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Understanding temperature-modulated calorimetry through studies of a model system
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Temperature modulated calorimetry is widely used but still raises some fundamental questions. In this paper
we study a model system as a test sample to address some of them. The model has a nontrivial spectrum of
relaxation times. We investigate temperature-modulated calorimetry at constant average temperature to precise
the meaning of the frequency-dependent heat capacity, its relation with entropy production, and how such
measurements can observe the aging of a glassy sample leading to a time-dependent heat capacity. The study
of the Kovacs effect for an out-of-equilibrium system shows how temperature-modulated calorimetry could
contribute to the understanding of this memory effect. Then we compare measurements of standard scanning
calorimetry and temperature-modulated calorimetry and show how the two methods are complementary because
they do not observe the same features. While it can probe the timescales of energy transfers in a system, even
in the limit of low-frequency temperature-modulated calorimetry does not probe some relaxation phenomena
which can be measured by scanning calorimetry, as suggested by experiments with glasses.
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I. INTRODUCTION

Many calorimetry studies rely on a modulated heating
power to determine a frequency-dependent heat capacity of a
sample (that we henceforth call “dynamic heat capacity”) [1].
There are technical reasons such as the use of a high modula-
tion frequency so that the heat loss of the sample becomes
negligible and the high accuracy which can be reached in
measurements which use lock-in amplifiers and filters. There
are also more fundamental motivations. Modulated techniques
can be used to select among various timescales in the evolu-
tion of the system, or to determine the heat capacity while the
average temperature of the sample is kept fixed and only very
small oscillations are imposed. It is also an interesting method
to follow the time dependence of the thermal properties of a
system out of equilibrium, such as measurements on glasses.
Large improvements in the experimental methods have been
achieved [2,3] while theoretical analysis generated a lot of
attention and controversy as attested by the special issue
of the Journal of Thermal Analysis devoted to temperature-
modulated calorimetry in 1998 [4]. Since then these methods
are still raising some fundamental questions [5] to understand
the meaning of the measurements [6,7] which are sometimes
described by a complex specific heat. The puzzle becomes
even more complicated when relaxation phenomena in the
sample are mixed with its response to a modulated heat signal
[8,9].

Theoretical analyses from irreversible thermodynamics [5]
or linear response theory [10] bring useful insights, but these
approaches could be usefully completed by the investigation
of a system which can be fully characterized and controlled.
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One feature which characterizes physics is that it has often
made progress by studying simple “model” systems, whether
they are real systems such as the hydrogen atom in the de-
velopment of quantum mechanics or theoretical models such
as the Ising model for statistical physics. At a first glance they
may appear as too simple, but, because they allowed physicists
to identify the basic mechanisms behind the observations,
they turned out to provide elements for a basic understanding.
Moreover, some of the simplest theoretical models such as the
Ising model can even be applied to quantitatively describe a
large variety of real systems to a good approximation. In this
paper we show how a simple thermodynamic model can clar-
ify many questions which arise in the analysis of modulated
calorimetry experiments.

To be useful such a model should be sufficiently simple
to allow a complete analysis, but nevertheless rich enough
to capture subtle effects which appear in real experimental
situations. The idea to investigate the properties of a model
system to clarify the meaning of the dynamic heat capacity
has already been explored in the study of a bead-spring chain
viewed as a model for a glass former [11,12]; however, this
system is too complex to allow a full analytical analysis.
Recently we showed that a three-state system can play the
role of the “simplest complex system” able to describe a
large variety of properties of glassy systems, for instance, the
subtle Kovacs effect which demonstrates that thermodynamic
variables are not sufficient to characterize the state of some
out-of-equilibrium systems such as glasses, while allowing
an analytical analysis of most of the phenomena [13]. In this
paper we show that this model can also provide a useful test
system to investigate the different contributions which enter
in the signal measured in a temperature-modulated calorime-
try experiment and to relate them to the underlying physical
phenomena. However, we want to stress that, in the context
of this paper, the model is only a convenient tool for our
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analysis because it describes a system in which energy
transfers occur at various timescales. This is the class of
phenomena which are typically studied by temperature-
modulated calorimetry. The possibility to derive analytical
expressions for the response of this system, even when it
is very far from equilibrium and shows strong relaxations,
clarifies the origin of the different contributions which can be
detected with temperature-modulated calorimetry and should
hopefully help in the analysis of experimental data for various
systems.

Section II introduces the three-state model which is at
the basis of this study and discusses its application to
numerical simulations of temperature-modulated calorime-
try experiments. Section III analyzes temperature-modulated
calorimetry experiments carried at constant average tem-
perature, starting from the determination of the dynamic
specific heat for an equilibrium state and then studying out-
of-equilibrium states reached after a temperature jump. We
show that a full analytical treatment is possible in these cases
so that the different contributions to the signal recorded in
the measurements can be precisely assigned. This brings fur-
ther light on the meaning of the frequency-dependent specific
heat beyond the linear response theory [10] and the origin of
the influence of temperature modulation on the properties of
some systems, which has been observed experimentally [14].
Section IV considers experiments in which a modulation is
superimposed to a temperature ramp, as in modulated tem-
perature scanning calorimetry (MTSC). Experiments detect a
qualitative difference between the specific heat recorded in a
standard differential scanning calorimetry (DSC) experiment,
which uses the ramp alone, and the frequency-dependent
specific heat obtained by MTSC [15]. They can be under-
stood from simulations and analytical calculations using the
three-state model. Section V is a concluding discussion of the
meaning of our results and their interest to analyze the data of
temperature-modulated calorimetry on real systems.

II. THE MODEL AND ITS APPLICATION
IN CALORIMETRY

The thermodynamic properties of complex systems can
be approximately described by models which focus on the
minima of their free-energy landscape [16]. If this picture is
completed by the values of the barriers between the minima,
then dynamical properties can also be investigated. Pushing
these idea to the extreme leads to the two-level system, which
is able to describe some surprising features of glasses. For
instance, in a glass which has been cooled very fast, some
degrees of freedom are trapped in high energy metastable
states due to kinetic constraints. Then, upon heating those
states may relax so that, in a first stage, the energy decreases
while temperature increases, which is detected as a negative
heat capacity in the measurements [17]. The two-level system
is able to describe this phenomenon, observed, for instance,
in B2O3 [18]. However, such an oversimplified system is not
able to describe more subtle properties of glasses, such as the
Kovacs effect which demonstrates that an out-of-equilibrium
system is not fully characterized by the knowledge of its
thermodynamic variables [13]. Adding one metastable state
to get the three-state system shown on Fig. 1 is enough to

FIG. 1. The three-state model. The circles schematize the
metastable states with energies Ei and the thick lines the barriers that
separate them, with energies Si.

describe such a phenomenon. Moreover, the three-state sys-
tem is interesting in the context of temperature-modulated
calorimetry because the spectrum of its relaxation times has
two characteristic times instead of the single relaxation time
of the two-level system. Therefore, its dynamics is richer
and can exhibit nontrivial time-dependencies beyond a simple
exponential relaxation. The Kovacs effects is only an example
of such a situation [13].

Of course a model which only considers the minima of the
free-energy landscape cannot be complete. It only describes
the configurational heat capacity because it ignores other con-
tributions to the energy, such as the vibrational or electronic
contributions. However, for glasses, the configurational heat
capacity is strongly dominant, as shown, for instance, by
measurements on poly(vinyl acetate) (PVAC) [9].

