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Self-gravitating clusters of Bose-Einstein gas with planar, cylindrical, or spherical symmetry:
Gaseous density profiles and onset of condensation
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We calculate density profiles for self-gravitating clusters of an ideal Bose-Einstein gas with nonrelativistic
energy-momentum relation and macroscopic mass at thermal equilibrium. Our study includes clusters with
planar symmetry in dimensions D = 1, 2, 3, clusters with cylindrical symmetry in D = 2, 3, and clusters with
spherical symmetry in D = 3. Wall confinement is imposed where needed to prevent escape. The length scale
and energy scale in use for the gaseous phase render density profiles for gaseous macrostates independent of
total mass. Density profiles for mixed-phase macrostates have a condensed core surrounded by a gaseous halo.
The spatial extension of the core is negligibly small on the length scale tailored for the halo. The mechanical
stability conditions as evident in caloric curves permit multiple macrostates to coexist. Their status regarding
thermal equilibrium is examined by a comparison of free energies. The onset of condensation takes place at a
nonzero temperature in all cases. The critical singularities and the nature of the phase transition vary with the
symmetry of the cluster and the dimensionality of the space.
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I. INTRODUCTION

In 1907, when Emden’s work on Gaskugeln was published
[1], the atomic nature of matter had barely escaped from
controversy. The thermodynamics of self-gravitating systems
has not ceased to fascinate ever since [2–4]. The pioneering
work of Antonov [5] considered an isolated system of non-
relativistic classical particles in gravitational interaction with
given total mass M and energy E , a reasonable starting point
to model stellar systems including globular clusters. Micro-
canonical equilibrium states are obtained by maximizing the
Boltzmann entropy S at fixed mass M and energy E by using
the notion of most probable macrostate [6]. This leads to the
mean-field Boltzmann distribution which is self-consistently
coupled to the Poisson equation.

The Boltzmann-Poisson equation was previously studied
in the context of isothermal stars [1,7]. It can be reduced
to the Emden equation and requires a numerical analysis.
Antonov [5] introduced wall confinement (at radius R), which
is necessary to stabilize finite-mass solutions of the Emden
equation against escape.

Antonov [5] also introduced the widely used density con-
trast, R .= ρ0/ρ(R) as a key parameter for wall-confined
clusters and determined, by analyzing second variations
of the entropy S, the condition R < 709 for the stabil-
ity of solutions of the Emden equation against a col-
lapse. This line of work was extended by Lynden-Bell
and Wood [8], who calculated the energy E (R) of so-
lutions and analyzed the stability of clusters using cri-
teria based on the Poincaré turning point argument [9].
They found stability for E > Ec = E (Rc) = −0.335 GM2/R
and R < Rc = 709, thus confirming Antonov’s prediction.

The instability for R > Rc named gravothermal catastrophe
is caused by the negative specific heat of the central region of
the system.

By considering also the canonical ensemble, where equi-
librium states are associated with a minimum of the free
energy F = E − T S, Lynden-Bell and Wood [8] encountered
an instance of ensemble inequivalence, a now well investi-
gated peculiarity of thermodynamic systems with long-range
interactions [10]. They specifically found stability for temper-
atures T > Tc = T (R′

c) = 0.397 GMm/kBR and R < R′
c =

32.1, thus confirming earlier results of Emden [1]. Note that
R′

c < Rc. Similar results were obtained independently by
Thirring [11].

A more general method for determining the stability of
macrostates, in extension of Poincaré’s theory, was developed
by Katz [12]. Its predictions are inferred from the topology
of caloric curves: inverse temperature versus negative energy,
β(−E ). In the microcanonical ensemble, instabilities occur at
turning points of energy, whereas in the canonical ensemble
they occur at turning points of temperature. Stability is lost
(gained) if the curve β(−E ) turns clockwise (counterclock-
wise). This early work has since been built-on by many further
studies [13–20].

Clusters of lower symmetry are, effectively, of lower
dimensionality if classical statistics is applicable, which
is the case if the gas is sufficiently dilute everywhere.
Self-gravitating gaseous filaments (sheets) are astrophysical
representations of clusters with cylindrical (planar) symmetry
and are effectively two-dimensional (one-dimensional). Math-
ematically, it is straightforward to extend the dimensionality
to D �= 3. There is much to learn from the D-dependence of
self-gravitating classical gas clusters.
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The thermodynamics of self-gravitating classical gas clus-
ters in D = 2 was pioneered by Stodolkiewicz [21], Ostriker
[22], Salzberg [23], and Katz and Lynden-Bell [24]. The evi-
dence showed that an equilibrium state exists for all energies
E in the microcanonical ensemble, but only for tempera-
tures T � Tc = GMm/4kB in the canonical ensemble. The
caloric curve β(E ) is monotonic, which implies mechani-
cal stability. When the wall confinement is gradually moved
out to infinity, it can be demonstrated (by use of the virial
theorem [25]) that the equilibrium states all coalesce at the
same temperature, T = Tc = GMm/4kB. This result was first
shown by Stodolkiewicz [21], Ostriker [22], and Salzberg
[23], but it is already implicit in the work of Chandrasekhar
and Fermi [26]. It can be extended beyond the mean field
approximation N � 1, producing the exact result T exact

c =
(G/4N )

∑
i �= j mimj [25]. Interestingly, a similar result appears

in the statistical mechanics of 2D point vortices and in the
chemotaxis of bacterial populations (see the discussion in
Refs. [27,28]). In the microcanonical ensemble, these equilib-
rium states pertain to different energies. Classical gas clusters
in D = 2 were further investigated in several studies [29–32]
with results that connect to this work.

Work on self-gravitating classical gas clusters in D = 1
began with Spitzer [33], Camm [34], Rybicki [35], and Katz
and Lecar [36]. Stable and unique equilibrium macrostates
exist for all energies or temperatures with or without wall
confinement. The (monotonic) caloric curve for the latter case,
as inferred from the virial theorem [25], is E = 3

2 NkBT . There
are no mechanical instabilities. Rybicki’s work [35] went
beyond the mean-field framework and produced some exact
results for self-gravitating systems in D = 1.

A systematic extension of these low-D studies to arbitrary
values of the spatial dimension for wall-confined systems
was carried out by Sire and Chavanis [37]. They identified
marginal dimensionalities, which delimit regimes of qualita-
tively different behavior. The effects of wall confinement in
self-gravitating systems were investigated with greater detail
by Chavanis [27,28]. A more recent study focused on density
profiles of a self-gravitating lattice gas in D = 1, 2, 3 [38] (see
also Ref. [39]). The lattice gas has a built-in short-range re-
pulsion, which produces effects akin to those of the exclusion
principle in fermionic quantum gases [40].

Quantum mechanics stabilizes self-gravitating clusters
against gravitational collapse. This is universally true for
bosons and fermions in the nonelativistic regime [4], but here
the focus is on bosons. The concept of a boson star was born in
work aiming to determine the ground state of boson clusters
in the framework of Newtonian gravity and general relativ-
ity [41]. In general relativity, a self-gravitating Bose-Einstein
condensate (BEC) is described by the Klein-Gordon-Einstein
equations. The resulting mass-radius relation indicates the
absence of an equilibrium state if the mass exceeds the value
Mmax = 0.633 M2

P/m [42,43] where MP = (h̄c/G)1/2 is the
Planck mass. At this point, the boson star is expected to
collapse and form a black hole. These results are similar
to those obtained in the case of general relativistic fermion
stars (e.g., neutron stars) whose maximum mass is given by
Mmax = 0.384 M3

P/m2 [44]. Note the scaling m−1 instead of
m−2, which is due to the fact that boson stars are stabilized by
the Heisenberg uncertainty principle while fermion stars are

stabilized by the Pauli exclusion principle. As a result, for the
same particle mass m, with m � MP, the maximum mass of
noninteracting boson stars is much smaller than the maximum
mass of fermion stars.

A self-gravitating BEC in the framework of Newtonian
gravity, described by the Schrödinger-Poisson equations, does
not have compact support. The mass-radius relations used in
such contexts introduce R99, the radius that encloses 99% of
the total mass. The result, M = 9.95 h̄2/(Gm2R99), emerging
from several studies [45–47] is similar to what has been well-
known for nonrelativistic fermion stars (e.g., white dwarfs),
but on different scales: M = 91.9 h̄6/(G3m8R3) [7]. There is
yet no clear evidence for the existence of boson stars. How-
ever, it has been proposed that the core of neutron stars might
turn superfluid via a kind of neutron pairing into bosons, thus
forming a relativistic BEC of sorts [48].

It has also been proposed that dark matter (DM) halos
may be made of ultralight bosons (axions) with a mass m ∼
10−22 eV/c2, named fuzzy dark matter (FDM) [49]. These
ultralight particles are still hypothetical but they are not ex-
cluded by particle physics and are actively studied at present
[50]. Another type of massive bosons that could constitute
dark matter is the QCD axion, a pseudo-Nambu-Goldstone
boson of the Peccei-Quinn [51] phase transition associated
with a U (1) symmetry that solves the strong charge parity
(CP) problem of quantum chromodynamics (QCD). How-
ever, its mass m = 10−4 eV/c2 is larger so it yields smaller
astrophysical structures called axion stars [52]. The large
occupancies of axions permit such halos to be described
by the Schrödinger-Poisson equations. The analysis reveals
gravitational cooling and violent relaxation processes [53,54].
Supporting evidence for these processes comes from numeri-
cal simulations of the Schrödinger-Poisson equations [55–63].

The BEC core (often called soliton) has a size of the
order of the de Broglie length λdB = h/(mv) ∼ 1 kpc. The
surrounding halo results from quantum interferences of ex-
cited states. It has a profile similar to the Navarro-Frenk-White
profile obtained in numerical simulations of classical cold
dark matter (CDM) [64]. Such a core-halo profile is reminis-
cent of those emerging from the Lynden-Bell statistical theory
of collisionless violent relaxation [54,65]. In particular, an
approximately isothermal halo can account for the flat rotation
curves of the galaxies.

Quantum statistics stabilizes matter against gravitational
collapse at small scales by producing a soliton core in replace-
ment of a cusp such as obtained in simulations of classical
CDM models [64]. This difference is significant because ob-
servations [66] favor cores over cusps. Quantum statistics may
be a way to solve the core-cusp problem of the classical CDM
modeling.

Core-halo structures resulting from violent relaxation typ-
ically are mechanically stable, but do not represent thermal
equilibrium states. The halo is only approximately an isother-
mal distribution in the sense of Lynden-Bell [54,65]. Its
effective temperature Teff has typical values far below criti-
cality of a BE gas with the same parameters, which raises
interesting questions regarding particle masses of bosonic DM
addressed in this work.

Current assumptions about bosonic DM particle mass im-
ply that the number of bosons in a typical halo is gigantic:
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N ∼ 1099. The Chandrasekhar relaxation time trelax ∼
(N/ ln N )tD, where tD ∼ 108 yrs, exceeds the age of the uni-
verse by far. If the particles were classical, then the DM halo
would be effectively collisionless. The halo would not have
had time to relax towards a thermalized state.

