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Interacting bosons in a triple well: Preface of many-body quantum chaos
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Systems of interacting bosons in triple-well potentials are of significant theoretical and experimental interest.
They are explored in contexts that range from quantum phase transitions and quantum dynamics to semiclassical
analysis. Here, we systematically investigate the onset of quantum chaos in a triple-well model that moves away
from integrability as its potential gets tilted. Even in its deepest chaotic regime, the system presents features
reminiscent of integrability. Our studies are based on level spacing distribution and spectral form factor, structure
of the eigenstates, and diagonal and off-diagonal elements of observables in relationship to the eigenstate
thermalization hypothesis. With only three sites, the system’s eigenstates are at the brink of becoming fully
chaotic, so they do not yet exhibit Gaussian distributions, which resonates with the results for the observables.
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I. INTRODUCTION

The interest in many-body quantum chaos has grown sig-
nificantly in recent years due to its close connection with
thermalization [1–3], scrambling of quantum information [4],
and the fact that many-body quantum systems can now be
studied experimentally in a controllable way with a variety
of experimental set-ups, from cold atoms and ion traps to
superconducting devices and nuclear magnetic resonance. In
studies of many-body quantum chaos, the focus is usually on
interacting lattice systems with many sites and many particles,
where the Hilbert space grows exponentially with the system
size. Here, instead, we investigate the onset of quantum chaos
in a system that has only three wells, but where the number
N of particles is large. The Hilbert space grows quadratically
with N , and as N increases, the system is brought closer to the
classical limit.

Fascinating phenomena are explored with systems of
interacting atoms in triple-well potentials, such as transistor-
like behaviors [5–7], entanglement generation [8,9], coherent
population transfer [10–13], fragmentation [14,15], quantum-
classical correspondence [16–22], quantum chaos [23–30],
superfluidity [31,32], localization [33], and caustics [34],
among others [35–47]. One of the most popular models
in this context is the three-well Bose-Hubbard model with
short-range interactions and local hopping terms [48,49]. This
system, with three or more wells, is in general not integrable
[19,21,27,30,50–53]. Integrability is achieved with two or
with an infinite number of wells.

A bosonic triple-well model with an integrable limit was
introduced in Ref. [54] and explored for switching devices
[55,56]. This model is a member of a family of quantum
integrable multiwell tunneling systems [54] that have the two-
site Bose-Hubbard model [57–59] as a leading constituent.
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Integrability requires the presence of long-range couplings,
which is in fact a physical condition for ultracold dipolar
bosons with large dipole moment, such as chromium, erbium,
or dysprosium. Dipolar cold atoms provide a rich platform for
the study of mesoscopic quantum superpositions [37], macro-
scopic cat states [60], quantum droplets [61], and supersolid
states [62].

By tilting the potential [55], the bosonic triple-well model
introduced in Ref. [54] becomes chaotic. We provide a sys-
tematic study of this transition based not only on spectral
correlations, but also on the structure of the eigenstates and
its consequences to the eigenstate expectation values and the
distributions of the off-diagonal elements of the number oper-
ator of each well, in close connection with the notion of the
eigenstate thermalization hypothesis (ETH).

Contrary to systems where the number of wells and parti-
cles are increased, the number of degrees of freedom in the
triple-well model is fixed. Increasing its number of bosons
does not enhance its chaotic features. The range of values of
the integrability breaking parameter that leads to chaos is not
extended for larger N’s and the eigenstates do not reach higher
degrees of ergodicity. Even for energies close to the middle of
the spectrum, for which a semiclassical analysis gives positive
Lyapunov exponents [63], the distributions of the components
of the eigenstates and of the off-diagonal elements of the
number operators are not Gaussian, which contrasts with what
happens for multiwell systems.

In nondriven systems, three wells constitute the turning
point for the onset of many-body quantum chaos. The transi-
tion from integrability to chaos does take place, but with some
reminiscence of integrability.

The paper is organized as follows. The model is described
in Sec. II. The analysis of the spectrum and level repulsion
are presented in Sec. III. The core of the work is the detailed
study of the structure of the eigenstates in Sec. IV, and its
consequence to the diagonal and off-diagonal elements of
the number operators in Sec. V. Conclusions are given in
Sec. VI.
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FIG. 1. Schematic representation of the three-well system described by Eq. (1) for both the integrable (a) and the nonintegrable (b) regime.
The red arrows indicate the intrawell and interwell interaction strength U , the black arrows indicate the tunneling amplitude J between adjacent
wells, and ε represents the tilt of the potentials of wells 1 and 3 with respect to well 2.

II. MODEL

The quantum system that we study consists of N bosons
in an aligned triple-well potential described by the following
Hamiltonian [55]:

Ĥ = U

N

(
N̂2

1 + N̂2
2 + N̂2

3

) + ε(N̂3 − N̂1)

+ 2U

N
(−N̂1N̂2 − N̂2N̂3 + N̂1N̂3)

+ J√
2

(â†
1â2 + â†

2â1) + J√
2

(â†
2â3 + â†

3â2), (1)

where N̂i = â†
i âi is the number operator of the well i, âi (â†

i ) is
the annihilation (creation) operator, U is the onsite interaction
strength and also the strength of the interactions between
wells, J is the tunneling amplitude between wells, and ε is the
amplitude of the tilt between the wells. We consider repulsive
interaction, U � 0.

Hamiltonian Eq. (1) conserves the total number of bosons,
N = N1 + N2 + N3, and when ε = 0, it commutes with
the parity operator. The matrix has dimension D = (N +
2)!/(2!N!). Our studies of the structure of the eigenstates
are done in the Fock basis, |n〉 = |N1, N2, N3〉. We denote the
eigenstates and eigenvalues of Ĥ by |α〉 and Eα .

A schematic representation of our model is shown in Fig. 1.
When ε = 0 [Fig. 1(a)], the model is integrable and solv-
able with the algebraic Bethe ansatz [54]. At this point, in
addition to energy and the total number of particles, our
three-degree-of-freedom model has a third independent con-
served quantity, Q = J2N3/2 + J2N1/2 − J2(a†

1a3 + a†
3a1)/2

[54,55]. The system becomes nonintegrable [Fig. 1(b)] when
the tilt is included. As discussed in Sec. III A, the model shows
signatures of quantum chaos when the tilt amplitude is of the
order of the hopping and interaction strengths, ε ∼ J,U .

In the absence of the potential tilt and of the interaction be-
tween wells, our model coincides with the bare Bose-Hubbard
model with three sites. Signatures of quantum chaos were
studied in this model, for example, in Refs. [19,30]. This case
and also the extended triple-well Bose-Hubbard model with
dipolar interaction [37] exhibit properties similar to those of
our system in the chaotic domain. Comparisons between the
three models are presented in Appendix A.

