational symmetry-induced dynamical effects were
investigated in counter-rotating oscillators with symmetry-
preserving and symmetry-breaking couplings [43]. Recently,
the aging transitions have also been investigated in counter-
rotating oscillators [44]. Therefore, competing corotating and
counter-rotating frequencies play an essential role in exhibit-
ing a distinct set of collective behaviors including mixed
synchronization and different oscillation quenching states.
However, the effects of frequency and additional perturbation
on the onset of the chimera states in counter-rotating oscilla-
tors are unclear, and they have not been explored explicitly
to the best of our knowledge. Therefore, in this paper, we
aim to investigate whether the coexistence of corotating and
counter-rotating oscillators with additional perturbation im-
plies chimera behavior (partial symmetry-breaking dynamics)
among the two groups of oscillators.

Motivated by the above, in this paper we consider a net-
work of nonidentical and globally coupled Stuart-Landau
oscillators with additional perturbation. Importantly, the influ-
ence of frequencies is demonstrated by splitting the network
into two groups and distributing the frequencies around a
specific threshold range. To start, the dynamical behaviors
of the nonidentical counter-rotating frequencies are investi-
gated in the absence of additional perturbation. We show
that the oscillatory dynamics transits from the desynchro-
nized state (DS) to the cluster oscillatory state (COS) via
a partial synchronization (PS) state with increasing cou-
pling strength. The system dynamics then attains oscillation
quenching states such as amplitude death (AD) and oscil-
lation death (OD) at larger coupling strengths. Further, we
find the observed dynamical states, namely, DS, PS, COS,
and OD states, break the parity (P) symmetry in the ab-
sence of perturbation. When the additional perturbation is
increased we find that symmetry-breaking DS and COS be-
come symmetry-preserving incoherent mixed synchronization
(IMS) and coherent mixed synchronization (CMS) states. Im-
portantly, the symmetry-breaking partial synchronization state
turns into a partial symmetry-broken state where a partial set
of oscillators satisfies the P symmetry while the others do
not. Such a partial symmetry-broken state is designated here
as the chimera (CH) state, which is realized in nonidentical
counter-rotating oscillators.

The coexistence of symmetry-preserving and symmetry-
breaking oscillators in the chimera state is then confirmed
through the basin of attraction studies. In addition, our mea-
sure, namely, the strength of P symmetry, is used to validate
the partial symmetry-breaking state and its transitions. In-
terestingly, we find that partial symmetry breaking occurs
only when the perturbation is increased at the DS and PS
states. Following this, the global dynamical transitions are
analyzed in the parametric spaces. We can note that the in-
creasing of the threshold increases the collective dynamical
states, namely, the DS, PS, CH, IMS, and AD states. In
particular, the regions for the DS, CH, IMS, AD, and OD
states are increased with the decrease in CMS and PS regions.

Furthermore, we also discover that increasing the strength of
additional perturbation suppresses the DS, PS, COS, and AD
regions completely with the onset of IMS, CH, and CMS
states. Finally, the robustness of the chimera is examined by
increasing the size of the network at the chimera state. Eventu-
ally, the generality of the observed oscillatory states and their
transition are studied in other dynamical models such as the
coupled van der Pol (vdP) and Rössler oscillators as well as
in the phase reduced model. Notably, we find that the globally
coupled vdP and Rössler oscillators also exhibit similar kinds
of partial synchronization and chimera states.

The structure of the article is as follows: In Sec. II we intro-
duce the model of globally coupled Stuart-Landau oscillators
with additional perturbation. The dynamical transitions in the
absence and in the presence of perturbation are discussed in
Secs. III and IV, respectively. Then the mechanism and the
characterization of the partial symmetry-breaking state are
detailed in Secs. V and VI, respectively. Further, the global
dynamical transitions are discussed in Sec. VII, and the ro-
bustness of the chimera state is described in Sec. VIII. Finally,
we summarize our major findings in Sec. IX.

II. THE MODEL

Limit cycle oscillations are often found in various physi-
cal, chemical, and biological phenomena including neuronal
excitations, circadian rhythms, respiratory cycles, chemical
oscillations, vibrations in bridges, etc. Thus, we consider
a simple, prototype, self-excitatory model of Stuart-Landau
(SL) limit-cycle oscillators. Such limit-cycle oscillators can
be used to model a variety of nonlinear oscillators near Hopf
bifurcation [45–47]. In particular, to investigate the effect
of additional perturbation on nonidentical counter-rotating
oscillators, we consider a system of globally coupled Stuart-
Landau oscillators whose governing equation is expressed as

ż j = (λ + iω j − |z j |2)z j + K + ε

N

N∑
k=1

Re(zk − z j )

+i
K − ε

N

N∑
k=1

Im(zk − z j ), j = 1, 2, . . . , N, (1)

where z j = x j + iy j ∈ C, and x j and y j are the state variables
of the SL oscillators. λ is the Hopf bifurcation parameter,
and ω is the system frequency. K is the coupling strength,
and ε is the additional perturbation in the coupling. In the
absence of additional perturbation (ε = 0), the system pre-
serves the rotational symmetry, and Eq. (1) remains invariant
under the gauge transformation z j → z jeiθ . For ε �= 0, the
coupled system loses this rotational symmetry. In an earlier
report, the effect of bimodal distribution was investigated
in a system of globally coupled phase oscillators without
time delay [48]. Then the influence of time-delay induced
dynamics was further investigated in a large population of
globally coupled phase oscillators using a bimodal frequency
distribution [49]. Further, asymmetry in bimodal frequency-
induced symmetry breaking has also been reported [50]. With
reference to the above studies, we partitioned the network
(1) into two groups of N/2 oscillators, each (subpopulation)
designated as z(1)

j and z(2)
j , and the corresponding frequencies
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FIG. 1. Spatiotemporal plots of globally coupled Stuart-Landau oscillators distributed with nonidentical counter-rotating frequencies in the
absence of perturbation (ε = 0.0) for (a) desynchronized state (K = 0.05), (b) partial synchronization state (K = 0.82), (c) cluster oscillatory
state (K = 1.3), (d) amplitude death state (K = 1.86), and (e) oscillation death state (K = 2.0). The corresponding snapshots in terms of x j

variables are displayed in (f)–(j), and the y j variables are shown in (k)–(o). Other parameters are as follows: λ = 1.0, � = 0.5, ω = 1.0, and
N = 100.

are ω
(1)
j and ω

(2)
j , respectively. Specifically, the first group

is distributed with a uniform frequency distribution in the
range ω

(1)
j = (ω − �, ω + �) for j = 1, 2, . . . , N/2, while

the second group is distributed uniformly in the frequency
range ω

(2)
j = (−ω − �, −ω + �) for j = N/2 + 1, . . . , N .

Depending on the positive and negative signs in front of ω,
the individual oscillator rotates in either the clockwise or
anticlockwise direction. For numerical simulations, we used
the Runge-Kutta fourth-order scheme with a step size of h =
0.01.