However, quantum interferences cause the halo to have a
granular structure with a correlation length ∼λdB [55,56]. The
granules are quasiparticles of effective mass meff ∼ ρλ3

dB ∼
107 M� [50], much larger than the postulated typical DM
boson mass m ∼ 10−22 eV/c2. The number of particles in a
bosonic DM halo is thus effectively reduced to Neff ∼ 105,
which is comparable to the number of stars in a typical glob-
ular cluster.

Therefore, granular effects are important. They induce
a collisional evolution of the DM halo on an accelerated
timescale, of the order of the Hubble time [67–69]. This
evolution toward thermal equilibrium (at very low T ) has the
effect of triggering a condensation. The halo slowly condenses
with the solitonic core progressively growing in mass [70,71].
However, a complete state of statistical equilibrium is reached
on a very long timescale.

The work reported in this study is not aiming to answer
specific open questions in current DM research or research on
boson stars. It is centered in equilibrium statistical mechanics
with possible applications in astrophysics. Its focus is on the
gravity driven condensation in clusters of different symmetry
in spaces of different dimensionality. Theories of pure gas
clusters and pure condensates operate on length scales whose
ratio involves powers of the number of particles involved. The
huge disparity in length scale between a BEC and its gaseous
halo is a challenge. The density profile of the gaseous halo
is strongly influenced by the gravity of the BEC core, whose
density profile, in turn, is strongly affected by the weight of
the surrounding gas.

The analysis carried out in this work, which focuses on
the gaseous halo, introduces a provisional BEC in the form
of a reference state that represents a core of high and uniform
density. It will be argued that this scheme yields an accurate
account of the onset of condensation and the nature of the
phase transitions. A separate study will have to be carried out
on a much contracted length scale to analyze the deviation
of the BEC density profile from a uniform shape under the
weight of the gaseous halo determined in this study.

Our work builds on previous studies in the same line, which
are few in number. The work of Ingrosso and Ruffini [72]
stays within the framework of Newtonian gravity, whereas
the work of Bilić and Nikolić [73] widens the framework to
general relativity. Both studies yield important results, which
serve as benchmarks in our work. Our study is limited to
nonrelativistic bosons, but considers clusters of different sym-
metry and spaces of different dimensionality.

We begin by establishing conditions for thermal equilib-
rium and mechanical stability, by introducing useful energy
and length scales, and by deriving free-energy integral ex-
pressions that also cover two-phase macrostates (Sec. II). We
continue with a detailed account of the density profiles and
the phase behavior of planar clusters in one, two, and three
dimensions (Sec. III), of cylindrical clusters in two and three
dimensions (Sec. IV), and of spherical clusters in three dimen-
sions (Sec. V).

II. FUNDAMENTALS

The fundamental ingredients to this work include (i) the
conditions of thermal equilibrium and mechanical equilibrium
for gas clusters and mixed phase clusters consisting of a BEC
core surrounded by a gaseous halo, (ii) the choice of a length
scale adequate for the description of gaseous density profiles
at all temperatures including the Maxwell-Boltzmann (MB)
limit, and (iii) the establishment of a free-energy expression
on an energy scale that covers all scenarios of interest. Implied
in this scheme is the validity of mean-field assumptions owing
to the long-range nature of the gravitational interaction, and
supported by studies dedicated to this question [74].

A. Thermal equilibrium

The equation of state (EOS) for the nonrelativistic BE gas
in D dimensions of particles with mass m is implicit in the
fundamental thermodynamic relations [75–77],

pλD
T

kBT
= gs gD/2+1(z), (1a)

ρvλ
D
T = gs gD/2(z), (1b)

uvλ
D
T = D

2
kBT gs gD/2+1(z), (1c)

where p is the pressure, ρv
.= N/V the particle density, uv

.=
U/V the kinetic-energy density, z the fugacity, gs the spin
degeneracy,

λT =
√

h2

2πmkBT
, β

.= 1

kBT
, (2)

the de Broglie thermal wavelength, and

gn(z)
.= 1

�(n)

∫ ∞

0

dx xn−1

z−1ex − 1
=

∞∑
l=1

zl

ln
, 0 � z � 1 (3)

the (polylogarithmic) BE functions. Equations (1) are inferred
from the grand partition function Z via the grand potential
�(T,V, μ) = −kBT ln Z = −pV , whose natural independent
variables are temperature T , volume V , and chemical potential
μ = kBT ln z. The entropy density, sv

.= S/V , can be inferred
from Eqs. (1) via Euler’s equation, U = T S − pV + μN :

SλD
T

gsV kB
=

(D
2

+ 1

)
gD/2+1(z) − ln z gD/2(z). (4)

Equations (1) and (4) are taken to hold locally in the gaseous
part of a BE cluster, over distances that are short on the length
scale to be introduced for the characterization of gaseous den-
sity profiles at all temperatures and in all spatial dimensions.

B. Mechanical equilibrium

In a cluster of self-gravitating gas at equilibrium, the tem-
perature T is uniform, but the pressure p and the particle
density ρv acquire profiles to satisfy mechanical stability. It
is expedient to introduce a second discrete parameter, Dσ ,
for the purpose of characterizing the symmetry of the cluster
under scrutiny. It will naturally appear in expressions which
are valid for clusters of different symmetry.
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We consider clusters with planar symmetry (Dσ = 1),
cylindrical symmetry (Dσ = 2), and spherical symmetry
(Dσ = 3). All profiles are functions of the distance r from the
center of the cluster. For Dσ = 1, the center is a point, a line,
or a plane in D = 1, 2, 3, respectively. For Dσ = 2, the center
is a point or a line in D = 2, 3, respectively. For Dσ = 3, the
center is a point (in D = 3). We thus write ρv(r), p(r), z(r),
and μ(r) for the radial profiles of particle density, pressure,
fugacity, and chemical potential, respectively.

The total number of particles in a finite cluster is obtained
from the density profile via the integral,

N = LD−Dσ

∫ R

0
dr ADσ

rDσ −1ρv(r), (5)

where R is the radius of the confining wall, L the length of the
cylinder or the sides of the plane, and

AD
.= 2πD/2

�(D/2)
=

⎧⎨
⎩

2 : D = 1,

2π : D = 2,

4π : D = 3,

(6)

is the surface area of the D-dimensional unit sphere. The con-
dition L � R guarantees that deviations from the symmetry
assumed to hold are negligible. The mechanical equilibrium is
governed by the equation of motion (EOM), here expressing
hydrostatic equilibrium,

d

dr
p(r) = mρv(r)g(r). (7)

The gravitational field is inferred from Gauss’s law:

g(r) = −ADGDm

rDσ −1

∫ r

0
dr′r′Dσ −1ρv(r′). (8)

C. Fugacity and chemical potential

The primary profile to be calculated will be z(r) for all
cases with the exception of critical macrostates, where the
direct calculation μ(r) = kBT ln z offers some advantages.
Carrying out the derivative of p(r) using Eqs. (1) and the
recurrence relation, zg′

n(z) = gn−1(z), yields

p′(r) = kBT
z′(r)

z(r)
ρv(r). (9)

Equation (9) is more general than Eq. (1a) for the character-
ization of pressure profiles. The latter is an integral version
of the former, restricted to cases where z(r) is a continuous
function. It converts Eq. (7) into

kBT
z′(r)

z(r)
= mg(r), g(r)

.= −dU
dr

, (10)

from which a familiar relation between fugacity z(r) and
gravitational potential U (r) follows upon integration:

z(r) = z0 e−βm[U (r)−U0]. (11)

The derivation of a differential equation for z(r) combines
Eqs. (8) and (10) into

z′(r)

z(r)
rDσ −1 = −ADGDm2

kBT

∫ r

0
dr′r′Dσ −1ρv(r′), (12)

which, upon differentiation and use of Eq. (1b), yields the
following ODE for the fugacity profile:

z′′

z
+ Dσ − 1

r

z′

z
−

(
z′

z

)2

+ ADGDm2

λD
T kBT

gsgD/2(z) = 0. (13)

The profiles for pressure and density follow directly.
For (thermodynamically) open BE gas clusters of finite or

infinite mass, the boundary conditions are

z′(0) = 0, 0 < z(0) = z0 � 1, (14)

with the (average) total mass, Nm, provided it is finite, in-
ferred from Eq. (5). Closed systems of finite mass Nm may
not exist without confinement. For systems with Dσ < D, it is
useful to rescale the number of particles:

Ñ = N

LD−Dσ
. (15)

The second boundary condition Eq. (14) must then be re-
placed by the integral condition Eq. (5) converted into

gsADσ

ÑλD
T

∫ R

0
dr rDσ −1gD/2(z) = 1. (16)

In macrostates consisting of a BEC core surrounded by a
gaseous halo, the gas is still described by the ODE (13), but
with modified boundary conditions (see Sec. II F).

D. Scaling convention

The physics of self-gravitating BE gas clusters unfolds on
a characteristic length scale and a characteristic energy (or
temperature) scale. The scaling convention adopted in this
work captures both scales via the thermal wavelength and a
dimensional analysis of the ODE (13). We write,

r̂
.= r

rs
, T̂

.= T

Ts
, (17)

with rs and Ts from

ÑλD
Ts

= ADσ

Dσ

rDσ

s =
⎧⎨
⎩

2rs : Dσ = 1,

πr2
s : Dσ = 2,

4π
3 r3

s : Dσ = 3,

(18)

1

r2
s

= 1

2Dσ

ADGDm2

λD
Ts

kBTs
. (19)

Equation (18) attributes a volume λD
Ts

to each particle. Ñ
such particles form a compact cluster of radius rs and given
symmetry. Equations (18) and (19) determine rs and Ts as
functions of particle mass m and total mass m̃tot. In cases with
Dσ < D, the quantity m̃tot = Ñm is the total mass per unit
length or unit area in the directions of translational symmetry.
It is noteworthy that the scales rs and Ts are equally useful for
Fermi-Dirac (FD) clusters [40]. The distinct dependences on
particle mass and on total mass spelled out in Appendix A are
an attribute of potential importance in DM research.

With the dimensionless variables thus defined, we set
ẑ(r̂)

.= z(r) and convert the ODE (13) into

ẑ′′

ẑ
+ Dσ − 1

r̂

ẑ′

ẑ
−

(
ẑ′

ẑ

)2

+ 2Dσ

T̂ 1−D/2
gsgD/2(ẑ) = 0. (20)
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The initial conditions are ẑ′(0) = 0 and ẑ(0) from

Dσ

∫ R̂

0
dr̂ r̂Dσ −1ρ(r̂) = 1, (21)

a rescaled Eq. (16). Henceforth, we shall use the dimension-
less density,

ρ(r̂)
.= λD

Ts
ρv(r̂) = gs T̂ D/2gD/2(ẑ). (22)

All results expressed with these scales are independent
of the number of particles (or total mass) provided it is
macroscopic and relativistic effects are negligible [78]. If a
coexisting condensate is present at the core of the BE gas
cluster, then it must be described on a different length scale,
one that is tiny in units of rs (see below).

