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Measurement and memory in the periodically driven complex Ginzburg-Landau equation
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In the present work we illustrate that classical but nonlinear systems may possess features reminiscent of
quantum ones, such as memory, upon suitable external perturbation. As our prototypical example, we use the
two-dimensional complex Ginzburg-Landau equation in its vortex glass regime. We impose an external drive as a
perturbation mimicking a quantum measurement protocol, with a given “measurement rate” (the rate of repetition
of the drive) and “mixing rate” (characterized by the intensity of the drive). Using a variety of measures, we find
that the system may or may not retain its coherence, statistically retrieving its original glass state, depending
on the strength and periodicity of the perturbing field. The corresponding parametric regimes and the associated
energy cascade mechanisms involving the dynamics of vortex waveforms and domain boundaries are discussed.
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I. INTRODUCTION

This report examines the property of memory under pe-
riodic driving in a classical nonlinear system, namely, the
complex Ginzburg-Landau (CGL) equation [1]. Our aim is to
demonstrate properties of memory and coherence, following
measurement probes. This is an interesting topic in its own
right but also illustrates classical precursors to phenomena in
quantum information contexts. The interplay between non-
linearity and quantum mechanics is an important ingredient
in the fascinating but complicated issue of quantum-classical
correspondence [2,3]. The intense recent focus on quantum
information science and technology and associated potential
physical sources of qubits provides new impetus for this topic.
Clearly some properties are purely quantum in their nature
[4,5]. However, other important features have quantum paral-
lels. Measurement rates and decoherence are major concerns
for quantum information devices. Classical analogs appear in
glassy and disordered systems and more generally in appro-
priate classes of nonlinear equations [6,7], where analogs of
coherence and decoherence, entangled states [6,8], chimeric
patterns [9], frustration, and complexity [10,11] are very rich.
Another prominent example where such analogies have been
intensely pursued over the past decade concerns the emerging
field of the so-called pilot-wave hydrodynamics [12,13].

Our purpose here is to explore a nonlinear example of
“measurement” and “memory” from this perspective. Many
nonlinear equations can be used to explore these parallels,
such as the nonlinear Schrödinger (NLS) model [14–16], the
sine-Gordon equation [17], coupled double-well potentials
[18], etc. Indeed, nonlinearity often arises as a semiclas-
sical approximation to quantum many-body systems (e.g.,
in Bardeen-Cooper-Schrieffer superconductivity [19], charge-
density waves, Josephson junction equations [20,21], or the
Gross-Pitaevskii equation (GPE) [22,23]). In fact, the NLS
has been studied as a result of a quantum feedback process
upon identical quantum systems subject to weak measure-

ments [7], while the GPE emerges as a result of a mean-field
approximation of cold, dilute atomic quantum gases. These
lines of analogy between quantum systems and nonlinear
classical ones have led to the study of classical analogues of
entanglement [6,8] and decoherence [24], the latter including
a nanomechanical resonator [25].

We have chosen here to consider the two-dimensional (2D)
CGL as a prototypical example of such connections [1]. The
CGL is interesting because it represents a generic amplitude
model in the presence of slow variation and weak nonlinearity,
corresponding to a normal form-type partial differential equa-
tion near a primary bifurcation of a homogeneous state [1].
At the same time, it exhibits secondary excitations in the form
of topological coherent structures (domain walls, solitons, and
vortices), contains explicit self-consistent dissipation, and has
been extensively used to successfully model phenomena in
a number of physical systems, extending from superconduc-
tivity and superfluidity to liquid crystals, Rayleigh-Benard
convection, and Bose-Einstein condensates [1,26]. In addi-
tion, it provides an appropriate vehicle to explore our interests
here as it possesses certain instabilities and coherent struc-
tures, as well as highly nontrivial metastable states, such as
a vortex glass [27,28] that we will explore in what follows.
While such a state constitutes a prototypical example of a
long-lived, topological state, it presents more complexity than
the simpler one-dimensional configurations, while remaining
more tractable in terms of computational cost and visualiza-
tion accessibility in comparison to three-dimensional settings.
It is for these reasons that this will be our vehicle of choice for
illustrating the dynamical phenomenology of interest. As we
will see, the topological excitations and their interactions are a
key source of (space and time) multiscale patterns and transi-
tions, including freezing and stretched exponential relaxation,
which relate to our interest in entanglement and decoherence.