III. DYNAMICAL TRANSITIONS IN THE ABSENCE
OF ADDITIONAL PERTURBATION (ε = 0.0) AND

PARITY SYMMETRY

First, we examine the dynamical transitions in globally
coupled SL oscillators in the absence of additional pertur-
bation (ε = 0.0). To show the dynamical transitions, the
spatiotemporal behavior (in the upper panel) and the corre-
sponding snapshots of x j and y j variables (in the middle and
the lower panels, respectively) are plotted in Fig. 1 by fixing
� = 0.5, ω = 1.0 and for different values of coupling strength
(K). If the coupling strength is low (for K = 0.05), we notice
the existence of a desynchronized state (DS) as in Fig. 1(a).
In the desynchronized state, all the oscillators in the first and
second groups are distributed randomly as evident from the
snapshots in Figs. 1(f) and 1(k). When the coupling strength
is increased to K = 0.82, coherent and incoherent behaviors
coexist [see Fig. 1(b)] in each of the groups, and it is referred
to as a partial synchronization (PS) state [51–53]. Coexistence
of coherent and incoherent patches in the partial synchroniza-
tion state is also clear from the snapshots of x j and y j variables
in Figs. 1(g) and 1(l). Upon increasing the coupling strength
to K = 1.3, we find the emergence of a cluster oscillatory
state (COS). Here we observed two cluster states, where the
first group (corotating oscillators) forms one group and the

corresponding second set (counter-rotating oscillators) forms
the other group as shown in Figs. 1(c), 1(h), and 1(m). In
particular, individual clusters exist as a traveling wave, and
on comparing both clusters (of y j variables), we find that
they are antiphase with each other [49,54,55]. Increasing the
coupling strength further (K = 1.86), all the oscillators in the
network attain the homogeneous steady state [see Fig. 1(d)],
namely, the amplitude death (AD) state. As a result, all the
oscillators in the network acquire the trivial steady state in
the x j and y j variables [see Figs. 1(i) and 1(n)]. Further, at
even larger coupling strength (K = 2.0), the oscillators in the
network split into two groups as in the cluster oscillatory
state and populate into two different inhomogeneous steady
states constituting the oscillation death (OD) state, which is
shown in Figs. 1(e), 1(j), and 1(o). Thus, it is clear that the
transitions from a desynchronized state to cluster oscillatory
state through the partial synchronization state occur first as the
coupling strength increases. Then the transition to oscillation
quenching states such as the amplitude death and oscillation
death states are observed at larger coupling strengths.

On the other hand, it has been revealed from earlier re-
ports that the pair of counter-rotating oscillators preserve a
set of permutation and permutation-parity symmetries in the
x j and y j variables of the same system. Such a combined
symmetry preservation causes mixed synchronization among
the oscillators [41]. In our case, according to the distribution
of counter-rotating frequencies, the considered network is
designed to have the following symmetries in the x j and y j

variables:

x j
(1) = xN− j+1

(2),

y j
(1) = −yN− j+1

(2). (2)

Here the superscripts (1) and (2) stand for the groups
corresponding to corotating and counter-rotating oscillators,
respectively. We simply call this symmetry parity symmetry or
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FIG. 2. Spatiotemporal plots of globally coupled Stuart-Landau oscillators distributed with nonidentical counter-rotating frequencies in
the presence of perturbation (ε = 0.1) for (a) incoherent mixed synchronization state (K = 0.05), (b) chimera state (K = 0.82), (c) coherent
mixed synchronization state (K = 1.3), (d) oscillation death state (K = 1.86), and (e) oscillation death state (K = 2.0). The shaded areas in
(f)–(h) and (k)–(m) illustrate the P symmetry-preserving oscillators. The corresponding snapshots in terms of x j variables are displayed in
(f)–(j), and the y j variables are shown in (k)–(o). Other parameters are as follows: λ = 1.0, � = 0.5, ω = 1.0, and N = 100.

P symmetry hereafter. However, by comparing the snapshots
of x j and y j variables in Fig. 1, we notice that the observed
dynamical states do not preserve the above mentioned P sym-
metry in the absence of additional perturbation. Furthermore,
heterogeneity or asymmetry in time delay, frequency, and
coupling strength in globally coupled oscillators has been ex-
tensively investigated [54,56,57]. For instance, heterogeneity
in time-delay-induced synchronization has been described in
[56]. The asymmetry in frequency and coupling strength asso-
ciated with macroscopic traveling waves has also been studied
in the Kuramoto model [57]. Motivated by these studies, we
implement asymmetry in the coupling via additional perturba-
tion to analyze the symmetry of the dynamical states. Thus, in
the following, we investigate the dynamical transitions for the
same set of parameters with an additional perturbation [ε �= 0
in Eq. (1)] to understand whether the observed symmetry-
breaking dynamical states can preserve the P symmetry due
to the additional perturbation.

IV. DYNAMICAL TRANSITIONS IN THE PRESENCE
OF ADDITIONAL PERTURBATION (ε = 0.1)

In order to understand the effect of the additional pertur-
bation on the dynamical states, we plotted the spatiotemporal
behavior and the corresponding snapshots of x j and y j vari-
ables in Fig. 2 by fixing the strength of the additional
perturbation as ε = 0.1. The shaded areas in the snapshots in
Figs. 2(f)–2(h) and Figs. 2(k)–2(m) denote the regions con-
taining the P symmetry-preserving oscillators. For K = 0.05,
we observed the incoherent mixed synchronization (IMS)
state as in Fig. 2(a). Such an incoherent mixed synchroniza-
tion state preserves the P symmetry as described below. The
first and second groups preserve the symmetry x j

(1) = x j ,
and xN− j+1

(2) = x j in x j variables as clear from Fig. 2(f).
Simultaneously, the corresponding y j variables of the first
and second groups preserve y j

(1) = y j and yN− j+1
(2) = −y j

symmetry as shown in Fig. 2(k). Though the oscillators have
random values in the x j and y j variables, the oscillators in
the network preserve the above P symmetry. Hence the state
in Figs. 2(a) or 2(f) and 2(k) is referred to as an incoherent
mixed synchronization (IMS) state. By increasing the cou-
pling parameter to K = 0.82, we found coexisting coherent
and incoherent patches in each group as seen in Fig. 2(b).
Compared to the partial synchronization state which com-
pletely breaks the P symmetry [see Figs. 1(b), 1(g), and 1(l)],
here we notice that the oscillators in the coherent patches of
the first and second groups preserve the P symmetry in x j

