
PHYSICAL REVIEW E 105, 034203 (2022)

Spontaneous symmetry breaking and the dynamics of three interacting nonlinear
optical resonators with gain and loss
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The dynamics of two active nonlinear resonators coupled to a linear resonator is studied theoretically. Possible
stationary states and their dynamical stability are considered in detail. Spontaneous symmetry breaking is found
and it is shown that this bifurcation results in the formation of asymmetric states. It is also found that the
oscillating states can occur in the system in a certain range of parameters. The results of the analysis of the
stationary states are confirmed by direct numerical simulations. The possibility of switching between different
states is also demonstrated by numerical experiments.
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I. INTRODUCTION

It is well known that a symmetric system always has a
symmetric solution. However, this solution must not necessar-
ily be dynamically stable and it can happen that a symmetric
system shows a stable asymmetric solution. In some systems,
the symmetric solution loses its stability, and switching to
an asymmetric state happens when one of the parameters
exceeds a threshold value. This is known as spontaneous
symmetry breaking (SSB). Such phenomenon is one of the
most fundamental processes in nonlinear science, that is why
it is under great attention in many fields of physics [1–5] for
decades. In particular, SSB appears in many nonlinear optical
systems, such as waveguide arrays [6,7], double-well systems
[8–10], grated waveguides [11–13], dual-core fibers [14,15],
and nonlinear metasurfaces [16,17].

Besides, this effect was found in systems of two- or three-
coupled nonlinear waveguides [18–24]. It was shown that
the systems of three interacting identical nonlinear couplers
[18,19] or of two interacting nonlinear and one linear couplers
[20,21,23] provide multistability caused by the appearance of
asymmetric states. These systems are especially interesting
from the perspective of all-optical device switching. The prob-
lem of two nonlinear conservative couplers interacting with a
linear conservative coupler is considered in Ref. [21] where
different regimes, including chaotic ones, are reported.

In our work we consider a similar system consisting of two
nonlinear resonators with linear gain (microlasers) saturated
by nonlinear (cubic) losses. We also assume that these active
resonators have conservative nonlinearity which makes their
resonant frequency dependent on the intensity of the field
inside the resonators. The active resonators do not interact
with each other directly but both of them are coupled to
another resonator situated between them. This resonator is
linear with some losses and its resonant frequency is detuned
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from the resonant frequency of the active resonators in the
linear regime. The coupling to this linear resonator introduces
the effective coupling between the active resonators. These
systems of three resonators we further refer to as trimers. In
the present work, we focus on the stationary states and the
symmetry breaking that occur in these trimers. We believe that
the results reported in the paper are of interest not only from
the point of view of applied mathematics but can be used to
design switchable multistable sources of coherent light or for
all-optical calculations.

Let us remark that the conservative analog of this trimer is
considered in Ref. [23] where the symmetry breaking is re-
ported. However, the presence of the dissipative terms affects
the bifurcation strongly and, what can be even more impor-
tant, makes some states to be attractors and thus allows the
switching between different stationary states. So the problem
of the formation and the switching between the states becomes
of interest. For example, below we show that the instability
of time-independent states can result in the switching of the
trimers to the states where the intensities of the fields in the
resonators experience periodic oscillations.

Let us briefly discuss possible physical realizations of such
systems. We believe that this can be achieved in the systems
of microlasers interacting because of the nonperfect localiza-
tion of the field inside the resonators. Thus, the resonators
separated by small gaps can interact through the evanescent
field of their eigenmodes. One of the promising materials for
the fabrication of such devices is perovskites that are capable
to provide large optical gain and thus obtain lasing in dielec-
tric resonators of small volumes and relatively large radiative
losses [25–27].

Another physical realization of the suggested system of the
oscillators is exciton-polariton systems where the polariton
condensation occurs in the interacting micropillars. These
systems are realized experimentally and have been studied for
more than a decade [28–33].

It is also worth mentioning that the effect known as bound
state in the continuum (BIC) has been actively studied in
recent times in optical systems including nonlinear ones
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FIG. 1. The sketch of the considered system.