A. Parameters and density of states

In our numerical analysis, we fix J = 1, U/J = 0.7, and
vary ε for different numbers of particles. The choice of U is
justified with Fig. 2(a), where we show the eigenvalues as a
function of the interaction strength for ε = 0. When U = 0,
there is only hopping and the model is trivially solved. This
is usually referred to as Rabi regime [55] in analogy with
the double-well model [57,64]. As the interaction strength
increases and becomes larger than the hopping amplitude,
U/J > 1, energy bands are formed. The extreme scenario of
U � J is the Fock regime, where the eigenstates approach
the Fock states, and the model is again trivially solved. The
region where we can expect chaos to develop is therefore for
0 < U/J < 1, which explains the choice U/J = 0.7 indicated
with the red dotted vertical line in Fig. 2(a).

In chaotic systems, the eigenvalues are correlated and avoid
each other [65,66], while in integrable models (apart from the
picket-fence scenario [67–69]), the energy levels can cross.
This difference is clearly seen in Fig. 2(b), where we fix
U/J = 0.7 and vary ε/J . Level crossing happens when 0 �
ε/J < 1, but is avoided for ε/J � 1, where the “spaghetti
structure,” typical of repulsive energy levels, becomes visible.

In Fig. 3, we compare the density of states (DOS),

ν(E ) =
D∑

α=1

δ(E − Eα ), (2)

FIG. 2. Normalized eigenvalues as a function of the interaction
strength, U/J , for ε = 0 (a) and as a function of the tilt amplitude,
ε/J , for U/J = 0.7 (b). The vertical line in panel (a) marks the value
U/J = 0.7, which is used in panel (b) and in all of our subsequent
studies. In panel (b), the vertical lines mark the values ε/J = 0.7
(dotted line) and ε/J = 1.5 (dashed line) used in our studies of the
chaotic regime. In all panels N = 10.
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FIG. 3. Density of states for N = 270, U/J = 0.7, and ε/J = 0
(a), 0.7 (b), and 1.5 (c). The solid line in panel (c) is a linear fitting
for the left and right sides of the distribution, while the dotted line is
a Gaussian distribution fitting.

of the model Eq. (1) for three values of the tilt, ε/J = 0, 0.7,
and 1.5. In realistic interacting many-body quantum systems
with many degrees of freedom, such as spin models with many
excitations [70] or Bose-Hubbard models with many particles
and many sites [51,71], the DOS is typically Gaussian [72,73],
which can be explained using the central limit theorem. This
contrasts with our model [Figs. 3(a)–3(c)], which has few
degrees of freedom.

Systems with few-degrees of freedom, such as the Dicke
model [74], spin-1/2 models with less than four excitations
[75], and multiwell Kronig-Penney-like systems with few par-
ticles [76], often present shapes other than Gaussian. We see
in Appendix A that the bare triple-well Bose-Hubbard model
and the extended triple-well Bose-Hubbard model show dis-
tributions that, similar to our model in Fig. 3(c), are not yet
Gaussian, but get close to it. The DOS for the extended Bose-
Hubbard model and for our model are comparable, since both
have long-range couplings.

III. SPECTRAL CORRELATIONS

To quantify the degree of correlations between the eigen-
values, we study the level spacing distribution and the spectral
form factor. We show that for U/J ∼ 0.7, as ε in Eq. (1) in-
creases from zero, our triple-well model leaves the integrable
point (ε = 0) and moves towards the chaotic domain.

A. Level spacing distribution

The transition to quantum chaos can be verified with the
distribution P(s) of the spacings s between nearest unfolded
energy levels. For chaotic systems with real and symmetric
Hamiltonian matrices, as in Eq. (1), P(s) follows the Wigner
surmise [66,77], PW(s) = (πs/2) exp(−πs2/4), as obtained
also for the eigenvalues of full random matrices from a Gaus-
sian orthogonal ensemble (GOE). This distribution indicates
that the eigenvalues are correlated and repel each other, that
is, P(s = 0) = 0. In integrable models, the level spacing dis-
tribution is Poissonian, PP(s) = e−s, since the energy levels
are uncorrelated [78].

The analysis of the level spacing distribution requires un-
folding the eigenvalues and separating them by symmetry
sectors. The unfolding procedure corresponds to rescaling the
eigenvalues, so that the local density of states of the rescaled

FIG. 4. Level spacing distribution for N = 270 and ε/J = 0 (a),
ε/J = 0.7 (b), and ε/J = 1.5 (c), and chaos indicator β as a function
of the tilt amplitude for various N’s (d). In panels (a)–(c) the dashed
(solid) line represents the Poissonian (Wigner) distribution. In panel
(d) the green vertical line at ε/J = 1.5 marks where β gets the closest
to 1, indicating the Wigner distribution.

energies is 1. The separation by subspaces is necessary,
because eigenvalues from different symmetry sectors have no
reason to be correlated.

In Figs. 4(a)–4(c), we illustrate P(s) for ε/J = 0, 0.7, and
1.5, respectively. The Poissonian distribution is obtained for
the integrable point ε = 0 in Fig. 4(a), and the Wigner shape
is seen for ε/J = 1.5 in Fig. 4(c), as we had anticipated from
the “spaghetti structure” in Fig. 2(b). An intermediate picture
emerges for ε/J = 0.7 in Fig. 4(b).

The proximity of the level spacing distribution to the Pois-
sonian or the Wigner distribution can be quantified with the
chaos indicator β, which is obtained by fitting P(s) with the
Brody distribution [73] (see also Ref. [79]),

Pβ (s) = (β + 1)bsβ exp(−bsβ+1), b =
[
�

(
β + 2

β + 1

)]β+1

.

(3)

For chaotic systems, β ∼ 1 and for a Poissonian distribution,
β ∼ 0.

In Fig. 4(d), we show β as a function of ε/J for N = 60,
90, . . ., 210. As evident from the figure, a high degree of chaos
happens for ε/J ∈ [1.3, 1.7]. Notice that this range of values
does not grow as N increases, which contrasts with interacting
many-body quantum systems with many sites [80–82], where
studies of chaos indicators for different system sizes suggest
that in the thermodynamic limit, an infinitesimal integrability
breaking term may be enough to bring those systems to the
chaotic domain. In addition and also contrary to the results
for systems with many sites [81,82], larger values of N do not
take β closer to 1. The only effect that an increased value of
N appears to have for the triple-well model is to reduce the
fluctuations in the values of β for nearby ε’s, which concurs
with improved statistics.
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B. Spectral form factor

The level spacing distribution detects only short-range
correlations. To get a better idea of the degree of spectral
correlations, one may resort to other indicators of quantum
chaos, such as the spectral form factor,

SFF(t ) =
〈∣∣∣∣∣

D∑
α=1

f (Eα )e−iEαt

∣∣∣∣∣
2〉

, (4)

which captures both short- and long-range correlations. The
spectral form factor is used to study level statistics in the
time domain. When the eigenvalues are correlated as in ran-
dom matrices, SFF(t ) develops the so-called correlation hole
[83–88], which we further discuss below Eq. (11). The spec-
tral form factor is advantageous over the direct analysis of
the eigenvalues, because it does not require unfolding the
spectrum or separating the eigenvalues by symmetry sectors
[82,89], although averages, indicated by 〈.〉 in Eq. (4), are
needed, since this quantity is non-self-averaging [90,91].

