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Control of a qubit state by a soliton propagating through a Heisenberg spin chain
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We demonstrate that nonlinear magnetic solitary excitations (solitons) traveling through a Heisenberg spin
chain may be used as a robust tool capable of coherent control of the qubit’s state. The physical problem is
described by a Hamiltonian involving the interaction between the soliton and the qubit. We show that under
certain conditions the generic Hamiltonian may be mapped on that of a qubit two-level system with matrix
elements depending on the soliton parameters. We considered the action of a bright and a dark soliton depending
on the driving nonlinear wave function. We considered a local interaction restricted the closest to the qubit spin
in the chain. We computed the expressions of the physical quantities of interest for all cases and analyzed their
behavior in some special limits.
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I. INTRODUCTION

The control of spin dynamics is a prerequisite for effec-
tive quantum computing and quantum information processing
[1–6]. The research in this field is focused on the physical
implementation of the quantum computer, that relies on the
realization of a two-level quantum system: the qubit. Over the
last few decades, a number of two-level systems have enjoyed
great interest as potential candidates for qubits. These include,
among others, the electrons confined in quantum dots due to
their very long dephasing times and long phase coherence
lengths [7], nanometer-scale magnetic particles or clusters
with large total spin and high anisotropy [8], molecular mag-
nets consisting of clusters with coupled transition metal ions
[9], and a transmon-type superconducting qubit [10].

To manipulate the state of qubits, there are different ap-
proaches involving external stimuli, such as an electric field,
a laser beam, a magnetic field, or microwave pulses. The
properties of systems composed of a qubit under the action
of one of these stimuli have been the subject of extensive
research (see Refs. [2,6,10–14] and references therein). On
the other hand, a scarcely explored path to alter the state of a
qubit takes account of an effective well localized in space and
time solitary wave propagating through a quantum spin chain:
the soliton. Solitons are collective excitations that emerge in a
variety of nonlinear systems spanning all branches of physics,
such as optical fibers, cold atoms, fluids, magnets, and so on.
The study of nonlinear spin dynamics in magnetic materials
related to different phenomena in condensed matter physics
has been the subject of considerable interest for decades,
and a series of theoretical investigations [15–28] have con-
centrated on unveiling the underlying mechanism of soliton
formation in the framework of different magnetic models (for
reviews the interested reader may consult Refs. [29–32] and
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references therein). The ever growing interest in solitary spin
waves that can travel under certain physical conditions with
constant shape and velocity is also due to their applications
in various technological fields, such as spintronics [33]. In
this respect, there are only a few papers dealing with the
control of the qubit by a soliton excitation propagating along
a Heisenberg spin chain [34–38]. In this system, a solitary
wave may be coherently generated by exciting the spin at
one end of the chain via a time-dependent magnetic field.
On the experimental side, the potential coherent manipulation
of a transmon-type superconducting qubit with the aid of a
ferromagnetic single-magnon excitation in a millimeter-sized
ferromagnetic sphere was considered in Ref. [10].

To explore the physics of a system consisting of an inter-
acting soliton with a qubit, the traveling soliton is generated a
distance apart from the qubit in order to reduce noise effects
that might break quantum coherence. Moreover, the soliton
parameters and the strength of the qubit-chain coupling may
be tuned to control the qubit states. The qubit dynamics
governed by a soliton propagating in a magnetic chain was
numerically studied with the aid of the Bloch equations in
Refs. [37,38]. There, the chain was modeled by an anisotropic
Heisenberg model with spin-spin interaction restricted either
to nearest neighbors or extended to include next to nearest
neighbors, assuming that the qubit does not affect the stability
of the soliton, while the soliton may be used to control the
behavior of the qubit. In this paper, we tackle this problem
in a more rigorous fashion and show that this assumption is
indeed valid when the magnitude of the spin in the chain is
sufficiently large. Hence, we demonstrate that in the large-spin
limit the quantum problem reduces to the corresponding non-
linear Schrödinger equation for a two-level quantum system
[3] for the qubit in the quasiclassical approximation, i.e., when
the magnetic soliton stands for a large number of magnons
[29]. We would like to anticipate that unlike familiar two-level
quantum systems, the Hamiltonian derived here has a peculiar
property that is all its matrix elements depend in a complex
way on the soliton’s characteristics. On the other hand, the
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soliton is obtained as a solution of quasiclassical equations of
motion for the spin chain described by the Heisenberg model
with nearest-neighbor spin-spin interaction. Then, we proceed
with the derivation of the approximated analytic solutions for
the qubit, and find the probabilities for qubit switching. Our
analysis of the physical problem shows that by a suitable
choice of the parameters of the soliton it is possible to control
the dynamics of the qubit.