E. Maxwell-Boltzmann limit

When the gas is dilute throughout the cluster, which im-
plies that ẑ � 1 everywhere, we can simplify Eq. (22) into

ρ(r̂) � gsT̂
D/2ẑ. (23)

Equation (20) for the fugacity thus simplifies into an ODE for
the density,

ρ ′′

ρ
+ Dσ − 1

r̂

ρ ′

ρ
−

(
ρ ′

ρ

)2

+ 2Dσ

T̂
ρ = 0, (24)

with boundary conditions, ρ ′(0) = 0, ρ(0) = ρ0, and Eq. (21).
Equation (24) is equivalent to the Emden equation [7] and well
known to be characteristic of the MB gas. It only depends
on Dσ , the symmetry of the cluster. In Ref. [38] the MB gas
emerged (with Dσ = D) in the dilute limit of the ideal lattice
gas. The scaled variables remain the same, but the length scale
is different. The volume unit λD

Ts
replaces the lattice-gas cell

volume Vc.
The ODE (24) for the MB limit of the BE gas is invariant

under the following scale transformation for arbitrary (dimen-
sionless) r̂t > 0:

r̃
.= r̂

r̂t
, ρ̃

.= r̂Dσ

t ρ, T̃
.= r̂Dσ −2

t T̂ , R̃
.= R̂

r̂t
. (25)

When we set r̂t = R̂, the scale transformation produces a
universal MB density profile that covers any radius R̂ of con-
finement [38]:

ρ̃ ′′ + Dσ − 1

r̃

ρ̃ ′

ρ̃
−

(
ρ̃ ′

ρ̃

)2

+ 2Dσ

T̃
ρ̃ = 0, (26a)

ρ̃ ′(0) = 0, Dσ

∫ 1

0
dr̃ r̃Dσ −1ρ̃(r̃) = 1. (26b)

This universality does not hold for BE or FD gas clusters in
general. We find qualitative changes in phase behavior of BE
clusters, when the radius of confinement is varied. Similar
evidence is reported in Ref. [40] for FD clusters.

F. Free energy

Caloric curves and free-energy comparisons are common
tools for determining the stability status of competing solu-
tions of the ODE (20). Here we develop the ingredients to

these tools: entropy S, internal energy E , and Helmholtz free
energy F . We can write

F = E − T S = U + W − T S, (27)

where U is the kinetic energy and W the (gravitational) po-
tential energy. Using the kinetic energy density Eq. (1c) and
the entropy density Eq. (4), we can write the scaled integral
expressions,

Û
.= U

NkBTs
= Dσ gsT̂

D/2+1 D
2

∫ R̂

0
dr̂ r̂Dσ −1gD/2+1(ẑ),

(28)

Ŝ
.= S

NkB
= Dσ gsT̂

D/2
∫ R̂

0
dr̂ r̂Dσ −1

×
[(D

2
+ 1

)
gD/2+1(ẑ) − ln ẑ gD/2(ẑ)

]
, (29)

Û − T̂ Ŝ = −Dσ gsT̂
D/2+1

×
∫ R̂

0
dr̂ r̂Dσ −1[gD/2+1(ẑ) − ln ẑ gD/2(ẑ)]. (30)

The calculation of W faces issues related to the different
length scales appropriate for the BEC core and the gaseous
halo of mixed-state density profiles. They will be addressed
in Sec. II G, once we have developed a working expression
for the gravitational potential energy pertaining to clusters of
different symmetry. Our construction of W adapts a scheme
previously developed for the self-gravitating lattice gas [38].

We use a reference state which represents a core of radius
r̂c and uniform density, whose value in our scaling conven-
tion becomes ρc = r̂−Dσ

c . This reference state is not meant to
represent a physical state. It is a placeholder for the BEC. Its
uniform density is a mere convenience. We present expres-
sions of W for gaseous macrostates and mixed macrostates
consisting of a gaseous halo surrounding a core of radius
0 � r̂b � r̂c and uniform density ρc, higher than the maximum
gas density.

1. Dσ = 1

For clusters with planar symmetry, the radius of the core is
proportional to its fraction of total mass:

m̃b

m̃tot
= r̂b

r̂c
. (31)

The potential energy for a core-halo macrostate becomes

Ŵ
.= W

NkBTs
= 2r̂−1

c

∫ R̂

r̂b

dr̂2
[
r̂2r̂1 − r̂2

1

]
ρ(r̂2), (32a)

r̂1 = r̂b + r̂c

∫ r̂2

r̂b

dr̂ρ(r̂), (32b)

where the density ρ(r̂) of the gaseous halo is the solution of
the ODE (20) with boundary conditions,

ẑ′(r̂b) = − 2

T̂

r̂b

r̂c
ẑ(r̂b),

∫ R̂

r̂b

dr̂ ρ(r̂) = 1 − m̃b

m̃tot
. (33)

034145-5



KIREJCZYK, MÜLLER, AND CHAVANIS PHYSICAL REVIEW E 105, 034145 (2022)

In the limit m̃b → 0 (gaseous macrostate), Eq. (32) simplifies
into

Ŵ = 2
∫ R̂

0
dr̂2r̂2σ1(r̂2)ρ(r̂2) − 2

3
r̂c, (34)

σ1(r̂) =
∫ r̂

0
dr̂′ρ(r̂′) = − T̂

2

ẑ′(r̂)

ẑ(r̂)
. (35)

The last expression of Eq. (35) effectively reduces the double
integral in Eq. (34) into a single integral. The reference state
affects W only as an additive constant.

2. Dσ = 2

In clusters with cylindrical symmetry, the mass of the core
grows quadratically with the core radius,

m̃b

m̃tot
=

(
r̂b

r̂c

)2

. (36)

The potential energy of a core-halo state now reads

Ŵ = 4r̂−2
c

∫ R̂

r̂b

dr̂2r̂2r̂2
1ρ(r̂2) ln

(
r̂2

r̂1

)
, (37a)

r̂2
1 = r̂2

b + 2r̂2
c

∫ r̂2

r̂b

dr̂ r̂ρ(r̂), (37b)

where the gas density inferred from Eq. (20) calls for the
boundary conditions,

ẑ′(r̂b) = − 2

T̂

r̂b

r̂2
c

ẑ(r̂b), 2
∫ R̂

r̂b

dr̂ r̂ρ(r̂) = 1 − m̃b

m̃tot
. (38)

The simplified expression for the pure gas state is again effec-
tively reducible to a single integral,

Ŵ = 4
∫ R̂

0
dr̂2 r̂2 σ2(r̂2) ρ(r̂2) ln

(
r̂2√
σ2

)
− ln r̂c, (39)

σ2(r̂) = 2
∫ r̂

0
dr̂′ r̂′ρ(r̂′) = − T̂

2
r̂

ẑ′(r̂)

ẑ(r̂)
. (40)

3. Dσ = 3

Systematic trends become apparent as we present the case
of spherical symmetry. The mass-radius relation of the BEC
is now cubic:

m̃b

m̃tot
=

(
r̂b

r̂c

)3

. (41)

The potential energy of a core-halo state returns to power-laws
as seen for Dσ = 1:

Ŵ = 6

r̂3
c

∫ R̂

r̂b

dr̂2
[
r̂2

2 r̂2
1 − r̂2r̂3

1

]
ρ(r̂2), (42a)

r̂3
1 = r̂3

b + 3r̂3
c

∫ r̂2

r̂b

dr̂ r̂2ρ(r̂), (42b)

where the boundary conditions for Eq. (20) are

ẑ′(r̂b) = − 2

T̂

r̂b

r̂3
c

ẑ(r̂b), 3
∫ R̂

r̂b

dr̂ r̂2ρ(r̂) = 1 − m̃b

m̃tot
. (43)

The simplified expressions for gaseous macrostates read

Ŵ = −6
∫ R̂

0
dr̂2r̂2σ3(r̂2)ρ(r̂2) + 6

5
r̂−1

c , (44)

σ3(r̂2) = 3
∫ r̂2

0
dr̂ r̂2ρ(r̂) = − T̂

2
r̂2 ẑ′(r̂)

ẑ(r̂)
. (45)

Equation (44), effectively a single integral, can be further
simplifed by eliminating ẑ′(r̂) from Eq. (45) via an integration
by parts. The result,

Ŵ = −9gsT̂
5/2

∫ R̂

0
dr̂ r̂2 g5/2[ẑ(r̂)]

+ 3gsT̂
5/2R̂3g5/2[ẑ(R̂)] + 6

5
r̂−1

c , (46)

connects with the well-know expression inferred from the
viral theorem as explained in Ref. [40] for the FD gas.

4. Initial conditions

In all three cases, the composite macrostate at given tem-
perature T̂ is specified by a one-parameter family of initial
conditions for the gaseous halo, namely, by Eq. (33) for planar
symmetry, Eq. (38) for cylindrical symmetry, and Eq. (43)
for spherical symmetry. The parameter is the interface fu-
gacity ẑ(r̂b). In the temperature regime, where composite
macrostates are realized, the one representing thermal equi-
librium has the lowest free energy. Inspection shows that it
is always associated with ẑ(r̂b) = 1, implying that the gas is
critical at the interface.

G. BEC radius

All available evidence suggests that the density of the BEC
is much higher than the density of the coexisting BE gas. Any
mixed-phase state in thermal and mechanical equilibrium thus
consists of a BEC core and a gaseous halo. Our analysis of
macroscopic BE clusters employs a length scale, rs, tailored
to the description of gaseous density profiles, which is huge
compared to the natural length scale appropriate for the anal-
ysis of a pure BEC profile, e.g., the scale rGP inferred from
a dimensional analysis of the Gross-Pitaevski equation. We
have found that rGP/rs ∼ N−α with α > 0 for all combina-
tions of D and Dσ .

A study of BEC density profiles in self-gravitating clusters
of macroscopic size, which calculates density profiles on a
much contracted length scale, requires the results of this work
as an input, specifically the pressure at the interface produced
by the weight of the gaseous halo, which depends on the
gaseous density profile.

The present study, however, cannot ignore the spatial ex-
tension of the BEC altogether. It is a necessary and natural
agent of short-distance regularization to prevent a divergent
potential energy in Dσ � 2. Our choice of reference state
in Sec. II F accommodates this need. By setting 0 < r̂c � 1
we simulate the presence of a provisional BEC with uniform
density. The divergences avoided by this means are looming in
the free-energy Eqs. (39) and (44) as well as in the boundary
condition Eqs. (38) and (43). The impact of such regulariza-
tions will be further discussed case by case.
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III. PLANAR SYMMETRY

The analysis of density profiles of BE clusters with planar
symmetry starts from Eqs. (20)–(22) for Dσ = 1. We set gs =
1 henceforth. Gas clusters with planar symmetry are known
to be stable against evaporation and also stable against grav-
itational collapse. No wall confinement and short-distance
regularization are needed. We set r̂c = 0 and (effectively)
R̂ = ∞ throughout Sec. III.

