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Transition from order to chaos in reduced quantum dynamics
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3Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland

4International Centre for Theory of Quantum Technologies, University of Gdańsk, 80-308 Gdańsk, Poland
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We study a damped kicked top dynamics of a large number of qubits (N → ∞) and focus on an evolution
of a reduced single-qubit subsystem. Each subsystem is subjected to the amplitude damping channel controlled
by the damping constant r ∈ [0, 1], which plays the role of the single control parameter. In the parameter range
for which the classical dynamics is chaotic, while varying r we find the universal period-doubling behavior
characteristic to one-dimensional maps: period-2 dynamics starts at r1 ≈ 0.3181, while the next bifurcation
occurs at r2 ≈ 0.5387. In parallel with period-4 oscillations observed for r � r3 ≈ 0.5672, we identify a
secondary bifurcation diagram around r ≈ 0.544, responsible for a small-scale chaotic dynamics inside the
attractor. The doubling of the principal bifurcation tree continues until r � r∞ ∼ 0.578, which marks the onset
of the full scale chaos interrupted by the windows of the oscillatory dynamics corresponding to the Sharkovsky
order. Finally, for r = 1 the model reduces to the standard undamped chaotic kicked top.
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I. INTRODUCTION

Studies on classical nonlinear systems became of a great
significance due to the numerous applications to physics,
chemistry, biology, and engineering [1]. One of the key
achievements of these early investigations consists in under-
standing of the route from regular to chaotic dynamics [2,3].
Furthermore, a link between chaotic dynamics, defined by
exponential sensitivity to initial conditions, and emergence
of fractal structures was established [4]. Discovery of the
Feigenbaum universality of the period doubling scenario in
one-dimensional systems led to insights concerning the non-
linear dynamics [5–7].

A lot of attention was paid to investigate properties of
quantum analogs of classically regular and chaotic systems
[8], as their investigations helped to reveal fine connections
between classical and quantum mechanics [9]. Although the
standard unitary quantum evolution is linear, so no expo-
nential sensitivity to initial conditions can be detected by a
state-vector overlap, there exist quantum phenomena which
reflect the presence of classical chaos. The study of these
properties, called quantum chaology [10] significantly im-
proved our understanding of the classical limit of quantized
chaotic systems, as numerous signatures of quantum chaos
were identified [11,12] and explained with help of the theory
of random matrices [13] and theory of periodic orbits [14].

Several studies of classically chaotic dynamics and the
corresponding unitary quantum evolution, which takes place
in a finite dimensional Hilbert space, where performed with

a model of kicked top [15]. It describes a spin undergoing
constant precession around a fixed magnetic field subjected
to a periodic sequence of nonlinear kicks. The corresponding
quantum system is described by a unitary evolution operator,
of a fixed dimension, d = 2 j + 1, where the quantum number
j is set by the squared angular momentum operator J2 and
eigenvalue j( j + 1). If the kicking strength parameter β is
large enough the classical dynamics on a sphere becomes
chaotic and the spectral properties of the unitary evolution
operator U can be described by an appropriate ensemble of
random unitary matrices [16]. An apparent contradiction be-
tween exponential divergence of neighboring trajectories of a
chaotic classical dynamical system and the linear evolution
of the corresponding quantum system can be explained by
the fact that the limit time to infinity, necessary to define the
Lyapunov exponent, and the limit j → ∞, corresponding to
the classical limit of quantum theory, h̄ → 0, do not commute
[12].

Investigations of quantized chaotic dynamics are relevant
not only for quantum theory but have also applications in sev-
eral branches of experimental physics [17]. In particular, the
model of quantum kicked top, motivated by an experimental
work of Waldner et al. [18], was later studied experimentally
[19,20]. The latter reference concerns nuclear magnetic res-
onance experiments simulating the model of coupled kicked
tops, earlier analyzed in [21–24].