This paper is organized as follows: The quantum model of
interest is defined in Sec. II. In Sec. III, we demonstrate how
the original problem reduces to the study of a quasiclassical
two-level system. The effect of the quasiclassical solitons
and possible ways to control the qubit state are analyzed in
Sec. IV. To achieve our goal, we consider a local coupling of
the qubit and its closest spin on the chain to study the effects
of two types of solitons, bright and dark, on the behavior of
the qubit. In the last Sec. V, we summarize our results.

II. SPIN CHAIN–QUBIT SYSTEM

The system of interest is composed of a qubit anisotropi-
cally interacting with an anisotropic Heisenberg spin chain. A
general expression of the Hamiltonian reads

H = −J
∑

n

Sn · Sn+1 − A
∑

n

(
Sz

n

)2 − μH0

∑
n

Sz
n

− dxy
[
Sx

0σ
x + Sy

0σ
y
] − dzS

z
0σ

z − νH0σ
z (2.1)

with Sn ≡ (Sx
n, Sy

n, Sz
n) the spin operator located at the site n,

σ ≡ (σ x, σ y, σ z ) is the half-spin operator associated to the
qubit, to be dubbed hereafter “qubit” for short. The constants
J > 0 and A > 0 stand for the spin coupling and the strength
of the crystal field anisotropy, respectively. H0 is an external
magnetic field oriented along the z direction. μ and ν are
the magnetic moments per spin in the chain’s sites and the
qubit, respectively. The interaction between the qubit and the
spin chain is parametrized by the coupling’s components dxy

within the xy plane and dz along the z axis. Here and below,
we set h̄ = 1, i.e., we work in units of h̄ and assume that the
qubit is coupled to the spin sitting at site n = 0 of a long
(quasi-infinite) spin chain with periodic boundary conditions,
thus minimizing the effect of the boundaries on the properties
of the chain.

It is convenient to express Hamiltonian (2.1) in terms of
raising and lowering spin operators designated by “+” and
“−”, respectively, i.e.,

S±
n = Sx

n ± iSy
n and σ± = σ x ± iσ y,

that obey the conventional spin commutation relations. Thus,
it can be easily seen that the ensuing Hamiltonian possesses an
invariant that is the z projection of the total spin � = S + σ of
the physical system, spin chain and qubit, i.e.,

�z = Sz + σ z.

It is associated to the global U(1) gauge symmetry S±
n →

S±
n e±iφ and σ± → σ±e±iφ , where φ is an arbitrary real con-

stant. Thus, by adding and subtracting the term μH0σ
z to

Hamiltonian (2.1), we end up with the invariant structure
−μH0�

z, which just shifts the energy scale, and after a sub-
sequent phase transformation, it adds up to the phase of the

state vector. Finally, the resulting Hamiltonian may be split
into two components

H + μH0�
z = H c + Hq, (2.2a)

where

H c = −J
∑

n

Sn · Sn+1 − A
∑

n

(
Sz

n

)2
(2.2b)

describes the magnetic properties of the Heisenberg spin chain
in the absence of the external field, and

Hq = [
(μ − ν)H0 − dzS

z
0

]
σ z − dxy

2
(S+

0 σ− + S−
0 σ+) (2.2c)

is associated to the qubit and its interactions with the external
field H0, as well as the chain.

Our main task here is to coherently modulate the qubit
state through manipulation of the state of the spin chain. Thus,
we find it more appropriate to work in the framework of the
Heisenberg picture with respect to Hamiltonian (2.2b) using
the transformation

|ψ (t )〉 → eiH ct |ψ (t )〉, (2.3a)

Hq → eiH ct Hq e−iH ct , (2.3b)

where |ψ (t )〉 stands for the time-dependent state vector. Then,
the transformed Hamiltonian takes the expression (2.2c) by
replacing the spin S0 with its time-dependent counterpart.