The exact density profile for planar MB clusters does not
depend on D [27,33–38]:

ρ(r̂)MB = 1

T̂
sech2

(
r̂

T̂

)
. (47)

With decreasing T̂ , it gradually becomes narrower and more
strongly peaked at the central plane of the cluster. Deviations
of the BE density profiles in D = 1, 2, 3 emerge gradually, at
first near the center of the cluster as a density enhancement.
Whereas the central density of Eq. (47) diverges at T̂ = 0,
it does so for the BE clusters in D = 1, 2 at a nonzero tem-
perature, when condensation begins. In D = 3 the onset of
condensation happens at finite central density.

The solution of Eqs. (20)–(22) for Dσ = 1 is reducible to
quadrature when transcribed to an effectively first-order ODE
for the inverse function, r̂(μ̂), of the scaled chemical potential
μ̂(r̂) = T̂ ln ẑ(r̂). That solution for a purely gaseous profile
reads

r̂(μ̂) =
∫ μ̂

μ̂0

dμ̂′ŝ(μ̂′) : μ̂ � μ̂0 � 0, (48a)

ŝ(μ̂) = − 1√
2[a(μ̂0) − a(μ̂)]

, (48b)

a(μ̂) − a(μ̂0) = 2T̂ D/2
∫ μ̂

μ̂0

dμ gD/2(eμ/T̂ ), (48c)

where the central chemical potential μ̂0 is determined from
the integral,

T̂ D/2
∫ −∞

μ̂0

dμ̂ gD/2(eμ̂/T̂ )ŝ(μ̂) = 1. (49)

A. D = 1

At sufficiently high T̂ , the density profile has a smooth
maximum at the center of the cluster and decays exponentially
with distance r̂. We connect the BE profile with the MB
profile Eq. (47) by plotting T̂ ρ vs r̂/T̂ in Fig. 1. The MB
profile is invariant in this representation. With T̂ decreasing,
the BE profile begins to deviate by an enhanced crowding at
the center of the cluster.

Our analysis produces a unique normalizable solution for
ẑ(r̂), representing a gaseous cluster over a range of tempera-
tures. The central fugacity ẑ(0) increases monotonically as T̂
is lowered [Fig. 2(a)], reaching the critical value, ẑ(0) = 1, at
the temperature

T̂c � 0.5287. (50)

The critical density profile diverges for r̂ → 0. Condensation
begins at the center of the cluster. At T̂ � T̂c the interface
fugacity is locked in to the critical value. The mixed-phase

FIG. 1. Rescaled density profiles of the BE gas in Dσ = D = 1
at high T̂ . The dashed line represents the MB profile Eq. (47) at any
T̂ and the BE profile at T̂ = ∞.

macrostate with ẑ(0) = 1 has the lowest free energy. It is
unique for all subcritical temperatures.

The caloric curve [Fig. 2(b)] has a discontinuity in slope
at T̂c. The bottom portion represents a pure gas and the top
portion a mixed-phase state. It will be a useful benchmark for
more complex caloric curves to be encountered later. The free
energy [Fig. 2(c)] is a monotonically decreasing function and
has an imperceptibly weak singularity at T̂c. The (negative)
slope of that curve represents the variation of the entropy with
temperature.

The entropy curve, plotted in Fig. 2(d) on doubly logarith-
mic scales, remains continuous. It has a discontinuity in slope
at T̂c. The subcritical entropy approaches zero as a power law,
asymptotically for T̂ → 0:

Ŝ ∼ T̂ D/2+1 : T̂ � T̂c. (51)

This result turns out to be valid for all cases. The order
parameter NBEC/N reaches saturation in a power-law cusp

FIG. 2. (a) Initial gaseous fugacity ẑ(r̂b) vs T̂ (here r̂b =
0). (b) Caloric curve: inverse temperature versus internal energy.
(c) Helmholtz free energy versus temperature. (d) Entropy versus
temperature. The dotted line highlights the asymptotic power law
Eq. (51).
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FIG. 3. Power-law cusp singularities of (a) the order parameter
NBEC/N near T̂c and (b) its deviation from saturation, Ngas/N = 1 −
NBEC/N , near T̂ = 0.

with the same exponent [Fig. 3(b)]. At T̂c it reaches zero
continuously in a square-root cusp [Fig. 3(a)]. The exponent
of this singularity does not change with D.

The onset of condensation has the hallmarks of a second-
order phase transition. For the investigation of additional
critical singularities, we start from the ODE for the chemical
potential inferred from Eq. (20),

μ̂′′ + 2T̂ D/2gD/2(eμ̂/T̂ ) = 0, (52a)

μ̂(0) � 0, μ̂′(0) = 0. (52b)

Expanding the BE function Eq. (3) near criticality, μ̂ → 0,
leads (for D = 1) to the simplified (and rescaled) ODE,

μ̄′′
s = μ̄−1/2

s , μ̄s
.= −(2T̂c

√
π )−2/3μ̂s, (53)

with initial conditions μ̄s(0) = 0, μ̄′
s(0) � 0. The exact

solution,

μ̄s(r̂) =
(

3r̂

2

)4/3

, (54)

represents the leading singularity in the form of a power-law
cusp. The critical divergence in the density profile then fol-
lows immediately:

ρs(r̂) ∼ r̂−2/3. (55)

The cusp singularity of Eq. (54) is sufficiently weak to make
μ̄′(0) = 0, which is consistent with ẑ′(0) = 0 as invoked ear-
lier for the critical fugacity.

Only at R̂ � 1 does the value of T̂c acquire a significant
R̂-dependence. Furthermore, the numerical evidence suggests
that T̂c diverges under very tight confinement, R̂ � 5 × 10−4.

B. D = 2

Increasing the dimensionality D while maintaining the
planar symmetry (Dσ = 1) produces, for the most part, sys-
tematic quantitative changes. The approach of the BE density
profiles toward the universal MB profile Eq. (47) at high T̂
is qualitatively similar to, but faster than in the case D = 1.
Criticality is reached at a higher temperature,

T̂c � 0.7797. (56)

The low-temperature asymptotics of the order parameter
and the entropy are again governed by Eq. (51). The plots
for the central fugacity, the caloric curve, the free energy, and
the entropy look very similar to the results shown in Fig. 2.

The discontinuity in slope at T̂c in the caloric curve is more
pronounced.

Qualitative changes make their appearance in critical sin-
gularities. For the case D = 2, we extract from Eqs. (52) the
ODE,

μ̄′′
s + 2 ln μ̄s = 0, μ̄s

.= − μ̂s

T̂c
, (57)

for the leading singularity of the chemical potential. The exact
solution in this case,

μ̄s(r̂) = exp

(
1 − 2

[
erf−1

(
1 − r̂√

eπ/2

)]2)
, (58)

encodes a more complex cusp with logarithmic corrections.
The leading singularity in the density profile thus turns out to
be a logarithmic divergence:

ρ(r̂) � −T̂c ln μ̄s ∼
√

| ln r̂| + O(
√

ln | ln r̂|). (59)

The implicit exact solution Eq. (48) for density profiles can,
in D = 2, be made more explicit in parametric form,

ρ(μ̄) = −T̂ ln(1 − e−μ̄), (60a)

r̂(μ̄) =
∫ μ̄

μ̄0

dμ

2
√

a(μ̄0) − a(μ)
, (60b)

a(μ̄)
.= 1

2
μ̄2 + μ̄ ln(1 − e−μ̄) − b(μ̄), (60c)

b(μ̄)
.= ln(1 − eμ̄) + Li2(eμ̄), μ̄

.= −μ̂/T̂ , (60d)

where the dependence of μ̄0 on T̂ � T̂c is determined by the
normalization condition Eq. (49), here rendered as

∫ ∞

μ̄0

dμ
ln(1 − e−μ)

2
√

a(μ̄0) − a(μ)
= 1

T̂
. (61)

The logarithmic terms are characteristic for D = 2. We shall
encounter them again in D = 2 for clusters with cylindrical
symmetry (Dσ = 2).

C. D = 3

The trend noted in Sec. III B continues as we add another
spatial dimension and keep the planar symmetry of the cluster.
The approach to the MB profile Eq. (47) at high T̂ is yet
faster as is the approach to criticality when T̂ is lowered.
Condensation sets in earlier, at

T̂c � 0.88913. (62)

The curves such as shown in Figs. 1 and 2 for D = 1 are again
similar for D = 3, but with a yet more pronounced kink in
the caloric curve. A distinctive feature of the case D = 3 for
clusters of any symmetry is that the critical gas density is finite
(nondivergent). An inspection of the ODE (52) for Dσ = 1
and D = 3 reveals (see Appendix B) that the critical chemical
potential can be expanded into a power series beginning with
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the quadratic term:

μ̄(r̂)
.= − μ̂

T̂c
=

∞∑
n=2

anr̂n,

a2(T̂c) = T̂ 1/2
c ζ

(
3

2

)
, a3(T̂c) = −2

3
T̂ 3/4

c

√
πζ

(
3

2

)
,

a4(T̂c) = 1

18
T̂c

[
2π − 3ζ

(
1

2

)
ζ

(
3

2

)]
,

a5(T̂c) = 1

12
T̂ 5/4

c ζ

(
1

2

)√
πζ

(
3

2

)
, ... (63)

A series beginning with zeroth power follows for the critical
density:

ρ(r̂) =
∞∑

n=0

cnr̂n, c0 = T̂ 3/2
c ζ

(
3

2

)
,

c1 = −2T̂ 7/4
c

√
πζ

(
3

2

)
,

c2 = 1

3
T̂ 2

c

[
2π − 3ζ

(
1

2

)
ζ

(
3

2

)]
, . . . (64)

The critical density in D = 3 has linear cusp at r̂ = 0.

D. Salient features

MB particles are (effectively) point particles, whereas BE
particles are not. The differences in statistics manifest them-
selves when the local density is sufficiently high to make
the mean interparticle distance comparable to the thermal
wavelength. The distinctive attribute of BE statistics is the
multiple occupancy of one-particle levels combined with the
indistinguishability of many-particle states with identical oc-
cupancies.

The universal shape of the MB density profile Eq. (47) with
a smooth central maximum and exponential tails is shared
by BE clusters at high T̂ . Upon lowering T̂ , the MB den-
sity profile smoothly grows in height and shrinks in width,
approaching a δ-function as T̂ → 0. The BE density profile
shows a similar trend initially, but with an enhanced particle
concentration near the center of the cluster. Unlike the MB
profile, the BE profile acquires, at a nonzero T̂c, a singularity
at the center of the cluster, where the density is highest.

Whereas the dimensionality D of the space has no impact
on the shape of the MB profile for planar clusters (or clusters
of any other symmetry), that is not the case for BE profiles. As
T̂ approaches T̂c from above, the central density has a power-
law divergence, ∼r̂−2/3, in D = 1, a logarithmic divergence,
∼√| ln r̂|, in D = 2, and a linear cusp singularity, ∼a − br̂,
in D = 3. The value of T̂c increases with D. The variation of
critical singularities with D may be unusual for a mean-field
context, but the trends are in line with the expectation that the
strength of fluctuations are strongest for the lowest D.