Here we specifically consider the 2D CGL with a cubic
nonlinearity and an external periodic driving coupled to the
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FIG. 1. Snapshots of the absolute value of the field (|A|) for α = 0.7 and β = −0.7 at different times. We consider the state at t = 1200 as
the initial condition for the rest of the numerical studies reported in this work.

field amplitude. It is worthwhile to note here that periodically
forced variants of the CGL equation have been argued as
offering a generic model of parametrically forced systems
such as the Faraday wave experiment [29]. In this context
of hydrodynamics, indeed, there exist well-documented ex-
amples of matching the CGL and its coefficients to concrete
hydrodynamic experiments [30]. By periodically driving the
CGL equation, we induce an analog of an external perturba-
tion akin to a periodic measurement process on a quantum
system. In this driven system we can anticipate a “phase
diagram” relevant to a classical analog of decoherence: one
axis is akin to the “measurement rate” and the other axis
represents the effective “mixing rate,” induced by the drive.
We might anticipate a demarcation curve, separating regions
of maintaining and losing coherence, i.e., ones preserving the
memory of the original state and ones losing it. Here the
measurement rate would correspond to a field pulse applied
to the system periodically. This will mix the states of the
system. After a pulse, if the system recovers, the scenario will
be analogous to that of coherence in a quantum system. The
mixing rate is proportional to the strength of the nonlinearity
in the CGL equation. The stronger the nonlinearity, the higher
the expected mixing rate.

As perhaps the simplest case, we apply the driving field
uniformly in space, at a periodic rate in time, and with peri-
odic boundary conditions. We numerically follow a variety of
diagnostics including ones quantifying the induced vorticity,
the compressible and incompressible energy spectra, and the
cascades that they reveal and use the creation and annihilation
of the vortices as a prototypical illustration of maintaining co-
herence or potentially losing memory of the initial condition
of the system. We identify both of these regimes and delineate
the transition between them. We believe that this type of phe-
nomenology may be broadly applicable in other distributed
nonlinear dynamical systems and that this study may pave the
way for further efforts to identify features of quantum sys-
tems that have nontrivial classical precursors. Indeed, this and
related systems could offer interesting additional paradigms
to the rapidly developing area of pilot-wave hydrodynamics
[12,13].

Our presentation will be structured as follows. In Sec. II we
present the basic features of the model, the quench dynamics
protocol and associated observables. In Sec. III we comment
on our numerical findings, while Sec. IV concludes the report
offering some perspectives for future work.

II. THE MODEL: 2D CGL EQUATION

We consider the 2D dimensionless CGL equation in the
prototypical form [1]

∂

∂t
A = A + (1 + iβ )�A − (1 + iα)|A|2A

+ A0δ(t − [T0 + lT ]), l = 0, 1, 2, . . . . (1)

Here A is a complex field and α and β are real parameters. A0

represents the strength of the external field (associated with
the mixing rate, as discussed above), while T represents the
period of the quenching (i.e., the measurement rate) and T0 is
the initial offset time which allows the system to relax before
the quenching starts. For α = β = 0, this equation becomes a
regular CGL [1]. On the other hand in the limit α, β → ∞,
this equation reduces to the NLS equation.

This 2D model admits a variety of coherent structures,
including vortices and domain walls [1,27,28,31]. The sym-
metry breaking instabilities of the model are well studied:
these include the Benjamin-Feir, Eckhaus, convective, phase
instability, and absolute 2D instabilities [32]. A general
overview of the model 2D findings can be found in [1].
The phase diagram associated with the system suggests that
there exist three pattern formation regimes, namely, defect
turbulence, phase turbulence, and vortex glass, depending
on the parameter values of the model [1,28]. The peculiarity
of the vortex glass state is that in this regime the vortices are
arranged in cellular structures thought of as frozen states, i.e.,
very long-lived metastable states [28]. It is the latter frozen
type of extremely long-lived attractor of the system that we
find particularly appealing for our explorations of (nonlin-
earity induced) coherence vs decoherence and would like to
further explore. In what follows, we will use quench dynamics
into this vortex glass regime and will subsequently perturb the
relevant state using the external drive.