A physical realization of any model quantum dynamics is
subjected to dissipation and decoherence. Although the orig-
inal model of the quantum kicked top is described by unitary

2470-0045/2022/105(3)/034201(9) 034201-1 ©2022 American Physical Society

https://orcid.org/0000-0002-9176-4510
https://orcid.org/0000-0002-6322-9131
https://orcid.org/0000-0002-2767-3251
https://orcid.org/0000-0001-8101-0240
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.034201&domain=pdf&date_stamp=2022-03-02
https://doi.org/10.1103/PhysRevE.105.034201


WALDEMAR KŁOBUS et al. PHYSICAL REVIEW E 105, 034201 (2022)

time evolution [15], it was later generalized [12,25] to take
into account also effects of dissipation and decoherence.

The model of quantum kicked tops was used to ana-
lyze properties of entanglement in coupled chaotic systems
[26–29]. Although the dynamics of the entire bipartite system
is unitary, the dynamics of the reduced state corresponding to
a given subsystem is nonunitary. Under the assumption of a
strong coupling between subsystems, classically chaotic dy-
namics of individual tops, and large dimension of the system,
the partial traces of the composite system display statistical
properties characteristic of random density matrices [30].

As the Heisenberg time evolution of an isolated quan-
tum state is unitary and linear, ρ → UρU †, some nonlinear
effects may arise due to interaction with other subsystems.
For instance, the quadratic term ρ2 corresponds to quantum
measurements performed on two copies of the same quantum
state ρ [31]. Other models include nonlinear transformations,
in which individual entries of the density matrix are squared
[32] and measurement based nonlinear rotation of the Bloch
sphere [33].

In this work we are going to analyze a system of N interact-
ing qubits, described in the Hilbert space of a finite dimension
d = 2N . Dynamics of a single qubit represents kicked top
in the chaotic regime (kicking strength β = 6), and all the
subsystems are coupled by an interaction Hamiltonian. There-
fore, the reduced dynamics of a qubit subsystem becomes
effectively nonlinear as N → ∞.

The aim of this contribution is to analyze properties of
the nonlinear dynamics of a single qubit, obtained by partial
trace over remaining subsystems, under a realistic assumption
that each subsystem is subjected to the amplitude damping
channel. We demonstrate that depending on the value of the
damping parameter r, equal for all subsystems, the dynamics
of the reduced state exhibits various forms of very complex
behaviors. In particular, we show under what conditions the
single qubit dynamics converges to a stable fixed point and
when bifurcation occurs. Furthermore, we demonstrate that
the period doubling scenario, originally observed for classical
systems [5,6], can be also applied to reduced dynamics of
a damped quantum system. In such a way the Feigenbaum
route to chaos can be now identified also for quantum sys-
tems. Apart from the standard period doubling scenario, inside
the period-2 and period-4 oscillatory dynamics, we observe
a self-similar structure of higher order bifurcation diagrams,
responsible for a small-scale chaos inside the attractor. Similar
structures were observed for the classical, two-dimensional
Hénon map [34].

A complementary goal of this project concerns investiga-
tion of the purely quantum regime of the model obtained for a
finite number of qubits. As fractal structures characteristic to
classical chaotic dynamics become blurred by quantum effects
[35–37], it is particularly interesting to observe how the fine
effects related to the classical period doubling scenario and
strange attractors get dominated by quantum effects. Let us
emphasize here that the model of damped coupled kicked
tops, investigated in this work, can be related to the physics
of many body systems and interacting cold atoms.

This work is organized as follows. In Sec. II we introduce
the model of damped coupled kicked tops and present some
of its properties. Fixed points of the system describing the

dynamics of single qubit, under the assumption of a large
total number N of qubits, is presented in Sec. III. In Sec. IV
we fix two parameters of the unitary evolution, so the system
is solely described by the parameter r governing the ampli-
tude damping, as 1 − r can be interpreted as the damping
strength. The fixed parameters are chosen in such a way that
in the unitary limit, r → 1, the system becomes equivalent
to the standard chaotic kicked top [15]. The period doubling
scenario for such a nonlinear quantum system is analyzed in
Sec. V while strange attractors are investigated in Sec. VI.
In Sec. VII we study bifurcation diagrams and identify the
windows of periodicity and in Sec. VIII we study Lyapunov
exponents. Concluding remarks are presented in Sec. IX,
while the derivation of the effective single-qubit dynamics in
the limiting case N → ∞ is provided in the Appendix.