The singularities of the BE gas at T̂c, which marks the onset
of condensation, bear the hallmarks of a second-order phase
transition in dimensions D = 1, 2, 3. The order parameter,
represented by the fraction of particles in the ground state,

rises continuously from zero in a cusp singularity. The entropy
has a discontinuity in slope. Condensation is associated with
a drastic change in length scale, which is only summarily
accounted for in this study as explained earlier (Sec. II G).
The caloric curves of MB and BE clusters are both monotonic
across the full temperature range, thus ruling out any form of
mechanical instability (gravitational collapse). Only the BE
caloric curve has a (cusp) singularity.

IV. CYLINDRICAL SYMMETRY

The precarious stability of gas clusters with Dσ = 2
against collapse or evaporation is well established. We shall
work with a nonzero reference radius r̂c to manage sin-
gularities associated with the former and a finite radius of
confinement R̂ against the latter.

The MB gas is again a useful benchmark. A cylindrical MB
cluster is stable against collapse above the (R̂-independent)
threshold temperature [21–32,37,38]

T̂MB = 1
2 . (65)

The exact density inferred from Eq. (24) for T̂ > T̂MB is
[37,38]

ρ(r̂)MB = 1

R̂2

4T̂ (T̂ − T̂MB)

[(r̂/R̂)2 + 2(T̂ − T̂MB)]2
. (66)

This profile becomes sharply peaked at r̂ = 0 when T̂ (at fixed
R̂) approaches T̂MB from above. The limits R̂ → ∞ and T̂ →
T̂MB are not interchangeable. Taking the combined limit,

R̂ → ∞, T̂ → T̂MB,
T̂ 2

4R̂2(T̂ − T̂MB)
= c > 0, (67)

in Eq. (66), produces a one-parameter family of critical MB
profiles [27,38]:

ρc(r̂)MB = 4c

T̂MB

[
1 + 2c

(
r̂

T̂MB

)2]−2

. (68)

The central density, ρc(0)MB = 4c/T̂MB, can assume any non-
negative value.

The BE gas is known to exert a lower pressure than the
MB gas does under equivalent circumstances. Upon cooling,
it gives in to gravity earlier and differently. The dimensionality
(D = 2, 3) of the space in which cylindrical clusters (Dσ = 2)
are realized matters. For the sake of brevity, we focus on the
case D = 2. The analysis again starts from Eqs. (20)–(22).

A. Onset of condensation

The emergent deviations of the BE density profile from
the MB benchmark profile Eq. (66) in the high-temperature
regime are illustrated in Fig. 4. The scales used render the MB
profiles independent of the radius of confinement R̂. A large R̂
for the BE gas, makes the emerging differences conspicuous
near T̂MB. The higher compressibility of the BE gas is manifest
in the enhanced density near the center of the cluster, an
attribute already observed in planar clusters.

At lower temperatures, the evolution of cylindrical BE pro-
files is rich and varies with the radius of confinement. There
are two regimes, in our analysis represented by the cases
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FIG. 4. Rescaled density profile of the BE gas in D = Dσ = 2
confined to radius R̂ = 20. The dashed lines represent the MB profile
Eq. (66), which are independent of R̂ in this plot.

R̂ = 10 and R̂ = 0.01. The curves in Fig. 5 show the fugacity
ẑ(r̂b) at the center of the cluster if it is purely gaseous (r̂b = 0)
or at the interface between the BEC and the gaseous halo
(r̂b �= 0). In both regimes, a two-phase solution with ẑ(r̂b) = 1
exists for 0 < T̂ < T̂X with the central fugacity reaching crit-
icality at T̂H.

Only in the first regime do distinct solutions of pure gas
exist. Here we note four temperature intervals, delimited by
T̂L � 0.547, T̂H � 0.587, and T̂X � 1.035. All three are higher
than T̂MB, but the lower two not by much. A unique gaseous
solution exists at T̂ > T̂X and a unique two-phase solution
with a critical interface at T̂ < T̂L. At intermediate temper-
atures, three solutions coexist, a pair of gaseous solutions and
one two-phase solution for T̂L < T̂ < T̂H, or a pair of two-
phase solutions and one gaseous solution for T̂H < T̂ < T̂X.

When we gradually shrink the confining radius R̂, the val-
ues of T̂L, T̂H, and T̂X both increase at different rates. The first
two merge into T̂H at

R̂1 � 0.053, (69)

which marks the border to the second regime, characterized by
tight confinement. Here the central fugacity becomes critical,
ẑL(0) → 1.

In the second regime, for R̂ = 0.01, there are only
three temperature intervals, delimited by T̂H � 1263 and

FIG. 5. (a) Initial fugacity ẑ(r̂b) of the gas part in a cylindrical
BE cluster for D = Dσ = 2 confined to radius (a) R̂ = 10 and (b)
R̂ = 0.01. The curves represent a pure gas. The horizontal segments
at ẑ(r̂b) = 1 represent solutions consisting of a BEC surrounded by
a gaseous halo. The reference states in use have radius (a) r̂c = 10−1

and (b) r̂c = 10−4, equal in ratio as the radius of confinement R̂.

FIG. 6. (a) Dependence of interface radius r̂b on temperature T̂ .
(b) Fraction of particles in the gas phase as a function of T̂ for
all identified mixed-state solutions. The dashed line indicates ∼T̂ 2

asymptotics. The reference radius has been set to r̂c = 0.1.

T̂X � 1357. A unique gaseous (mixed) solution exists at T̂ >

T̂X (T̂ < T̂H) and a coexistence of two mixed and one gaseous
solution at T̂H < T̂ < T̂X.

B. Mechanical instabilities

Next we take a closer look at the mechanical stability and
thermal equilibrium of coexisting macrostates in the interval
T̂L < T̂ < T̂X for the case R̂ = 10 of the first regime. What
happens in the second regime is a mere simplification on
account of the merger T̂L → T̂H.

For the examination of stability conditions we use the free-
energy expressions from Sec. II F 2 and also employ caloric
curves. Unlike in systems of planar symmetry, we must set
r̂c > 0 in order to avoid a divergent potential energy and to
avoid a divergent boundary condition Eq. (38).

The two coexisting gaseous macrostates for T̂L < T̂ < T̂H

are readily identified in Fig. 5(a). For the identification of
the two coexisting mixed states for T̂H < T̂ < T̂X, we plot
r̂b versus T̂ in Fig. 6(a). The two mixed macrostates are
associated with the different values of the order parameter as
shown in Fig. 6(b). There is even the hint of a third solution.
The upper branch in Fig. 6(a) corresponds to the lower branch
in Fig. 6(b). Its extension toward zero temperature shows the
quadratic low-T̂ asymptotics.

Among the coexisting macrostates for T̂L < T̂ < T̂X, the
ones representing thermodynamic equilibrium are readily
identified in the free-energy plot of Fig. 7(a). The lowest
branch switches from a gaseous state to a mixed-phase state
at T̂t � 0.84. In a homogeneous system, a first-order phase
transition would be expected to take place at this tempera-
ture. That is not the case here, as the caloric curve shown in
Fig. 7(b) makes quite clear.

FIG. 7. (a) Free energy versus temperature. (b) Caloric curve.
Both sets include data for gaseous macrostates and data for the mixed
macrostates (with r̂c = 0.1).
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FIG. 8. Entropy versus (a) temperature and (b) internal energy.

Self-gravitating clusters are inhomogeneous and have non-
trivial mechanical stability conditions. The Poincaré criterion
for stability limits in the caloric curve are points of zero slope
(for systems analyzed as canonical ensembles). Such points
exist for T̂L, T̂H, and T̂X, but not for T̂t . Upon cooling from
high T̂ , the gas phase is mechanically stable down to T̂L, at
which point it suffers an instability and settles in a mixed
macrostate displaced horizontally to a lower energy on the
right. Conversely, when heat is added quasistatically from low
T̂ , the mixed state loses mechanical stability at T̂X and settles,
horizontally to the left, in a gaseous state of higher energy.

The temperature T̂H, marked by a local minimum of the
caloric curve, comes into play as a point of mechanical insta-
bility only if a macrostate nearby happens to be realized in
some way. The two thermodynamic equilibrium macrostates
at the crossing point of the free-energy curve correspond to
the outer intersection points of the dashed line at β̂t with
the caloric curve. They are without significance regarding
mechanical stability. Unlike in homogeneous systems, there is
no quasistatic process at T̂t that connects the two equilibrium
states.

The mechanical instability at T̂L on the way down in
temperature triggers processes that eject heat whereas the me-
chanical instability at T̂X on the way up triggers processes that
absorb heat. This is illustrated by the two dashed lines in the
entropy versus temperature plot of Fig. 8(a). Each instability
begins at the tangent point and ends at the intersection point.

Processes triggered by mechanical instabilities are likely
to be fast and take their course at constant internal energy
with little heat exchange between the system and the out-
side through the confining wall. Therefore, it makes sense
to describe the transitions between the gaseous state and the
mixed-phase state in the microcanical ensemble. For that pur-
pose, we take a look at entropy plotted versus internal energy
[Fig. 8(b)].

The curve is largely monotonic except for a folded
stretched with two hairpin turns at Eh and El as emphasized
in the inset. These values are locations of mechanical instabil-
ities with no heat exchange. The process starts at the hairpin
and ends where the dashed line intersects the curve. Both pro-
cesses are associated with an entropy increase as expected and
are identified in the zoomed-in entropy versus temperature
plot of Fig. 9(a). Each process begins at the tangent point and
ends at the intersection point of a dashed line with the curve.
The entropy increases in both processes, but the temperature
goes up in one and down in the other.

For systems analyzed as microcanonical ensembles, the
Poincaré criterion for stability limits in the caloric curve are

FIG. 9. Partial views of (a) entropy versus temperature and
(b) caloric curve. Data previously used Figs. 8(a) and 7(b) are re-
produced within zoomed-in window.

points of infinite slopes such as those identified in a zoomed-in
version of the caloric curve shown in Fig. 9(b). Again the
mechanical instabilities begin at the tangent points and end
at the intersection points.

In summary, cylindrical BE clusters are precipitated into
and out of condensation by way of mechanical instabilities
with hysteretic features involved. In the canonical ensemble
all the action happens between temperatures T̂L and T̂X, in
the microcanonical ensemble between energies El and Eh. The
latter are closer together on the caloric curve than the former.