Let us denote by Ei (i = 1, 2, 3) the energies of the three
metastable states. The probabilities Pi that the states i are
occupied are the variables which define the state of the system.
However, due to the constraint P1 + P2 + P3 = 1, the state is
actually defined by two parameters only. The two variables P1

and P2 are sufficient to characterize a state of the system.
The equilibrium properties of the model are readily ob-

tained from the Gibbs canonical distribution. Its partition
function is

Z =
∑

i

e−Ei/T , (1)

if we measure the temperature T in energy units (which is
equivalent to setting the Boltzmann constant to kB = 1). When
the system is in equilibrium the occupation probabilities of the
three states are

Peq
i = 1

Z
e−Ei/T , (2)

the average energy of the system is

E eq(T ) = 〈E (T )〉eq = 1

Z

∑
i

Eie
−Ei/T , (3)

and its equilibrium heat capacity is

Ceq(T ) = dE eq(T )

dT
= 1

T 2
[〈E2(T )〉eq − (〈E (T )〉eq )2], (4)

where 〈 〉eq designates averages computed with the equilib-
rium probabilities Eq. (2). Viewing this model as a simplified
picture of the free-energy landscape of a glass, we assume
that the transitions from one basin of attraction to another
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are thermally activated over saddle points having energies S1,
for the transition between E1 and E3, S2 for the transition
between E1 and E2, and S3 for the transition between E2 and
E3. Therefore, the transition probabilities are determined by
a set barriers Bi j , for instance, B13 = S1 − E1, B31 = S1 − E3,
B12 = S2 − E1, and so on. The energies of the saddle points
are assumed to be higher than the energies of the states that
they separate so that Bi j > 0 for all i, j pairs.

The rates of the thermally activated transitions are

Wi→ j = ωi j e−Bi j/T , (5)

where ωi j are model parameters which have the dimension of
inverse time. As a result the thermodynamics of the model
is expressed by equations for the time-dependence of the
occupation probabilities, which are of the form

dP1

dt
= − P1 ω13 e−(S1−E1 )/T + P3 ω31 e−(S1−E3 )/T

− P1 ω12 e−(S2−E1 )/T + P2 ω21 e−(S2−E2 )/T , (6)

and similar equations for P2 and P3. The detailed balance
conditions ωi j = ω ji ensure the existence of the equilibrium
state. Detailed balance does not require ω13 = ω12; however,
we shall henceforth assume

ωi j = 1 ∀i, j(i �= j). (7)

Setting the common value of ωi j to 1 defines the time unit
(t.u.) for the system.

In a typical temperature-modulated calorimetry experiment
a physical system of interest, the sample, is linked by a heat
exchange coefficient K to a thermal bath at temperature T0

(which could be time-dependent if a thermal ramp is used).
An oscillatory power is transmitted to the sample, causing
its temperature to oscillate. Temperature and energy flow ex-
changed by the sample and its environment are monitored so
that the variation of its temperature and energy versus time
are known, allowing a determination of its heat capacity. Our
simulations use a simpler scheme, which is adapted for a
theoretical investigation. We impose the temperature T (t ) of
the sample as a function of time. Given an initial state, this
allows us to solve the equations for the time dependence of the
occupation probabilities of the three states with a fourth-order
Runge-Kutta scheme, so that the energy E (t ) is determined.

While the goal of calorimetry is to relate the variations
of the energy and temperature in a physical system, in
temperature-modulated calorimetry experiments the energy
is generally controlled through the modulated power applied
to the sample, and temperature is measured. In our case the
situation is reversed because temperature is controlled and en-
ergy is measured (or rather calculated). In both cases the heat
capacity can be deduced from the relation between energy
and temperature but our simulations cannot claim to address
all the phenomena which take place in an actual calorimetry
experiment. In a complex system, including the three-state
system, knowing the energy does not fully determine the
state of the system because several configurations can lead
to the same energy. One question which could be asked is
how does the energy split between the microscopic degrees
of freedom. Temperature-modulated calorimetry can try to
answer this question by measuring the response to different

modulation frequencies, which is determined by the physical
processes which take place in the system and govern the en-
ergy exchange between microscopic states. In the three-state
system the energy exchanges are imposed by the variations of
temperature that we impose and by the rules that define the
transition probabilities between states. Nevertheless, as far as
the calorimetric measurements are concerned, our studies can
probe how the calorimetric signal is affected, given the differ-
ent timescales determined by the temperature of the system.

III. TEMPERATURE-MODULATED CALORIMETRY
AT CONSTANT AVERAGE TEMPERATURE

In this section we consider a sample, modeled by the three-
state system, with a modulated temperature

T (t ) = T0 + Tac(t ) with Tac(t ) = AT sin ωt, (8)

where T0 is a constant. This may occur in various experimental
situations. (i) If the system is in equilibrium at temperature T0,
then adding a small modulation (AT � T0) allows the mea-
surement of its response at different frequencies to probe the
spectrum of the thermal relaxations of the sample. (ii) If the
system is strongly out-of-equilibrium at the start of the exper-
iment, then one may be interested in its thermal aging, i.e., the
time evolution of its heat capacity C(T0, t ). Some temperature
change is necessary to measure the thermal response. Choos-
ing a temperature modulation Tac(t ) has a double interest.
First, the average temperature of the sample is not modified, so
that if AT � T0, then one measures the specific heat at T0 to a
good accuracy, and second, as the measurement depends on ω,
the time dependence of the dominant relaxation phenomena
within the sample can be followed. (iii) If AT is large, then
nonlinearities are excited and we shall show that this can lead
to some relaxation even if the system starts from an equilibrium
state, as observed in some experimental investigations [19].

A. Spectrum of the fluctuations of energy transfers
in an equilibrium system

Using the three-state system as a “sample” we can simulate
a temperature-modulated calorimetry experiment that probes
the timescales at which the energy can be transferred between
the degrees of freedom of a physical system.

In these calculations we used the following parameters:
The energies of the three metastable states are E1 = −0.40,
E2 = −0.25, E3 = 0. The energies of the saddle points are
S1 = 0.40 between states 1 and 3, S2 = 0.30 between states
1 and 2, S3 = 0.25 between states 2 and 3 (Fig. 1). As the
model has not been tailored to any particular physical system,
the energy scale is irrelevant and the values have been chosen
arbitrarily. Temperatures are measured in energy units. Other
values would of course quantitatively change the results, but,
as long as the barriers S j-Ei for all the possible transitions are
positive and the ratios of the investigated temperatures and
energies stay in the same range, the main features of the results
would not be affected.

Figure 2 shows the equilibrium heat capacity and the
equilibrium energy of the model versus temperature for
this parameter set. A temperature-modulated calorimetry
measurement is simulated by imposing a variation of T (t )
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FIG. 2. Equilibrium heat capacity (dashed line) and equilibrium
energy (full line) versus temperature (in energy units) for the three-
state model with E1 = −0.40, E2 = −0.25, E3 = 0 and S1 = 0.40,
S2 = 0.30, S3 = 0.25.

according to Eq. (8) and solving the Eq. (6) and the simi-
lar equation for P2 (and P3 = 1 − P1 − P2 is then obtained
too) with a fourth-order Runge-Kutta algorithm, using the
time step δt = 0.01. We have chosen T0 = 0.125 and, in this
section, the initial state is the equilibrium state at T = T0.
Therefore, at this stage, no aging phenomena are involved.