III. QUASICLASSICAL APPROXIMATION

The equations of motion of a spin sitting on the Heisenberg
chain are given by

i ∂
∂t Sn = [Sn, Hc]. (3.1)

For the ladder operators, we have

±i
∂

∂t
S±

n = −J
[
Sz

n(S±
n−1 + S±

n+1) − S±
n

(
Sz

n−1 + Sz
n+1

)]
+ A

(
Sz

nS±
n + S±

n Sz
n

)
. (3.2)

For the purpose of this paper, we assume that the quantum
number S is large enough to consider the quasiclassical limit
[39]. Therefore, we will work in the large-S approximation
where the physical properties of the spin chain obey the laws
of classical mechanics. In this case the back-action of the qubit
on the chain may be neglected. Such regime can always be
achieved in the large-S limit due to the fact that the spin-chain
component Hc scales as S2 while the qubit component Hq like
S. Moreover, we assume that the deviation of the spin from its
maximal projection Sz

n = S along the z axis is small enough.
Within this quasiclassical approximation, the components

of the spin operators transform into classical functions: S+
n =

Sαn, S−
n = Sα∗

n , Sz
n = S

√
1 − |αn|2. Substituting in (3.2),

we get

i
∂αn

∂t
= 2ASαn

√
1 − |αn|2

− JS[(αn+1 + αn−1)
√

1 − |αn|2

− αn(
√

1 − |αn+1|2 +
√

1 − |αn−1|2)]. (3.3)
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A similar equation is obtained for the corresponding complex
conjugate α∗. To solve (3.3), we look for solutions in the form
of amplitude-modulated waves, i.e.,

αn(t ) = ϕn(t )ei(kn−ωt ), (3.4)

where ϕn(t ) denotes the envelope of αn(t ), k the wave number,
ω the angular frequency of the carrier wave. Notice that the
phase of the functions αn(t ) is linear in both the position of
the spin and time by virtue of the approximation of small spin
deviations from their maximal projection along the z axis.

For further analysis, we employ the semidiscrete approach
[40–43], i.e., we treat the phase factor exactly and use a con-
tinuum approximation for the envelope ϕn(t ). This removes
the restriction for long carrier wavelengths and permits the
study of envelope solitons with arbitrary wave numbers inside
the Brillouin zone.

In the continuum limit, corresponding to a vanishing dis-
tance, say �x, between nearest-neighbor spins on the chain
with a large number of spins N , i.e., in the limit �x → 0 and
N → ∞, provided N�x remains finite, the discrete function
ϕn(t ) may be approximated by the smoothly varying time-
dependent real function ϕ(x, t ) describing the deviation of the
spin, located at a position x, with respect to the z axis. Then,
for wide excitations with width L � �x and an envelope
satisfying

[ϕ(x, t )]2 � 1, (3.5)

Eq. (3.3) transforms into the nonlinear Schrödinger
equation (NLSE)

i

(
∂ϕ

∂t
+ vg

∂ϕ

∂x

)
= (ω0 − ω)ϕ − bkS

∂2ϕ

∂x2
+ gkS|ϕ|2ϕ,

(3.6)

with ω0 = −2gkS the characteristic frequency of the magnon,
vg = 2SJ sin k the group velocity of the carrier wave, bk =
J cos k the dispersion coefficient, and gk = J (cos k − 1) − A
a nonlinear coefficient that incorporates the spin exchange
and anisotropy interactions that are both nonlinear. It is worth
mentioning that the sign of the quantity bkgk , that is a func-
tion of the anisotropy constant A and the wave number k,
determines the nature of the soliton solutions of NLSE (3.6).
Thus, we have bright solitons for negative values (bkgk < 0),
while for positive values (bkgk > 0) dark solitons may be
achieved. Bright and dark solitons, as exact solutions of the
NLSE (3.6), have been studied intensively over the last few
decades [44–47]. Notice that the ensuing soliton propagates,
with a velocity vg, over the distance L, during the period
T = L

vg
. Below, we will investigate numerically the stability

of the soliton structures, with the aid of the predictor-corrector
algorithm. Moreover, the accuracy of the computations is
controlled through the conservation of the envelope amplitude
squared. More details on numerical techniques for investigat-
ing the properties of bright and dark solitons can be found in
Ref. [48].