A. Quench dynamics

An absolute instability induces defect pair formation in
the model as demonstrated, e.g., in [32]. This defect pair
formation mechanism can be systematically controlled via the
nonlinear model parameters α and β [27]. In this work we
fix α = 0.7 and β = −0.7. For this set of parameter values,
a random initial condition leads to the formation of a vor-
tex glass state as shown in Fig. 1. Nevertheless, the results
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reported below will be more broadly applicable to the wide
parametric region where such a vortex glass forms; for a
relevant parametric diagram, see, e.g., [33]. For our numer-
ical experiments, we consider a 2D plane of size Lx × Ly,
(Lx = Ly = 80) with 512 × 512 grid points. We solve Eq. (1)
numerically by using an explicit Runge-Kutta algorithm of
order 8, namely, DOP853 [34,35]. We initialized the simu-
lation with A = 0.001R, where R represents random numbers
drawn from the uniform distribution [−0.5, 0.5] as shown in
Fig. 1(a). Additionally, periodic boundary conditions Ai,0 =
Ai,M , Ai,M+1 = Ai,1 for 1 � i � L and A0, j = AL, j , AL+1, j =
A1, j for 1 � j � M are considered.

The snapshots of field amplitude at different times in
Figs. 1(b)–1(d) show the vortex defects that are surrounded
by shock lines [33]. They form a long-lived metastable cell
structure together. The vortex defects are known to produce
spiral waves [32]. In this work we are interested in performing
amplitude quenches to excite the system and observe its po-
tential return to equilibrium (or absence thereof). We consider
the field shown in Fig. 1(d) at t = 1200, as corresponding to
T0 in Eq. (1), i.e., as the initial condition for the following
numerical experiments. This state is a relaxed state in the
sense that no more vortex-antivortex annihilations take place
upon further evolution until at least T = 2000. On the other
hand, this is a metastable state in which (slow) vortex motion
still persists. Hence, such a state is often referred to as a glassy
state [28].

We now periodically drive the (glassy state of the) system
for a fixed amplitude A0 (real variable) and the period T . We
fix the time periods T = 10 and T = 15 for our numerical
experiments. These time periods are relatively short as com-
pared to the time required for the system to relax. As a result, a
periodic drive takes the system out of equilibrium by changing
its total energy, and we then observe the subsequent response
of the system to both a single excitation, but also importantly
to a periodic sequence of such excitations.

B. Observables

We consider the normalized distribution Pi = P(ni ), where
P(ni ) is the probability distribution of amplitudes ni = |Ai|.
For the complex CGL system, we first define the observable
Shannon entropy

Sv = −
∑

i

[
Pi log(Pi )

]
(2)

as a standard information-theoretic diagnostic of the system.
Moreover, since the topoplogical excitations in 2D of the

CGL model are vortices, we additionally consider the fol-
lowing observables for the measurements. We measure the
absolute value of the winding number [36]

� = 1

2π

∫
|ω| dx dy, (3)

where ω is the vorticity. The vorticity is related to the velocity
field v as ω = ∇ × v. This diagnostic counts the total number
of vortices in the system. The change in this number will
be used to assess the potential loss of memory through the
creation of additional excitations and the departure from the
previously reached glassy state, upon introducing the relevant
perturbation.