A filter function f (Eα ), as used in Eq. (4), is often added to
the spectral form factor [92]. When f (Eα ) coincides with the
components of an initial state projected in the energy eigenba-
sis, the spectral form factor becomes the survival probability
[91]. In our analysis, we choose [93]

f (Eα ) = rαg(Eα )∑
β rβg(Eβ )

, (5)

where rα are random numbers from a uniform distribution in
the interval [0,1], the function g(E ) = ρ(E )/ν(E ), and ρ(E )
is a chosen energy profile, which, in our case, is a rectangular
function,

ρ(E ) =
⎧⎨
⎩

1
2σ

for E ∈ [Ec − σ, Ec + σ ],

0 otherwise,
(6)

of width σ , centered at the energy Ec, and with bounds at
Emin = Ec − σ and Emax = Ec + σ . The division of ρ(E ) by
ν(E ) is done using the linear fits for the DOS in Fig. 3(c). This
procedure compensates for variations in the density of states
and ensures the rectangular shape of the filter function [93].
As it will become clear in Sec. IV, the region where the eigen-
states are mostly chaotic happens for E/(JN ) ∈ [−0.2, 1]. For
this reason, we choose Ec/(JN ) = 0.5 and σ/(JN ) = 0.35.

In Fig. 5, we consider a large Hilbert space and show SFF(t )
in the chaotic region of strong level repulsion averaged over
various realizations of the random numbers rα and taking into
account also a moving time average starting at t ∼ 5/J , where
the fluctuations are large. The numerical results are presented
together with the analytical expression obtained following
Refs. [93–95],

Sanalyt
FF (t ) = 1 − 〈SFF〉

η − 1

[
η

sin2(σ t )

(σ t )2
− b2

( t

2πνc

)]
+ 〈SFF〉,

(7)

where

η = 〈r2
α〉

〈rα〉2〈SFF〉
= 4

3〈SFF〉

FIG. 5. Spectral form factor for three values of N . The lines with
fluctuations, which have lighter colors, represent numerical results;
the thin smooth lines give the analytical expression in Eq. (7); and the
dashed horizontal lines indicate the saturation point 〈SFF〉 in Eq. (11).
The symbols mark the time to reach the minimum of the correlation
(circle) and the saturation time (diamond). For the numerical results:
Averages over 500 random realizations and also running averages.

is the effective dimension associated with the chosen filter
function, and

νc = η

2σ
(8)

is the density of states at E = Ec, or equivalently, the inverse
mean-level spacing probed by the chosen energy profile [93].

The first term in the square brackets of Eq. (7) describes
the behavior of SFF(t ) at short times. It is obtained by writing
Eq. (4) as an integral,

SFF(t ) =
〈∣∣∣∣

∫ Emax

Emin

ρ0(E )e−iEt dE

∣∣∣∣
2
〉
, (9)

and substituting the energy distribution,

ρ0(E ) =
D∑

α=1

f (Eα )δ(E − Eα ), (10)

with the smoothed energy profile ρ(E ) from Eq. (6), which
can be done for large Hilbert spaces. The Fourier transform
in Eq. (9) gives sin2(σ t )

(σ t )2 . This function leads to a power-
law decay with exponent 2 due to the bounds of the filter
function [96–98].

The effects of the spectral correlations get manifested at
larger times, when the discreteness of the spectrum is resolved
and the correlations are then detected. This results in the dip
in Fig. 5 below the horizontal dashed line that represents the
infinite-time average

〈SFF〉 =
∑

α

| f (Eα )|2. (11)

This dip is known as correlation hole [83–88] and it does
not exist in models that present a Poissonian level spacing
distribution. In the case of GOE full random matrices, the dip
is described by the two-level form factor [77],

b2(t̄ ) =
{

1 − 2t̄ + t̄ ln(2t̄ + 1), t̄ � 1,

t̄ ln
(

2t̄+1
2t̄−1

) − 1, t̄ > 1.
(12)
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This function describes very well our numerical results and
confirms the chaoticity of our triple-well model.

By comparing the results for different numbers of bosons
in Fig. 5, it is clear that the time to reach the minimum of
the correlation hole and the time to reach saturation increase
with N . Analytical expressions for these times are given in
Appendix B 1. They are much shorter than those obtained for
interacting many-body quantum systems with many sites [95].

IV. EIGENSTATES

In chaotic quantum systems, the eigenvalues are correlated
and the eigenstates are uncorrelated. In this section, we ana-
lyze the transition to quantum chaos through the changes in
the structure of the eigenstates. As ε increases from zero and
the system moves from the integrable to the chaotic domain,
we expect the eigenstates away from the edges of the spec-
trum to become closer to the eigenstates of GOE full random
matrices [1,2]. The GOE eigenstates are random vectors with
components that are real and which correspond to independent
Gaussian random numbers satisfying the normalization condi-
tion. In realistic many-body quantum systems, a fraction of the
components of the chaotic eigenstates can be nearly zero, but
the nonzero components follow a Gaussian distribution [70].

To detect the onset of chaotic eigenstates, one can employ
measures of delocalization [79,99] and fractality [71] and
analyze the distributions of the components of the eigenstates.
These methods are, of course, attached to a basis choice. We
use here the Fock basis, |n〉, which are the eigenstates of the
number operators studied in Sec. V. This basis is in close
connection with cold-atom experiments, where dynamics are
initiated by preparing the system in Fock states. Nevertheless,
in Appendices B 3 and B 4, we also provide the analysis of the
eigenstates using as basis the eigenstates of the Ĥ (ε = 0) part
of the total Hamiltonian in Eq. (1). Our main conclusion that
the components of the eigenstates of the triple-well model do
not follow a Gaussian distribution holds for either choice of
basis.

Even the most delocalized eigenstates of our triple-well
model are not fully chaotic. A similar conclusion can be drawn
for the triple-well Bose-Hubbard model in Ref. [30]. The
anomalous scaling of the eigenstate-to-eigenstate fluctuations
of expectation values of local observables with the Hilbert
space found in that work might be attributed to eigenstates
that are not fully chaotic.

A. Delocalization measures

In Figs. 6(a)–6(c), we show the Shannon entropy, Sα
h , of

each eigenstate |α〉 written in the Fock basis |n〉,

Sα
h ≡ −

D∑
n=1

∣∣Cα
n

∣∣2
ln

∣∣Cα
n

∣∣2
, (13)

as a function of energy. In the equation above, Cα
n = 〈n|α〉.