Within our quasiclassical approach in the Heisenberg pic-
ture complemented with the phase transformation

ei(kx−ωt ) σ z
, (3.7)

the time-dependent Hamiltonian (2.2c) reduces to the effec-
tive two-state Hamiltonian, given by

Hq(t ) = 1
2�(t )(σ− + σ+) + �(t ) σ z, (3.8a)

where

�(t ) = −dxySϕ(x, t ) (3.8b)

is the time-dependent coupling and

�(t ) = (μ − ν)H0 − dzS
√

1 − [ϕ(x, t )]2 + ω (3.8c)

is the time-dependent detuning.
Within the above mentioned quasiclassical approach, the

action of the soliton on the qubit is fully embodied in
the parameters �(t ) [Eq. (3.8b)] and �(t ) [Eq. (3.8c)]. From
the physical point of view, Hamiltonian (3.8a) represents a
two-level system perturbed under the action of the soliton.
Here the coupling �(t ) is related to the transition between
both levels and the detuning �(t ) stands for the difference
in energy between these levels. It is worth noticing that the
coupling �(t ) is proportional to the in-plane anisotropic pa-
rameter dxy times the envelope ϕ(x, t ), while the detuning
�(t ) is a linear function of the anisotropic coupling dz, the
external magnetic field, as well as the frequency of the carrier
wave.

To explore the dynamics of the effective Hamiltonian
(3.8a), we work in the standard spin basis of the qubit, start-
ing from the Schrödinger equation, and after some lengthy
but straightforward algebra, we end up with the Schrödinger
equation for the probability amplitudes C±(s), associated to
the states | ± 1

2 〉, given by

i
d

ds

[
C−(s)
C+(s)

]
=

[−(s) 1
1 (s)

][
C−(s)
C+(s)

]
. (3.9)

Here, we follow a standard procedure commonly used in
solving the dynamical problem of two-level systems [49,50].
It consists of finding a solution of the time-dependent
equations describing the evolution of the effective Hamilto-
nian (3.8a) with the aid of the reduced-time variable

s(t ) = 1

2

∫ t

0
�(u) du, (3.10)

and the Stückelberg variable

(s) = �[t (s)]

�[t (s)]
(3.11)

with initial conditions

C−[s(−ti)] = 0, C+[s(−ti )] = 1,

i.e., at t = −ti, the qubit points in the z direction.
We find this description of the considered two-level system

problem more convenient since a single s-dependent quantity
in the Hamiltonian matrix H (s) will make the subsequent
analysis more transparent, although it does not fully decouple
the Schrödinger equation (3.9).

IV. SOLITON-DRIVEN QUBIT DYNAMICS

We examine the effect of the two different sorts of soli-
tons, bright and dark, propagating through an anisotropic
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Heisenberg spin chain on the qubit a distance apart from the
spins. So far, we established that the corresponding general
problem reduces to the two-level system problem for the qubit
(3.9), where the soliton state characteristics are encoded in the
variables (3.10) and (3.11) through the coupling (3.8b) and the
detuning (3.8c).

A. Bright–soliton drive

When bkgk < 0, for an infinite chain subjected to the
boundary conditions |ϕb(x, t )|2 → 0 as x → ±∞, the solu-
tion of NLSE (3.6) is a bright soliton given by

ϕb(x, t ) = ϕb0 sech
x − vt

L
(4.1a)

with amplitude

ϕb0 = 1

L

√
2J cos k

J (1 − cos k) + A
(4.1b)

and frequency

ωb = ω0 − 2SJ
cos k

L2
. (4.1c)

That is, the soliton frequency is shifted relative to the linear
spin wave frequency ω0. Further, we may choose the wave
number k and soliton width L (L � �x) as running soliton
parameters of both bright and dark solitons. The domain of
existence of the bright soliton solution (4.1a) in the case of
an easy axis anisotropy (A > 0) is 0 � k < π

2 . Notice that
the soliton is at rest when k = v = 0. Bright soliton solutions
expressed by (4.1a) for a one-dimensional system of classi-
cal spins with nearest-neighbor Heisenberg interaction were
obtained and analyzed in details in Refs. [51,52].