Further, in order to follow the energy distribution in the
system we separate the field into compressible and incom-
pressible parts. The term |∇A|2 [i.e., the energetic contribution
associated with the Laplacian in Eq. (1)] can be written as

|∇A|2 = (ρ|v|2 + |∇√
ρ|2), (4)

where the transformation A = √
ρeiφ yields ρ = |A|2 and the

velocity v = ∇φ. Here, following, e.g., the exposition of [37],
the first and second terms represent the density of the kinetic
energy (Eke) and the quantum pressure (Eq), respectively,
where the energies are given by

Eke =
∫

ρ|v|2 d2r, Eq =
∫

|∇√
ρ|2 d2r. (5)

The velocity vector v now can be written as a sum over a
solenoidal part (incompressible) vic and an irrotational (com-
pressible) part vc as

v = vic + vc, (6)

such that ∇ · vic = 0 and ∇ · vc = 0.
The incompressible and compressible kinetic energies are

then [38]

E ic,c =
∫

d2r|√ρvic,c(r)|2. (7)

We additionally find the vortex spectra of the system
[38–42]. In k space (k-wave vector), the total incompressible
and compressible kinetic energy E ic,c

ke is represented by

E ic,c(k) = k
∑
j=x,y

∫ 2π

0
dφk|F j (k)ic,c|2, (8)

where F j (k) is the Fourier transform of
√

ρu j of the jth

component of u = (ux, uy) and (k =
√

k2
x + k2

y , φk) represents
polar coordinates. Through the above Fourier space diagnos-
tics, we can assess the transfer of energy between different
wave numbers, as well as the fractions of energy that per-
tain primarily to the vortical excitations (associated with the
incompressible part) and ones associated with sound waves
(the compressible part), analogously to earlier works such as
[37,38].

III. NUMERICAL EXPERIMENTS

We begin the numerical experiments by considering dif-
ferent values of the driving amplitude A0 for a fixed drive
periodicity T . Figure 2 shows the field amplitude for A0 =
2, 3.6 and 4.8 and the relevant “kicks” repeated every T = 10
time units. The figure indicates the existence of three different
regimes: (1) The system is nearly unaffected by the periodic
driving: this is the regime where coherence is fully preserved
and the relevant perturbation is weak. (2) Nucleation of new
vortex pairs and their subsequent annihilations thereof: this
is the intermediate regime where effective decoherence first
emerges, substantially modifying the ultimate fate of the sys-
tem, although the latter is still in the state bearing vortices
with domain walls separating them. (3) Finally, a constant
density regime emerges: here the perturbation is strong, and
consequently it entirely collapses the system to a different
state with no memory of the initial condition. In regime (1),
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FIG. 2. Snapshots of the field amplitude |A| for drive strengths (a–e) A0 = 2.0, (f–j) A0 = 3.6, and (k–o) A0 = 4.8. The other parameters
are repetition time interval T = 10 and initial perturbation time T0 = 1200 for CGL model parameters α = 0.7 and β = −0.7. See Ref. [43]
for corresponding movies.

despite the fact that no new vortices are generated, the imprint
of the “measurement” (or more accurately here perturbation)
process arises through the rapid emission of spiral waves
which can be clearly observed in Figs. 2(a)–2(e). Regime (2)
can be seen in Figs. 2(f)–2(l), while regime (3) is shown in
Figs. 2(m)–2(o).

We first characterize these observations using the defined
observables. Figure 3 shows the Shannon entropy based on the
probability distribution of amplitude |A| for different values
of A0. The entropy initially increases with increase in A0 due
to the high-density fluctuations. At larger times, the entropy
nearly saturates in regimes (1) and (2), while it decreases in
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FIG. 3. Time dependence of Shannon entropy Sv for T = 10 for
different values of drive amplitude A0.

regime (3). In regime (1) the saturation is rather natural to
expect, as the system rapidly relaxes to the previous glassy
state. Similarly in regime (3), the state evolves towards a
constant amplitude (of unity), hence naturally the attraction
to this state leads the entropy to a rapid decrease towards 0.
The most dynamic state is the intermediate one of regime (2),
where the relaxation is slow and therefore the entropy presents
the oscillatory dynamics observed in Fig. 3.

The measurement based on Shannon entropy provides a cu-
mulative diagnostic (rather than a distributed one) that clearly
highlights the effect of periodic driving on the amplitude.
At the same time, the entropy does not immediately provide
information about the vortex configurations [aside perhaps
from regime (3) where the tendency of the entropy to go to
0 can lead us to infer the absence of vorticity]. In that vein, we
now characterize the dynamics based on the absolute value of
the winding number that provides us with a sense of the vortex
creation and annihilation processes occurring in the system as
a result of the drive. We consider two periods T = 10 and
T = 15. The results of both cases shown in Fig. 4 illustrate
that as A0 increases, the number of initially generated vortices
also increases in accordance with Fig. 2. The results of the
T = 10 case show that for lower values of A0 = (2, 2.4), the
system does not respond to the kicks by changing its vortical
content; once again, this illustrates the regime (1) of effective
coherence preservation.