II. MODEL QUANTUM SYSTEM

We consider a collection of N interacting qubits. Each
qubit is a two-state quantum system. One can think of N
interacting spins 1/2, however a particular physical imple-
mentation of the model is irrelevant for our discussion. The
qubits are initially in a symmetric product state ρ⊗N

0 and we
assume the following interaction Hamiltonian:

H = g

2(N − 1)

(
N∑

n=1

σ (n)
z

)2

, (1)

where σ (n)
z is the Pauli-Z operator acting on the nth qubit and g

determines the interaction strength. If g = O(1) and N → ∞,
then each qubit from this collection undergoes an effective
nonlinear unitary dynamics U (ρ)ρU †(ρ) (see the Appendix),
where

U (ρ) = e−i(β/2)〈σz〉σz , (2)

〈σz〉 = Tr{ρσz}, β = gτ , and τ is the time of interaction.
Next, we modify the evolution analyzed. The map is go-

ing to consist of three subsequent operations: (1) the above
nonlinear unitary evolution U (ρ), (2) local rotation of each
qubit about the y axis, and (3) amplitude damping to |0〉 state.
The operations (1) and (2) generate the standard kicked top
dynamics [15,16] described by

V (ρ) = e−i α
2 σyU (ρ), (3)

where α is the angle of rotation about the y axis. The total
evolution is given by

ρt+1 = K1V (ρ)ρtV
†(ρ)K†

1 + K2V (ρ)ρtV
†(ρ)K†

2 . (4)

In the above,

K1 =
(

1 0
0

√
r

)
, K2 =

(
0

√
1 − r

0 0

)
(5)

are the amplitude damping Kraus operators [38], which satisfy
the desired identity resolution,

∑2
i=1 K†

i Ki = I, equivalent to
the trace preserving condition. The parameter r ∈ [0, 1] de-
scribes the degree of damping in the model: for r = 1 the
operator K2 vanishes, so r′ = 1 − r plays the role of the damp-
ing strength.
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After t steps the state of the qubit is given by

ρt = 1
2 (1 + xtσx + ytσy + ztσz ), (6)

where vt = (xt , yt , zt ) is the corresponding Bloch vector. The
evolution of vt is determined by

xt+1 = √
r{[xt cos(βzt ) − yt sin(βzt )] cos α + zt sin α},

yt+1 = √
r[xt sin(βzt ) + yt cos(βzt )],

zt+1 = 1 + r{[yt sin(βzt ) − xt cos(βzt )] sin α + zt cos α − 1}.
(7)

III. FIXED POINTS AND BIFURCATIONS

Let v∗ = (x∗, y∗, z∗) denote a fixed point of the evolution
(7). It follows that

x∗ =
√

r sin α[1 − √
r cos(βz∗)]z∗

1 + r cos α − √
r(cos α + 1) cos(βz∗)

,

y∗ = r sin α sin(βz∗)z∗

1 + r cos α − √
r(cos α + 1) cos(βz∗)

,

z∗ = 1 + rz∗ cos(α) − r + rz∗ sin2(α)

× r − √
r cos(βz∗)

1 + r cos(α) − √
r[cos(α) + 1] cos(βz∗)

. (8)

This set of equations is not easy to solve, so we analyze them
numerically. We define

f (z∗, r, α, β ) = −z∗ + 1 + rz∗ cos(α) − r + rz∗ sin2(α)

× r − √
r cos(βz∗)

1 + r cos(α) − √
r[cos(α) + 1) cos(βz∗]

,

(9)

and the goal is to look for solutions to f (z∗, r, α, β ) = 0.
The next goal is to investigate the stability of these fixed

points. To do this, we use the standard approach [1], i.e., we
linearize the equations in a vicinity of a fixed point. More
precisely, consider a small deviation from a fixed point,

vt = v∗ + �vt . (10)

It follows that

�vt+1 ≈ Av∗�vt , (11)

where Av∗ is the Jacobian of the map at point v∗. A fixed point
v∗ is stable if the modulus of all the eigenvalues of Av∗ is not
greater than 1.