and y j variables. As a consequence, coexisting symmetry-
preserving and symmetry-breaking oscillators are noticed in
Fig. 2(g) and Fig. 2(l). The shaded regions correspond to
symmetry-preserving oscillators, while the unshaded regions
represent the symmetry-breaking oscillators. Such a partial
symmetry-breaking state is interesting, and it is referred to as
a chimera (CH) state here. Thus, even though the oscillators
in the network exhibit spatially coexisting coherent and in-
coherent behaviors, if they completely break the P symmetry
or completely preserve the P symmetry, we refer to such a
dynamical state as partial synchronization; otherwise, if the
coherent and incoherent patches are partially symmetry bro-
ken, the state is designated as a chimera. We believe that this
kind of chimera state in nonidentical counter-rotating oscilla-
tors has been observed for the first time to our best knowledge,
and it has not yet been realized in the earlier literature on
counter-rotating oscillators. When K = 1.3, all the oscillators
in both the first and second groups preserve the P symmetry.
As a result, we find a coherent cluster oscillatory state which is
further represented as a coherent mixed synchronization state
(CMS). The coherent mixed synchronization state among the
two groups is clearly depicted in Figs. 2(c), 2(h), and 2(m).
Further, the additional perturbation suppresses the amplitude
death state. As a result, we observe oscillation death alone
at the larger coupling strengths ε = 1.86 and ε = 2.0. From
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FIG. 3. Basin of attraction for two coupled oscillators by fixing
the state variables x1(0) = 0.9 and x2(0) = 0.9001 and by varying
the state variables y1(0) and y2(0) for different perturbation strengths:
(a) ε = 0.0, (b) ε = 0.0025, (c) ε = 0.003, and (d) ε = 0.1. Gray
and red represent the basin for the symmetry-preserving state and
symmetry-breaking state, respectively. Other parameters: λ = 1.0,
K = 1.0, ω = 1.0, and N = 2.

Figs. 2(d), 2(i), and 2(n) and Figs. 2(e), 2(j), and 2(o), it is
clear that the observed oscillation death states are symme-
try breaking. Therefore, we observed the transition from the
incoherent mixed synchronization (IMS) to coherent mixed
synchronization (CMS) through chimera (CH) state and fi-
nally to the oscillation death (OD) state when the additional
perturbation is included.

The above observed oscillatory patterns are confirmed fur-
ther using the reduced phase model described in Appendix A.

V. MECHANISM FOR PARTIAL SYMMETRY BREAKING

In order to understand the mechanism for the coexis-
tence of multistable states, i.e., coexisting partial symmetry-
preserving and symmetry-breaking states, we have performed
a basin stability analysis in the following. Due to multi-
stability, a partial set of oscillators in the network alone
preserves the P symmetry, resulting in the coexistence of
symmetry-preserving and symmetry-breaking behavior in the
dynamical states. In order to show the role of multistabil-
ity among the symmetry-preserving and symmetry-breaking
dynamical states in the initial state space, we consider a
minimal network of two coupled Stuart-Landau oscillators
with counter-rotating frequencies. The corresponding basin of
attraction is depicted in Fig. 3, by fixing x1(0) = 0.90 and
x2(0) = 0.901 and by varying the state variables y1(0) and
y2(0) for K = 1.0. Figure 3(a) is plotted for the absence of
perturbation, namely, ε = 0.0. We can note that the system
dynamics preserves P symmetry only for a specific initial state
(i.e., when the initial states are equal and opposite), other-
wise the initial state space is filled with a symmetry-breaking
state. The symmetry-preserving state observed in Fig. 3(a)
is unstable, and it exists only for specific asymmetric initial
conditions. Here the asymmetric initial condition corresponds

to the case where y1(0) is positive while y2(0) is negative or
vice versa. When the additional perturbation in the coupling is
increased to ε = 0.0025, we find from the asymmetric initial
state that either y1(0) or y2(0) positive while the other one is
negative favors the symmetry-preserving behavior, and it is
clearly depicted in Fig. 3(b). As a result, we find that for some
initial conditions, the system dynamics preserves P symmetry,
while for others, it breaks P symmetry. In this manner, the
coexistence of symmetry-preserving and symmetry-breaking
states is realized. Upon increasing the perturbation further
to ε = 0.003, an increase in the symmetry-preserving state
basin is observed as in Fig. 3(c). On increasing the per-
turbation further one finds that the entire basin is occupied
by a symmetry-preserving state [see Fig. 3(d)]. Thus, from
the basin stability analysis, one can confirm the presence of
multistability among the symmetry-preserving and symmetry-
breaking states. Because of the multistable nature, we find the
partial symmetry-breaking states (coexistence of symmetry-
preserving and symmetry-breaking dynamical behavior) in
the larger network. In the following section, we discuss the
characterization of the partial symmetry-breaking state using
the notion of the strength of P symmetry in some detail.

VI. CHARACTERIZATION OF PARTIAL
SYMMETRY-BREAKING STATES

In order to check whether the observed dynamical states
preserve P symmetry, we first measure the error of P symme-
try preservation by finding the difference and sum of x j and y j

variables, which can be expressed as

MSi =
√

(x j − xN− j+1)2 + (y j + yN− j+1)2,

j = 1, 2, . . . , N, i = 1, 2, . . . , N/2, (3)

where MSi is the parity symmetry error for the ith pair. Note
that here the index i represents the P symmetry error between
the pair of first and second subpopulations. If the oscillators in
the first and second subpopulations preserve the P symmetry,
the error takes the null value; otherwise, the system does not
preserve the P symmetry. The error estimated from Eq. (3)
is plotted in Fig. 4 for K = 0.82. In the absence of pertur-
bation ε = 0.0, we find that the system does not preserve P
symmetry [see Fig. 4(a)], since all the MSi take the values
between 0 < MSi � 1. On increasing the perturbation, one
finds that a partial set of oscillators takes null values, while the
remaining set takes nonzero values [see Fig. 4(b)]. Symmetry-
preserving oscillators are represented by the shaded regions.
As a consequence, it is observed that the partial symmetry-
breaking state (coexistence of partial symmetry-preserving
and partial symmetry-breaking dynamical states) exhibits the
error in synchronization as in Fig. 4(b). Upon increasing the
perturbation strength further it is observed that all the oscil-
lators are showing zero error, that is, the system dynamics
completely preserves P symmetry as depicted in Fig. 4(c).
Thus, we observe the transition from symmetry-breaking
state to symmetry-preserving state through partial symmetry-
breaking state.

In addition, to quantify P symmetry in each dynamical
state and their transition as a function of parameters, we
introduced a measure that quantifies the strength of the P
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FIG. 4. Mixed synchronization error estimated using Eq. (3) at coupling strength K = 0.82 for specific perturbation strengths (a) ε = 0.0,
(b) ε = 0.1, and (c) ε = 0.2.

symmetry. The corresponding expression for the strength of
P symmetry is

SPS =
∑N/2

i=1 HMSi

N/2
, HMSi = �(δ − MSi ) (4)

where δ is a small threshold (which is taken as 0.001 for this
study), � is the Heaviside step function, and MSi is the error
of P symmetry. If MSi is less than δ, HMSi takes the value
unity; otherwise, it is zero. Then the measure estimates the
ratio of P symmetry in each dynamical state. If the strength
of the P symmetry SPS is unity, the dynamical state com-
pletely preserves the P symmetry, and if it is zero then it
represents a completely symmetry-broken state. The strength
of the P symmetry between 0 < SPS < 1 represents the partial
symmetry-broken state.