For larger values of kick amplitude, on the other hand,
the number of initially generated vortices increases (in the
presence of the perturbations), yet at the same time, the rate
of vortex-antivortex annihilations also progressively increases
with A0. On the other hand, for T = 15 the rate of annihilation
is decreased as compared to the T = 10 case. This is due to
the fact that the system has more time to relax in between
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FIG. 4. Winding number � for (a) T = 10 and (b) T = 15. The axes here are A0 (the drive amplitude) and time t (measured from the time
of first kick).

the kicks as T increases. For intermediate values of A0, we
therefore observe that the time evolution of the system pre-
serves a dynamic effect where significant (additional) vorticity
is present, as shown by the colorbar of Fig. 4 and the system
has decohered from its original glassy state. For large values
of A0, eventually the vortex annihilation events take over and
the system reaches the stable, locally attracting equilibrium
state of |A| = 1.

The measured incompressible and compressible energies
for the cases of T = 10 and T = 15 are shown in Fig. 5
and Fig. 6, respectively. As expected, for T = 10, the incom-
pressible energy is nearly a constant for A0 = (2, 2.4) [see
Fig. 5(a)], representing the invariance of the vortex configu-
ration. For the range A0 = 2.6–2.8 the incompressible energy
initially decreases and then saturates at later times correspond-

ing to the one vortex pair reduction shown in Fig. 4(a). The
increase in the rate of annihilation is well reflected in Fig. 5(a)
for higher A0, where incompressible energy decreases. Sim-
ilar results are seen in Fig. 5(b) for T = 15, although the
larger relaxation time induces the associated phenomenology
at larger values of A0. For higher values of A0, it is clear that
the incompressible energy is fluctuating in a way that paral-
lels the winding number and reflects the potential emergence
(for intermediate values of A0) and disappearance (for higher
values of A0) of vortex-antivortex pairs through the relevant
creation and annihilation processes.

We next analyze both the compressible E c(k) and incom-
pressible E ic(k) energy spectra of the system collected at
different evolution times. This is typically done in order to
appreciate the energy exchanges in a system and the possible
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FIG. 5. Incompressible energy as a function of time for (a) T = 10 and (b) T = 15. Colors represent different values of the drive
strength A0.
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FIG. 6. Compressible energy as a function of time for (a) T = 10 and (b) T = 15. Colors represent different values of the drive strength A0.

connection of the associated mechanisms with potential
turbulent or coherent-structure (such as vortex) induced dy-
namics [37]. The energy distribution from smaller scale
(corresponding to the vortex core size) to larger scale (system
size) can be inferred from such spectra. The upper and lower
panels in Fig. 7 show the compressible and incompressible en-
ergy spectra for three different values of A0 (= 2.0, 3.6, 4.8)
for fixed T = 10. The compressible vortex spectra shown
in the upper panel of Fig. 7 do not exhibit any convincing

scaling laws. However, at the same time we note that for
1/ξ < k < 2π/ξ , where ξ represents the numerically mea-
sured healing length (vortex core radius), spectra bear some
proximity to the reference line drawn for k−7/2. This power
law is a characteristic of a superfluid turbulence corresponding
to the sound wave equilibrium, as discussed, e.g., in [38,44].
The decrease in compressible energy with increase in time for
higher A0 is due to the loss of small amplitude fluctuations as
shown in Fig. 2.