[34–36]. Indeed, in the case of BIC, the radiation losses
disappear because of destructive interference that eliminates
the radiation field completely. In the proposed system the
coupling to the linear resonator introduces some additional
losses for the active nonlinear resonators. The important fact
is the effective losses seen by the active resonators depend
on the mutual phase of the field in the resonators. Indeed,
one can easily see that if the mutual phase is equal to π the
total driving force for the middle resonator is equal to zero. So
the passive linear oscillator is not excited and, consequently,
it does not contribute to the effective losses experienced by
the active resonators. This is similar to what happens in BIC
systems considered in Ref. [37].

The paper is organized as follows. In the next section we
discuss the physical system under consideration and introduce
a mathematical model describing the dynamics of the optical
fields in the resonators in terms of slow varying amplitudes.
In Secs. III–V we do a comprehensive analysis of the anti-
symmetric, symmetric, and asymmetric stationary states and
bifurcations taking place in the active trimers. In Sec. VI we
perform a numerical experiment demonstrating the formation
of states considered in Secs. III–V. Finally, in the Conclusion,
we briefly summarize the main findings reported in the paper.

II. THE PHYSICAL SYSTEM AND ITS
MATHEMATICAL MODEL

Let us start with the discussion of the physical system in
question. We consider three interacting resonators schemati-
cally shown in Fig. 1. Pairs of interacting resonators are often
referenced as dimers [22] and, analogously, arrays consisting
of three elements are called trimers. In this paper we adopt
this terminology [23].

The right and the left resonators have linear gain saturated
by nonlinear losses. From the experimental point of view,
each of these resonators can be seen as nanolasers pumped
above the threshold. These resonators also have Kerr (cubic)
nonlinearity so that their resonance frequencies depend on the
intensity of the field inside the resonators. Let us note that
the Kerr nonlinearity can be called conservative in the sense
that it does not change the number of photons whereas the
dependency of the photon absorption rate on the intensity of
the field we refer to as dissipative nonlinearity.

In this paper, we consider the case when the left and the
right resonators are identical. Thus, we consider only sym-
metric trimers. It is well known that a symmetry of the system
does not necessarily mean that the stationary distribution of
field in the system must be symmetric, too. For the conserva-
tive system the symmetry breaking due to Kerr nonlinearity
was considered in Refs. [18,23] and in the present work
we study spontaneous symmetry breaking in active optical
trimers with relatively strong coupling between the resonators.

To perform the analysis we describe the system by a
perturbation method known as the slowly varying amplitude

approach, see Refs. [38–40] for details. The method is based
on the assumption that the structure of the mode (field dis-
tribution) is defined mostly by the shape of the resonator
and the refractive indices of the materials of the resonators
and the surroundings. The eigenfrequencies and the fields
of the resonator eigenmodes can be found solving Maxwell
equations for the given geometry and materials. Normally the
linear spectrum contains several modes but we restrict our
consideration to the case when only one of the modes feels
positive linear gain and thus can be excited. We also assume
that the difference of the eigenfrequencies of the resonator
modes is that big that the interaction (because of Kerr non-
linearity and the other effects) between different modes of the
same resonator is negligible.

However, the modes of neighboring resonators can talk to
each other provided that the resonators are placed close to
each other so that the fields of the modes of the same or close
frequencies overlap in space. The interaction strength depends
strongly on the overlap of the modes and thus decays rapidly
with the distance between the resonators. This allows us to
account for the interaction between the nearest neighbors only.
So in our trimers, the right and the left resonators having the
same parameters do not interact directly but through a middle
resonator which is linear and passive and has the eigenfre-
quency slightly detuned from the frequency of the working
modes of the other resonators. All this gives us a possibility
to write a set of equations describing the dynamics of the
trimers in terms of the slowly varying amplitudes of the left
(B), middle (A), and the right (C) resonators:

∂t B = �B − β|B|2B + iα|B|2B + iδB + iσA, (1a)

∂tC = �C − β|C|2C + iα|C|2C + iδC + iσA, (1b)

∂t A = −γ A + iσ (B + C), (1c)

where γ is the losses in the middle resonator, � is linear
gain of the left and the right resonators, β characterizes the
strength of the nonlinear losses and α is the coefficient of
the conservative nonlinearity in active resonators, δ is the
detuning of linear resonance frequencies of the left and the
right resonators from the frequency of the middle resonator,
and σ is the coupling strength of the middle resonator to its
neighbors.