This entropy measures the degree of delocalization of the
eigenstates in the chosen basis. If the eigenstate coincides with
a basis vector, then there is a single |Cα

n |2 = 1 and the state is
completely localized. In this case, Sα

h = 0. If the eigenstate is
homogeneously spread in the Hilbert space, being therefore
completely delocalized, then all |Cα

n |2 = 1/D and the entropy

FIG. 6. Shannon entropy Sh and overlaps of neighboring eigen-
states � as a function of energy for N = 90 (light lime dots) and
N = 270 (dark blue dots). In panels (a), (d) ε/J = 0, in panels (b),
(e) ε/J = 0.7, and in panels (c), (f) ε/J = 1.5. The solid horizontal
lines mark the results for GOE full random matrices. The dashed
vertical lines in panels (c), (f) mark approximately the center of the
chaotic region.

reaches its maximum value Sα
h = ln(D). An equivalent mea-

sure of delocalization is the participation ratio,

Pα
R ≡

D∑
n=1

1∣∣Cα
n

∣∣4 , (14)

whose figures are provided in Appendix B 2. The participation
ratio was also considered in the analysis of the triple-well
Bose-Hubbard model in Ref. [30].

For GOE full random matrices, the components Cα
n of

the eigenstates are independent real random variables from a
Gaussian distribution with weights |Cα

n |2 that fluctuate around
1/D, so SGOE

h ∼ ln(0.48D). In Figs. 6(a)–6(c), we show Sα
h

divided by SGOE
h .

In the integrable regime [Fig. 6(a)], we see a pattern of lines
that must be associated with periodic orbits, likely to be found
in the phase space of the classical limit of our model. This
subject will be discussed in detail in a future publication [100].
As ε/J increases, regions of chaos begin to emerge [Fig. 6(b)],
where the fluctuations decrease significantly and Sα

h reaches
values closer to SGOE

h , as in the vicinity of E/(JN ) ∼ 0.3 and
E/(JN ) ∼ 0.9. For ε/J = 1.5 [Fig. 6(c)], an evident chaotic
region emerges for E/(JN ) in the interval given approxi-
mately by [−0.2, 1]. This energy range explains our choice
for Ec/(JN ) = 0.5 in the analysis of the spectral form factor in
Eq. (6). We have also verified that the semiclassical analysis of
the model in this region of energy leads to positive Lyapunov
exponents [63].

Notice, however, that the regular pattern of lines seen in
Fig. 6(a) persists in the edges of the spectrum for Fig. 6(b)
and even for Fig. 6(c). Our system is clearly separated into
regions of chaos and nonchaos, independently of the number
of bosons. This is confirmed by comparing the results for
N = 90 (light color) and N = 270 (dark color) in Fig. 6(c).
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FIG. 7. Box-and-whisker plots for the Shannon entropy (a), over-
laps of neighboring eigenstates (b), and participation ratio (c) for
various N’s. The data range comprises eigenstates with energies
E/(JN ) ∈ [0.4, 0.6] from those presented in Fig. 6(c), where U/J =
0.7 and ε/J = 1.5. The median for each N is marked with the orange
line inside each box and the average with the diamond symbol.

In Figs. 6(d)–6(f), we show the quantity �α,α′ first pro-
posed in Ref. [70] to measure how similar two neighboring
eigenstates |α〉 and |α′〉 are

�α,α′ ≡
D∑

n=1

∣∣Cα
n

∣∣2∣∣Cα′
n

∣∣2
. (15)

In full random matrices, where the components |Cα
n |2 and

|Cα′
n |2 are uncorrelated Gaussian random numbers, �GOE ∼

1/D. Correlations result in values of �α,α′ > 1/D. Large val-
ues of �α,α′ and large fluctuations are found throughout the
spectrum of the integrable model [Fig. 6(d)], while in the
chaotic domain [Fig. 6(f)] they are restricted to the edges of
the spectrum, E/(JN ) < −0.2 and E/(JN ) > 1, where chaos
does not develop. Notice, however, that even in the chaotic
region, � > �GOE, which indicates that some level of corre-
lation among the components persists.

To get some insight on how the level of correlations depend
on N , in Figs. 7(a)–7(c), we select the eigenstates in the
chaotic region with energies E/(JN ) ∈ [0.4, 0.6] and study
how the averages over these states for 〈Sh〉/SGOE

h , 〈�〉/�GOE,
and 〈PR〉/PGOE

R change from N = 60 to N = 270. The analysis
is done with box-and-whisker plots [101], which displays
the data distribution through its quartiles. The horizontal line
drawn in the middle of the boxes indicates the median and the
whiskers (the lines extending from the boxes) indicate vari-
ability outside the upper and the lower quartiles. The averages
are marked with symbols.

The medians in Fig. 7 change as N grows. The fact that
the values for all three quantities are below those for ran-
dom matrices is understandable, since we are dealing with
the eigenstates of realistic systems with two-body couplings,
so some level of correlation always exists. It calls attention,
however, that the normalized averages for the entropy grows
with N [Fig. 7(a)], while the averages for � [Fig. 7(b)] and PR

[Fig. 7(c)] move further away from the random matrix results.
The overlaps of neighboring states and the participation ratio
are more sensitive to fluctuations in the tails of their distribu-
tions than the Shannon entropy, due to the logarithm present
in the latter [102].

We note that the growth of 〈�〉/�GOE and the decay of
〈PR〉/PGOE

R with N in Fig. 7 are not artifacts of the Fock basis.
They hold also for the basis corresponding to the eigenstates
of Ĥ (ε = 0) [not shown].

FIG. 8. Scaling analysis of the generalized inverse participation
ratio averaged over 300 eigenstates with E/(JN ) ∼ 0.5 for q = 0.5
in panel (a) and q = 1.5 in panel (b), and generalized dimension Dq

as a function of q in (c); ε/J = 1.5. In panels (a), (b), the solid line is
a linear fitting and the symbols are the numerical results obtained by
varying the dimension of the Hilbert space from D = 1 891 (N = 60)
to D = 36 856 (N = 270).

From Fig. 7(c), it is not possible to conclude whether
〈PR〉/PGOE

R tends to a constant for larger N’s or keeps de-
creasing. The latter would imply absence of fully developed
chaos, in contrast with what is observed for chaotic multiwell
systems, and would suggest multifractality. Motivated by this
discussion, the next subsection investigates whether the eigen-
states with energies in the most chaotic region, those with
E/(JN ) ∼ 0.5, might indeed be multifractal.

B. Multifractality

For a state that is extended, but not fully delocalized,
〈PR〉 is not proportional to PGOE

R . This can be indicated by
writing 〈PR〉 ∝ D−D2 , where D2 is known as the generalized
dimension. If D2 = 1, then the state is fully delocalized and
〈PR〉 ∝ PGOE

R . When D2 = 0, the state is localized in the cho-
sen basis. Contrary to these two cases, for 0 < D2 < 1, the
state is fractal, meaning that it is extended, but not ergodic.

The analysis of multifractality requires one further step. To
verify whether a state is multifractal, we study how the gen-
eralized dimension Dq, obtained from the generalized inverse
participation ratio, Iq

PR = ∑
n |Cα

n |2q, depends on q [103,104].
The generalized dimension is extracted from the scaling
analysis of 〈

Iq
PR

〉 ∝ D−(q−1)Dq . (16)

Multifractality implies that 0 < Dq < 1 and that Dq exhibits a
nonlinear behavior with q.