Figure 3 shows a typical simulation result, for ω = 0.1 and
AT = 10−4 chosen so that the magnitude of the temperature
modulation is much smaller that T0, as in actual temperature-
modulated calorimetry experiments. After a short transient,
discussed below, the system reaches a steady state in which
the energy oscillates, with a phase shift with respect to the
temperature modulation.

The heat capacity of the system C(ω, t ) = dE/dT
can be derived from the simulation results C(ω, t ) =
[dE (t )/dt] / [dT (t )/dt]. Separating the fraction of dE (t )/dt
which is in phase with dT (t )/dt one gets C′(ω, t ) while the

FIG. 3. Energy and temperature versus time recorded in a simu-
lation of the three-state system, starting from an equilibrium state
at temperature T0 = 0.125, subjected to a modulated temperature
according to Eq. (8) with ω = 0.1, AT = 10−4. The thin red curve
shows T (t ) (right scale) and the thick magenta line shows the energy
recorded in the numerical simulation (left scale). The dashed black
line shows the energy E (t ) calculated analytically (Appendix A).

FIG. 4. Relaxation times τ1 (black full line) and τ2 (blue dotted
line) versus temperature, and the ratio τ2/τ1 (black dashed line). The
relaxation times are measured in the time unit defined by setting the
prefactors ωi j = 1 in Eq. (5).

fraction in quadrature with dT (t )/dt gives C′′(ω, t ), which
correspond to the “real” and “imaginary” parts of C(ω, t )
when one uses a complex notation.

However, for the three-state system, C(ω, t ) can also be
calculated analytically, as shown in Appendices A and B,
which gives a much better insight into the actual mechanisms
which contribute to the dynamic specific heat. As the am-
plitude of the temperature modulation is small, the rates of
the thermally activated transitions can be expanded to first
order around their values at temperature T0. It is convenient
to introduce the deviations Qi(t ) = Pi(t ) − Peq

i (T0). In the
general case these deviations are not assumed to be small
because the calculation also applies, for instance, when we
study a system which has been brought to T0 after a large
temperature jump. The analytical solution amounts to solving
a set of two coupled equations for dQ1/dt and dQ2/dt which
derive from Eq. (6) and from the corresponding equation for
dP2/dt . The two equations can be written in a matrix form
and the solution is expressed on the basis of the two eigen-
states of the 2 × 2 matrix which relates the Qis and their
time derivatives. Each eigenmode has a relaxation time τi so
that the calculation shows that the dynamics of the model is
governed by two relaxation times τ1 and τ2, which depend on
temperature. Figure 4 shows how the relaxation times depend
on temperature for the parameter set that we have chosen. In
the high temperature limit the rates of the transitions tend to
unity according to Eq. (5), with the time unit defined by setting
ωi j = 1, whereas, in the low temperature range, T � 0.03, τ1

and τ2 grow by many orders of magnitude in a narrow temper-
ature range so that the three-state system exhibits a glasslike
behavior although it does not have a true glass transition.

At T0 = 0.125 the relaxation times are τ1 = 5.217 t.u.

and τ2 = 49.11 t.u. corresponding to eigenfrequencies ω1 =
1.204 t.u.−1 and ω2 = 0.1279 t.u.−1. The dashed black line on
Fig. 3 shows the analytical result for E (t ). It exactly matches
the magenta line showing the energy E (t ) deduced from the
numerical simulation, which indicates that the linear expan-
sion of the reaction rates is sufficient to accurately describe
the dynamics of the system. The agreement remains very
good even if AT is increased by one order of magnitude to
AT = 10−3.
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FIG. 5. Heat capacities C′(ω) (blue full line) and C′′(ω) (red
dashed line) for the three-state system with the parameters that we
have chosen, at temperature T0 = 0.125. The lines result from the
analytical calculations (Appendices A and B). The points have been
obtained from numerical simulations for different values of ω. The
vertical dashed lines show the values of ω1 (long dash) and ω2 (short
dash). The black horizontal line near the top of the graph shows the
value of the equilibrium heat capacity at temperature T0 on the scale
of C′.

After the initial transient the energy reaches a steady
oscillatory state and the heat capacity depends on ω only.
Temperature-modulated calorimetry can get access to the
spectrum of the characteristic times of the energy transfers
within the degrees of freedom of sample by carrying a series
of experiments with different modulation frequencies. For the
three-state model that spectrum is known because the ana-
lytical calculation determines the two relaxation times τ1, τ2

and how they influence the specific heat because it gives the
functional form of C′(ω) and C′′(ω), plotted on Fig. 5 for
the model parameters that we have chosen. This figure also
shows individual points, deduced from a series of numerical
simulations with different values of ω. They illustrate how
one would build the curves for C′(ω) and C′′(ω) in a series
of experiments.

The shape of the curves shows how the eigenfrequencies
play the role of cutoff frequencies for energy transfer. Above
the highest frequency none of the modes can be excited and
C(ω) quickly drops to 0. In the frequency range ω2 < ω <

ω1 one of the two modes can still be excited and therefore
C(ω) still keeps a significant value. At very low frequency, as
expected C′(ω) tends to the equilibrium heat capacity while
C′′(ω) tends to vanish.

The physical meaning of the frequency-dependent heat
capacity has been widely discussed in the literature [5], and
particularly its so-called “imaginary part,” which appears as
linked to some form of heat dissipation. It actually describes
the component of the response which is in quadrature of
phase with the temperature modulation due to delays caused
by energy transfers between the various energy states. Us-
ing the three-state model the origin of this contribution to
the heat capacity can be related to the entropy production
in an out-of-equilibrium system. In a thermodynamic trans-
formation, the variation �S of the entropy includes two
contributions. The contribution �eS = �E/T comes from the
exchange of energy �E with the environment. The second

FIG. 6. Entropy S(t ) (magenta dashed line, right scale) and en-
tropy production rate AS (blue full line, left scale) for the numerical
experiment shown in Fig. 3. The sinusoidal function on top shows
the variation of the temperature as a phase reference (no scale).

contribution �iS is associated to internal transformations
within the system. It is never negative �iS � 0 and vanishes
for a reversible process. For the three-state system, both sim-
ulations and analytical calculations can determine the time
evolution of the probabilities of occupation of the metastable
states Pi(t ), which were used in the calculation of C(ω).
Therefore, we can calculate the entropy of the system

S(t ) = −
3∑

i=1

Pi(t ) ln Pi(t ). (9)

The variation of entropy in an elementary transformation in
which the probabilities of occupation change by dPi is there-
fore dS = −∑3

i=1 ln Pi dPi (taking into account
∑

dPi =
0). deS = (1/T )

∑3
i=1 Ei dPi can be expressed in terms of

the equilibrium occupation probabilities at temperature T
as deS = −∑3

i=1 ln Peq
i dPi so that the entropy production

rate is

AS = diS(t )

dt
= dS(t )

dt
− deS(t )

dt
= −

3∑
i=1

ln

(
Pi

Peq
i

)
dPi

dt
.

(10)

It is shown in Fig. 6 for the transformation shown in Fig. 3
during which a temperature modulation is applied to the three-
state system initially in equilibrium at T = 0.125. The entropy
production rate is very small (its maximum is of the order
of 8 × 10−9 while the entropy is of the order of 6 × 10−1)
but nevertheless nonzero, and always positive as expected. It
shows two peaks per period of the temperature modulation,
one when energy rises and one when it decreases. It simply
means that the modulation of the temperature is too fast to
allow the system to stay in equilibrium when temperature
and energy change (whatever the change, positive or negative)
and this leads to entropy production. These out-of-equilibrium
processes are responsible for the C′′(ω) term in the heat ca-
pacity, which has been described as a “loss term” in some
studies [5]. The frequency dependence of the maximum of
the entropy production rate, which rises to 2 × 10−8 for ω =
1.0 t.u.−1 and drops to 1.2 × 10−11 for ω = 10−3 t.u.−1 attests
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of the role of out-of-equilibrium phenomena in a temperature-
modulated calorimetry experiment.