C. Limit of no confinement

A gradual widening of the radius of confinement, estab-
lishes a point of contact between the BE and MB phase
behaviors. The numerical evidence suggests the following
limits:

lim
R̂→∞

T̂L = T̂MB = 1

2
, (70a)

lim
R̂→∞

zL(0) = 0, (70b)

lim
R̂→∞

T̂H
.= T̂ (∞)

H = 0.5629..., (70c)

lim
R̂→∞

T̂X
.= T̂ (∞)

X (r̂c) > T̂ (∞)
H . (70d)

The gaseous macrostate at T̂ > T̂L has very low density, which
makes it MB-like. It continues to exist down to near T̂MB,
where the MB cluster suffers a collapse. However, for the
BE gas an alternative macrostate becomes available already
at the higher temperature T̂ (∞)

X , consisting of a BEC core
surrounded by a gaseous halo. The MB limit of the BE cluster
with cylindrical symmetry is restricted in scope. The limit
R̂ → ∞ of the BE cluster involves two subtleties.

(i) At T̂L, where the gaseous solution disappears, the den-
sity at the center of the BE cluster is finite and approaching
zero as R̂ → ∞. In the MB gas cluster, by contrast, the central
density diverges when T̂ approaches T̂MB for fixed R̂. This ap-
parent contradiction is resolved by the one-parameter family
of density profiles Eq. (68) for the MB cluster at T̂ = T̂MB

and R̂ = ∞ with a range of central densities between zero and
infinity. The limit R̂ → ∞ taken for the BE gas realizes one
(extreme) value of this continuum.

(ii) The landmark temperature T̂X and its no-confinement
limit T̂ (∞)

X are both dependent on the existence of a BEC
with nonzero extension, in this work provisionally represented
by the radius r̂c of the reference state. Condensates have, of
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FIG. 10. Caloric curves for clusters with different radii R̂ of con-
finement in comparison. BE clusters are represented by solid lines
and MB clusters by dashed lines. We use r̂c = 0.1 in all cases.

course, no part in an MB gas. Estimates for r̂c in cylindrical
BE clusters including the no-confinement limit have to await
a theory of the self-gravitating BEC under the weight of a
gaseous halo. As mentioned earlier, such halos are analyzed
in this work with provisional BECs. Their specifications will
be needed as input in a separate study dedicated to the density
profile of BECs on a different length scale.

The limited scope of the MB limit in BE clusters is also
evident in the comparative plot of caloric curves presented in
Fig. 10. It highlights the impact of bosonic quantum statistics
in clusters with cylindrical symmetry. The MB curves are
monotonically rising and leveling off at T̂MB, signaling a grav-
itational collapse. The internal energy Ê decreases gradually
as T̂ approaches that threshold. At given T̂ > T̂MB, Ê is lower
if the wall confinement is tighter. The threshold T̂MB, however,
does not depend on R̂ because the gravitational collapse is
counteracted by kinetic energy alone, which only depends on
temperature.

The BE gas mimics the MB gas for as long as the thermal
wavelength is much shorter than the mean inter-particle dis-
tance. This is the case at high T̂ , where the curves overlap.
The BE caloric curve is not monotonic even for very tight
confinement (not shown). It features two sets of landmarks
discussed earlier: (i) a smooth local maximum and a smooth
local minimum at finite internal energies, marking instabilities
in the framework of the canonical ensemble, (ii) two points of
infinite slope, positioned closer together, signaling mechanical
instabilities in the framework of the microcanonical ensemble.
The steeply rising portion of all BE caloric curves on the right
represent the BEC, taken to have a high but finite density.

D. Criticality

All phenomena described thus far are similar for clusters
with Dσ = 2 in D = 2, 3. The critical singularities, however,
strongly depend on D. For all three cases with planar symme-
try (Dσ = 1), we were able to find an exact solution (Sec. III).
For all three cases in D = 3, the critical density profile can be
expanded into a power series (Appendix B). That leaves the
case Dσ = D = 2, which proves to be the most challenging.

FIG. 11. Numerical integration of the ODE (71) with five differ-
ent initial values r̂0. The initial values are the locations where the
color (or shade) of the curve changes. The initial values are r̂0 =
2.1 × 10−3, 1.0 × 10−5, 5.6 × 10−8, 3.3 × 10−10, and 2.0 × 10−12.
The dashed line represents the function cr̂2 with c = 50.

The numerical analysis indicates that the profile of the
critical chemical potential is almost quadratic, but subject
to logarithmic corrections. The ODE to be solved for μ̄

.=
−μ̂/T̂H = − ln ẑ reads

μ̄′′ + 1

r̂
μ̄′ + 4 ln(1 − e−μ̄) = 0, (71a)

μ̄(0) = μ̄′(0) = 0. (71b)

The normalization condition for given R̂,

2T̂H

∫ R̂

0
dr̂ r̂ ln(1 − e−μ̄) = −1, (72)

determines the critical temperature T̂H or vice versa. The ab-
sence of parameters in Eq. (71) makes the critical singularities
independent of R̂.

The numerical integration cannot be started at r̂ = 0. All
terms of Eq. (71a) diverge. We circumnavigate this problem
by using the ansatz,

μ̄0(r̂) = cr̂2, (73)

combined with the insistence that it satisfy Eq. (71a) at the
initial radius r̂0 > 0 of our choice. The amplitude c which
does the trick depends on r̂0 as follows:

r̂−2
0 = c ec. (74)

This relation encodes the logarithmic correction to the
quadratic profile in a roundabout way. As r̂0 is made smaller,
the amplitude c increases without bound. The real solution
has infinite curvature at r̂ = 0. In Fig. 11 we show solutions
of Eq. (71) with five initial values r̂0 corresponding to c =
10, 20, . . . , 50. All solutions are found to neatly connect in a
progression of precision. The dashed line represents Eq. (73)
with c = 50. The critical density inferred from Eq. (22) is
ρ(r̂) = −T̂H ln(1 − e−μ̄).

E. Salient features

Changing the symmetry of the cluster from planar to cylin-
drical has drastic consequences for both the MB gas and the
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BE gas. At high temperature, the BE and MB density profiles
look very similar. Differences first show up near the center of
the cluster, where the density is highest. The central density
of the BE gas initially grows faster than its MB counterpart.
At T̂H the BE central density diverges in D = 2 and acquires
a cusp singularity in D = 3. In both cases, the singularity is
associated with the onset of condensation. The MB central
density, by contrast, diverges at T̂MB, which is lower than T̂H

in both D = 2 and D = 3.
The free energy plotted versus temperature shows features

typical of a first-order transition. However, the nontrivial
mechanical stability condition prevents condensation to take
place gradually at a fixed temperature. Caloric curves give us
landmark values for temperature (in the canonical ensemble)
or internal energy (in the microcanonical ensemble), where
either the mixed or the purely gaseous macrostate becomes
unstable. The instabilities in the forward and reverse direc-
tions happen at different points on the caloric curve, which is
indicative of hysteretic effects.

V. SPHERICAL SYMMETRY

Density profiles of BE clusters with Dσ = 3 are analyzed
here in D = 3 via solutions of Eqs. (20)–(22) for closed sys-
tems of finite mass. Stable systems without confinement do
exist, but they have infinite mass and are not considered here.
Somewhat different scenarios unfold under confinement with
small, intermediate, or large radius R̂.

In all three regimes, the BE gas exhibits MB behavior
at sufficiently high temperature as expected. The MB gas in
Dσ = D = 3 under confinement at radius R̂ is known to be
stable above the temperature,

T̂C = T̄C

R̂
, T̄C = 0.794422 . . . , (75)

where it suffers a collapse [1,8,17]. The R̂-independent thresh-
old temperature T̄C is a consequence of the scale invariance
discussed in Sec II E.

Bosonic statistics, known to render stability against grav-
ity more precarious, is expected to initiate condensation at
a temperature higher than T̂C. However, condensation is not
collapse, even though both events are precipitous in this
case. Recall that condensation was also abrupt in cylindrical
BE clusters, yet different from the collapse of MB clusters
(Sec. IV). In planar BE clusters, by contrast, condensation was
found to be gradual and planar MB clusters do not collapse at
all (Sec. III).

One salient feature of D = 3 noted earlier for planar and
cylindrical symmetry and relevant here for spherical symme-
try is that the density at the center of the cluster remains
finite at criticality. The critical density profile is expressible
as a power series with a negative first derivative, indicative
of a cusp singularity, as worked out in Appendix B. In the
following, we analyze the regime of tight confinement in some
detail and then highlight differences realized in the regimes
of intermediate and wide confinement. The three regimes are
represented by systems with confining radii R̂ = 1, 10, 100.

FIG. 12. Comparison of BE density profiles (solid lines) and
MB density profiles (dashed lines) for R̂ = 1. (a) Demonstration
of convergence at high T̂ and trend of deviations. (b) Critical BE
profile at T̂H = 1.42249 compared with MB profiles at T̂H � T̂ �
T̂C = 0.794422.

A. Tight confinement

We begin at high temperatures, as we did with clusters of
planar and cylindrical symmetry. In Fig. 12 we show com-
parative plots of BE and MB density profiles. Figure 12(a)
demonstrates the gradual upward deviation of the BE density
from the MB profile as T̂ is lowered from a high value. The
BE gas is weaker in withstanding gravitational pressure. Its
density near the center of the cluster rises faster and hits a
singularity earlier. Multiple occupancy of one-particle states
is accommodated by BE statistics, ignored by MB statistics,
and, as explored in Ref. [40], prohibited by FD statistics.

The criticality of the BE gas is signalled by the central fu-
gacity reaching the value, ẑ(0) = 1, and by the density profile
acquiring a linear cusp singularity. It happens at

T̂H = 1.42249 . . . (76)

The critical BE profile is shown as solid line in Fig. 12(b).
The MB profile at T̂H is the dashed line with the lowest value
at r̂ = 0. As T̂ is lowered from there, the MB central density
keeps rising, but only to a finite value. At the temperature
T̂C = 0.794422 . . ., where the MB cluster collapses gravita-
tionally, its density profile still has zero initial slope, in strong
contrast to MB clusters with cylindrical symmetry, where the
central density diverges at the verge of collapse (Sec. IV).

From this first examination we have learned three salient
facts: (i) spherical BE clusters behave quite differently from
their MB counterparts; (ii) spherical MB clusters collapse
quite differently from their cylindrical counterparts; (iii)
spherical BE clusters behave similarly to their cylindrical
counterparts (in D = 3).