The propagation of a bright soliton generated at initial time
t = 0 away from the qubit position has been investigated via
numerically solving the system of discrete equations of mo-
tion (3.3). We used a chain composed of 1000 spin sites, J =
S = 1, A = 3 and periodic boundary conditions (see Fig. 1).
It is easily seen that the bright solitary wave remains stable
during its evolution in time throughout the spin chain.

For a bright soliton propagating in the chain and a qubit
coupled to a single chain spin, the variables (3.10) and (3.11)
are explicitly given by

sb(t ) = �b0T

(
arctan e

t
T − π

4

)
(4.2a)

and

b(s) = − �b0

dxyS
ϕ̃b(s)−1 − dz

2dxy
ϕ̃b(s), (4.2b)

where the amplitude of the coupling (3.8b) is now
expressed by

�b0 = −dxySϕb0, (4.2c)

the time-independent term of the detuning (3.8c) reads

�b0 = (μ − ν)H0 − dzS + ωb (4.2d)

and

ϕ̃b(s) = ϕb[t (s)] = ϕb0 cos

(
π

2

s

s∞

)
. (4.2e)

FIG. 1. Time evolution of the square of the bright soliton solution
[ϕb(x, t )]2 given by (4.1a) using the parameters k = 0.015 708 and
L = 10 for S = J = 1 and A = 3. The numerical analysis demon-
strates that the soliton solution remains stable over time while
propagating throughout the ferromagnetic Heisenberg spin chain. In
the inset, we show the shape of the solitary wave as a function of the
position on the spin chain at the initial time t = 0.

In this case, we placed the qubit at x = 0, and expanded the
square root in the detuning (3.8c) in Taylor series up to the
first order with respect to the function ϕ̃b(s)2 ∝ ϕ2

b0 � 1. This
implies that when

|�b0| � 1
2 |dz|Sϕ2

b0, (4.3)

we can safely neglect the second term in (4.2b) to end up with

b(s) = �b0

�b0
sec

(
π

2

s

s∞

)
, (4.4)

that is identical to the Stückelberg variable of the Rosen-Zener
model [53] with coupling �b0sech( vt

L ) and time-independent
detuning (4.2d). Thus, within this approximation there is a
direct mapping of our model onto the Rosen-Zener one. Then,
the solution for the final time spin-flip probability is given by

P− = P−(+∞) ≈ sin2
(

π
2 �b0T

)
cosh2

(
π
2 �b0T

) . (4.5)

Whence, the transition probability exhibits oscillations with
amplitude cosh−2( 1

2π�b0T ) as a function of the zero-mode
interaction

∫ ∞
−∞ �b(t )e−i0t dt = π�b0T . With the proper

choice of control parameters, one may create superposition
states satisfying the inequality

|C−(+∞)| cosh

(
1

2
π�b0T

)
� 1,

given that condition (4.3) is fulfilled. However, a qubit flip for
�b0 �= 0 is not possible since the amplitude C−(+∞) decays
exponentially as a function of �b0T .

We remark that a control over the magnitude of the transi-
tion probability can be achieved on resonance, i.e., when

�b(t ) = 0, (4.6)
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then, we have

P− = sin2

(
π

2
�b0T

)
. (4.7)

Since the detuning is a time-dependent quantity, while we
assume that the tuning parameters are time independent,
the resonance condition (4.6) cannot be satisfied. Therefore,
we shall rather seek to achieve an effective on-resonance
regime. This requires to take into account the fact that the
term ϕ̃b(s)2 cannot be neglected and (4.3) does not need to
be fulfilled. To proceed further, we choose the coupling dz to
be a tunable parameter and split it into two components

dz = dz0 + dz1, (4.8a)

with the time-independent quantity

dz0 = 1
S [ωb + (μ − ν)H0], (4.8b)

obtained by setting �b0 ≡ limt→−∞ �b(t ) = 0. The detuning
time dependence, on the other hand, is effectively taken care
of via the expression

dz1 = dz0

2

(
ϕb0

η

)2

, (4.8c)

where η is a suitably chosen dimesionless running parameter
of the order of unity. Expression (4.8c) approximately fulfills
(4.6), which holds only during the time period (of the order
of T ) when the soliton interacts with the qubit, i.e., when a
transition takes place. At early and late times, in the absence of
interaction, the system is slightly detuned, altering nothing but
the phases of the amplitudes. The “relaxed” requirement (4.8)
provides a more accurate approximation to the on-resonance
regime (4.6) than the strict setting �b = 0, moreover, it allows
the use of the transition probability formula (4.7).