Let us acknowledge that the excitation of the linear res-
onator A depends on the mutual phase of the oscillations
in the resonators B and C. One can easily see that there is
a mode B = −C, A = 0 such that the middle resonator is
not excited. It is obvious that there must exist also a mode
B = C, A �= 0. It is instructive to rewrite the equations in the
form of the “symmetric” Us = B+C√

2
and an “antisymmetric”

Ua = B−C√
2

modes. In new variables the system of equations for
the trimer reads:

∂tUs = (� + iδ)Us + (iα − β )(K1Us + MUa) + i
√

2σA,

(2a)

∂tUa = (� + iδ)Ua + (iα − β )(K2Ua + M∗Us), (2b)

∂t A = −γ A + i
√

2σUs. (2c)
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where K1 = 1
2 (|Us|2 + 2|Ua|2), K2 = 1

2 (2|Us|2 + |Ua|2) and
M = 1

2U ∗
s Ua.

From these equations it is easy to conclude that in the
linear regime there are one antisymmetric mode and two sym-
metric modes with different eigenfrequencies ωa = δ − i�
and ωs± = 1

2 [δ + i(γ − �) ± i
√

(γ + � + iδ)2 − 8σ 2] corre-
spondingly. Let us remark, that here and below all frequencies
are defined as the detunings from the resonant frequency of
the middle resonator (A) of the trimer. It is important for us
that the losses of the antisymmetric mode are always lower
than the losses of at least one of the symmetric modes. This
is the consequence of the symmetry of the system which
provides that in the antisymmetric mode the middle resonator
is not excited at all.

With the increase of � the effective gain of the antisym-
metric mode changes its sign and becomes positive. Simple
algebra shows that at this � the effective gain for both sym-
metric modes is negative. So the antisymmetric mode exceeds
the lasing threshold first. At higher gain � the symmetric
mode also starts growing. Because of the nonlinearity, the
growth of the modes is saturated and a stationary state with
constant amplitude can form.

The stationary symmetric and antisymmetric nonlinear so-
lutions can be found in the form �Ws = (Us �= 0,Ua = 0, A �=
0)T and �Wa = (Us = 0,Ua �= 0, A = 0)T , respectively. Let us
note that these modes have the same symmetry as the linear
eigenmodes. However, in the nonlinear regime there may exist
the stationary states with all nonzero components Us �= 0,
Ua �= 0, A �= 0. We will refer to these states as hybrid nonlin-
ear states meaning that they can be seen as a sum of symmetric
and antisymmetric components. The next sections are devoted
to the detailed investigation of the nonlinear states.

III. THE ANTISYMMETRIC STATES OF THE TRIMERS

Now let us consider nonlinear stationary states in more
details. The fields in all resonators have the same frequency
and thus these states can be sought in a form A = A0eiωt , B =
B0eiωt , and C = C0eiωt , where A0, B0, and C0 are unknown
complex amplitudes and ω is the frequency of the state, which
is also a parameter to be found. The important fact is that
Eqs. (1a)–(1c) are invariant in respect to the transformation
α → −α, δ → −δ, A → −A∗, B → B∗, C → C∗, and ω =
−ω. This means that without loss of generality we can restrict
our consideration to either positive or negative sign of Kerr
nonlinearity coefficient α. We choose to set α to be positive.
Let us also mention that the coupling coefficient σ can also
be chosen to be positive without loss of generality because
of the invariance of the equations in respect to the transform
σ → −σ , A → −A.

Let us start with consideration of the antisymmetric states.
The nontrivial states of this symmetry exist for � > 0. The
amplitude and frequency of antisymmetric states can be
found analytically |B0| = |C0| = √

�/β and ω = α�/β + δ.
We found the areas of existence and analyzed the stability of
the state numerically.