To understand the effect of additional perturbation on dif-
ferent dynamical states as observed in Figs. 1 and 2, we have
plotted the strength of P symmetry (SPS) as a function of
perturbation (ε) in Fig. 5. The filled circles represent the range
of the strength of P symmetry (SPS) corresponding to the addi-
tional perturbation ε. Figure 5(a) is plotted for the dynamical
transition at the desynchronized state (for K = 0.05), which
shows that SPS is zero in the absence of perturbation indicating
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FIG. 5. The strength of mixed synchronization symmetry (SPS)
as a function of perturbation strength ε by fixing the coupling
parameters at (a) desynchronized state (K = 0.05), (b) partial syn-
chronization state (K = 0.82), (c) cluster oscillatory state (K = 1.3),
and (d) amplitude death state (K = 1.86). SB, PSB, and SP are
the symmetry-breaking, partial symmetry-breaking, and symmetry-
preserving dynamical transitions, respectively. Other parameters:
λ = 1.0, � = 0.5, ω = 1.0, and N = 100.

a symmetry-broken (SB) state. By increasing the perturbation,
the symmetry-broken state transits to a symmetry-preserving
(SP) state through partial symmetry-broken (PSB) state. In
the partial symmetry-broken state the range of SPS takes the
value between 0 < SPS < 1, and the unit value of SPS in-
dicates the maximum strength of P symmetry, which is a
symmetry-preserving state. The shaded region denotes the
partial symmetry-broken state. A similar transition is also ob-
served in the partial synchronization state plotted in Fig. 5(b)
for K = 0.82. In comparison with Fig. 5(a), the region for
PSB state is seen to widen in Fig. 5(b). Further, in the
cluster oscillatory state, initially, the system is in a symmetry-
breaking state, then it directly transits to symmetry-preserving
state by slightly increasing the perturbation strength [see
Fig. 5(c) for K = 1.3]. In contrast, by fixing the parameter
in the amplitude death state and increasing the perturbation,
the value of SPS transits from 1 to 0 as a function of pertur-
bation, that is, the transition from a symmetry-preserving to
symmetry-breaking [see Fig. 5(d)] state occurs. Importantly,
here the observed symmetry-breaking state is the oscillation
death state. Furthermore, increasing the perturbation at the
oscillation death state always shows a null value of SPS (which
has not been displayed here), which indicates the symmetry-
breaking state for all values of further perturbation. Thus,
from the observations, it is to be noted that partial sym-
metry breaking exists only in the originally desynchronized
and partial synchronization states. Next, the global dynamical
transitions are delineated as a function of frequency thresholds
and perturbation strengths in the following.

VII. GLOBAL DYNAMICAL TRANSITIONS

The global dynamical transitions are analyzed by using the
measure of the strength of incoherence as discussed in [58,59]
as well as the strength of P symmetry. Primarily, to show
the dynamical transitions in the parametric space, we have
plotted the two-parameter diagrams in the (K,�) space for
ω = 1.0. Figure 6(a) is plotted for the absence of perturbation
(ε = 0.0), and it clearly depicts that at lower values of thresh-
old, there exists a direct transition from a desynchronized state
to cluster oscillatory state. The region for the desynchronized
state becomes increased with an increase in the threshold. Fur-
ther, a moderate value of threshold exhibits the transition from
the desynchronized state to cluster oscillatory state through
the partial synchronization state. On increasing the threshold
further, the region for cluster oscillatory state gets decreased
and suppressed completely at larger thresholds. At larger
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FIG. 6. Two-parameter diagrams of globally coupled noniden-
tical counter-rotating oscillators in (K,�) space with different
perturbations, (a) ε = 0.0, and (b) ε = 0.1. DS, PS, and COS are
the desynchronized state, partial synchronization state, and cluster
oscillatory state, respectively. IMS, CH, and CMS are the incoherent
mixed synchronization, chimera, and coherent mixed synchroniza-
tion states, respectively. AD and OD correspond to the amplitude
death and oscillation death states, respectively. Other parameters:
λ = 1.0, ω = 1.0, and N = 100.

coupling strengths, we find that the existence of oscillation
death state is confirmed and that the region for oscillation
death state gets increased with the increase in the thresh-
old. In addition, while increasing the threshold, we notice
an additional branch of the amplitude death state between
the cluster oscillatory state and oscillation death state. Fur-
thermore, Fig. 6(b) is plotted for the additional perturbation
ε = 0.1. At lower values of coupling strength, we observe the
incoherent mixed synchronization state, and the region for the
incoherent mixed synchronization state is increased up to a
certain threshold and then it again decreases. As a function of
coupling strength, the incoherent mixed synchronization state
transits to the coherent mixed synchronization state through
the chimera state (partial symmetry-breaking state). The re-
gion for the chimera state increases with a decrease in the
coherent mixed synchronization state region. Further, the os-
cillation death state is noticed at still larger coupling values,
and the spread of the OD region gets increased as a function
of threshold. Also, we find that the additional perturbation
suppresses the amplitude death state completely.

Additionally, the two-parameter diagrams are displayed in
the (K, ε) parametric space in Fig. 7 for four distinct values of
the threshold to provide a better understanding of the dynam-
ical transitions as a function of the perturbation. Figure 7(a)
is given for the identical counter-rotating frequencies, i.e., by
fixing the threshold � = 0.0. We discover that the identical
counter-rotating oscillators display a direct transition from
CMS to OD and that the region for CMS state decreases with
increasing OD region. By increasing the threshold to � = 0.2,
we find the onset of distinct dynamical states at the lower
coupling strengths [see Fig. 7(b)]. Importantly, we find the DS
state at the lower values of coupling strength and perturbation.
Then it transits to the IMS state through the CH state while
increasing the perturbation. In the absence of perturbation,
increasing the coupling exhibits a transition from the DS state
to OD state via the PS and COS states (not explicitly displayed
in the two-parameter diagrams). Further, when the perturba-
tion strength is slightly increased, the COS state becomes a
CMS state. Comparing Fig. 7(a), the CMS state region is
shortened in Fig. 7(b). At larger coupling, there exists the
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different thresholds for (a) � = 0.0, (b) � = 0.2, (c) � = 0.5, and
(d) � = 0.8. Other parameters are the same as in Fig. 6.

OD region, and it increases as a function of perturbation. On
increasing the value of the threshold even more to � = 0.5
and � = 0.8, we notice that the regions for DS, CH, IMS,
and OD states get increased with decreasing CMS region.
Additionally, we notice the onset of a branch of amplitude
death state at lower values of perturbation before the onset of
the oscillation death state, and its region is enlarged at a larger
threshold. In addition, the AD region vanishes completely
while increasing the perturbation to larger values. In the next
section, we examine whether the observed chimera is robust
in larger network sizes.