IV. STABILITY OF THE MODEL

From now on we fix the parameters of the model,

α = π

2
, β = 6, (12)

as this choice leads to chaotic dynamics of the undamped
kicked top in the classical limit [15]. Therefore, the system
is now described solely by the unitarity parameter r. Its be-
havior in the two limiting cases is clear. For r = 0 the system
undergoes damping to |0〉 in one step, whereas for r = 1 there
is no damping in the system; the evolution becomes unitary
and reduces to the chaotic dynamics of the standard kicked

FIG. 1. The plot of f (z∗, r) for: r = 0.6 (blue), r = 0.9 (orange),
r = 0.972 ≈ rb (green), r = 0.99 (red)

top. These two extreme values correspond to two different
behaviors—order and chaos. Interesting things should happen
in between and this is what we are going to examine below.

First, let us look for fixed points using f (z∗, r) =
f (z∗, r, π/2, 6)—see Eq. (9). We find that for 0 � r < rb ≈
0.9719 there is one fixed point, denoted by v∗

0. For rb < r < 1
there are three of them: v∗

0, v∗
1, and v∗

2. The additional two
appear in a saddle-node bifurcation. Finally, for r = 1 there
are two fixed points: v∗

0 and v∗
2. The fixed point v∗

1 disappears
due to discontinuity of f (z∗, 1) at z∗ = 0—see Fig. 1.

Through the analysis of the corresponding Jacobian

Av∗ =
⎛
⎝0 0 −√

r
−√

rs(z∗)
√

rc(z∗) −β
√

r[y∗s(z∗) + x∗c(z∗)]
rc(z∗) rs(z∗) βr[y∗c(z∗) − x∗s(z∗)]

⎞
⎠,

(13)
where

s(z∗) ≡ sin(βz∗), c(z∗) ≡ cos(βz∗), (14)

with β = 6, we find that for r � r1 ≈ 0.3181 the single fixed
point v∗

0 is stable, whereas for r > r1 it becomes unstable as
a result of a flip bifurcation [1]. On the other hand, for r > rb

the new fixed point v∗
1 is stable and v∗

2 is unstable. In addition,
for r = 1 the fixed point v∗

0 is unstable and the stability of v∗
2

cannot be determined due to the fact that all eigenvalues of Av∗
2

are equal to 1. However, since the value r = 1 corresponds to
the standard kicked top, we know that v∗

2 cannot be stable.
Finally, the value of z∗

0 equals 1 for r = 0 and monotonically
decreases to ≈0.639 for r = 1, whereas the values of z∗

1 and
z∗

2 are close to zero (z∗
1 < z∗

2 < 0.06).

V. PERIOD DOUBLING AND UNIVERSALITY

For r1 < r < rb there are no stable fixed points. At r = r1

we observe the onset of period-2 oscillations, i.e., after a
transient stage the state-space of the system becomes limited
to just two points and the evolution flips one point to the
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FIG. 2. The first 100 steps of the evolution of zt for different
values of r and a random initial state.

other. As r increases, the period of oscillations doubles. In-
terestingly, for rs1 ≈ 0.5378 < r < rs2 ≈ 0.5455 we observe
a departure from the standard period-doubling behavior and
emergence of higher-order bifurcation trees, which leads to a
weakly chaotic dynamics inside the attractor. A self-similar
structure is discussed in more details in Sec. VIII.

Examples of the evolution of zt for six different values of
r are presented in Fig. 2. The dependence of the asymptotic
behavior on the parameter r is summarized in Table I. The
value of r∞, at which the onset of chaos occurs, is hard to
determine in numerical experiments, since it is not easy to
distinguish between multiperiod oscillations and the irregular
chaotic dynamics. However, we are going to upper bound it in
a moment.

The phenomenon of period doubling was first observed in
the logistic map [5,6], but later it was found to occur in a large
family of iterated maps that are described by a single param-
eter r—see [3,7]. For all these maps one can define a value
rk that marks the onset of period-2k oscillations. Interestingly,
Feigenbaum found a universal scaling behavior, namely that

TABLE I. Asymptotic behavior of the model for different values
of r.