In general, the effective resonant coherent control can be
accomplished by demanding that

P− = ξ, 0 � ξ � 1 (4.9a)

yielding

π�b0T = ± 2 arcsin
√

ξ − 2pπ, p ∈ Z (4.9b)

for the zero-mode interaction. In particular, in order to achieve
properties, such as complete population transfer (qubit switch-
ing) P− = 1, complete population return (qubit switching with
consecutive qubit return) P− = 0, and equal superposition
P− = 1

2 , we require that the zero-mode interaction fulfills
π�b0T = (2p + 1)π, 2pπ (p �= 0), and (p + 1

2 )π , where
p ∈ Z, respectively.

To ensure the fulfillment of (4.9) we can choose the cou-
pling dxy to be a tunable parameter, that satisfies (4.2c) with
�b0 from (4.9b). To summarize, the manipulation of the values
of the spin chain–qubit coupling components dz [Eq. (4.8)]
and dxy [Eq. (4.2c)] at given soliton parameters allows to

FIG. 2. Effective resonant qubit switching dynamics. Upper
panel: probabilities for the qubit states, numerically obtained by
solving (3.9), are plotted P+(t ) in black and P−(t ) in blue.
The solid and dashed curves depict the exact and approximated
via [

√
1 − ϕ(t )2 ≈ 1 − 1

2 ϕ(t )2] probabilities, with correction deter-
mined by dz1 [Eq. (4.8c)]. The dashed-dotted curves correspond
to the noncorrected probabilities at dz1 ≡ 0. Lower panel: the cou-
pling �b(t ), (�b0T = −1), and the corrected detuning �b(t ) are
shown with dashed-dotted red and dashed-dotted green, respec-
tively. The parameters used for computations are S = 10, L = 10�x,
k = π

30 , μ = ν, JT = 4.783, AT = 47.834, dxyT = 2.243, dz1T =
0.051 with η = 1.372. The dimensionless time t/T is plotted on the
abscissa.

establish an effective on-resonance coherent control over the
state of the qubit.

The dynamics of the probabilities P±(t ) = |C±[s(t )]|2 for
the case of qubit switching at some specific values of the
soliton parameters is shown in Fig. 2. The necessity of the cor-
rection parameter dz1 expressed in (4.8c) is evident from the
comparison of the probabilities for the effective on-resonance
model with dz1 �= 0 and without correction (dz1 = 0), and
the exact probabilities numerically obtained from (3.9). It is
clearly seen that the correction term successfully cures the
deficiency introduced by solely using the static term dz0 in
Eq. (4.8b).

It is worth noting that the relative phase between the am-
plitudes C±(+∞) in the effective resonance regime is altered
and oscillates with time due to the correction term. In the
noncorrected probabilities the phase of the solution is time
independent. The relative phase in the superpositions of qubit
states contains an additional phase of 2ωbt as a consequence
of the phase transformation (3.7).

B. Dark-soliton drive

The dark-soliton solution of NLSE (3.6) that exists for
bkgk > 0 (A > 0 and π

2 < k � π ) with the amplitude taking
the same value at both ends of the chain, i.e., x → ±∞
reads

ϕd (x, t ) = ϕd0 tanh

(
x − vt

L

)
(4.10a)

with amplitude

ϕd0 = 1

L

√
− 2J cos k

J (1 − cos k) + A
(4.10b)
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FIG. 3. Time evolution of the square of the dark-soliton so-
lution [ϕd (x, t )]2 in (4.10a) computed with the set of parameters
k = π − 0.015 708 and L = 10 for S = J = A = 1. It is clearly
seen that the soliton preserves its shape while propagating along
the ferromagnetic Heisenberg chain. The inset shows the profile of
the solitary wave as a function of the position on the spin chain at the
initial time t = 0.

and frequency

ωd = ω0 + 2SJ
cos k

L2
, (4.10c)

where the second term describes the correction to the fre-
quency of the linear spin wave. Notice that at k = π , thus
v = 0, we have a static dark soliton. It is worth mentioning
that spin-wave dark solitons have been theoretically predicted
and experimentally realized [54–56].