VIII. ROBUSTNESS OF CHIMERA AT LARGER
SIZES OF THE NETWORK

The robustness of the observed chimera state is also inves-
tigated at K = 0.82, using spatiotemporal behavior and the
corresponding error of P symmetry in Fig. 8 by fixing the
network sizes as N = 1000 and N = 2500. From the spa-
tiotemporal plots in Figs. 8(a) and 8(c), it is clear that the
existence of the chimera state with coexisting coherent and
incoherent patches of oscillators for the network sizes N =
1000 and N = 2500. Further, the partial symmetry breaking
in the chimera state is also confirmed through the error of
P symmetry measure in Figs. 8(b) and 8(d), which clearly
depict that some of the oscillators are symmetry breaking
(MSi > 0) while the remaining oscillators are symmetry pre-
serving (MSi = 0). The inset of Figs. 8(b) and 8(d) denote
the zoomed view of the symmetry-breaking oscillators. Thus,
it is clear that the structure of the observed chimera state is
also unaffected by increasing the size of the network, and it is
independent of the number of the oscillators in the network.

In addition, the generality of the above observed dynamical
states and their transitions will be confirmed for two other
different dynamical models, namely, globally coupled van der
Pol and Rössler oscillators in Appendix B. We will explicitly
demonstrate the existence of partially synchrnonized as well
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as chimera states in these systems also to prove their generic
nature.

IX. CONCLUSIONS

The coexistence of corotation and counter-rotation can be
found in many physical, mechanical, and biological systems.
In particular, frequency plays a significant role in generat-
ing corotation and counter-rotation in a dynamical system.
Hence, in the present work, we have explored the dynamical
transitions by distributing the nonidentical counter-rotating
frequencies. To exemplify this, we considered a network of
nonidentical and globally coupled Stuart-Landau oscillators
with additional perturbation. Primarily, the dynamical transi-
tions are investigated in the absence of perturbation, and it
is observed that transitions from a desynchronized state to
cluster oscillatory state via the partial synchronization state
in the oscillatory regime and amplitude death to oscillation
death in the oscillation quenching regime do occur. Further,
we find that the observed dynamical states are breaking the
parity(P) symmetry in the absence of perturbation. When the
perturbation is increased, the system preserves P symmetry
and exhibits incoherent and coherent mixed synchronization
states. Interestingly, we have identified the partial symmetry-
breaking state between the incoherent and coherent mixed
synchronization states. Such a partial symmetry-breaking
state is referred to as a chimera state. Thus, when the entire
set of oscillators in the coherent and incoherent groups either
preserve or break the P symmetry as a whole, then it is
referred to as the partial synchronization state. Otherwise, if
only a partial set of the oscillators break the P symmetry while
the remaining oscillators preserve the P symmetry, then it is
called the chimera state. The mechanism for the coexistence
of partial symmetry-breaking and symmetry-preserving dy-
namics in the chimera state is further confirmed through the
basin stability analysis.

Following this, we introduced a statistical measure,
namely, the strength of P symmetry, to quantify the partial

symmetry-breaking state. Using this measure, the existence of
the partial symmetry-breaking state is validated, and it exists
only when fixing the coupling parameter at the desynchro-
nized and partial synchronization states. Moreover, the global
dynamical transitions are also investigated in the presence and
in the absence of perturbation as well as by fixing different
frequency thresholds. Increasing the threshold enlarges the
regions for the desynchronized state and incoherent mixed
synchronization, chimera, and oscillation death states. Ulti-
mately, raising the threshold range decreases the region of the
coherent mixed synchronization state. The onset of amplitude
death is also observed for increasing the thresholds, and it
gets suppressed while increasing the perturbation. Finally, we
have also examined the robustness of the chimera state by
increasing the network size. We find that the observed chimera
state is structurally similar and robust at larger sizes of the
network as well. In summary, we have revealed the occurrence
of chimera states in a network of globally coupled noniden-
tical counter-rotating Stuart-Landau oscillators in this work.
We further examined the generality of the observed oscillatory
states and their transitions in other dynamical systems as well.
It is discovered that the observed partial synchronization and
chimera states, as well as their dynamical transitions, are also
robust in globally coupled van der Pol and Rössler oscillators.
We believe that our findings will shed further light on the
dynamical transitions in counter-rotating oscillators in science
and engineering disciplines.
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APPENDIX A: REDUCED PHASE MODEL: COEXISTENCE
OF COHERENT AND INCOHERENT DYNAMICAL

BEHAVIORS AND THEIR DYNAMICAL TRANSITIONS

In addition to the results discussed in the main text, the ob-
served oscillatory states are validated in this Appendix using
a reduced phase model, which can be derived by substituting
z j = r jeiθ j in Eq. (1). Then by separating the real and the
imaginary parts and by considering r j = rk = 1, we can get
the reduced phase model expression as given follows:

θ̇ j = ω j − K + ε

N

N∑
k=1

[cos(θk ) − cos(θ j )] sin θ j

+K − ε

N

N∑
k=1

[sin(θk ) − sin(θ j )] cos θ j . (A1)

Using Eq. (A1), the phases of the oscillators are plotted in
Fig. 9. Figures 9(a)–9(c) in the top panel correspond to the
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FIG. 9. Phases of oscillators are plotted using Eq. (A1) and by
fixing ε = 0.0 for (a) K = 0.1 (desynchronized state), (b) K = 0.65
(partial synchronization state), and (c) K = 1.5 (cluster oscillatory
state). (d–e) The corresponding dynamical behaviors at the pertur-
bation strength ε = 0.3. Other parameters: � = 0.5, ω = 1.0, and
N = 100.

absence of perturbation, that is, for ε = 0.0, and Figs. 9(d)–
9(f) in the lower panel depict the dynamical states for the
perturbation strength ε = 0.3. In Fig. 9(a) for K = 0.1, we can
see that the phases of the oscillators are randomly distributed,
with the first group (corotating oscillators) having negative
random phases and the second group (counter-rotating os-
cillators) showing positive random phases. Such a state with
incoherent random phases corresponds to a desynchronized
state. When the coupling strength is increased to K = 1.1,
some of the oscillators in the first and second groups form
coherent patches with coherent phases while the remaining
oscillators portray incoherent phases, as shown in Fig. 9(b).
Such coexistence of coherent and incoherent phases in a
dynamical state in globally coupled oscillators is known as
partial synchronization. On increase of the coupling strength
to an even higher value (for example, K = 2.0), the phases
of corotating and counter-rotating oscillators display two in-
dependent clusters resulting in the cluster oscillatory state as
shown in Fig. 9(c). Thus, it is clear that the phases of the
oscillators also show a dynamical transition from the desyn-
chronized state to the cluster oscillatory state through the
partial synchronization state.

In addition, the oscillatory states are also analyzed in the
presence of the additional perturbation by fixing ε = 0.3.
From Figs. 9(d)–9(f), we can note that the system (A1) ex-
hibits a similar dynamical behavior even in the presence of
additional perturbation as seen in Figs. 9(a)–9(c). However,
in this case, all of the oscillators in Figs. 9(d) show sym-
metry breaking, resulting in a desynchronized state. It is to
be noted that the coherent patches in Fig. 9(e) are symmetry
preserving, while the incoherent patches are symmetry break-
ing. Therefore Fig. 9(e) is a partial symmetry-broken state
that is analogous to a chimera state. Similarly, the coherent
patches in Fig. 9(f) preserve symmetry, hence this is equiv-
alent to incoherent mixed synchronization. In this manner,
we validated our results using the reduced phase model as
well. In particular, the existence of partial synchronization and
chimera states has been confirmed.