Range of r Behavior

0 � r < r1 ≈ 0.3181 stationary
r1 < r < r2 ≈ 0.5387 period 2
rs1 ≈ 0.5378 < r < rs2 ≈ 0.5455 self-similarity
r2 < r < r3 ≈ 0.5672 period 4
r3 < r < r4 ≈ 0.5729 period 8
r4 < r < r5 ≈ 0.5741 period 16
... ...
r∞ < r < rb ≈ 0.9719 chaos
rb < r < 1 stationary
r = 1 chaos (kicked top)

TABLE II. Estimation of the ratio (rn − rn−1)/(rn+1 − rn).

Ratio Value

(r2 − r1)/(r3 − r2) ≈7.74
(r3 − r2)/(r4 − r3) ≈5.0
(r4 − r3)/(r5 − r4) ≈4.75

the ratio rn−rn−1

rn+1−rn
tends to a constant value as n goes to infinity

lim
n→∞

rn − rn−1

rn+1 − rn
= δ = 4.669 201 609 . . . . (15)

The number δ is now known as the Feigenbaum constant.
The universal period-doubling behavior and the approxi-

mate convergence to the Feigenbaum constant was observed
in a number of one-dimensional physical systems and
mathematical models [5,6]. Below we demonstrate how an ap-
proximate convergence occurs in the three dimensional model
analyzed in Table II.

The exact convergence to δ cannot be observed due to finite
precision of numerical simulations. We estimated the values
of the parameters rk for k = 1 . . . 5 up to the order 10−4.
Assuming that

r5 − r4

r6 − r5
≈ δ, (16)

we can estimate r6 ≈ 0.5743. Since rk+1 − rk is rapidly de-
creasing, it is natural to conjecture that the value of r∞ is close
to r6. Indeed, numerical simulations estimate that r∞ < 0.578.

At first glance the bifurcation diagram presented in Fig. 3
is similar to the one of a logistics map and of other systems
that exhibit period-doubling behavior [2,3,5]. It also shows yet
another universal property of such systems—the emergence of
windows of periodicity, i.e., the existence of regions in which
the chaotic behavior ceases and periodic behavior re-emerges
for some narrow regions of r. We find two transparent such
windows in our system. The first one (narrow with five and ten

FIG. 3. Bifurcation diagrams for the Z coordinate of the Bloch
vector with cycles identified according to the Sharkovsky order. Note
secondary bifurcation diagrams located inside the four-cycle around
r ≈ 0.545 and magnified in Fig. 7.
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FIG. 4. Visualization of a strange attractor: 10 000 steps of a tra-
jectory stemming from a random initial state dynamics for r = 0.75.
Black points denote subsequent positions of the Bloch vector.

cycles) appears at the range 0.614 � r � 0.619 and the sec-
ond one (wider with three and six cycles) appears at the range
0.689 � r � 0.709. This is in agreement with the celebrated
Sharkovsky ordering, 1 ≺ 2 ≺ 4 ≺ 8 ≺ · · · ≺ 7 ≺ 5 ≺ 3; see
[39–41].

VI. CHAOS AND STRANGE ATTRACTOR

The onset of chaos occurs at r = r∞. Interestingly, for rb <

r < 1 the system returns to its stationary behavior. This is due
to a saddle-node bifurcation that gives rise to a stable fixed
point v∗

1. Except for two narrow regions (see next sections),
for r∞ < r < rb the asymptotic dynamics of the Bloch vector
takes place on an attractor that is a peculiar subset of a Bloch
sphere—see Fig. 4. This is a strange attractor whose fractal
dimension can be estimated with the help of the correlation
dimension [42] in the following way. We initiate the system
in a random state v0 and evolve it for 10 000 steps. Next, we
randomly choose a point w on an attractor and define a ball
of radius ε around it. We vary ε and count how many points
generated by the evolution are inside this ball. We repeat this
procedure for many different choices of v0 and w. Finally, we
calculate the average number of points C(ε) inside the ball.
This number should scale as [42]

C(ε) ∝ εd , (17)

where d is the correlation dimension of the attractor. There-
fore, we plot ln C against ln ε, which should be linear for some
range of ε, and estimate the slope—see Fig. 5. We found that
the correlation dimension of the strange attractor is less than
2. In particular, in the case r = 0.75 visualized in Fig. 4, its
value reads d ≈ 1.84.