Up to now we discussed the steady state of the simulated
experiment (Fig. 3). However, the simulation shows a small
decay of the average energy before this steady state is reached,
and this may seem surprising because we started from an
equilibrium state at temperature T0 and imposed a small si-
nusoidal temperature modulation around T0. Therefore, the
average temperature has been maintained at T = T0. Actually
the energy shift, due to this modulation is easy to under-
stand by looking at the curve showing how the equilibrium
energy E eq(T ) varies versus the temperature of the system
(Fig. 2). Around T0 = 0.125, E eq(T ) varies nonlinearly ver-
sus temperature and is curved downward. As a result, for
a system oscillating along this curve between T0 − AT and
T0 + AT the average energy is expected to be smaller than
E eq(T0). This simple qualitative explanation can be checked
by performing a similar simulation at a temperature T ′

0 around
which E eq(T ) is curved upward. This is the case for T ′

0 = 0.05
as shown in Fig. 2 and indeed a simulation shows that the
average energy moves up when a sinusoidal modulation of
the temperature around T ′

0 is imposed. Of course, as discussed
above, the system subjected to such a sinusoidal modulation
is not in equilibrium. Thus, the equilibrium E eq(T ) cannot
provide an accurate evaluation of the average energy shift in
the presence of the modulation Tac. To get such an evaluation
one has to calculate the actual evolution of the energy versus
time, as in Appendix A, which is plotted as a dashed black
line in Fig. 3. The figure shows that this analytical calcu-
lation matches the simulation results (thick magenta line on
Fig. 3). The role of a sinusoidal temperature modulation to
modify the average value of some property of a material has
already been observed experimentally [14] for the dielectric
relaxation and thermodynamic properties of polymers. The
understanding of these phenomena, further refined in Ref. [19]
involves exactly the same mechanism that we exhibited for
the three-state system: the nonlinear change of this property
when temperature varies. In some cases experiments show that
the effect can become large, and this is also the case for the
three-state model around T0 = 0.04, because below this tem-
perature E eq(T ) becomes almost flat, while above T0 = 0.04
it starts to raise significantly. In this temperature range the
calculation of Appendix A loses accuracy because expanding
the rates of the thermally activated transitions to first order
in Tac is not enough. Higher order terms, introducing further
nonlinearities, start to play a significant role.

B. Time-dependent heat capacity during the aging
of a sample at constant temperature

Understanding aging in glasses is a challenge for theoreti-
cal physics. Experiments are generally made by following the
properties of a glass while it is cooled fast enough to prevent
it from reaching equilibrium. In this case aging results from
the combined effect of the temperature change and intrinsic
phenomena within the glass. This makes the analysis more
complex. Using a modulated temperature as in Eq. (8) allows
measurements of thermodynamic properties while the glass
ages at constant temperature because Tac � T0 can be cho-
sen so small that it has a negligible influence on the aging.

FIG. 7. Time evolution of the thermodynamic properties of the
three-state system during aging at T0 = 0.08, with a modulation
Tac = AT sin ωt (ω = 10−2 t.u.−1, AT = 2 10−4) after a temperature
jump from equilibrium at T = 0.3. (a) Energy (thick magenta full
line from simulation results, dotted black line from analytical cal-
culation, left scale) and temperature (thin red full line, right scale).
(b) Entropy (magenta dashed line, right scale) and entropy pro-
duction rate (blue full line, left scale). The sinusoidal curve shows
temperature as a reference (scale not indicated).

Moreover, ω can be varied to follow specific timescales dur-
ing aging. The three-state system, which has a spectrum of
fluctuations which is richer than a simple relaxation, is an in-
teresting case to study how aging can lead to a time-dependent
heat capacity of a glass during aging.

Figure 7 shows the behavior of energy, entropy, and en-
tropy production during the early stage of aging of the
three-state system after a temperature jump. In this simulation
the model studied above (with the same parameters) was kept
in equilibrium at T = 0.3 for a short time and then its temper-
ature was abruptly changed to T0 = 0.08 while we followed its
properties by adding a small modulation with frequency ω =
10−2 t.u.−1 and amplitude AT = 2 × 10−4. At T0 = 0.08 the
relaxation times are τ1 = 19.09 t.u. (ω1 = 0.329 t.u.−1) and
τ2 = 690.9 t.u. (ω2 = 0.91 × 10−2 t.u.−1). The temperature
jump is followed by a strong relaxation of the energy, with a
large entropy production. Figure 7 starts when this initial stage
is almost over because the variations in energy and entropy at
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FIG. 8. Dynamic heat capacity C′(ω) (blue dashed line, left
scale) and C′′(ω) (red full line, right scale) of the three-state system,
versus time after a temperature jump from T = 0.3 to T0 = 0.08.
The horizontal full line shows the value of the equilibrium heat
capacity Ceq(T0) on the scale of C′(ω). The dashed vertical lines
show the values of τ1 (long dash) and τ2 (short dash). The stars
(circles in insets) show the value of C′′ deduced from the entropy
production according to Ref. [23] for t > 2π/ω (condition imposed
by the integration over a cycle of the modulation to compute C′′).
(a) Results for ω = 10−2t.u.−1; (b) results for ω = 10−4t.u.−1.

very short time are so large that they hide the effect of the
temperature modulation (without preventing nevertheless the
determination of C(ω) as shown in Fig. 8). The last stage of
the relaxation is visible on Fig. 7. The variation versus time of
the in-phase C′(ω) and out-of-phase C′′(ω) components of the
dynamic heat capacity are shown in Fig. 8 using a logarithmic
scale for time to display the properties at various timescales
more clearly.

The first important point to notice is that the dynamic
heat capacity, which corresponds to the response of the sys-
tem at a particular frequency (determined, for instance, by
Fourier transform in the analysis of experimental data) ac-
tually shows the strong relaxation phenomena that follow
the heat jump, even if their timescale does not match the
period of the modulation. This looks surprising at first ex-
amination, but this should actually be expected because the
relaxations correspond to evolutions within the sample, which
modify its thermal response. The physical mechanism of this

phenomenon, which may lead to a large time-dependence of
the dynamic heat capacity in a strongly out-of-equilibrium
system, is the following. Because the rates of the thermally
activated transitions Wi→ j given by Eq. (5) depend on temper-
ature, they are modulated by the signal Tac(t ). In a first-order
expansion they include a contribution proportional to Tac(t ).
The master equations giving dPi/dt contain products of Pj

by Wi→ j , and therefore dPi/dt contains terms proportional
to Pj × Tac(t ). They show up in the term C4 of Eq. (A3)
of Appendix A. This coupling of the temperature oscilla-
tions with the departure of the probabilities from equilibrium,
which follows a temperature jump or a very fast cooling,
gives rise to a strong time-dependence of the dynamic heat
capacity. Therefore, it should be expected that C′(ω), C′′(ω),
which measure the response of the system to the temperature
modulation Tac(t ), follow the relaxation of the system after a
large temperature jump, or a very fast cooling. The calculation
presented in Appendix A gives a quantitative evaluation of
this effect which can cause a strong time-dependence of the
dynamic heat capacity. Linear response theory [10], which
treats systems near equilibrium, neglect this coupling and
therefore finds that the dynamic specific heat depends on the
frequency only, and not on time.