To study the stability of the system we can look for a
solution in the form A = [A0 + a(t )]eiωt , B = [B0 + b(t )]eiωt ,
C = [C0 + c(t )]eiωt , where a, b, and c are small perturbations.
Substituting this in (1) we obtain the equations for the small
perturbations. In these equation we keep only terms that are
linear in a, b, and c. To proceed it is convenient to write
the equations for the perturbations in vector form introducing
�X = (Re(a), Im(a), Re(b), Im(b), Re(c), Im(c))T ,

�̇X = L̂ �X ,

where

L̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γ ω 0 −σ 0 −σ

−ω −γ σ 0 σ 0

0 −σ
� − βN (B0)
−2αM(B0)

ω − 2βM(B0)
−αK (B0) − δ

0 0

σ 0
−ω + αN (B0)
+δ − 2βM(B0)

� + 2αM(B0)
−βK (B0) 0 0

0 −σ 0 0
� − βN (C0)
−2αM(C0)

ω − 2βM(C0)
−αK (C0) − δ

σ 0 0 0
−ω + αN (C0)
+δ − 2βM(C0)

� + 2αM(C0)
−βK (C0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

is a linear operator governing the dynamics of the
small corrections to the resonators amplitudes, where
N (U0) = 3Re(U0)2 + Im(U0)2, M(U0) = Re(U0)Im(U0),
K (U0) = Re(U0)2 + 3Im (U0)2. The solution of this
equation is �X = ∑6

n=1 rn �Vn exp(λnt ) where λn and �Vn are
the eigenvalues and eigenvectors of L̂, and rn are constant
defined by the initial perturbation. One can see that if there
is at least one λ with positive real part then the perturbation
grows exponentially with time and thus the state is unstable.
The operator L̂ is 6 by 6 matrix and it is easy to find its
eigenvalues numerically. Our results of the stability analysis

are summarized in Fig. 2 where the instability growth rate
of the antisymmetric state is shown as a function of the gain
� and the detuning δ, the area of the existence of the stable
states is shown by black color.

One can see that for sufficiently large positive detunings
the state is stable for all values of gain �. However, for lower
detuning there may exist one or two regions of instability. The
bifurcation diagram for the stationary antisymmetric states �Wa

showing the dependence of the field intensity in both laser
elements I = |B|2 + |C|2 on gain � is shown in Figs. 3(a)
and 3(b) for δ = −2.25 by black color. On the same figure,
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FIG. 2. The growth rate of the unstable perturbations on the pa-
rameter plane of the detuning δ and gain � for antisymmetric states.
Black color corresponds to dynamically stable states (max[Re(λ)] �
0). The pink line corresponds to the detuning used for the calculation
of the bifurcation diagram shown in Fig. 3. Parameters are α = 0.5,
σ = 1, and β = 0.1.

the bifurcation diagrams of the states of the other kinds are
shown.

We studied the stability of the antisymmetric state
[Fig. 4(a)] and it is found that for negative δ of sufficiently
large absolute values both spontaneous symmetry breaking
and Andronov-Hopf bifurcations of supercritical and sub-
critical types take place. First, with the increase of � the
antisymmetric states become unstable against the perturba-
tions having the structure of the symmetric mode. The motion
of the eigenvalues governing the behavior of the weak pertur-
bations of the antisymmetric state is shown in Fig. 4(b). So we
can conclude that the symmetry breaking of the antisymmetric
state goes through a supercritical pitchfork bifurcation.

As a result of such bifurcation, the hybrid states with
nonzero components of both symmetric and antisymmetric
modes appear. The bifurcation curve for these states is shown
in Fig. 3 by green color. The hybrid states are character-
ized by nonequal field amplitudes of the resonators |B| �= |C|
and nonzero amplitude of the middle resonator A �= 0, see
Fig. 3(c), showing field intensity |A|2 in the middle resonator
as a function of the gain. We refer to these asymmetric states
as hybrid-I states and will consider them in more detail below.

The analysis shows that at a higher gain the antisymmetric
state restores its stability colliding with the hybrid-I states in
another pitchfork bifurcation. Let us mention that depending
on the detuning this bifurcation can be either super- or sub-
critical, see Fig. 6.