VII. LYAPUNOV EXPONENTS
AND BIFURCATION DIAGRAM

To describe the analyzed dynamics quantitatively we will
use the standard notions of Lyapunov exponents and dy-
namical entropy. Given an initial Bloch vector v0 and an
initial displacement δv0 = u0|δv0|, Lyapunov exponent reads

FIG. 5. The estimation of the correlation dimension for r = 0.75.
The slope near the inflection point is best fitted with the linear
dependence given by ln C = 8.80 + 1.84 ln ε.

[3,43,44]

λ(v0, u0) = lim
n→∞

1

n
ln

∣∣A(n)
v0

· u0

∣∣, (18)

where

A(n)
v0

= Avn−1 · Avn−2 · . . . · Av0 , (19)

and v0, v1, v2, . . . is the trajectory. Alternatively

λ(v0, u0) = lim
n→∞

1

2n
ln

(
uT

0 · H(n)
v0

· u0
)
, (20)

where

H(n)
v0

= (
A(n)

v0

)T · A(n)
v0

. (21)

Numerical approximations give

λ(v0, u0) = 1

2n
ln

(
uT

0 · H(n)
v0

· u0
)

(22)

for large n. Choosing u0 along the direction of the eigen-
vectors of H(n)

v0
we obtain three Lyapunov exponents, λ1 �

λ2 � λ3. To evaluate them numerically we used the standard
procedure of Benettin et al. [45], described in [3].

According to the Pesin theorem, the dynamical entropy
HKS of Kolmogorov and Sinai is given by the sum of positive
Lyapunov exponents [44],

HKS =
J∑

j=1

λJ , (23)

where J is the largest index such that λ j > 0. For nonchaotic
systems HKS = 0 while chaotic system are defined by the
condition HKS > 0.

Changes of the dynamics of the system as a function of
the damping parameter r is shown in Fig. 6, in which the
bifurcation diagram can be compared with the Lyapunov ex-
ponents λi. As the second exponent λ2 of the system analyzed
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FIG. 6. Bifurcation diagram for the Z coordinate of the Bloch
vector (top) to be compared with Lyapunov exponents λ j plotted as
functions of the system parameter r. The onset of chaos corresponds
to positivity of the largest exponent λ1.

is not positive, the dynamical entropy HKS , equal to the sum
of positive exponents, reads in this case HKS = max{λ1, 0}.
Observe that the entropy is positive around r ≈ 0.7 at the right
part of the three-window, in which the secondary bifurcation
diagram leads to a small scale chaos. Furthermore, the system
becomes (weakly) chaotic also at r ≈ 0.545 as the secondary
bifurcation scenario visible in Fig. 7 appear in parallel to the
four-cycle of the main bifurcation tree.

VIII. SELF-SIMILARITY

In this section we discuss certain peculiar features of the
bifurcation scheme of the map (7) corresponding to the quan-
tum model studied in this work, which do not appear in the
universal Feigenbaum bifurcation scheme, applicable to clas-
sical, one-dimensional maps with a single extremum. In such
a standard scheme one observes higher order period doubling
scheme which occur inside the windows of regular motion.
For instance, the first bifurcation inside the period-3 window,
corresponding to logistic map, leads to oscillations of period 6
and eventually leads to a small-scale chaotic dynamics at the
right end of the window. Higher order diagrams can also be
found as an entire cascade of self-affine copies of the Feigen-
baum bifurcation trees can be identified—see the analysis of
the magnified diagrams presented in [46].

Observe, however, that the branching pattern presented in
Fig. 3 is qualitatively different, as the secondary bifurcation
tree localized for r ∼ 0.5455 appears in parallel to period-4
oscillations, before the main bifurcation scheme culminates
in the onset of large scale chaotic dynamics at r∞ ≈ 0.578. To
emphasize a self-similar structure of the investigated bifurca-
tion scheme we present the values of the Z component of the
Bloch vector in magnification of the region rs1 ≈ 0.5378 <

r < rs2 ≈ 0.5455 shown in Fig. 7(a). It is not difficult to iden-
tify ternary bifurcation structures visualized by red rectangle
at r ∼ 0.540.