Such large variations of the dynamic heat capacity ver-
sus time appear in Fig. 8, which shows that, in the early
stage of the evolution, C′(ω) can even be negative. Nega-
tive heat capacities have been measured in temperature scans
for glasses strongly out of equilibrium [20]. Temperature-
modulated calorimetry can detect a similar phenomenon
during aging at constant temperature after a large temperature
jump. Moreover, for dynamic heat capacity, negative values
are not surprising, even close to equilibrium, because the
theoretical analysis shows that the dynamic heat capacity does
not share with the equilibrium heat capacity the property of
being always positive [21].

As shown in Fig. 9(a), when the three-state system ages
after a sharp cooling, the modulus of its dynamic heat capacity
at fixed frequency may show a large variation with time. This
phenomenon takes place although nothing has been modified
in the model itself or its parameters. It is due to the large
relaxation phenomena following a heat jump discussed above.
Actual measurements on aging glasses have also detected
strong time dependencies of the modulus of the dynamic heat
capacity |Cp| at fixed frequency during aging. Figure 9(b)
shows experimental data for PVAC after a fast cooling [15]. In
a real system, like PVAC, the phenomena are more complex
than for the theoretical three-state system, and this simple
model would not be sufficient to fit the actual data, but it sug-
gests nevertheless a pathway to understand the experiments.
The results for the three-state system clearly show two stages
in the aging, associated to the two relaxation times τ1 and
τ2. PVAC has a richer spectrum of relaxation times and one
cannot readily identify them from the experimental curve of
Fig. 9(b). Nevertheless the results suggest at least a very fast
relaxation of the order of a few minutes, a second range of
relaxation times around 30 min, and the presence of longer
relaxation times, extending beyond hundreds of minutes as
the relaxation is not over at the end of the 1000-min exper-
iment. The decay with time of the dynamic heat capacity has
also been observed by temperature-modulated calorimetry for
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FIG. 9. (a) Modulus of the dynamic heat capacity versus time
(logarithmic scale) for the three-state system aging after a tempera-
ture jump from T = 0.3 to T0 = 0.08 determined with a temperature
modulation at ω = 10−4t.u.−1 [corresponding to the results shown in
Fig. 8(b)]. The dashed vertical lines show the values of τ1 and τ2 at
temperature T0. (b) Experimental result for the aging of a PVAC sam-
ple at 24◦C after cooling from 90◦C at −1.2◦C/min. The modulus of
the heat capacity Cp was measured at constant temperature using a
temperature modulation at 0.1954 Hz. (Data from Ref. [15]).

another glassy sample, triphenylolmethane triglycidyl ether
[22]. In the discussion of the results, this study considered
various possible explanations, such as an evolution of the
relaxation times in the sample or indirect effects of structural
relaxation leading to a density increase. The simple three-
state model cannot attempt to detect subtle effects which are
sample-specific, but it shows however that relaxations, with
constant characteristic times, are sufficient to generate such
a decay of the heat capacity versus time, possibly allowing a
simpler analysis of the observations of Tombari et al. [22].

A theory of the frequency-dependent specific heat has been
proposed in Ref. [10]. It is based on the fluctuation-dissipation
theorem and only applies in the vicinity of equilibrium. Our
approach, which solves the equations for the time evolution
of the occupation probabilities shows that the response of
a system very far from equilibrium to a modulation of its
temperature can be more complex and includes a contribution

coming from the relaxation of the system toward equilibrium.
When the system approaches equilibrium, our results con-
verge to the expression given in Ref. [10], but they are more
general. The drawback of our approach is that the dynamic
equations are solved in the context of a particular model.

Another general analysis of temperature-modulated
calorimetry has been proposed in Ref. [23]. It focuses on the
origin of the “loss term” C′′(ω) and shows that, in the vicinity
of equilibrium, it can be quantitatively related to the entropy
production integrated over one cycle of the modulation, As,
by

As = π
(AT

T0

)2

C′′. (11)

The value of C′′ deduced from Eq. (11) is plotted on Fig. 8
(see insets for a magnified scale). It converges toward C′′(ω)
for all ω when aging has been long enough to allow the system
to come sufficiently close to equilibrium to ensure the validity
of the Eq. (11) [23]. The results shown on Fig. 8(b) is however
trivial because the modulation is so slow (ω = 10−4 t.u.−1)
that it probes quasiequilibrium properties of the system, when
entropy production has vanished as well as C′′. Figure 8(a) is
more interesting because it shows the quantitative validity of
the approach of Ref. [23].

Figure 8, which shows the evolution of the dynamic heat
capacity for two values of ω, suggests that such measurements
could allow a study of the various timescales involved when
a system ages. The two characteristic times which control
the aging for the three-state system are marked on this fig-
ure. As discussed above, the large variations of C′(ω) and
C′′(ω) provide an indirect view of the relaxations toward
equilibrium. The shape of C′(ω) gives a first insight on the
relaxations in the system because it exhibits two quasilinear
segments centered around t = τ1 and t = τ2. In a system with
a more complex spectrum of aging timescales, performing
experiments for different values of ω may give a quantita-
tive information on this spectrum. The simulation with ω =
10−4 t.u.−1 probes the evolution of the system up to timescales
larger than τ2 and therefore a quasiequilibrium situation. This
is why, in the long term C′(ω) tends to Ceq(T0). Conversely for
ω = 10−2 t.u.−1, even in the large time limit C′(ω) stays well
below Ceq(T0) because the timescale of the modulation does
not allow the system to relax the degrees of freedom which
evolve with characteristic time τ2. Thus, studying

�C(ω) = Ceq(T0) − lim
t→∞C′(ω, t ) (12)

versus ω provides some measure of the relaxation times that
govern aging in the system and of the magnitude of the contri-
bution to the dynamic heat capacity of the degrees of freedom
associated to each of these relaxation times.

C. Investigating the Kovacs effect by
temperature-modulated calorimetry

The Kovacs effect is an interesting effect which points
out the peculiarities of out-of-equilibrium systems [24]. To
our knowledge it has not been investigated by temperature-
modulated calorimetry although such experiments could
provide useful insights on its mechanism. It was observed
in a series of two experiments. First, a glass sample is
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FIG. 10. Energy versus time for a Kovacs scan with the three-
state system. After a sharp temperature jump from T1 = 0.3 to
T2 = 0.02 the model was let to age at T2. Its energy decreases
and, when it had reached the value E eq(T = 0.17856), the temper-
ature was abruptly switched to T = T0 + Tac with T0 = 0.17856 and
Tac = AT sin ωt , AT = 8 10−4, ω = 10−2 t.u.−1. The figure shows the
energy of the system versus the time (in logarithmic scale) from
the temperature jump from T2 to T0. The thick magenta line shows
the energy recorded during the numerical simulation, while the thin
black line, along the magenta line, shows the result of the analytical
calculation of the energy following the process presented in Ap-
pendix A, starting from the initial state reached at the end of the aging
period at T2. The black vertical dashed lines mark the relaxation times
of the three-state system at temperature T0.

slowly cooled to record the variation of its volume versus
temperature veq(T ) in quasiequilibrium. In a second ex-
periment, the sample is abruptly cooled from an initial
temperature T1 to a low temperature T2 in the vicinity of
the glass transition temperature Tg. The sample is let to age
at T2. Its volume slowly decreases. When the volume has
reached the value v0 that it would have at equilibrium at
some temperature T0 > T2, v0 = veq(T0), the temperature of
the sample is abruptly switched from T2 to T0. At this point
the volume and temperature of the sample are the same as if it
was in equilibrium at temperature T0. However, this state has
not be reached by a quasiequilibrium trajectory. Therefore, the
sample is not in equilibrium. Kovacs observed that, when it is
maintained at T0, its volume starts to increase and then decays
until the system slowly reaches equilibrium at T0 with volume
veq(T0).