With the further increase of the gain, the antisymmetric
state gets destabilized through a supercritical Hopf bifurcation
which gives birth to a periodically oscillating state (a limit
cycle in the phase space). The motion of the eigenvalues for
this case is shown in Fig. 4(c). Finally, at even higher gain the
antisymmetric state restores its stability again through a sub-
critical Hopf bifurcation, see Fig. 4(a). Let us mention here,
that subcritical Hopf bifurcation also results in the appearing
of the limit cycle but in this case the limit cycle is unstable.

FIG. 3. Bifurcation diagram showing the dependence of field
intensity in (a) and (b) active resonators I = |B|2 + |C|2 and in
(c) passive resonator |A|2 of stationary states on the gain �. The
black line shows the intensity dependence for antisymmetric states;
the blue and magenta curves are for the symmetric states; the green
and brown lines show the bifurcation curve for the hybrid states. We
use dashed lines for the dynamically unstable states and solid lines
for the dynamically stable ones. The cyan curves show the maximum
amplitude of the periodic state. The red dots mark the spontaneous
symmetry bifurcation. Panels (d) and (e) show the dynamics of inten-
sity |A|2 and real/imaginary parts Re(A), Im(A) in time of periodic
state. Parameters are the same as in Fig. 2, but δ = −2.25.

Let us note that the oscillatory state bifurcating from the
antisymmetric one is periodic in terms of absolute values of
the fields amplitudes and quasiperiodic in terms of real and
imaginary components of amplitudes. To illustrate this we
performed numerical simulations and show the temporal dy-
namics of the intensity of the field and the temporal evolution
of the real and imaginary parts of the field in Figs. 3(d) and
3(e). Let us also mention here, that at some threshold linear
gain the dynamical state becomes unstable and the instability
switches the system into the symmetric state, which will be
considered below. The bifurcation curve of the oscillatory
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FIG. 4. (a) Bifurcation diagram of the antisymmetric state show-
ing the stability changes of the state. Four eigenvalues with the
largest real parts are shown in panel (b) just before (solid circles)
and after (open circles) the pitchfork SSB bifurcation. The motion of
the eigenvalues for the Hopf bifurcation is shown in panel (c). Red
arrows show the motion of eigenvalues during the bifurcation. Zero
eigenvalues associated with phase symmetry of (1) are marked by a
blue cross in both panels (b) and (c).

state showing the dependence of the maximum intensity of
the oscillations on the linear gain � is shown in Fig. 3 by the
cyan curve within the range of dynamical stability of the state.

The stability of the antisymmetric states becomes different
for the detunings δ > δcr1 ≈ −2.02. At δ > δcr1 no hybrid
states bifurcate from the antisymmetric state. When the de-
tuning exceeds another threshold value δcr2 ≈ 0.56 two Hopf
bifurcation merge and the antisymmetric state becomes stable
for all gain �.

IV. HYBRID STATES

Now let us return to the hybrid states. It is worth noting
here that the hybrid states appearing as a result of sponta-
neous symmetry breaking bifurcation are double degenerate.
In other words, if B = B0, C = C0, A = A0, and ω = ω0 is
a solution, then B = C0, C = B0, A = A0 is also a solution
having the same frequency ω0. The area of the existence and
the stability of these hybrid-I states are shown in Fig. 5.

First, we consider the bifurcations of the hybrid states for
large negative detunings δ < −2.26. As it is said above the
hybrid state branching off the antisymmetric state is stable

0 0.2 0.4 0.6 0.8 1-4

-3.6

-3.2

-2.8

-2.4

-2

Γ

δ

FIG. 5. The growth rate of the unstable perturbations on the
parameter plane of the detuning δ and gain � for hybrid-I states. The
region of parameters where chosen state does not exist is shown by
white color.