FIG. 7. Magnification of Fig. 3: (a) secondary bifurcation di-
agrams occurring at r ≈ 0.544 inside the four-cycle of the main
bifurcation tree; (b) magnification of the rectangle from the upper
panel show a ternary structure at r ≈ 0.540.

Similar structures, observed for the classical, two-
dimensional Hénon map [34], can suggest that these effects
are due to the fact that the analyzed map (7) is three dimen-
sional. In Fig. 8 we present the behavior of the other two
components of the Bloch vector in the same range of the
damping parameter r. These results show that an analogous
self-similar Feigenbaum structure is characteristic to all three
components of the Bloch vector.

IX. CONCLUDING REMARKS

In this work we investigated the system of several interact-
ing qubits, which realize the dynamics of the kicked top and
undergo the damping described by two Kraus operators. In the
case where the classical system is fully chaotic, the dynamics
depends exclusively on the value of the damping parameter
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FIG. 8. Secondary bifurcation diagrams for the X and Y coor-
dinates of the Bloch vector visible in the same parameter range,
r ≈ 0.545, as shown in Fig. 7(a).

r ∈ [0, 1]. In the case r = 0 the system converges to the sta-
tionary state in a single step, while for r = 1 (no damping) the
quantum dynamics is unitary and the corresponding classical
dynamics is fully chaotic. Therefore, during the parameter
change we observe a transition from order to chaos. Further-
more, while decreasing the damping parameter we identify the
period doubling sequence characteristic to the Feigenbaum
scenario, originally discovered for one-dimensional dynami-
cal systems.

The model of coupled spins subjected to the damping chan-
nel introduced in this work provides an example of a quantum
system for which the route from regular to chaotic dynamics
according to the universal scenario of Feigenbaum is reported.
In contrast to the standard approach, in which the transition
occurs while the nonlinearity parameter is varied [3,14], in the
present study the corresponding classical dynamics is chaotic,
and the period doubling takes place as the system parameter
r is increased, so that the damping parameter r′ = 1 − r is
decreased.

Interestingly, the numerical value of the ratio δ between
consecutive values of the period-doubling values rn of the
damping parameter is close to the universal Feigenbaum con-
stant derived for one-dimensional nonlinear transformations
[5,6]. It is tempting to conjecture that the observed transition

from regular to chaotic dynamics is not restricted to this par-
ticular model of quantum dynamics, but it correctly describes
parametric changes of a wide class of many-body quantum
systems.

As the system parameter r is varied one can identify cycles
of oscillatory motion and windows of periodic motion ordered
according to the celebrated Sharkovsky order [39–41]. How-
ever, we observe also self-similar structures analogous to the
entire Feigenbaum bifurcation tree, localized in the regime of
stable motion with period 4. Such a behavior, earlier reported
for the two-dimensional Hénon map [34], can be related to the
fact that the investigated map (7) is three dimensional.
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APPENDIX

Here we show how an effective nonlinear dynamics
emerges in a multiqudit system. Consider a single qudit in a
state

ρ =
d∑

j,k=1

ρ j,k| j〉〈k| (A1)

and an observable

A =
d∑

j=1

a j | j〉〈 j|. (A2)

Next, consider N copies of state ρ, i.e., ρ⊗N and a collective
observable on N qudits,

A =
N∑

n=1

An, (A3)

where

An = 1⊗(n−1) ⊗ A ⊗ 1⊗(N−n). (A4)

We are going to consider the N qudit Hamiltonian

H = gA2 = g
N∑

n,m=1

AnAm. (A5)

This Hamiltonian is symmetric, i.e., it does not change under
the permutation of qudits. Let us analyze what is the dynamics
of a single qudit. The above Hamiltonian is symmetric, there-
fore each qudit evolves the same way, hence we can choose
any qudit, say the one corresponding to n = 1. We can rewrite
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the Hamiltonian as

H = g

(
N∑

n=2

A2
n + 2

N∑
n<m

AnAm

)

+ g

(
A2

1 + 2
N∑

n=2

A1An

)
= Henv + H1. (A6)