For the three-state system, a volume is not defined, but
nevertheless the Kovacs effect can be observed by following
the energy versus time [13]. Figure 10 shows an example from
a numerical simulation. From an equilibrium state at T1 = 0.3,
the three-state system (using the same model parameters as
above in Sec. III A) was abruptly switched to T2 = 0.02 and
let to age for 1.8 107t.u. Its energy decreases slowly during
this aging at very low temperature, and at the end of the aging
period it has reached E eq(T = 0.17856). Then the system is
abruptly switched from T2 = 0.02 to T0 = 0.17856 and we
monitor its energy versus time in the presence of a small
temperature modulation Tac with AT = 8 10−4 and various
values of ω. Figure 10 shows an example for ω = 10−2 t.u.−1.

FIG. 11. Dynamic heat capacity C′(ω) (blue dashed line, left
scale) and C′′(ω) (red full line, right scale) of the three-state system,
versus time during the Kovacs scan shown in Fig. 10. The horizontal
black line shows the value of the equilibrium heat capacity Ceq(T0)
on the scale of C′(ω). The dashed vertical lines show the values of τ1

and τ2. (a) Results for ω = 10−2 t.u.−1; (b) results for ω = 1 t.u.−1.

It exhibits the same “Kovacs hump” as the one observed
by Kovacs for the volume of a glass [24]. Although, at the
beginning of the scan at temperature T0 the system has the
energy E eq(T = 0.17856), while it ages at T0 its energy rises
significantly before coming back to its equilibrium value.
Figure 10 shows that the maximum occurs at a time which
is intermediate between the two relaxation times τ1 and τ2

of the three-state model at temperature T0. This suggests that
the shape of the Kovacs hump is governed by the relaxation
spectrum of the sample. It would be interesting to check this
experimentally with a glassy sample. Temperature-modulated
calorimetry, which probes this spectrum should be the appro-
priate technique. To test this idea, we have investigated the
evolution versus time of C′(ω) and C′′(ω) during a Kovacs
scan of the three-state system.

Figure 11 shows the result for two values of ω. As shown
in Fig. 10, the analytical calculation of the energy versus time,
as discussed in Appendix A, matches the variation recorded
in the numerical simulation. This allows us to use the heat
capacity calculated analytically, which is more accurate than
relying on a numerical treatment of the simulation results,
especially for a case where the heat capacity depends on time.
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Figure 11 shows that both C′ and C′′ vary significantly
with time. This is not surprising because we have shown in
Sec. III B that, although temperature-modulated calorimetry
records the value of the heat capacity at a specific frequency,
the values of C′(ω) and C′′(ω) also reflect the relaxations
which occur within the sample. However, the recorded sig-
nal is filtered in frequency because it is detected through
the response to an oscillatory driving. This is what makes
temperature-modulated calorimetry particularly attractive to
study the Kovacs effect. On the one hand, it does reflect the
evolutions which occur within the sample while it ages during
the Kovacs scan, as attested by the large variations of C′ and
C′′ which take place in the same timescale as the variation of
the energy of Fig. 10. But, on the other hand, the variation of
C′(ω) and C′′(ω) give a quantitative picture of the timescales
at which the sample evolves. The relaxation frequencies for
the model at temperature T0 are ω1 = 2π/τ1 = 2.5427 t.u.−1

and ω2 = 2π/τ2 = 0.54193 t.u.−1. Figure 11(a) shows the
dynamic heat capacity measured with a frequency ω =
10−2 t.u.−1, which probes the dynamic of the system at times
scales longer than its internal timescales. This is clear from the
results because the value of C′(ω) which starts with a value
well below the equilibrium specific heat of the sample at T0,
Ceq(T0), and even temporary drops below 0, finally reaches
Ceq(T0) in the long term, which indicates that the system
had time to reach a quasiequilibrium on the timescale which
is probed. Figure 11(b) shows the heat capacity measured
with a frequency ω′ = 1 t.u.−1, ω2 < ω′ < ω1, which probes
timescales larger than τ1 but only those smaller than τ2. As
a result C′(ω′) exhibits a significant time-dependence, which
indicates that the evolution within the sample contains some
degrees of freedom which evolve faster than 2π/ω′. However,
in the long term C′(ω′) does not reach Ceq(T0). This indicates
that there are other degrees of freedom which are slower
than 2π/ω′. Another simulation with ω′′ = 4 t.u.−1, i.e., ω′′ >

ω1 > ω2 finds that both C′(ω′′) and C′′(ω′′) stay very small
during the whole simulation, indicating that all degrees of
freedom are slower than 2π/ω′′. These results show how a
study of the dynamic heat capacity versus ω for an experimen-
tal Kovacs scan might clarify the role of the thermal relaxation
spectrum in the shape of the Kovacs hump of a glass.

IV. SCANNING CALORIMETRY VERSUS
TEMPERATURE-MODULATED

SCANNING CALORIMETRY

A. Experimental results

Figure 12 points out a qualitative difference between differ-
ential scanning calorimetry (DSC) measurements and C′(ω)
determined by a modulated temperature scanning calorime-
try (MTSC) experiment for a PVAC sample which had been
preliminary quickly cooled from a temperature above its glass
transition temperature. The MTSC results show a rise of the
specific heat which becomes smoother when the frequency of
the temperature modulation increases. This is expected and it
is consistent with our discussions of Sec. III. A calorimetry
experiment with temperature modulated at frequency ω is
only sensitive to degrees of freedom which are faster that
2π/ω. For a system like PVAC, which has a continuous

FIG. 12. Comparison between scanning calorimetry results and
temperature-modulated calorimetry experiments for a PVAC sample
after fast cooling (data from Ref. [15]). The sample was cooled
from 90◦C down to 4◦C, with a cooling rate of −1.2◦C/min. The
green curve, with a maximum around T = 40◦C, shows the result
of a standard differential scanning calorimetry (DSC) experiment
during which the sample is heated at the rate of +1.2◦C/min. The
other curves show C′(ω) determined from temperature-modulated
scanning calorimetry (MTSC), with a temperature T (t ) = T0(t ) +
Tac(t ). T0(t ) is a temperature ramp with heating rate +1.2◦C/min,
and the frequency of the modulated part, ν = ω/2π , has the val-
ues 15.8 10−3Hz (for the curve with the steepest rise), 32 10−3Hz,
0.1954 Hz, and 1.5624 Hz for the curve with the slowest rise.

spectrum of relaxation times, the variation of ω does not
detect qualitative changes when ω crosses specific relaxation
frequencies but instead a smoother change. This nevertheless
shows that, when the frequency of modulation increases, the
number of channels which contribute to the energy exchange
at a given temperature decreases. As a result higher tempera-
tures are necessary to approach the equilibrium specific heat.