We extract the generalized dimension Dq for the eigen-
states with energy E/(JN ) ∼ 0.5 by analyzing how 〈Iq

PR〉
scales with the Hilbert space dimension D. The slope of the
curve for ln〈Iq

PR〉 as a function of ln D gives Dq, as illustrated
in Fig. 8(a) for q = 0.5 and Fig. 8(b) for q = 1.5, where we
vary the dimension of the Hilbert space from D = 1 891 (for
N = 60) to D = 36 856 (for N = 270).

Our results for Dq as a function of q are shown in Fig. 8(c).
The values of Dq are larger than 0.9, but always smaller than
1, and they are nonlinear in q, suggesting multifractality.
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FIG. 9. Distribution of the components Cα
n of an eigenstate with

energy E/(JN ) ∼ 0.5; ε/J = 1.5, N = 270. In panel (a), all com-
ponents are considered, while in panel (b), only those for which
−0.2 � en/J � 1. Solid line: Laplace distribution; dashed line: lo-
gistic distribution; dotted line: Gaussian distribution.

C. Distribution of components

The discussion above prompts a more detailed analysis of
the components of the eigenstates. We select a representa-
tive eigenstate |α〉 = ∑

n Cα
n |n〉 with energy E/(JN ) ∼ 0.5.

The distribution of its components in Fig. 9(a) shows a high
peak at Cα

n ∼ 0. This excessive number of zero amplitudes
comes mostly from the Fock states that have energy en =
〈n|H |n〉 outside the chaotic region, that is en/J < −0.2 or
en/J > 1. By removing the components associated with these
states, the peak is erased, as seen in Fig. 9(b). The remaining
Fock states constitute 59% of the Hilbert space, but they are
the main constituents of the selected eigenstate, leading to∑

n−0.2�en/J�1
|Cα

n |2 = 0.90.

The best distribution in Fig. 9(a) is Laplace. After re-
moving the peak, in Fig. 9(b), the best distribution becomes
logistic, which is more similar to a Gaussian, but exhibits
longer tails. A Gaussian distribution is what one would expect
for a fully chaotic state. This is the distribution obtained for
the components of the eigenstates of full random matrices
and also for chaotic systems with many wells and particles.
Thus, the analysis in Fig. 9 shows that the eigenstates of
our triple-well model do not reach fully chaotic structures. A
similar conclusion is reached when the zero-detuning basis is
employed, as shown in Appendix B 4.

The lack of ergodicity of the eigenstates is valid also for the
triple-well Bose-Hubbard models presented in Appendix A.
The distributions of the components of their most delocalized
eigenstates are also logistic.

V. EIGENSTATE THERMALIZATION HYPOTHESIS

Chaotic eigenstates explain and ensure the validity of the
eigenstate thermalization hypothesis (ETH) [80,105]. The
ETH says that when the eigenstate expectation values of a
few-body observable O, that is Oαα = 〈α|Ô|α〉, are smooth
functions of the eigenenergies, these values approach the re-
sult from the microcanonical ensemble, Omic, as the system
size increases [3]. The hypothesis is also attached to the con-
ditions of absence of degeneracies and Oαβ � Oαα , where
Oαβ = 〈β|Ô|α〉 are the off-diagonal elements of the observ-
able. These are the prerequisites for thermalization, where
the infinite-time average of the observable coincides with its
thermodynamic average.

FIG. 10. Eigenstate expectation values for (N1)α,α (blue), (N2)α,α

(red), and (N3)α,α (green) as a function of energy, for ε/J = 0.0 (a),
ε/J = 0.7 (b), and ε/J = 1.5 (c); N = 270. Average relative devi-
ation of the eigenstate expectation values of N̂1 with respect to the
microcanonical average (d) and the normalized extremal fluctuations
of the eigenstate expectation values of N̂1 (e) both as a function of the
integrability breaking term ε. In panels (d, e), the eigenstates lie in
the energy range [E/(JN ) − 
E/(JN ), E/(JN ) + 
E/(JN )] with
E/(JN ) = 0.5 and 
E/(JN ) = 0.1.

In the case of interacting many-body quantum systems, the
onset of chaotic eigenstates also leads to the Gaussian distri-
bution of the off-diagonal elements of few-body observables
[106,107]. In this section, we investigate the consequences
that the lack of Gaussianity of the eigenstates of our model
has on the diagonal and off-diagonal elements of the number
operator of each well. This observable, which is diagonal in
the Fock basis, is chosen for its experimental accessibility.

A. Diagonal elements

We start the analysis by investigating the diagonal elements
of N̂i in Fig. 10. As the integrability breaking term increases
from ε/J = 0 in Fig. 10(a) to ε/J = 1.5 in Fig. 10(c), the
fluctuations decrease significantly, reflecting the similar be-
havior of the eigenstates illustrated in Fig. 6. For the integrable
model in Fig. 10(a), there is a clear regular structure, and
(N1)αα = (N3)αα due to the Hamiltonian parity symmetry. In
Fig. 10(b), smaller fluctuations appear for E/(JN ) ∼ 0.3 and
E/(JN ) ∼ 0.9, as it happens also for the entropy in Fig. 6(b).
In Fig. 10(c), smaller fluctuations are seen throughout the
spectrum, consistent with the notion of ETH. Notice, how-
ever, that outside the chaotic region, for E/(JN ) < −0.2 and
E/(JN ) > 1, one still sees regular structures that resemble the
pattern of lines seen for the eigenstates in Fig. 6(c).

Close to E/(JN ) ∼ 0.5 in Fig. 10(c), the population inver-
sion, where (N2)αα (red) and (N3)αα (green) become larger
than (N1)αα (blue), is consistent with the tilt, which causes
states with occupation on site 2 and, especially, on site 3 to
have larger energies than states with population on site 1.
For very high energies, it is therefore natural that (N1)αα �
(N2)αα → 0. In contrast, for low energies, the distribution of
particles is relatively symmetric around (N2)αα , with N1 >

N2 > N3 and (N3)αα → 0, as expected.
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To study the fluctuations of an observable around the mi-
crocanonical expectation value, we consider the deviation of
its eigenstate expectation value,


micO =
∑

α |Oαα − Omic|∑
α Oαα

, (17)

with respect to the microcanonical result,

Omic = 1

N E ,
E

∑
α,

|E−Eα |<
E

Oαα, (18)

where NE ,
E is the number of energy eigenstates with energy
in the window 
E . We also study the normalized extremal
fluctuation [105],


mic
e O =

∣∣∣∣maxO − minO
Omic

∣∣∣∣, (19)

where maxO and minO are the maximum and minimum
values of Oαα . In Fig. 10(d) [Fig. 10(e)], we present the results
for 
micN1 [
mic

e N1] for eigenstates with E/(JN ) = 0.5 in the
window of width 
E/(JN ) = 0.1. The results for (N2)αα and
(N3)αα are similar (not shown).