We have investigated the evolution of a propagating dark
soliton numerically based on the discrete equations of motion
(3.3), and as in the case of bright soliton, it is generated at time
t = 0 away from the qubit position. Our numerical simulation
have been performed on a chain with 1000 spin sites with J =
S = A = 1 under periodic boundary conditions. Remark that
the dark solitary wave does not alter during the propagation
along the chain (see Fig. 3).

When a dark soliton propagates in the chain and the qubit
is coupled locally to a spin on the Heisenberg chain, the
variables (3.10) and (3.11), respectively, read

sd (t ) = sgn(t )
�d0T

2
ln cosh

(
t

T

)
(4.11a)

and

d (s) = − �d0

dxyS
ϕ̃d (s)−1 − dz

2dxy
ϕ̃d (s), (4.11b)

where the amplitude of the coupling (3.8b) now reads

�d0 = dxySϕd0,

while the time-independent term of the detuning (3.8c) is
given by

�d0 = (μ − ν)H0 − dzS + ωd

and

ϕ̃d (s) = −ϕd0

[
1 − e−2 f (s)

1 + sgn(s)
√

2e− f (s) sinh f (s)

]
,

with

f (s) = 2

�d0T
sgn(s)s.

In order to obtain an invertible transformation between
time t and the variable s [Eq. (3.10)] on the entire real axis,
we used the sign function in (4.11a). Moreover, it can be easily
seen that this transformation remains smooth.

Similar to the case of bright soliton, the qubit is set at
position x = 0, and the square root in the detuning (3.8c) is
expanded in Taylor series with respect to ϕ̃d (s)2. The second
term in (4.11b) is of order O(ϕ2

d0) compared to the first one,
and can be neglected given that the counterpart of (4.3) for
the dark soliton is fulfilled. Then, the problem reduces to the
study of a model with hyperbolic tangent coupling

�d (t ) = �d0 tanh t
T , (4.12a)

and constant detuning

�d (t ) = const. (4.12b)

This is the so called “tanh” model, that is exactly solvable and
its physical properties are well known [57]. In the following,
we will take advantage of the analysis of Ref. [57] to gain
insights into the effect of the dark soliton on the behavior
of the qubit. Let us point out that the model considered in
Ref. [57] is restricted to positive times, while here we extend
the study over the whole real time axis.

The probability P−(t ) of the qubit flip may take any value
in the interval [0,1] for suitably chosen control parameters.
For instance, it is possible to achieve a return of the qubit to
its initial state. Furthermore, at effective resonance �d = 0,
both a return to the initial state and a qubit switch are possible.
We will focus on the limiting cases of fast ( t

T � 1) and slow
( t

T � 1) solitons reflected by the behavior of the coupling’s
tanh function and resonance. These are of particular interest
since they provide analytical closed-form solutions in terms
of some elementary mathematical functions. For further con-
sideration, we assume that the interaction time of the soliton
with the qubit is symmetric with respect to the reference time
t = 0, except for the resonance case.

The fast soliton is characterized by a sgn(t )-dependent
constant coupling

�d (t ) ∼ tanh

(
t

T

)
≈ sgn(t ), t � T . (4.13)

The large-S assumption ensures the fulfillment of the above
condition that holds for a large set of combinations of the
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soliton’s parameters. After some lengthy, but straightforward,
computations, under the assumptions |�bT | � 1, |�b0T | �
1, �d0 ∼ �d and for some specific values of t , the leading
behavior of the transition probability takes the form

P−(t ) ∼ P0
−

[
sin2 χ (t )

2
+ 1

4
sin2 χ (t )

]
, (4.14)

where the amplitude and the phase read

P0
− =

(
2

�d0�d

�2
d0 + �2

d

)2

∼ 1

and

χ (t ) = −�d0t,

respectively.
A peculiar feature of the transition probability P−(t ) is

that it consists of the superposition of two oscillating time-
dependent components possessing different frequencies and
amplitudes χ (t ) and 1

2χ (t ). Equation (4.14) implies that this
behavior provides the opportunity to tune P−(t ) to a specific
preselected value, even close to unity. In this approxima-
tion, the transition probability P−(t ) tends to the Rabi model
probability with a jump through change of the sign of the
coupling.