FIG. 6. Panels (a), (b), and (c) show the bifurcation diagrams of
the hybrid states for different detunings δ = −2.4, δ = −2.25, and
δ = −2.1. Panels (d)–(f) illustrate the motion of the eigenvalues with
the largest real parts governing the dynamics of the weak excitations
on the hybrid state shown in (a). The solid circles correspond to
the eigenvalues before and the open circles to the eigenvalues after
the bifurcations. The red arrows show the directions of eigenvalues
motions. The red curves in (a) show the maximum amplitudes of
dynamically stable limit cycles bifurcated from the hybrid stationary
state. The inset in (a) shows temporal dependencies of the field
intensities for the case of the oscillating regime.

in the vicinity of the bifurcation point. Then, at a threshold
gain, the hybrid state loses its stability via a supercritical Hopf
bifurcation, see Figs. 6(a) and 6(d) where the motion of the
eigenvalues with the largest real part is shown. As a result of
the bifurcation, a stable limit cycle appears. The bifurcation
curve for this oscillatory state is shown in Fig. 6(a) by the red
line, the dynamics of the field intensities in all three resonators
is shown in the inset of Fig. 6(a).

The stability of the hybrid state is restored at a higher
gain through another supercritical Hopf bifurcation [the eigen-
values motion is shown in Fig. 6(e)]. Then the hybrid state
undergoes fold bifurcation and becomes unstable [the eigen-
values motion is shown in Fig. 6(f)]. Finally, the hybrid states
merge with the antisymmetric states via a subcritical pitchfork
bifurcation.

With the decrease of the absolute value of the negative
detuning Hopf bifurcations of the hybrid-I states collide and
disappear at δcr3 ≈ −2.26. However, the fold bifurcation of
the states survives until δcr4 ≈ −2.14. The bifurcation curve
of the hybrid state for this case is shown in Fig. 6(b). For
higher detunings δ > δcr4 the fold bifurcation disappears and
the hybrid states merge with the antisymmetric state through
a supercritical pitchfork bifurcation, see Fig. 6(c). As one can
see, in this case, the hybrid states are stable within the whole
range of existence. Finally, the hybrid states cease to exist for
δ > δcr1.

V. SYMMETRIC STATES

Now let us consider the symmetric states B = C, A �= 0.
There may be two kinds of these solutions bifurcating from
the trivial state. The bifurcation curves for these states are
shown in Fig. 3 in blue and magenta colors, correspondingly.
The “symmetric-I” state appears at lower gain � compared
to the “symmetric-II” state and can be seen as a kind of the
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FIG. 7. The growth rate of the unstable perturbations on the
parameter plane of the detuning δ and gain � for (a) symmetric-I
and (b) symmetric-II states.

counterpart of the antisymmetric state. The absolute value of
the field in the middle resonator is higher in the “symmetric-I”
than in the “symmetric-II” state for the same gain �. For
the latter state, the ratio of the field intensity in the middle
resonator to the field intensity in B (or C) resonator goes
to zero with the increase of the gain. This explains why the
bifurcation curve of the “symmetric-II” state approaches the
bifurcation curve of the antisymmetric state at large �, see
Fig. 3(b).

The amplitudes of the fields can be found analytically from
the system (1) for the symmetric state. To do this we use the
fact that for the symmetric states the fields in resonators B
and C are the same and then the solution can be sought in
the form B = C = B0 exp(iωt ), A = A0 exp(iωt ). Substituting
this in (1) we obtain:

ω = α
�

β
+ δ + 2σ 2

β(γ 2 + ω2)
(βω − αγ ), (3a)

|B0|2 = �

β
− 2σ 2γ

β(γ 2 + ω2)
, (3b)

A0 = 2σ
ω + iγ

γ 2 + ω2
|B0|. (3c)

for the frequency ω and the amplitudes characterizing the
state.

The numerical results of the stability analysis for the
“symmetric-I” state are summarized in Fig. 7(a). So for δ �
δcr5 ≈ −6.1 “symmetric-I” state is stable until the gain � is
below a critical value, but the state loses its stability at higher
gain through subcritical Hopf bifurcation. Such instability re-
sults in the switching of the system to the antisymmetric state.
For the intermediate range of detunings δcr5 � δ � δcr6 ≈
0.12 the “symmetric-I” state becomes unstable at gains close
to the excitation threshold, too. This instability is also pro-
vided by subcritical Hopf bifurcation; its development leads
to the formation of the antisymmetric state. Finally, at δcr6

the stability region of “symmetric-I” state vanishes and then
the states are unstable within the whole range of existence
δ < δcr7 ≈ 9.91.