Furthermore, as discussed in Ref. [56,57], we calculated
the mean-field frequency (	) and mean-ensemble frequency
( f ). The corresponding diagrams are illustrated in Figs. 10(a)
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FIG. 10. Mean-field (	) and mean-ensemble frequency ( f ) as a
function of coupling strength (K) for (a) ε = 0.0 and (b) ε = 0.3.
Red and black line points indicate the range of mean-field and mean-
ensemble frequencies. Other parameters are the same as in Fig. 9.

and 10(b) as a function of the coupling strength (K ) without
and with additional perturbations ε = 0.0 and ε = 0.3. We ob-
serve the disordered values of the mean-field frequency in the
dynchronized (DS) and partial synchronization (PS) states in
the absence of perturbation (ε = 0.0), as shown in Fig. 10(a)
by the red line points. Additionally, the cluster oscillatory
state or steady states show the presence of ordered coherent
mean-field frequencies. We also noticed that on increasing
the additional perturbation to ε = 0.3, the disorderliness [see
Fig. 10(b)] of the mean-field frequencies observed at the DS
and PS states decreases. It is also important to notice that in
both cases of additional perturbations, the system (A1) shows
a lower range of coherent mean-ensemble frequencies.

APPENDIX B: ROBUSTNESS OF OBSERVED DYNAMICAL
STATES AND THEIR TRANSITIONS IN OTHER

DYNAMICAL MODELS

In order to confirm the generality of the observed dynami-
cal states in other dynamical models, we choose the globally
coupled van der Pol and Rössler nonidentical counter-rotating
systems with additional perturbation. The corresponding dy-
namical transitions are detailed in the following subsections.

1. Globally coupled van der Pol oscillators

The dynamical equations for the ring network of globally
coupled van der Pol oscillators are expressed as

ẋ j = ω jy j + K + ε

N

N∑
k=1

(xk − x j ),

ẏi = b(1 − x2
j )yi + K − ε

N

N∑
k=1

(yk − y j ), (B1)

where b is the damping parameter, which is chosen as b = 2.
ω j are the system frequencies that are distributed with uni-
form counter-rotating frequencies as detailed in Sec. II. K is
the coupling strength, and ε is the additional perturbation.
The dynamical states observed from Eq. (B1) are portrayed
in Figs. 11 and 12 in the absence and in the presence of
additional perturbation. Primarily, the dynamical states and
their transitions are shown by fixing b = 2.0, ε = 0.0, and
� = 0.5.
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FIG. 11. Spatiotemporal plots of globally coupled van der Pol oscillators in the absence of perturbation (ε = 0.0) for (a) K = 0.05
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At lower coupling strength K = 0.05, the existence of a
desynchronized state is observed as shown in Figs. 11(a)
and 11(e). On increasing the coupling strength to K = 0.65,
the oscillators in the system (B1) get split into coherent and
incoherent groups and exhibit a partial synchronization state
as shown in Figs. 11(b) and 11(f). Here the incoherent be-
havior is observed at the edges and middle of the network.
Further increment of K to K = 0.8 results in the entire set of
oscillators to form two independent clusters manifesting in a
cluster oscillatory state. In this state, the corotating oscillators
form one cluster, and the corresponding counter-rotating os-
cillators form the other cluster [see Figs. 11(c) and 11(g)].
Furthermore, at strong coupling strength K = 2.0, we find
that the corotating and counter-rotating oscillators populate
into two different cluster oscillation death states as shown in
Figs. 11(d) and 11(h).

In addition, we illustrate the parity symmetry error of each
dynamical state in Figs. 11(i)–11(l). By observing all the
dynamical states in the absence of additional perturbation,
ε = 0.0 [see Figs. 11(a) and 11(d)], we discover that each
pair of oscillators yield a nonzero value of parity symmetry
error, indicating that the observed dynamical states including
DS, PS, COS and COD states are of a P symmetry-broken
nature. Subsequently, we perform a similar analysis in the
presence of additional perturbation by fixing ε = 0.3. As com-
pared to the desynchronized state, here we find that each pair
of the oscillators in the network preserves the parity symme-
try [see Figs. 12(a) and 12(e) for K = 0.05] and results in
the incoherent mixed synchronization state. Therefore all the
pairs of the oscillators show a null value of P symmetry error
MSi in Fig. 12(i). Further, the occurrence of a chimera state
is revealed while increasing K to K = 0.65 [see Figs. 12(b)
and 12(f)] and K = 0.8 [see Figs. 12(c) and 12(g)]. In the
chimera state, some of the pairs of oscillators in the coherent
and incoherent patches preserve the P symmetry (MSi = 0)
while the others break the P symmetry (MSi �= 0) as illus-
trated in Figs. 12(j) and 12(k). Furthermore, we discover a
similar kind of cluster oscillation death in Figs. 12(d), 12(h),
and 12(l) at K = 2.0 as observed in Figs. 11(d), 11(h), and
11(l). As a result, our analysis clearly shows that the network
of globally coupled van der Pol limit-cycle oscillators also
shows similar kind of dynamical states as that of the globally
coupled Stuart-Landau oscillators.

Furthermore, to provide additional support for our findings,
we examine the dynamical behaviors using a chaotic system,
specifically Rössler oscillators, in the following.

2. Globally coupled Rössler oscillators

In order to show the existence of partial synchronization
and chimera states in a chaotic system, we consider the ring
network of globally coupled Rössler oscillators, which can be
written as

ẋ j = −ω jy j − z j + K + ε

N

N∑
k=1

(xk − x j ),

ẏ j = ω jx j + ay j + K − ε

N

N∑
k=1

(yk − y j ),

ż j = b + z j (x j − c), (B2)
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FIG. 13. Spatiotemporal plots of globally coupled Rössler oscil-
lators with nonidentical counter-rotating frequencies in the absence
of additional perturbation (ε = 0.0) for (a) K = 0.05 (desynchro-
nized state), (b) K = 0.1 (partial synchronization state), and (c) K =
0.15 (amplitude death state). Panels (d)–(f) are the snapshots of x j

variables, and panels (g)–(i) are the corresponding parity symme-
try error (MSi ). Other parameters: a = 0.2, b = 0.2, c = 10.0, � =
0.1, and N = 100.