Figures 10(d) and 10(e) are analogous to Fig. 4. They show
that the smallest fluctuations of the eigenstate expectation
values happen in the vicinity of ε/J ∼ 1.5, where the chaos
indicator β is also the largest. The fluctuations increase as the
system approaches both integrable limits, as ε/J → 0 (Bethe
ansatz) and as ε/J → ∞ (self-trapping).

At a fixed value of ε/J , one sees that 
micN1 in Fig. 10(d)
decreases slightly as the total number of particles increases. A
discussion of how 
micO scales with the dimension D of the
Hilbert for the triple-well Bose-Hubbard model is provided in
Ref. [30], where it is found that the scaling does not follow
expectations consistent with fully chaotic eigenstates. Similar
to our analysis of Fig. 4, the results in Fig. 10(d) suggest
that the reduction of the fluctuations for larger N’s is caused
by better statistics, not necessarily improved levels of chaos.
Contrary to multiwell systems, our model is limited to three
degrees of freedom.

Our results for the extremal fluctuations in Fig. 10(e) add to
the above discussion. We see that 
mic

e N1 does not decrease as
N increases. This contrasts with the case of interacting many-
body quantum systems with many sites, where the extremal
fluctuations do decrease as the number of particles and wells
increase. The extremal fluctuation is a more rigorous test of
the validity of the ETH [105], and by extension of the degree
of quantum chaos.

B. Off-diagonal elements

The strongest signatures of quantum chaos for our triple-
well model happen for ε/J ∼ 1.5, but the results for level
statistics (Fig. 4), structure of the eigenstates (Fig. 9), and
extremal fluctuations [Fig. 10(e)] indicate that even at this
point, full chaos is not achieved. Here, we investigate how
this saturated level of chaos, in particular the non-Gaussian
distribution of the eigenstates components in Fig. 9, gets re-
flected into the distribution of the off-diagonal elements of the
number operators.

FIG. 11. Distributions of the off-diagonal elements of the num-
ber operator of well 1, 〈α|N̂1|β〉, for 300 eigenstates with energy
E/(JN ) ∼ 0.5. The value of the integrability breaking parameter
is indicated in the panels. The distributions are shown for different
numbers of particles, N = 60 (green) to N = 270 (red) in increments
of 30.

The off-diagonal elements of N̂i is given by

〈α|N̂i|β〉 =
D∑

n=1

Cα
n Cβ

n 〈n|N̂i|n〉

=
N∑

n=1
〈n|N̂i|n〉=1

Cα
n Cβ

n + 2
N−1∑
n=1

〈n|N̂i|n〉=2

Cα
n Cβ

n + · · ·

+ N
1∑

n=1
〈n|N̂i|n〉=N

Cα
n Cβ

n . (20)

In the case of fully chaotic eigenstates, where Cα
n ’s are inde-

pendent Gaussian random numbers, the distribution of (Ni )αβ

should also be Gaussian. This is evident from the equa-
tion above. The product of independent random variables is
again an independent random variable, and according to the
central limit theorem, the sum of random variables from any
distribution follows a Gaussian distribution.

In Fig. 11, we show the distribution of the number oper-
ator of well 1 (for equivalent results for wells 2 and 3, see
Appendix B 5). As the integrability term ε/J increases from
zero [Fig. 11(a)] to 1.5 [Fig. 11(c)], the peak at (N1)αβ/N ∼ 0
decreases and the distribution gets more similar to a Gaussian,
although this shape is never achieved, independently of the
number of particles.

In Fig. 12(a), we select only the curve for N = 270 from
Fig. 11(c) and show that its best fit is a Laplace distribution.
Some explanations are now in order. The Laplace distribution
(more precisely, a modified Bessel function of the second
kind) describes the off-diagonal elements of single-particle
eigenstates in chaotic quadratic Hamiltonians [108]. In this
case, N = 1 and the only term that survives in Eq. (20) is the
last one. This term is a single product of two Gaussian random
variables, whose distribution is indeed Laplace. Our scenario
is completely different from this one, since in Eq. (20), we
have large sums of the products Cα

n Cβ
n .

Similar to our analysis in Fig. 9, a closer study of Fig. 12(a)
reveals that the peak at (N1)αβ/N ∼ 0 is caused by the
Fock states with energies outside the chaotic region. By
removing the contributions from the states with en/J < 0.25
and en/J > 0.75, the distribution of (N1)αβ becomes logistic,
as seen in Fig. 12(b), which is closer but not yet Gaussian. If,
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FIG. 12. Distributions of the off-diagonal elements of the num-
ber operator of well 1, 〈α|N̂1|β〉, for 300 eigenstates with E/(JN ) ∼
0.5, N = 270, ε/J = 1.5. The solid line indicates the best fit:
(a) Laplace, (b) logistic, and (c) Gaussian distribution. In panel (a),
just as in Fig. 11(c), all the components Cα

n of the eigenstates are
considered. In panel (b), only those components for which 0.25 �
en/J � 0.7 are taken into account. In panel (c), the components are
those from Gaussian random vectors.

however, we calculate Eq. (20) using eigenstates from GOE
random matrices, then we finally reach the Gaussian shape, as
expected from the central limit theorem and as illustrated in
Fig. 12(c).

The study of the off-diagonal elements corroborates our
claims that the triple-well model in Eq. (1) do not have
fully chaotic eigenstates. The same holds for the triple-well
Bose-Hubbard models presented in Appendix A, where the
distributions of the off-diagonal elements of the number oper-
ators are not Gaussian either.

VI. CONCLUSIONS

We investigated the spectrum, eigenstates, and occupation
numbers of an integrable bosonic triple-well model that be-
comes chaotic with the addition of a tilting potential. The
analysis of the structure of the eigenstates shows that for
values of the tilt where chaos emerges, there are still regions
of energy where the system remains nonchaotic. Furthermore,
even within the energy interval of chaos, the eigenstates
are not fully chaotic (ergodic), that is, their components do
not follow Gaussian distributions and the generalized dimen-
sions are smaller than 1, which suggest reminiscences of
correlations.

Diagonal and off-diagonal ETH, that is the proximity of
the infinite-time average of a local observable to the micro-
canonical ensemble and the Gaussian shape of the distribution
of the off-diagonal elements of this observable, are also good
indicators of the level of chaoticity of a many-body quantum
system. None of the two are entirely fulfilled by our model.
As we showed, the distributions of the off-diagonal elements
of the number operators are particularly sensitive to the lack
of Gaussianity of the eigenstates, which prevents those distri-
butions from becoming Gaussian.

Studies of the eigenstates and off-diagonal elements of
observables can reveal details about quantum systems that are
not always easily accessible from a direct study of their eigen-
values. In our specific case, the analysis of the eigenstates and
observables shows that three wells constitute the preface for
many-body quantum chaos.