Figure 13(a) shows the central or interfacial fugacity ẑ(r̂b)
versus temperature. At T̂ > T̂X � 4.16, there exists a unique,
noncritical gaseous profile and, at 0 < T̂ < T̂H, a unique
mixed-phase profile composed of a BEC core and a gaseous
halo. In between, the ODE has three solutions: one is a pure
gas state with ẑ(0) < 1 and the other two are mixed-phase
states, which have ẑ(r̂b) = 1. The relevant boundary condi-
tions are the (critical) interface fugacity,

ẑ(r̂b) = 1, (77a)

the slope required for mechanical stability,

ẑ′(r̂b) = − 2

T̂

r̂b

r̂3
c

ẑ(r̂b),

(
r̂b

r̂c

)3

= 1 − Ngas

N
, (77b)
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FIG. 13. (a) Central or interfacial fugacity. Purely gaseous states
are represented by points along the curve. Points on the horizontal
line for 0 � T̂ � T̂X represent mixed-phase states. (b) Interfacial
radius of mixed-phase solutions, which are unique for T̂ < T̂H. Two
solutions exist for T̂H < T̂ < T̂X.

and the BEC radius r̂b to enforce mass conservation,

3T̂ 3/2
∫ R̂

r̂b

dr̂ r̂2g3/2(ẑ) = Ngas

N
. (77c)

The choice of reference radius r̂c = 0.1 is large enough to ac-
commodate short-distance regularization computationally, yet
sufficiently small to permit a realistic physical representation
of the gaseous halo. Figure 13(b) shows the variation of r̂b

across the range 0 � T̂ � T̂X, where mixed-phase solutions
exist. One or two solutions exist depending on whether T̂
falls below or above T̂H. The data used for Fig. 13(b) in
conjunction with Eq. (77b) produce data for Ngas/N versus T̂ ,
not shown but of a shape similar to Fig. 6(b) apart from the
low-T asymptotics, which now is ∼T̂ 5/2.

The conditions of mechanical stability and thermal equi-
librium can be read off the free-energy plot and caloric curve
shown in Fig. 14. Note the similarity to Fig. 7 for cylindrical
clusters. The macrostate with lowest free energy is a pure gas
at T̂ > T̂t and of mixed-phase at T̂ < T̂t . The pure-gas state
at T̂H < T̂ < T̂t and the mixed-phase state at T̂t < T̂ < T̂X are
metastable. The highest branch of free energy, curved upward,
is unstable.

The shape of the caloric curve shows that the self-crossing
at T̂t does not have the significance for the phase behavior
it would have in a homogeneous system. According to the
Poincaré conditions for the canonical ensemble, the spherical
cluster stays, upon cooling, in the gas phase down past T̂t

to T̂H. At this point, a mechanical instability occurs, which
brings it to a thermal equilibrium in a mixed-phase state at
the same temperature, displaced horizontally to the right in
Fig. 14(b). Conversely, when the system in the mixed-phase
state is heated up, nothing dramatic happens at T̂t , but it suffers

FIG. 14. (a) Helmholtz free energy, F̂ , plotted versus scaled tem-
perature and (b) caloric curve for a cluster confined to radius R̂ = 1.

FIG. 15. Scaled entropy plotted (a) versus scaled temperature
and (b) versus scaled internal energy for a cluster confined to radius
R̂ = 1.

a mechanical instability at T̂X and settles in a gas state at that
temperature, displaced horizontally to the left in Fig. 14(b).

There is no obvious isothermal sequence of mechani-
cally stable macrostates that connects the gaseous equilibrium
macrostates at T̂ > T̂t and the mixed-phase macrostates at
T̂ < T̂t . The nontrivial nature of mechanical stability in self-
gravitating clusters makes it unlikely to exist. Nevertheless,
the transition as encoded in the curves of Fig. 14 for the
canonical ensemble is discontinuous in the sense that the order
parameter vanishes abruptly at T̂X on the way up in tempera-
ture and jumps to a nonzero value at T̂H on the way down.
Effects of hysteresis are an intrinsic feature of this transition.

The instabilities at T̂H and T̂X leave their characteristic
signatures also in the entropy plot of Fig. 15(a). Here they
begin at points of infinite slope and proceed along vertical
lines. On the way to lower temperature, the instability (at T̂H)
requires extraction of entropy (or heat) in order to maintain
the same T̂ . On the way up in temperature, the instability (at
T̂X) requires heat to be added for the same purpose. While
heat is extracted at T̂H and added at T̂X, both instabilities are
associated with a decrease in free energy [Fig. 14(a)].

In an astrophysical context, the relatively fast processes
triggered by the mechanical instability are more appropriately
described within the microcanonical ensemble. There is little
opportunity for heat exchange during the time it takes the
cluster to settle down in a new macrostate in the wake of a
mechanical instability. The thermodynamic equilibrium state
is then identified as the one with the highest entropy when
plotted versus energy as in Fig. 15(b). Mechanical instabilities
now occur at Êl on the way down and at Êh on the way up in
energy. In both instances the instability is associated with an
entropy increase, �Ŝl and �Ŝh, respectively.

It is instructive to compare the endpoints of the mechanical
instabilities in the two ensembles as is done in the entropy
plots of Figs. 15(a) and 16(a) as well as in the caloric curves
depicted in Figs. 14(b) and 16(b). In the microcanonical en-
semble, the instability occurs at a local maximum or minimum
of Ŝ when plotted versus T̂ and at points of infinite slope of
the caloric curve as identified in Figs. 16(a) and 16(b), respec-
tively. The end state at Êl (Êh) has higher (lower) temperature,
but both end states have higher entropy.

In the canonical ensemble, by contrast, the instability oc-
curs at points where Ŝ has infinite slope when plotted versus
T̂ [Fig. 15(a)] and at points of zero slope in the caloric curve
[Fig. 14(b)]. The end state at T̂X (T̂H) has higher (lower)
entropy, but both end states have lower free energy. The points

034145-14



SELF-GRAVITATING CLUSTERS OF BOSE-EINSTEIN … PHYSICAL REVIEW E 105, 034145 (2022)

FIG. 16. Partial views of (a) entropy versus temperature and
(b) caloric curve. Data previously used in Figs. 14(b) and 15(a) are
reproduced within zoomed-in window.

of instability are, quite generally, closer together in the micro-
canonical ensemble, as already seen for cylindrical clusters,
but the spike in the caloric curves puts one instability to almost
identical locations in the two ensembles.

B. Intermediate confinement

When increasing the confining radius of the cluster to an
intermediate radius of confinement, 1.64 � R̂ � 27.35, new
features appear. All results presented here are for R̂ = 10 and
we use r̂c = 1 for the reference radius throughout. Each panel
of Figs. 17 and 18 with one exception have counterparts in
Sec. V A for direct comparison.

One principal change caused by the widening of con-
finement is that the macrostate of pure gas at the lowest
temperature is no longer critical [Fig. 17(a)]. This brings an
additional landmark temperature into play: T̂L � 0.0825. It is
only slightly lower than the temperature T̂H � 0.0882, where
the gaseous macrostate reaches criticality at the center of the
cluster and acquires a linear cusp singularity in its density
profile. The highest temperature T̂X � 0.239, for which a
mixed-phase state with a BEC core and a gaseous halo coexist
is much higher.

The horizontal line in Fig. 17(a) represents a unique mixed-
phase state at T̂ < T̂H and a pair of such states at T̂ > T̂H,
one stable and the other unstable (in the canonical ensemble).
Figure 17(b) shows the position of the interface as a function

FIG. 17. (a) Central or interfacial fugacity, (b) interfacial radius
of mixed-phase solutions, (c) free energy, and (d) caloric curve.

FIG. 18. (a) Entropy, (b) fraction of particles in the gas phase,
(c) zoomed-in detail of entropy curve, (d) zoomed-in detail of caloric
curve.

of T̂ of these mixed-phase states. The functional dependence
is similar to what we have seen under tight confinement,
except for the hint of an additional solution near T̂H. The
free-energy plot of Fig. 17(c) looks similar as well, except for
an additional unstable branch (not resolved on the scale of the
graph) near the uppermost tip.

The temperature T̂t at the border between the mixed-phase
and a purely gaseous equilibrium macrostates, has again no
significance in the actual phase transitions due to the non-
trivial mechanical stability condition. The evidence is shown
in the caloric curve of Fig. 17(d). When the cluster is qua-
sistatically cooled down from high temperature, it becomes
mechanically unstable at T̂L, sheds heat to the environment
while condensing, and settles in the mixed-phase state where
the highest dashed line intersects the curve on the right.

Conversely, when the mixed-phase cluster is heated up it
undergoes a mechanical instability at the much higher tem-
perature T̂X, absorbs heat while the condensate evaporates,
and settles in the gaseous state where the lowest dashed line
intersects the curve on the left. The additional feature of the
caloric curve near T̂H in comparison to its tight-confinement
counterpart [Fig. 14(b)] has no bearing on the phase behavior
just described.

The heat absorption at T̂X and heat expulsion at T̂L are also
evident in the entropy plot of Fig. 18(a). Again the additional
feature of the entropy curve near T̂H, not present in its tight-
confinement counterpart [Fig. 15(a)], makes no difference. In
Fig. 18(b) we show data for one aspect of the phase behavior
representative of all three regimes, namely, the low-T̂ asymp-
totics of the order parameter. The power-law asymptotics,
Ngas/N ∼ T̂ D/2+1, mentioned in the context of Eq. (51) is
borne out convincingly by the data, as it is in the other two
regimes (not shown). The data of the overhanging branch
pertain to mechanically unstable two-phase macrostates.

Finally, Figs. 18(c) and 18(d) illustrate the transitions as
they unfold in the microcanonical ensemble, where no heat
transfer with the environment takes place. Here the me-
chanical instabilities proceed at different values of constant
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FIG. 19. (a) Central or interfacial fugacity, (b) interfacial radius
of mixed-phase solutions, (c) free energy, and (d) caloric curve.

energy. Unlike in the canonical ensemble, both instabilities
are associated with an increase in entropy, which here plays
the role of thermodynamic potential.

C. Wide confinement

When the radius of confinement is relaxed beyond the
intermediate regime, a new landmark temperature enters the
game, but with very limited impact. The new features are
summarized in Fig. 19 for the representative case R̂ = 100
and r̂c = 1. There is now a narrow temperature interval, where
three gaseous macrostates coexist. The highest temperature,
T̂X � 0.14, is now far higher than the temperatures T̂L �
0.00795 and T̂H � 0.01045, which delimit the range of mul-
tiple gaseous macrostates, or the temperature T̂M � 0.01038,
where the gaseous macrostate becomes critical. Additional
(unstable) gaseous macrostates come into play as R̂ is in-
creased further.

The free-energy curve has an additional fold near the high-
est tip, unresolved in Fig. 19(c). The caloric curve further
bends into an incipient spiral. Finally, Fig. 20(b) is represen-
tative of all three regimes as was Fig. 18(b). It shows the
low-T̂ asymptotics of the entropy. The power-law behavior
was predicted earlier in Eq. (51). None of these features have
any qualitative impact on the phase behavior, as illustrated in
Fig. 20. In the canonical ensemble, a mechanical instability at
T̂L on the way down in temperature triggers an abrupt onset of
condensation. On the way up in temperature, the mixed-phase
state disappears equally abruptly in a mechanical instability
at T̂X.

In situations where the microcanonical ensemble provides
a more realistic description, transitions occur at energies
Êl and Êh. In both ensembles, the instabilities trigger pro-
cesses that move the relevant thermodynamic potential toward
equilibrium—the Helmoltz free energy F̂ toward a newly
available minimum in the canonical ensemble and the entropy
Ŝ toward a newly available maximum in the microcanonical
ensemble.

FIG. 20. (a) Entropy, (b) low-T̂ asymptotics of entropy,
(c) zoomed-in detail of entropy, (d) zoomed-in detail of caloric curve.