Although the DSC and MTSC experiments have used the
same heating rate for the temperature ramp, the DSC curve
shows a hump which is not observed in the MTSC measure-
ments. One may ask weather this is only a matter of timescales
so that lower and lower values of ω could finally probe the
hump observed in DSC, or if there is a fundamental reason
that prevents MTSC from detecting some of the phenomena
that DSC probes. This is an important question for calorimetry
methodology. Using a test “sample” such as the three-state
system allows us to give an unambiguous answer, as shown in
the next section.

B. Analysis with a model system

As shown in the previous sections, the three-state system
can be used as a sample system to bring further insights on the
methods of calorimetry because it allows a detailed analysis of
the phenomena which is not possible from experiments alone.
The equivalent of a DSC experiment is obtained by imposing
a temperature ramp T1(t ) = T0 ± st where s is a slope which
measures the variation of temperature per time unit and the
± sign allows for heating or cooling. In a simulation we can
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FIG. 13. Results of the simulation of a DSC experiment with the
three-state system. The thick dashed blue line shows the energy (left
scale) versus temperature during a heating ramp from T = 0.02 to
T = 0.3 in 105t.u. after cooling from equilibrium at T = 0.3 down
to T = 0.02 in the same time interval. The thin black dashed line
shows the equilibrium energy E eq(T ) [Eq. (3)]. The thick full blue
line shows CDSC(T ) = dE/dT (right scale) during this heating scan
and the thin black dotted line shows the equilibrium specific heat
Ceq(T ) [Eq. (4)].

record the energy E (t ) of the system and compute its heat
capacity CDSC = dE/dT .

Figure 13 shows the result of such a numerical experiment.
The three-state system, with the same parameters as above,
was first cooled from an equilibrium state at T = 0.3 down to
T = 0.02 in 105 t.u. In the first stage of the cooling its energy
EDSC(t ) followed the curve E eq(T ) but below T ≈ 0.08 it
decreased slower and, at the end of the cooling scan the system
was out of equilibrium. Figure 13 shows the data for the
heating process from T = 0.02 to T = 0.3, which followed
the cooling, with a linear heating ramp in 105 t.u. Below
T ≈ 0.13, the heat capacity CDSC(T ) shows strong deviations
from the equilibrium heat capacity Ceq(T ). The sharp rise
when temperature rises above T ≈ 0.07, followed by a hump,
occurs at the temperature at which the relaxation times of
the system have sufficiently decreased to allow transitions
between states during the characteristic time of the heating
ramp. This is typical for a DSC scan with a sample initially
out of equilibrium, and displays qualitative similarities with
the hump observed experimentally with PVAC (Fig. 12).

The analogous of a MTSC experiment is obtained by
adding a small temperature modulation to the heating ramp,

T (t ) = T1(t ) + Tac(t ) = T0 + s t + AT sin ωt . (13)

As a result, in addition to the increase of the energy due to
the heating ramp, the energy has an additional oscillatory
component Eac(t ). In an experiment this modulated part is
usually extracted by Fourier transform. In our simulations,
it can be obtained by subtracting EDSC(t ) from the value
EMTSC(t ) recorded during the simulation with the additional
modulation Tac(t ).

Figure 14 shows Eac(t ) for a portion of the heating scan
with AT = 2 10−4 and ω = 4 10−3 t.u.−1 (corresponding to a
period of τω = 1571 t.u.). The numerical results can be used
to calculate the magnitude C(ω) of the frequency-dependent

FIG. 14. Eac(t ) (thick red line, left scale) the fraction of the
energy which is modulated due to the modulated temperature Tac

in a simulation of an MTSC experiment (ω = 4 10−3 t.u.−1). This
figure only plots a fraction of the heating scan, which lasts from
t = 0 to t = 0.4 105 t.u. to show the details of the modulation. The
sinusoidal black line at the bottom shows Tac(t ) (right scale). The
squares and circles mark the maxima of Eac(t ) and Tac(t ) which
are used to calculate the modulus and phase of the specific heat as
explained in the text. The dashed black line along the thick red line
for Eac(t ) is an analytical result for Eac(t ) discussed in the text.

heat capacity and its phase �, using an approach which mim-
ics the experimental approach. We look for the values and
dates of the maxima Emax

ac (t j ) of Eac(t ) and T max
ac (tk ) of Tac(t ).

Then for each maximum k of Tac(t ), we look for the closest
maximum j of Eac(t ), and we define

C(ω, tk ) = Emax
ac (t j )/T max

ac (tk ),

�(tk ) = 2π (t j − tk )/τω. (14)

The values of C(ω) and �(tk ) are obtained at time tk , when
the temperature of the sample can be considered to be T1(tk )
because Tac � T1.

Figure 15 shows the modulus of the dynamic heat capacity
versus the temperature T1(t ) of the heating ramp, and its phase
relative to the temperature modulation. The equilibrium spe-
cific heat Ceq(T ) and CDSC(T ) are also plotted for comparison.
At low temperature C(ω) deviates significantly from Ceq(T ),
which is expected because, in this temperature range, thermal
relaxation is very slow. The relaxation times τ1 and τ2 for the
two eigenmodes are well above the period of the temperature
modulation as shown in Fig. 4 so that the response of the sys-
tem to the modulation is weak. When temperature increases,
τ1 and τ2 decrease and C(ω) tends to Ceq(T ). For the same
reason the phase shift � is large at low temperature and tends
to 0 when C(ω) approaches Ceq(T ). Around T = 0.05 the
phase shift shows an oscillation which could be related to
contribution of the metastable states getting destabilized by
the temperature rise, but this is not reflected by any hump
in C(ω) which shows a monotonous rises toward Ceq(T ), as
observed experimentally for PVAC (Fig. 12).

Figure 16 shows how these results depend on the frequency
ω of the modulation. When ω increases [Fig. 16(a)] the exper-
iment probes faster and faster timescales. Higher temperatures
are needed to bring the relaxation times of the system in
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FIG. 15. Heat capacity in a simulated MTSC experiment (ω =
4 10−3 t.u.−1). The blue crosses show the magnitude of C(ω), de-
termined with Eq. (14) from the maxima of Eac and Tac, versus the
temperature T1(t ) of the heating ramp. The red triangles show its
phase � with respect to the temperature modulation. The figure also
shows CDSC(T ) for the same sample system (thick magenta curve)
and the equilibrium heat capacity (thin black dashed line). The dash
black line which follows CDSC(T ) and the dotted green line along the
C(ω) crosses are analytical results discussed in the text.

the range of the timescales which are detected, so that C(ω)
grows more slowly with T and only approaches Ceq(T ) at
higher temperatures. Conversely, for very slow modulations
[Fig. 16(b)], the maximum slope of Tac(t ) decreases so much
that it is no longer much greater than the slope of the heating
ramp. In this case the rise of C(ω) versus T becomes as fast as
the rise of CDSC(T ) in the range T ≈ 0.05–0.08. Nevertheless,
in agreement with the experimental observations (Fig. 12) the
simulation does not show any anomaly such as the hump in
specific heat observed in scanning calorimetry. This suggests
that there is a fundamental difference between the results which
can be obtained by DSC and by MTSC.

However, numerical experiments, like actual experiments,
provide observations, but they do not give a full picture of
the mechanisms which act behind the scene to lead to these
observations. Fortunately, working with a tractable model sys-
tem allows us to go beyond observations because analytical
calculations are possible to analyze the data and they are
revealing.