The symmetric-II states are also found numerically and it is
found that these states can also be stable for δ > δcr8 = −1.8,
the narrow tongue of stability is clearly seen in Fig. 7(b).
Decreasing linear gain from the region of stable solutions
leads to subcritical Hopf bifurcation and an unstable sym-
metric state relaxes to the antisymmetric state as a result of
the instability development. An increase of the gain leads to

spontaneous symmetry breaking bifurcation and appearing of
the hybrid states (double degenerated) of the second kind. The
bifurcation curve for hybrid-II states is shown in Fig. 3 by the
brown dashed curve. Such hybrid states are stable only when
bifurcating from the stable symmetric state and have a very
narrow stability range. Both symmetric-II and hybrid-II states
have small stability areas in the parameter space. On top of it,
these stable states have small basins of attractions. Therefore,
these states are less interesting from the physical point of view
because it seems to be a very hard problem to observe them
experimentally.

In the next section we report the results of numerical simu-
lations on the formation of the different nontrivial states from
weak noise and the switching between the states.

VI. DIRECT NUMERICAL SIMULATIONS
OF THE TRIMER DYNAMICS

The existence of a stable state means that this state can be
observed in experiments. However, the basin of attraction of
some states is so small that they can form only from the initial
conditions very close to the exact stationary solution. It can
happen to be difficult to create the necessary initial conditions
in the experiment and thus it can be a challenging task to
observe these states. Other states can form of the weak noise
(random complex values of small amplitude) taken as initial
conditions and one can assume that these states are much
easier to observe in experiments. In this section we study the
formation of the states from the weak noise and the switching
of the states caused by the change of the linear gain.

For this purpose, we perform numerical simulation of (1)
with � varying in time. The procedure of the simulations
is as follows. We fix the pump to a constant and perform
simulations for the time sufficient for the stationary state to
form. In the presented simulations this time is T = 20 000.
Then we increase the pump by a small step �� = 0.001 (or
�� = 0.01) and continue the simulation obtaining another
state. This way we can study how the behavior of the fields
changes when the pump is being changed step by step at times
t = N × 20 000, where N is an integer. The simulation is per-
formed with the classical Runge-Kutta method with time step
dt = 0.001. We set the detuning to be δ = −2.4 because this
choice of parameters allows observing the dynamics which is
of most interest in the context of the paper.

We start our numerical simulation with the near-zero value
of linear gain (� = 0.001) and take the initial conditions in the
form of weak noise. As it can be clearly seen from Fig. 8(a)
the amplitudes of the fields in both B and C resonators start
growing exponentially and the saturation of the growth results
in the formation of the antisymmetric state. In the lower part
of Fig. 8(a), one can clearly see that the middle resonator A
is not excited at all which is a signature of the antisymmetric
state. It complies well with the analysis of stationary states
summarized in Fig. 3 where one can see that at small values of
the gain the antisymmetric state is the only possible stationary
solution.

Now we take the antisymmetric solution already formed
from the noise and start increasing the gain. When the gain
� exceeds the threshold of the symmetry breaking bifurca-
tion then the system switches to a hybrid state with broken
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FIG. 8. (a) Evolution in time of the antisymmetric stationary state from the weak initial noise. (b) Switching of the system to the hybrid
state by increasing of gain from � = 0.109 to � = 0.11. (c) Appearing of the oscillating state from the hybrid state because of the increase
of linear gain to � = 0.165. (d) Switching between two types of oscillating states at � = 0.194. (e) Formation of oscillating state from the
antisymmetric state. (f) Switching of the oscillating state into the symmetric state. At each panel beginning of the time interval is shifted to
t = 0 for convenience of perception. Parameters are the same as in Fig. 2, but δ = −2.4.

symmetry, see Fig. 8(b) showing this switching. One can
see that in the final state the intensities of the field in res-
onator B and C are different and resonator A is excited. An
increase of � makes the intensity difference between two
active resonators larger and the intensity of passive resonator
A increases, too.