FIG. 7. (Top panel) Compressible energy spectra for (a) A0 = 2, (b) A0 = 3.6, and (c) A0 = 4.8. (Bottom panel) The corresponding
incompressible energy spectra for (a) A0 = 2, (b) A0 = 3.6, and (c) A0 = 4.8. The vertical lines (from left to right) represent k = 1/ξ and
k = 2π/ξ , where ξ is the so-called healing length associated with the size of individual vortices. The other parameters are T = 10, α = 0.7,
and β = −0.7.
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The incompressible energy spectra of the same case are
depicted in the bottom panel of Fig. 7. The spectra of different
values of A0 show the existence of k−3 power law, associated
with individual vortex cores [37], for sufficiently large k.
On the other hand, interestingly and somewhat unexpectedly,
there exists a lower interval of wave numbers where our ob-
servations are close to a Kolmogorov k−5/3 power law that
is typically associated in 2D settings with the inverse energy
cascade as observed, e.g., in superfluid vortex turbulence [37].
We speculate that the existence of k−5/3 power law, even for
smaller A0, could be due to the irregular arrangement and slow
motion of vortices, although this is clearly a topic that merits
further investigation. The downward shift of vortex spectra at
larger times for larger values of A0 is due to the decrease in
the vortex numbers. We find similar results for the T = 15
case as well (results omitted for brevity). The incompressible
energy results show that the role of the drive can be felt within
the system of interest only beyond the wave number scale
corresponding to interactions between vortices. Below such a
wave number scale (k << 1/ξ ), the wave number dependence
of the incompressible energy is flat.

In this section we demonstrated the effect of a periodic
drive on the defect dynamics of the CGL model. Our results
suggest that there are cascading processes even in the weaker
amplitude cases, where the configuration at the level of its
density profile appears to preserve its coherence and glassy
state structure. For higher values of A0, it is apparent (see, e.g.,
the middle and right panels of Fig. 7) that there are stronger
energy exchange mechanisms at work, both ones mediated
via the substantial additional compressible (sound) energy
and ones realized via the vortex-antivortex creation (hence
increase of incompressible energy) or annihilation (hence con-
version of the incompressible energy into sound waves). In
this case of larger A0, these processes result in the loss of
memory and effective (nonlinearity-driven) decoherence of
the dynamics.

IV. CONCLUSIONS AND FUTURE CHALLENGES

One of the motivations for this work has been to explore
a classical analog of quantum effects such as decoherence
via suitable nonlinear classical field theoretic examples. The
driven complex Ginzburg-Landau (CGL) 2D equation offers
an intriguing playground for the exploration of these effects
as it possesses certain instabilities and coherent topological
structures such as vortices and domain walls, and features

wide parametric regimes of metastable, long-lived states such
as the vortex glasses utilized here [27,28]. In the periodically
driven version of this dissipative nonlinear system that we
considered here, we have aimed to establish a phase diagram
that offers a glimpse into a classical (nonlinearity-induced)
analog of the notion of decoherence. In particular, the axis of
variation of the period of the drive T is an analog of the “mea-
surement rate,” while the amplitude axis A0 is an analog of
the “mixing rate.” As we have shown, we indeed numerically
find a demarcation curve between the examined cases, with
a parametric region representing decoherence and another
preserving the system’s statistical memory; the intermedi-
ate regime between these two features the most dynamical
environment where vortex creation-annihilation events most
dramatically and persistently take place.

We believe that this study poses a number of challenges
that are worth pursuing in future work. Clearly, the form, in
space and time, of the external field we have used here has
many potential variations beyond the spatially uniform, time
periodic one used here, analogous to various measurement
protocols employed in quantum technologies. A systematic
comparison of quantum systems with classical nonlinear
ones in regard to quantum features such as entanglement
and decoherence is called for, including both dissipative and
nondissipative (open and closed) cases. The Gross-Pitaevskii
model and its many-body variants [45] could represent an
ideal framework for exploring the analogies and differences
between classical nonlinear and genuinely quantum systems
[46]. Moreover, the transverse field Ising and similar models
provide examples where coherence times can be equated with
correlation lengths in equivalent higher-dimensional classical
models [47]. Finally, we have explored issues pertaining to
driving in connection to coherence vs decoherence and mem-
ory vs memory loss, but have not examined aspects pertaining
to entanglement. The latter may be an especially interesting
topic (along with its similarities and differences to wave inter-
actions) for future study.
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