VI. CONCLUSION AND OUTLOOK

Self-gravitating clusters of bosonic particles initiate con-
densation in processes that depend on the symmetry of the
cluster and the dimensionality of the space. Mechanical in-
stabilities play a key role in some cases and produce effects of
hysteresis. The focus of this work has been on the density pro-
files of gaseous clusters and of gaseous halos in mixed-phase
clusters. For that purpose, we have worked with a provisional
BEC in the form of a highly compact reference state.

The results of this work, specifically the interfacial pres-
sure, are a prerequisite for the analysis of BEC-core density
profiles, whose shapes must be investigated on a different
length scale. The results of that analysis can then be used to
modify the provisional BEC into a more realistic shape for an
overall improvement of mixed-state profiles. The free-energy
expressions and the interface boundary conditions in Sec. II
are designed for adaption to this purpose.

In a companion paper [40], we have analyzed self-
gravitating FD clusters of the same symmetries and in spaces
of the same dimensionalities. As expected, FD and BE clusters
evolve differently upon cooling from their common low-
density MB limit. Whereas FD clusters tend to be amenable to
exact analysis in the fully degenerate limit, BE clusters tend
to facilitate exact results at criticality.

Emerging from these parallel studies is a curious corre-
spondence in the phase behavior of spherical BE and FD
clusters. Both quantum statistics give rise to abrupt changes
associated with mechanical instabilities and hysteretic effects.
In the BE clusters described here, the instabilities trigger
processes between purely gaseous profiles and mixed-state
profiles of a BEC core and a gaseous halo. In the FD clusters
described in Ref. [40], by contrast, the instabilities initiate
processes between gaseous states with different density pro-
files and different degrees of degeneracy.

Unanswered in both studies is the question about the ex-
istence and nature of a quasistatic process that links the
equilibrium states on either side of the pair of mechanical
instabilities. In the FD study we have suggested that the
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answer is to be looked for in macrostates of phase coexistence
between gaseous states of different profiles. In the case of
BE cluster, the path toward an answer is more complicated
and will have to await the calculation of BEC density profiles
under the weight of surrounding halos such as have emerged
from this study.

APPENDIX A: LENGTH SCALE AND ENERGY SCALE

The scales rs and kBTs inferred from Eqs. (18) and (19) are

rDσ

s = Dσ

ADσ

(2π h̄2)D/2Ñ m−D/2(kBTs)−D/2, (A1)

(kBTs )1+D/Dσ −D/2

= 1

2

AD
Dσ

(ADσ

Dσ

)−2/Dσ

× GD (2π h̄2)D/Dσ −D/2m2−D/Dσ +D/2Ñ2/Dσ . (A2)

The results for the cases considered in this work, expressed as
functions of N (number of particles) and m (particle mass)
and as function of m and m̃tot simplify as listed below.
The unit of the gravitational constant GD depends on D.
Only G3, of course, is known and relevant for astrophysics.
�Dσ = 1, D = 1:

kBTs = 1

2
π1/3(h̄G1)2/3mN4/3 = 1

2
π1/3(h̄G1)2/3 m4/3

tot

m1/3
,

rs =
(

π h̄2

G1

)1/3
N1/3

m
=

(
π h̄2

G1

)1/3
m1/3

tot

m4/3
; (A3)

�Dσ = 1, D = 2:

kBTs = π h̄

√
G2

2
m1/2Ñ = π h̄

√
G2

2

m̃tot

m1/2
,

rs = h̄

√
2

G2
m−3/2; (A4)

�Dσ = 1, D = 3:

kBTs = π
(
2h̄6G2

3

)1/5
m1/5Ñ4/5 = π

(
2h̄6G2

3

)1/5 m̃4/5
tot

m3/5
,

rs =
(

2h̄6

G3
3

)1/5

m−9/5Ñ−1/5 =
(

2h̄6

G3
3

)1/5

m−8/5m̃−1/5
tot ; (A5)

�Dσ = 2, D = 2:

kBTs = G2

2
m2N = G2

2
m mtot, rs = 2h̄√

G2
m−3/2; (A6)

�Dσ = 2, D = 3:

kBTs = G3m2Ñ = G3m m̃tot, (A7)

rs =
(

8π h̄6

G3
3

)1/4

m−9/4Ñ−1/4 =
(

8π h̄6

G3
3

)1/4

m−2m̃tot
−1/4;

�Dσ = 3, D = 3:

kBTs = G2
3

2h̄2 (36π )−1/3m5N4/3

= G2
3

2h̄2 (36π )−1/3m11/3m4/3
tot , (A8)

rs = (36π )1/3 h̄2

G3
m−3N−1/3 = (36π )1/3 h̄2

G3
m−8/3m−1/3

tot .

APPENDIX B: SERIES EXPANSION OF CRITICAL
PROFILES

For BE clusters in D = 3, the profile of the chemical po-
tential can be expanded into a power series beginning with the
quadratic term. Here we carry out the analysis for a cluster
with spherical symmetry (Dσ = 3). Results for planar sym-
metry (Dσ = 1) are shown in Sec. III C and for cylindrical
symmetry (Dσ = 2) at the end of this Appendix.

Writing ẑ = eμ̂/T̂c and setting μ̄
.= −μ̂/T̂c = − ln ẑ, the

rescaled critical chemical potential μ̄(r̂) is the solution of the
following set of equations (for Dσ = 3):

μ̄′′ + 2

r̂
μ̄′ − 6T̂ 1/2

c g3/2(e−μ̄) = 0, (B1a)

μ̄(0) = μ̄′(0) = 0. (B1b)

The value of T̂c (named T̂H in Secs. IV and V) for a given R̂ is
determined by

3T̂ 3/2
c

∫ R̂

0
dr̂ r̂2g3/2(e−μ̄) = 1. (B2)

The ODE (B1a) can be satisfied by a chemical potential ex-
pressed as the power series,

μ̄(r̂) =
∞∑

n=2

anr̂n. (B3)

The boundary conditions Eq. (B1b) are satisfied by construc-
tion. The first two terms of Eq. (B1a) yield the series

μ̄′′ + 2

r̂
μ̄′ =

∞∑
n=2

n(n + 1)anr̂n−2

= 6a2 + 12a3r̂ + 20r̂2 + . . . (B4)

For the last term of Eq. (B1a) we use asymptotic expansion of
BE functions:

g3/2(e−μ̄) = ζ

(
3

2

)
− 2

√
π μ̄1/2 +

∞∑
=1

(−1)

!
ζ

(
3

2
− 

)
μ̄.

(B5)

For the second term we substitute Eq. (B3) and expand
binomially:

μ̄1/2 = r̂

√√√√ ∞∑
n=2

anr̂n−2 = √
a2 r̂

√√√√1 +
∞∑

n=3

an

a2
r̂n−2

= √
a2 r̂ +

∞∑
m=2

bmr̂m, (B6)
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b2 = a3

2a1/2
2

, b3 = −a2
3 − 4a2a4

8a3/2
2

,

b4 = a3
3 − 4a2a3a4 + 8a2

2a5

16a5/2
2

, . . . (B7)

By substitution of these expansions into Eq. (B1a), we can
determine the expansion coefficients sequentially via the so-
lution of sets of linear equations. The first few coefficients
thus extracted are

a2(T̂c) = T̂ 1/2
c ζ

(
3

2

)
, a3(T̂c) = −T̂ 3/4

c

√
πζ

(
3

2

)
,

a4(T̂c) = 3

10
T̂c

[
π − ζ

(
1

2

)
ζ

(
3

2

)]
,

a5(T̂c) = 1

100
T̂ 1/4

c

√
π

ζ
(

3
2

)[
26 T̂c ζ

(
1

2

)
ζ

(
3

2

)
− π T̂c + 20

]
.

(B8)

The numerical values of all coefficients depend on the value
of T̂c, which is to be determined numerically via the normal-
ization condition Eq. (B2). The density profile Eq. (22) can be
expanded into a power series of the form

ρ(r̂) =
∞∑

n=0

cnr̂n. (B9)

The first three coefficients read

c0 = T̂ 3/2
c ζ

(
3

2

)
,

c1 = −2
√

πa1/2
2 T̂ 3/2

c = −2T̂ 7/4
c

√
πζ

(
3

2

)
,

c2 = − T̂ 3/2
c

[
a3/2

2 ζ
(

1
2

) + √
πa3

]
a1/2

2

= T̂ 2
c

[
π − ζ

(
1

2

)
ζ

(
3

2

)]
.

(B10)

Equivalent results for clusters with cylindrical symmetry
(Dσ = 2) look similar:

μ̄(r̂) =
∞∑

n=2

anr̂n,

a2(T̂c) = T̂ 1/2
c ζ

(
3

2

)
, a3(T̂c) = −8

9
T̂ 3/4

c

√
πζ

(
3

2

)
,

a4(T̂c) = 1

36
T̂c

[
8π − 9ζ

(
1

2

)
ζ

(
3

2

)]
,

a5(T̂c) = 1

2025
T̂ 5/4

c

√
π

ζ
(

3
2

)
×

[
369 T̂c ζ

(
1

2

)
ζ

(
3

2

)
− 8π

]
, ... (B11)

ρ(r̂) =
∞∑

n=0

cnr̂n, c0 = T̂ 3/2
c ζ

(
3

2

)
,

c1 = −2
√

πa1/2
2 T̂ 3/2

c = −2T̂ 7/4
c

√
πζ

(
3

2

)
,

c2 = − T̂ 3/2
c

[
a3/2

2 ζ
(

1
2

) + √
πa3

]
a1/2

2

= 1

9
T̂ 2

c

[
8π − 9ζ

(
1

2

)
ζ

(
3

2

)]
, . . . (B12)
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[73] N. Bilić and H. Nikolić, Self-gravitating bosons at nonzero
temperature, Nucl. Phys. B 590, 575 (2000).

[74] P. Hertel and W. Thirring, Thermodynamic instability of a sys-
tem of gravitating fermions, in Quanten und Felder, edited by
H. P. Dürr (Vieweg, Braunschweig, 1971).

[75] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics,
Vol. 5 (Oxford University Press, Oxford, UK, 1999).

[76] L. E. Reichl, A Modern Course in Statistical Physics, 2nd ed.
(Wiley, New York, 1998).

[77] F. Schwabl, Statistical Mechanics, 2nd ed. (Springer, Berlin,
2006).

[78] M. Kirejczyk, G. Müller, and P.-H. Chavanis, Relativistic ef-
fects in self-gravitating clusters of Fermi-Dirac gas with planar,
cylindrical, or spherical symmetry (unpublished).

034145-20

https://doi.org/10.3847/1538-4357/aaf28c
https://doi.org/10.3847/1538-4357/abfb66
https://doi.org/10.1140/epjp/s13360-021-01617-3
https://doi.org/10.1103/PhysRevLett.121.151301
https://doi.org/10.1103/PhysRevD.100.063528
https://doi.org/10.1007/BF02828918
https://doi.org/10.1016/S0550-3213(00)00455-7