If the linear gain � exceeds the threshold value when the
hybrid-I state gets destabilized via supercritical Hopf (see
Sec. IV), then the system switches from the hybrid to oscil-
lating state, see Fig. 8(c). Since the oscillating state bifurcates
from the stationary state with broken symmetry, the ampli-
tudes of oscillations are different in active resonators. With
the increase of � the amplitude of the oscillations grows and at
some point, the oscillating state switches to another oscillating
state, see Fig. 8(d). In the new oscillating state, the amplitudes
of the fields in resonators B and C become equal.

It is interesting that by increasing the gain further one can
switch the system back to the oscillating state with different
amplitudes in resonators B and C and then to a nonoscillating
hybrid-I state. It is also observed in numerical simulations that
finally the hybrid states restore the symmetry and transform to
the antisymmetric state.

Now let us study the destabilization of the antisymmet-
ric states by the Hopf bifurcation. When the linear gain
increases the threshold value oscillations of the field inten-
sities start growing destabilizing the system. As a result of
this instability a new oscillating state forms, see Fig. 8(e).
For this oscillation state, the fields in the resonators B and
C oscillate in antiphase. Further increase of the gain leads
to destabilization of the oscillating state and the system
switches to the symmetric state, see Fig. 8(f). This state is
characterized by the high intensity of the field in middle
resonator A and is, of course, dynamically stable. We iden-
tify the symmetric state as the symmetric-I state described
above.

We did not manage to observe hybrid-II and symmetric-II
states in numerical simulations that can be explained by small
basins of attraction of these states. However, it is important
to note that the formation of the antisymmetric, hybrid-I, and
symmetric-I states can be easily observed in the system by the
appropriate manipulation by the linear gain �. At least three
different oscillating states can also be observed in the system.

VII. CONCLUSION

In this paper, we have considered the dynamics of the
system of two nonlinear active resonators coupled through
a linear passive one. The stationary states of such trimer are
investigated and classified in terms of symmetry in “antisym-
metric,” “symmetric,” and “hybrid” states. It is demonstrated,
that with an antisymmetric state the radiation is locked inside
the active resonators because of the destructive interference in
the linear one. This state is in a certain sense equivalent to the
effect of bound state in the continuum (or BIC) when the ra-
diative losses are completely compensated by the interference
effect. The symmetric state, on the contrary, excites the middle
resonator which can be seen as an analog of constructive in-
terference increasing the radiative losses in BIC-like systems.

Both antisymmetric and symmetric states are characterized
by equal absolute field amplitudes in active resonators. In
turn, the hybrid stationary states appear due to a symmetry
breaking bifurcation and thus they differ from the symmetric
and antisymmetric states having nonidentical field amplitudes
in the nonlinear resonators B and C. These hybrid states are
characterized by nonzero field in the linear resonator.

The dynamical stability and bifurcations of all the sta-
tionary states are analyzed in detail. It is demonstrated, that
the state with broken symmetry can bifurcate both from the
antisymmetric and the symmetric stationary states. However,
the hybrid state bifurcating from the symmetric state has
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small basin of attraction, and the region of the pump values
where such state is stable is very narrow, thus, to observe the
formation of the state one has to prepare the initial state of
the system very carefully. This could make the experimental
observation of the state to be a challenging problem difficult
to solve. The hybrid state bifurcating from the antisymmetric
state is stable and the system can be switched to this state
starting from random fields of low intensity. At some pump
intensities, the state loses its stability through Hopf bifurca-
tion resulting in the formation of the oscillating periodic state.

The formation of the antisymmetric state from weak noise
is demonstrated by direct numerical simulations. It is also
shown that changing the gain one can transform the antisym-
metric states to the hybrid state. By further manipulations with
the gain oscillating and the symmetric states can be obtained
in the system.

Thus, we can conclude the considered system consisting
of three interacting resonators allows us to observe dif-
ferent states and switch them in a controllable way. This
can be of interest from the point of view of the design of
the dynamically reconfigurable microlasers and find appli-
cations in the field of coherent light generation and optical
simulations.
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