A natural extension of our work is to examine how our
results change by increasing the number of wells, the role

played by the geometry of the system, and the addition of
nonlinear terms [109] or external drives [110,111].
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APPENDIX A: BOSE-HUBBARD MODELS

Bose-Hubbard models describe interacting spinless bosons
on a discrete lattice [48] and are experimentally implemented
with ultracold atoms in optical lattices [49]. In the case of
three wells, the bare Bose-Hubbard model is represented by
the Hamiltonian

Ĥ = U0

N
[N̂1(N̂1 − 1) + N̂2(N̂2 − 1) + N̂3(N̂3 − 1)]

+ J√
2

(â†
1â2 + â†

2â1) + J√
2

(â†
2â3 + â†

3â2), (A1)

where U0 is the onsite interaction, J is the hopping (tunnel-
ing) parameter, and N = N1 + N2 + N3 is the total number of
particles.

This system presents signatures of quantum chaos when
the number L of wells coincides with the number particles,
L = N � 5 [51]. However, as shown in Ref. [30], the model
is also chaotic for only three sites and N � 3. Notice that the
Hamiltonian has parity symmetry, so to study level statistics,
one should either break this symmetry, as done in Ref. [30], or
separate the eigenvalues by symmetry sector. An alternative is
to resort to the correlation hole, which detects level repulsion
even in the presence of symmetries [82,89].

The extended version of the Bose-Hubbard model,

Ĥ = U0

N
[N̂1(N̂1 − 1) + N̂2(N̂2 − 1) + N̂3(N̂3 − 1)]

+ U1

N
[N̂1N̂2 + N̂2N̂3 + 1

α
(N̂1N̂3)]

+ J√
2

(â†
1â2 + â†

2â1) + J√
2

(â†
2â3 + â†

3â2), (A2)

includes also interactions between the wells, which emerge
in dipolar gases. As discussed in Ref. [37], the parameter α

depends on the geometry of the trap and can vary between
4 � α � 8. The extended Bose-Hubbard model also has par-
ity symmetry through exchange of wells 1 and 3. Depending
on the choices of parameters and with some rearrangement
of the signs, Eq. (A2) coincides with the Hamiltonian of our
model in Eq. (1) in the integrable limit.

In Fig. 13, we show the DOS for the two Bose-Hubbard
models above for parameters that lead to approximate Wigner-
Dyson distributions. For N = 180 and the positive parity
sector, we get Brody factors β ≈ 0.8. Figure 13 can be com-
pared with the DOS for the chaotic triple-well model with
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FIG. 13. Density of states for (a) the bare Bose-Hubbard model
from Eq. (A1) and (b) the extended Bose-Hubbard model from
Eq. (A2). All eigenvalues from both symmetry sectors are con-
sidered; N = 180. The parameters used lead to Wigner-Dyson
distributions: (a) U0/J = 2.03, (b) U0/J = 1.85, U1/J = 1.2 and
α = 2

√
2. The solid lines are Gaussian fits.

the external tilt in Fig. 3(c). None of the distributions, that
in Fig. 3(c) or the ones in Fig. 13, have a Gaussian shape.

In Fig. 14, we show results for the Shannon entropy, com-
ponents of the eigenstates, and off-diagonal elements of N̂1

for both Bose-Hubbard models in the chaotic domain. The
plot for the Shannon entropy in Fig. 14(a), and Fig. 14(d)
can be compared with Fig. 6. Similar to our model, the Bose-
Hubbard models present a region of energy away from the
edges of the spectrum where the entropy is larger and has
smaller fluctuations. As we move closer to borders of the
spectrum, a pattern of regular lines similar to those in Fig. 6
appear.

We studied the distributions of the components of various
eigenstates in the chaotic region of the spectrum, with en-
ergy E/(JN ) ∼ 1 [E/(JN ) ∼ 1.4] for the bare Bose-Hubbard
model [extended Bose-Hubbard model]. In most cases, the

FIG. 14. Shannon entropy (a), (d), distribution of the compo-
nents of an eigenstate in the chaotic region (b), (e), and distribution
of the off-diagonal elements of the number operator of well 1 (c),
(f) for the bare Bose-Hubbard model (a)–(c) and the extended Bose-
Hubbard model (d)–(f) in the positive parity sector; N = 180. The
parameters are the same as in Fig. 13. In panels (a), (d) solid line
indicates the result for random matrix theory. In panels (b), (c), (e),
(f) the solid line represents the Laplace, dashed line is the logistic,
and dotted line is the Gaussian distribution. The best fit in panels (b),
(e) is the logistic distribution. In panel (b) E/(JN ) = 1.16, and in
panel (e) E/(JN ) = 1.33.

best fit is a logistic distribution, as illustrated in Fig. 14(b)
[Fig. 14(e)]. For the Bose-Hubbard models, we do not find an
excessive number of Cα

n ∼ 0 as in Fig. 9(a), but the tails are
still longer than in Gaussian distributions.

The lack of Gaussianity of the eigenstates result in the
non-Gaussian distributions of the off-diagonal elements of
the number operators. This is illustrated in Fig. 14(c) and
Fig. 14(f) for N̂1. Contrary to Fig. 12, none of the usual dis-
tributions, Laplace, logistic, Gaussian, or Lorentzian, capture
well the histogram for (N1)αβ .

APPENDIX B: ADDITIONAL RESULTS
FOR OUR TRIPLE-WELL MODEL

We leave to this Appendix some further details about
our triple-well model. This includes the dependence of the
timescales of the spectral form factor on N , a plot for the par-
ticipation ratio, and the distributions of off-diagonal elements
for the number operators of the three wells.

1. Timescales for the spectral form factor

The time tmin to reach the minimum of the correlation hole
and the time for the saturation of the spectral form factor
(Heisenberg time) can be derived using the analytical expres-
sion in Eq. (7).

a. Time for the minimum of the correlation hole

To determine the time tmin, we consider the envelope
of the initial oscillatory decay, sin2(σ t ) → 1, (the choice
sin2(σ t ) → 1/2 would also be suitable) and use the expres-
sion of the function b2[t/(2πνc)] for short times, t � 2πνc.
The latter is justified, because the minimum of SFF(t ) is the
point where the function [η sin2(σ t )]/(σ t )2, that causes the
decay of the spectral form factor, meets the b2[t/(2πνc)] func-
tion, which is responsible for bringing SFF(t ) up to saturation.
The time is then obtained from

dSanalyt
FF

dt
= 0,

4η

σ 2t3
min

= 1

πνc
+ 1

πνc(1 + tmin
πνc

)
− ln

(
1 + tmin

πνc

)
πνc

, (B1)

which can be solved numerically to determine tmin. By ex-
panding the equation above, using tmin � πνc, we get that

tmin =
(

2πνcη

σ 2

)1/3

=
(

16π

9〈SFF〉2σ 3

)1/3

. (B2)

Since 〈SFF〉 scales with the inverse of the dimension of the
Hilbert space, that is 〈SFF〉 ∝ N−2, and σ ∝ N , we have that
tmin grows with the number of particles as

tmin ∝ N1/3. (B3)

This is confirmed numerically for all N’s considered here, as
indicated by the values of tmin marked with circles in Fig. 5.