where, a, b, and c are the constant parameters, and they
are chosen as a = b = 0.2, and c = 10. K is the coupling
strength, ε is the strength of additional perturbation, and ω j

are the system frequency. The corotating and counter-rotating
frequencies are distributed with uniform distribution as de-
tailed in Sec. II. Primarily, the dynamical behaviors are first
analyzed for ε = 0.0 and by fixing the coupling strength at
different values. For K = 0.01, one can note from Figs. 13(a)
and 13(d) that the oscillators are randomly distributed in the
desynchronized state. Then the existence of partial synchro-
nization state with coexistence of coherent and incoherent
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FIG. 14. Spatiotemporal plots of globally coupled Rössler oscil-
lators with nonidentical counter-rotating frequencies in the presence
of additional perturbaton (ε = 0.05) for (a) K = 0.05 (desynchro-
nized state), (b) K = 0.1 (chimera state), and (c) K = 0.15 (coherent
mixed synchronization state). Panels (d)–(f) are the snapshots of x j

variables, and panels (g)–(i) are the corresponding parity symmetry
error (MSi ). Other parameters are the same as in Fig. 13.
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behaviors is revealed from Figs. 13(b) and 13(e) for K = 0.2.
Upon increasing the coupling strength, the system exhibits
amplitude death state as seen in Figs. 13(c) and 13(f). From
the figures of error of parity symmetry given in Figs. 13(g)
and 13(h), we can note that the desynchronized state and par-
tial synchronization state are completely P symmetry broken
where all the oscillators take nonzero values of error. Due to
trivial values of system variables, the P symmetry error of the
amplitude death state takes the null value as in Fig. 13(i).

Furthermore, the effect of additional perturbation is ex-
plored by fixing ε = 0.05 in Figs. 14. For K = 0.05, we
observed a desynchronized state as in Figs. 14(a)–14(d). The
corresponding P symmetry error takes nonzero values of er-
ror, which implies that the P symmetry is broken in the DS
state, Fig. 14(g). On increasing the coupling strength further,
chimera states with the coexistence of coherent and incoherent
behaviors are observed, which is depicted in Figs. 14(b) and

14(e). In such a state, some of the oscillators preserve the P
symmetry, while the others do not preserve the P symme-
try. As a result, the symmetry-preserving pairs of oscillators
in the network show zero error, while the symmetry-broken
pairs show nonzero values of error as shown in Fig. 14(h).
On further increasing the coupling strength (K = 0.15), we
restore the oscillatory dynamics from amplitude death due to
the influence of the additional perturbation. As a consequence,
we observed a symmetry-preserving cluster state that is a
coherent mixed synchronization state [see Figs. 14(c), 14(f),
and 14(i)].

Thus, from the above discussion, one can clearly observe
that the results presented in the main text are more general and
valid in all classes of limit-cycle and chaotic systems. Interest-
ingly, we identified that the additional perturbation leads to the
onset the chimera behavior in nonidentical counter-rotating
systems.

[1] P. Arkady, R. Michael, and J. Kurths, Synchronization: A Uni-
versal Concept in Nonlinear Science (Cambridge University
Press, 2003).

[2] S. Gupta, A. Campa, and S. Ruffo, Statistical Physics of Syn-
chronization, vol. 48 (Springer, New York, 2018).

[3] N. Zhao, Z. Sun, and W. Xu, Sci. Rep. 8, 8721 (2018).
[4] K. Sathiyadevi, V. K. Chandrasekar, D. V. Senthilkumar, and

M. Lakshmanan, Phys. Rev. E 97, 032207 (2018).
[5] A. Koseska, E. Volkov, and J. Kurths, Phys. Rep. 531, 173

(2013).
[6] N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, Neurosci.

Biobehav. Rev. 24, 817 (2000).
[7] N. C. Rattenborg, B. Voirin, S. M. Cruz, R. Tisdale, G.

Dell’Omo, H. P. Lipp, M. Wikelski, and A. L. Vyssotski, Nat.
Commun. 7, 12468 (2016).

[8] M. Tamaki, J. W. Bang, T. Watanabe, and Y. Sasaki, Curr. Biol.
26, 1190 (2016).

[9] M. Shanahan, Chaos 20, 013108 (2010).
[10] G. Filatrella, A. H. Nielsen, and N. F. Pedersen, Eur. Phys. J. B

61, 485 (2008).
[11] F. Dörfler and M. Chertkov, and F. Bullo, Proc. Natl. Acad. Sci.

U. S. A. 110, 2005 (2013).
[12] J. C. González-Avella, M. G. Cosenza, and M. San Miguel,

Physica A 399, 24 (2014).
[13] S. Majhi, M. Perc, and D. Ghosh, Sci. Rep. 6, 39033 (2016).
[14] Y. Kuramoto and D. Battogtokh, arXiv:cond-mat/0210694

[cond-mat.stat-mech].
[15] D. M. Abrams and S. H. Strogatz, Phys. Rev. Lett. 93, 174102

(2004)
[16] S. Majhi, B. K. Bera, D. Ghosh, and M. Perc, Phys. Life Rev.

28, 100 (2019).
[17] K. Premalatha, V. K. Chandrasekar, M. Senthilvelan, and M.

Lakshmanan, Chaos 28, 033110 (2018).
[18] V. K. Chandrasekar, R. Gopal, A. Venkatesan, and M.

Lakshmanan, Phys. Rev. E 90, 062913 (2014).
[19] K. Premalatha, V. K. Chandrasekar, M. Senthilvelan, and M.

Lakshmanan, Phys. Rev. E 91, 052915 (2015).
[20] M. I. I. Bolotov, L. A. Smirnov, G. V. Osipov, and A. S.

Pikovsky, JETP Lett. 106, 393 (2017).

[21] K. Sathiyadevi, V. K. Chandrasekar, and D. V. Senthilkumar,
Phys. Rev. E 98, 032301 (2018).

[22] O. E. Omel’chenko, Nonlinearity 33, 611 (2020).
[23] K. Sathiyadevi, V. K. Chandrasekar, and D. V. Senthilkumar,

Nonlinear Dyn. 98, 327 (2019).
[24] T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, and Y.

Maistrenko, Sci. Rep. 4, 6379 (2014).
[25] A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I.

Omelchenko, and E. Schöll, Nat. Phys. 8, 658 (2012).
[26] S. Nkomo, M. R. Tinsley, and K. Showalter, Phys. Rev. Lett.

110, 244102 (2013).
[27] J. Wojewoda, K. Czolczynski, Y. Maistrenko, and T.

Kapitaniak, Sci. Rep. 6, 1 (2016).
[28] N. Lazarides, G. Neofotistos, and G. P. Tsironis, Phys. Rev. B

91, 054303 (2015).
[29] J. Hizanidis, N. Lazarides, and G. P. Tsironis, Phys. Rev. E 94,

032219 (2016).
[30] K. Czolczynski, P. Perlikowski, A. Stefanski, and T.

Kapitaniak, Commun. Nonlinear Sci. Numer. Simul. 17, 3658
(2012).

[31] J. Strzalko, J. Grabski, J. Wojewoda, M. Wiercigroch, and T.
Kapitaniak, Chaos 22, 047503 (2012).