In the regime where |�d T | is finite and |�d0T | � 1, we
have P−(t ) ∝ ( 1

2�d0T )2, and hence such regime is not of
interest when one needs to achieve an appreciable qubit-flip
probability.

Let us point out that the case |�dT | � 1 and finite |�d0T |
related to the zeroth order approximation of P−(t ) is contained
in the general resonance solution (4.17), which vanishes in a
symmetric time interval.

The limiting case T � t is typical for a slow soliton and,
hence, by a linear time-dependent coupling:

�d ∼ tanh

(
t

T

)
≈ t

T
, t � T . (4.15)

This behavior shows up as k → π . Then, the tanh model may
be mapped onto the Landau-Zener model rotated by π

4 that
has been investigated in details in Ref. [58].

We consider the regime of sufficiently large coupling am-
plitude, i.e., �d0 t2 � T and the two limiting cases: |�d T | �
2�d0t corresponding to a small detuning regime and |�d T | �
2
√

�d0T associated to the large detuning case. Here, the tran-
sition probabilities P−(t ) are oscillatory and can be controlled
to some extent by the soliton’s tunable parameters. Let us
point out that the case of large detuning regime corresponds
to the adiabatic solution. On the other hand, the case of weak
coupling regime �d0 t2 � T is not of interest due to the
negligibly small qubit-flip probability.

Finally, we will turn our attention to the on-resonance
(�d = 0) regime, when the variable (4.11b) reduces to the
second term only. Then, the detuning �d (t ) ∝ |ϕd (t )|2 � 1
may be neglected since it is almost zero in the region where
the tanh-shaped coupling changes its sign, and it is vanish-
ingly small elsewhere. In this effective on-resonance regime
the transition probability reads

P−(t ) ≈ sin2

[
1

2
�d0T ln

cosh(t/T )

cosh(ti/T )

]
. (4.16)

It can be well approximated by the resonance Rabi model
solution

P−(t ) ≈ sin2

(
�d0τ

2

)
, t, ti � T, τ = t − ti. (4.17)

Indicating that, the evolution of the qubit undergoes slightly
chirped oscillations with almost unit amplitude. Therefore,
a qubit switch [�d0τ = (2p + 1)π, p ∈ Z] and a return
(�d0τ = 2pπ, p ∈ Z) of the qubit to its initial state, and
superpositions of qubit states are possible to achieve for some
specifically chosen controllable parameters. In particular, the
choice of a symmetric time interval ti = t would always
lead to a return of the qubit because in resonance an anti-
symmetric coupling function in symmetric interval produces
�d0τ = 0.

V. CONCLUSIONS

Manipulating the state of a qubit is crucial to quantum
computing and quantum information processing. This may
be achieved with the aid of an external stimulus. Here we
consider the action of an anisotropic Heisenberg spin chain
on a qubit placed a distance apart to get rid of the effect of
decoherence (information loss) due to the backward effect of
the qubit on the spin chain. To achieve our goal, we work in
the large-spin approximation that allows us to map the original
chain-qubit Hamiltonian onto a two-level problem of a qubit
under the action of a propagating through the chain magnetic
solitary wave. Thus, we may take control over the qubit state
by tuning the soliton parameters. Here, we demonstrate the
possibility to control the qubit state through a bright soliton
or its dark counterpart. It is shown, among others, that the
qubit can be flipped and/or returned in its initial state, and an
equal superposition of qubit “up” and “down” states can be
generated.

In the case of a local interaction of the qubit with its closest
spin on the chain, the off-resonance and effective resonance
regimes are studied. In all cases, the considered problem is
mapped onto some exactly solvable models. To achieve an
effective resonance regime for a bright soliton, a fine tuning
of the z component of the qubit coupling is required, while in
the case of dark soliton this is not needed due to the smallness
of the coupling around the time origin.

Finally, we believe that such a scheme for control of qubit
by solitons may find application in systems such as magnetic
chains coupled to an artificially designed effective half-spin
or a coherent atomic spin chain coupled to an artificially
designed effective qubit.
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