b. Saturation time

The saturation time, tS, corresponds to the time when SFF(t )
reaches its infinite-time average 〈SFF〉. At these very long
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FIG. 15. Participation ratio as a function of energy for N = 90
(light green dots) and N = 270 (blue dots). The solid horizontal lines
mark the results for GOE random matrices. The dashed vertical line
in panel (c) marks approximately the center of the chaotic region.

times, only the b2 function is relevant, and since it shows a

power-law behavior, b2( t
2πνc

) → π2ν2
c

3t2 , the complete satura-
tion is not well determined [95]. We define tS as the moment
when SFF(tS) = (1 − δ)〈SFF〉, where δ is a small value that
guarantees that SFF(t ) is already within the fluctuations around
the infinite-time average. This gives

tS
2πνc

ln

(
tS/πνc + 1

tS/πνc − 1

)
= δ

(η − 1)〈SFF〉
1 − 〈SFF〉

+ 1, (B4)

and using that tS � πνc, we arrive at

tS = πνc

2
√

δ
∝ N, (B5)

which shows that the saturation time grows linearly with N ,
as confirmed in Fig. 5, where tS is marked with diamonds.

It is instructive to compare tmin and tS for our model with
the same timescales for the Dicke model [93], which has two
degrees of freedom, and for the one-dimensional disordered
spin-1/2 model with many excitations [95], which has many
degrees of freedom and a Hilbert space that grows exponen-
tially with the number of sites. While for our model and
the Dicke model, tmin scales with the number of particles as
N1/3 and N1/2, respectively, and tS ∝ N , for the interacting
many-body spin system, tmin grows with the size of the Hilbert
space as D2/3 and tR ∝ D. Based on these timescales, it might
be possible to detect the correlation hole experimentally with
the triple-well model, but more unlikely to get this done
with many-body systems with many sites and short-range
couplings.

2. Participation ratio in the Fock basis

We show in Fig. 15 the participation ratio obtained for
eigenstates written in the Fock basis and divided by the result
for GOE random matrices, PGOE

R ∼ D/3. In comparison to the
results for the Shannon entropy presented in Fig. 6, we see
that the fluctuations are larger for the participation ratio.

The fluctuations decrease as the system moves from the in-
tegrable limit of Fig. 15(a) to the chaotic domain of Fig. 15(c),
but even for ε = 1.5, we still find regions closer to the edges
of the spectrum with patterns of lines similar to those found
in the regular regime. In addition, the participation ratio is
throughout smaller than PGOE

R and this does not improve as N
increases [cf. N = 270 (dark dots) with N = 90 (light dots)].

FIG. 16. Shannon entropy Sh in the Fock basis (light dots, as in
Fig. 6) and in the zero-detuning basis (dark dots) as a function of
energy for N = 90, U/J = 0.7, and ε/J = 0.7 (a) [ε/J = 1.5 (b)].
The solid horizontal lines mark the results for GOE full random
matrices. The dashed vertical line in (b) marks approximately the
center of the chaotic region.

3. Shannon entropy in the zero-detuning basis

When computing delocalization measures, the results de-
pend on the basis used. The basis choice is done according to
the question under investigation. Our studies of ETH focus on
the occupations of each well, which are observables measured
in cold atoms. It is therefore natural to perform the analysis of
the eigenstates in a basis, where N̂i is diagonal, that is, in the
Fock basis |n〉, as done in Sec. IV. In studies of the transition
to chaos, however, the most appropriate basis corresponds to
the eigenstates of the integrable part of the model considered.
In our case, this basis coincides with the eigenstates |φ〉 of the
Hamiltonian in Eq. (1) with zero detuning (ε = 0).

The purpose of Fig. 16 is to compare the Shannon en-
tropy calculated in the Fock basis |n〉 in Figs. 6(b) and 6(c)
[light points in Figs. 16(a) and 16(b)] with the Shannon en-
tropy computed in the zero-detuning basis |φ〉 [dark points
in Figs. 16(a) and 16(b)]. The data show that using this
zero-detuning basis does not qualitatively change the results
for ε/J = 0.7 and ε/J = 1.5. For ε/J = 0.7 in Fig. 16(a),
patches of high degrees of delocalization appear for both bases
for E/(JN ) ∼ 0.3 and E/(JN ) ∼ 0.9; and for ε/J = 1.5 in
Fig. 16(b), the chaotic region is evident for both bases for
E/(JN ) ∈ [−0.2, 1].

If we compare the value of Sh/SGOE
h as a function of ε/J ,

from ε = 0 to ε/J = 1.5, it grows dramatically for the zero-
detuning basis, since in this case, S|φ〉

h (ε = 0) = 0. One also
notices that S(|φ〉)

h (ε = 1.5)/SGOE
h reaches values closer to 1

for the zero-detunig basis than S(|n〉)
h (ε = 1.5)/SGOE

h for the
Fock basis. But the overall structure of the eigenstates for ε/J
in the chaotic region does not change much from one basis to
the other, as suggested by Fig. 16 and by the results below in
Fig. 17.

4. Distribution of the components of the eigenstates
in the zero-detuning basis

The distributions of all the components of an eigenstate
written in the zero-detuning basis and having energy close
to the middle of the chaotic region is given in Fig. 17(a). In
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FIG. 17. Distributions of the components Cα
n of an eigenstate

with energy E/(JN ) ∼ 0.5; N = 180, U/J = 0.7 and ε/J = 1.5. In
panel (a), all components are considered, while in panel (b), only
those for states with energy in [−0.2, 1] are kept. Solid line: Laplace
distribution; dashed line: logistic distribution; dotted line: Gaussian
distribution.

contrast with the case of the Fock basis presented in Fig. 9(a),
here we did not find an excessive number of zero valued
components. Yet, in Fig. 17(b), we follow the same procedure
used in Fig. 9(b) and kept only the components associated
with states that have energy in [−0.2, 1]. With that, the small
central peak in Fig. 17(a) is erased.

Similar to what is observed in Fig. 9(b), the best fit in
Fig. 17(b) [and even in Fig. 17(a)] is again logistic instead of
Gaussian. This indicates that the eigenstates of our triple-well

FIG. 18. Distributions of the off-diagonal elements of (a) N̂1,
(b) N̂2, and (c) N̂3 for 300 eigenstates with energy E/(JN ) ∼ 0.5;
N = 270, U/J = 0.7 and ε/J = 1.5. The fitting curves correspond
to Laplace (dashed line), logistic (dashed line), and Gaussian (solid
line) distributions.

model written in the zero-detuning basis, just as in the Fock
basis, are not ergodic.

5. Distributions of off-diagonal elements

In the main text, we show the distribution of the off-
diagonal elements of the number operators of well 1 in
Fig. 12(a). Here, we repeat this in Fig. 18(a) but show also
the distributions of the off-diagonal elements of the number
operators of well 2 [Fig. 18(b)] and 3 [Fig. 18(c)] in compar-
ison with Laplace, logistic, and Gaussian distributions. The
best fit for the three observables is the Laplace distribution.
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