[32] S. Takagi and T. Ueda, Physica D 237, 420 (2008).
[33] Y. Murakami and H. Fukuta, Fluid Dyn. Res. 31, 1 (2002).
[34] H. Fukuta and Y. Murakami, Phys. Rev. E 57, 449 (1998).
[35] M. Darvishyadegari and R. Hassanzadeh, Acta Mech. 229, 1783

(2018).
[36] G. N. Throumoulopoulos and H. Tasso, Phys. Plasmas 17,

032508 (2010).
[37] S. Thanvanthri, K. T. Kapale, and J. P. Dowling, Phys. Rev. A

77, 053825 (2008); K. T. Kapale and J. P. Dowling, Phys. Rev.
Lett. 95, 173601 (2005).

[38] S. K. Bhowmick, D. Ghosh, and S. K. Dana, Chaos 21, 033118
(2011)

[39] M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An
Introduction (John Wiley and Sons, New York, 1988).

[40] C. M. Kim, S. Rim, W. H. Kye, and J. W. Ryu, and Y. J. Park,
Phys. Lett. A 320, 39 (2003).

[41] A. Prasad, Chaos Solitons Fractals 43, 42 (2010).

034211-12

https://doi.org/10.1038/s41598-018-27020-0
https://doi.org/10.1103/PhysRevE.97.032207
https://doi.org/10.1016/j.physrep.2013.06.001
https://doi.org/10.1016/S0149-7634(00)00039-7
https://doi.org/10.1038/ncomms12468
https://doi.org/10.1016/j.cub.2016.02.063
https://doi.org/10.1063/1.3305451
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1073/pnas.1212134110
https://doi.org/10.1016/j.physa.2013.12.035
https://doi.org/10.1038/srep39033
http://arxiv.org/abs/arXiv:cond-mat/0210694
https://doi.org/10.1103/PhysRevLett.93.174102
https://doi.org/10.1016/j.plrev.2018.09.003
https://doi.org/10.1063/1.5006454
https://doi.org/10.1103/PhysRevE.90.062913
https://doi.org/10.1103/PhysRevE.91.052915
https://doi.org/10.1134/S0021364017180059
https://doi.org/10.1103/PhysRevE.98.032301
https://doi.org/10.1088/1361-6544/ab5cd8
https://doi.org/10.1007/s11071-019-05195-z
https://doi.org/10.1038/srep06379
https://doi.org/10.1038/nphys2372
https://doi.org/10.1103/PhysRevLett.110.244102
https://doi.org/10.1038/s41598-016-0001-8
https://doi.org/10.1103/PhysRevB.91.054303
https://doi.org/10.1103/PhysRevE.94.032219
https://doi.org/10.1016/j.cnsns.2012.01.014
https://doi.org/10.1063/1.4740460
https://doi.org/10.1016/j.physd.2007.09.012
https://doi.org/10.1016/S0169-5983(02)00064-3
https://doi.org/10.1103/PhysRevE.57.449
https://doi.org/10.1007/s00707-017-2070-6
https://doi.org/10.1063/1.3353077
https://doi.org/10.1103/PhysRevA.77.053825
https://doi.org/10.1103/PhysRevLett.95.173601
https://doi.org/10.1063/1.3624943
https://doi.org/10.1016/j.physleta.2003.10.051
https://doi.org/10.1016/j.chaos.2010.08.001


EMERGING CHIMERA STATES UNDER NONIDENTICAL … PHYSICAL REVIEW E 105, 034211 (2022)

[42] B. K. Bera, S. K. Bhowmick, and D. Ghosh, Int. J. Dyn. Control
5, 269 (2017).

[43] N. Punetha, V. Varshney, S. Sahoo, G. Saxena, A.
Prasad, and R. Ramaswamy, Phys. Rev. E 98, 022212
(2018).

[44] K. Sathiyadevi, I. Gowthaman, D. V. Senthilkumar, and V. K.
Chandrasekar, Chaos 29, 123117 (2019).

[45] M. Frasca, A. Bergner, J. Kurths, and L. Fortuna, Int. J.
Bifurcation Chaos 22, 1250173 (2012).

[46] M. C. Thompson and P. L. Gal, Eur. J. Mech. B. Fluids 23, 219
(2004).

[47] V. García-Morales and K. Krischer, Contemp. Phys. 53, 79
(2012).

[48] E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and
T. M. Antonsen, Phys. Rev. E 79, 026204 (2009).

[49] E. Montbrió, D. Pazó, and J. Schmidt, Phys. Rev. E 74, 056201
(2006).

[50] J. A. Acebrón, L. L. Bonilla, S. De Leo, and R. Spigler, Phys.
Rev. E 57, 5287 (1998).

[51] C. van Vreeswijk, Phys. Rev. E 54, 5522 (1996).
[52] S. Yanchuk, Y. Maistrenko, and E. Mosekilde, Math. Comput.

Simul. 54, 491 (2001).
[53] D. Nikitin, I. Omelchenko, A. Zakharova, M. Avetyan, A. L.

Fradkov, and E. Schöll, Philos. Trans. R. Soc. A 377, 20180128
(2019).

[54] H. Hong and S. H. Strogatz, Phys. Rev. E 84, 046202 (2011);
Phys. Rev. Lett. 106, 054102 (2011).

[55] K. Sathiyadevi, S. Karthiga, V. K. Chandrasekar, D. V.
Senthilkumar, and M. Lakshmanan, Phys. Rev. E 95, 042301
(2017).

[56] S. Petkoski, A. Spiegler, T. Proix, P. Aram, J.-J. Temprado, and
V. K. Jirsa, Phys. Rev. E 94, 012209 (2016).

[57] S. Petkoski, D. Iatsenko, L. Basnarkov, and A. Stefanovska,
Phys. Rev. E 87, 032908 (2013).

[58] R. Gopal, V. K. Chandrasekar, A. Venkatesan, and M.
Lakshmanan, Phys. Rev. E 89, 052914 (2014).

[59] S. Majhi, P. Muruganandam, F. F. Ferreira, D. Ghosh, and S. K.
Dana, Chaos 28, 081101 (2018).

034211-13

https://doi.org/10.1007/s40435-015-0197-7
https://doi.org/10.1103/PhysRevE.98.022212
https://doi.org/10.1063/1.5121565
https://doi.org/10.1142/S0218127412501738
https://doi.org/10.1016/j.euromechflu.2003.09.012
https://doi.org/10.1080/00107514.2011.642554
https://doi.org/10.1103/PhysRevE.79.026204
https://doi.org/10.1103/PhysRevE.74.056201
https://doi.org/10.1103/PhysRevE.57.5287
https://doi.org/10.1103/PhysRevE.54.5522
https://doi.org/10.1016/S0378-4754(00)00276-7
https://doi.org/10.1098/rsta.2018.0128
https://doi.org/10.1103/PhysRevE.84.046202
https://doi.org/10.1103/PhysRevLett.106.054102
https://doi.org/10.1103/PhysRevE.95.042301
https://doi.org/10.1103/PhysRevE.94.012209
https://doi.org/10.1103/PhysRevE.87.032908
https://doi.org/10.1103/PhysRevE.89.052914
https://doi.org/10.1063/1.5043588