The part H1 acts on the qudit we are interested in, whereas
Henv acts on the remaining qudits, which can be treated as
an environment. Note that H1 and Henv commute (in general
all the terms within these Hamiltonians commute), hence the
dynamics of the system is given by

e−iHt = e−iHenvt e−iH1t , (A7)

where t is the time of the evolution. Therefore, the dynamics
of the qudit of interest is determined by

e−iH1t = ei(χ/2)A2
1 eiχA1A2 eiχA1A3 . . . eiχA1AN

= U1V2V3 . . .VN , (A8)

where χ = −2gt .
Let us analyze the action of VN on the first qudit (the one

we are interested in) and the Nth qudit [remember that both
are in the state ρ given by Eq. (A1)]

VN (ρ ⊗ ρ)V †
N =

∑
j,k, j′,k′

eiχ (a j a j′ −akak′ )ρ j,kρ j′,k′ | j〉〈k| ⊗ | j′〉〈k′|.

(A9)

After tracing out the Nth qudit we get

ρ (1) = TrN {VN (ρ ⊗ ρ)V †
N }

=
d∑

j,k, j′=1

p j′e
iχa j′ (a j−ak )ρ j,k| j〉〈k|

=
d∑

j,k=1

γ j,kρ j,k| j〉〈k|, (A10)

where p j′ ≡ ρ j′, j′ and

γ j,k =
d∑

j′=1

p j′e
iχa j′ (a j−ak ). (A11)

Next, let us consider the subsequent action of VN−1 on the
first qudit (now in state ρ (1)) and the (N − 1)-th qudit (in state
ρ)

VN−1(ρ (1) ⊗ ρ)V †
N−1

=
∑

j,k, j′,k′
eiχ (a j a j′−akak′ )γ j,kρ j,kρ j′,k′ | j〉〈k| ⊗ | j′〉〈k′|.

(A12)

After tracing out the (N − 1)-th qudit we get

ρ (2) = TrN−1{VN−1(ρ ⊗ ρ)V †
N−1}

=
d∑

j,k, j′=1

p j′e
iχa j′ (a j−ak )γ j,kρ j,k| j〉〈k|

=
d∑

j,k=1

γ 2
j,kρ j,k| j〉〈k|, (A13)

Therefore, it is clear that after applying the sequence of oper-
ations V2V3 . . .VN the qudit of interest is in the state

ρ (N−1) =
d∑

j,k=1

γ N−1
j,k ρ j,k| j〉〈k|. (A14)

Finally, let us assume that χ = θ
N−1 , where θ is some finite

constant, and that N → ∞. Note, that we define χ = −2gt ,
which means that either the time of interaction is short, or that
the interaction is weak. Here we follow the common choice
made in the kicked top literature (see, e.g., [15]) and assume
that the interaction scales as 1/N . We get

lim
N→∞

γ N−1
j,k

= lim
N→∞

(
d∑

j′=1

p j′e
i[θ/(N−1)]a j′ (a j−ak )

)N−1

= lim
N→∞

(
d∑

j′=1

p j′

(
1 + i

θa j′ (a j − ak )

N − 1
+ O(N−2)

))N−1

= lim
N→∞

(
1 + i

θ〈A〉(a j − ak )

N − 1
+ O(N−2)

)N−1

= eiθ〈A〉(a j−ak ). (A15)

Therefore

lim
N→∞

ρ (N−1) =
d∑

j,k=1

eiθ〈A〉(a j−ak )ρ j,k| j〉〈k|, (A16)

hence in the limit N → ∞ the sequence of operations
V2V3 . . .VN becomes an effective single-qudit nonlinear oper-
ation

lim
N→∞

V2V3 . . .VN ≡ Vnl = eiθ〈A〉A. (A17)

Moreover, in the limit N → ∞ we obtain

lim
N→∞

U1 = lim
N→∞

ei θ
2(N−1) A2

1 = 1, (A18)

therefore we conclude that in the limit of large N and weak
interaction the dynamics of each single qudit is effectively
governed by a nonlinear transformation

VnlρV †
nl = eiθ〈A〉Aρe−iθ〈A〉A. (A19)
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