In Sec. III and Appendix A we showed that the time evo-
lution of the energy of the three-state system at temperature
T (t ) = T0 + Tac(t ) can be calculated analytically when T0 is
a constant. The method can be extended if T0 is replaced by
a temperature ramp T1(t ), although the solution cannot be
expressed in closed form, by dividing the ramp in small time
intervals �t = [t j, t j+1]. In such an interval T0 is replaced by
T1(t j ) which can be treated as constant if �t is sufficiently
small with respect to the relaxation times τ1[T1(t j )], τ2[T1(t j )].
Knowing the occupation probabilities P1(t j ), P2(t j ), the calcu-
lation presented in Appendix A allows us to calculate P1(t j+1),
P2(t j+1) in the presence of the temperature modulation. This
defines the initial state for the next time interval so that we can
proceed step by step from the start to the end of the temper-
ature ramp. As the calculation proceeds the eigenmodes and
relaxation times τ1, τ2 have to be recalculated according to the
change of T1(t ) from one interval to the next. However, as this

calculation is fast, we can select a very small value for �t to
ensure a good accuracy to the process which would converge
to an exact result in the limit �t → 0. In practice we used
τω/5000 � �t � τω/500.

The interest of this calculation is not to make sure that
the analytical calculation can reproduce the simulation results
(which it does) but to understand the origin of the observa-
tions. We showed that the analytical calculation proceeds by
expressing the occupation probabilities as

Pi(t ) = Pi(Tref ) + Q̃i(t ) + qi(t ), (15)

Tref being either T0 or T1(t j ). Q̃i(t ) is the solution that we
would get in the absence of modulation and qi(t ) is an ad-
ditional contribution which is entirely due to the modulation.
As shown by Eq. (A34) the energy splits into

E (t ) = Ẽ (t ) + e(t ), (16)

where Ẽ (t ) depends on Q̃i(t ) and e(t ) depends on qi(t ).
This expression can therefore be directly related to the ex-
perimental results. A temperature ramp without modulation
corresponds to a DSC experiment. Therefore, Ẽ (t ) should
correspond to the energy measured by DSC and dẼ (t )/dT1(t )
should give CDSC(T ). Figures 15 and 16 show that this is
exactly the case: the dashed black line which follows the
magenta line deduced from the numerical simulation of a
DSC experiment (Fig. 13) plots dẼ (t )/dT1(t ). Equation (16)
also tells us that e(t ) = E (t ) − Ẽ (t ) is the contribution of
the modulation to the energy, i.e., Eac(t ) in an experiment.
Again we can verify this to a good accuracy on Fig. 14 as
the dashed black line which follows the thick red line plot-
ting Eac(t ) in a simulated MTSC experiment is the curve for
e(t ) deduced from the analytical calculation. Therefore, the
analytical derivative of e(t ) gives the dynamic heat capacity
of the system. We calculate the time derivative de(t )/dt and
extract from this expression the prefactor of sin ωt [in phase
with Tac(t )] and the prefactor of cos ωt [in quadrature of phase
with Tac(t )]. Dividing these two prefactors by the amplitude of
dTac(t )/dt = AT ω we get C′(ω) and C′′(ω). Then the modulus
of the dynamic heat capacity is readily obtained as C(ω) =
[C′(ω)2 + C′′(ω)2]

1/2
. The green lines on Figs. 15 and 16

show that the analytical expression of C(ω) exactly follows
the simulation results.

These results demonstrate that, for a glassy system out
of equilibrium, CDSC and C(ω) are fundamentally different
quantities. CDSC measures the relaxations due to the tempera-
ture drift, i.e., the response to T1(t ), while C(ω) only selects
the oscillatory response to Tac(t ). Therefore, we should not
expect that C(ω) should converge to CDSC in the limit ω → 0.
This explains why experimental measurements of these two
quantities differ as shown in Sec. IV A. C(ω) do captures
some components of CDSC because the slope of its rise when
T increases grows and tends toward the slope of the rise of
CDSC(T ), but C(ω) misses the extra humps which are pure
relaxation phenomena. Actually, as shown in Sec. III, relax-
ations are not entirely absent from the dynamic heat capacity
because they enter in a correction factor for the amplitude
of the response to Tac(t ) [see Eqs. (A20) and (A21)]. Those
corrections could play a significant role for the temperature
jumps discussed in Sec. III, but they become negligible when
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FIG. 16. Same as Fig. 15 for two other values of the fre-
quency of the temperature modulation: (a) ω = 0.1 t.u.−1 and
(b) ω = 10−3 t.u.−1. For this very slow modulation, the period τω =
0.63 104 t.u. becomes significant with respect to the duration of the
heating ramp 105 t.u. and we have indicated the time interval between
two maxima by horizontal error bars.

temperature varies continuously. They might become notice-
able if the variation T1(t ) could become very fast. But this
cannot be the case in an scanning experiment which intends
to measure the response to an oscillatory temperature compo-
nent. Experimentally the oscillation can only be detected if the
maximum slope of Tac(t ) is larger than the slope of T1(t ). For
ω = 10−3 t.u.−1 Fig. 16 shows that, even in this extreme case
with only about 16 periods of Tac(t ) during the full heating
ramp, the relaxation humps observed in CDSC(T ) do not show
up in C(ω, T ).

V. DISCUSSION

In this paper we have used a combination of numerical
simulations and analytical calculations for a model system, as
well as comparisons with actual experimental data for a glassy
system, to provide a deeper understanding of temperature-
modulated calorimetry measurements which have been at the
origin of many discussions [5]. We have essentially consid-
ered two questions:

(1) How does the signal looks when one performs ex-
periments with a small temperature modulation added to a

constant underlying temperature? In particular we examined
how the dynamic heat capacity may depend on time in this
case.

(2) For scanning calorimetry with an underlying tempera-
ture which varies as a ramp, is there a fundamental difference
between a standard calorimetry method such as DSC and
a temperature-modulated calorimetry measurement such as
MTSC?

In the case of a constant underlying temperature we
showed that, as expected, temperature-modulated calorimetry
probes the spectrum of the relaxation times of the sample
system. The energy oscillates with some phase shift with
respect to the temperature modulation and these oscillations
are accompanied by an entropy production which varies
at twice the frequency of the temperature modulation be-
cause entropy is created when temperature moves up and
down.

As a sample system we investigated the three-state system
which is the simplest system with a nontrivial, non-single-
frequency spectrum of the fluctuations of the energy transfers
[13]. This simple system allows a full analytical calculation
of the dynamic specific heat which has a component in phase
with the temperature modulation but also a component in
quadrature with it. These two contributions are often desig-
nated as a “complex” heat capacity. Using a complex notation
to compute C(ω) is however misleading because it focuses
on a steady response, and does not explicitly introduces
the boundary conditions in the solution. Those boundary
conditions may be important because temperature-modulated
calorimetry measurements probe not only the spectrum of the
energy transfers in the sample but also the time evolution of
the state of the system, such as its aging. After a sharp tem-
perature jump the system may undergo strong relaxations, and
we showed that these relaxations appear even in the oscillatory
component of the energy. In measurements they show up as a
time-dependent heat capacity. A spectacular example is pro-
vided by the Kovacs effect for glasses. To our knowledge it has
never been investigated by temperature-modulated calorime-
try, although our study shows how such measurements could
clarify its origin because the duration of the Kovacs hump is
related to the timescales which govern the internal evolution
of the glass.

In the case of scanning calorimetry experiments for out-
of-equilibrium glassy systems, we showed that standard
experiments such as DSC and measurements with an oscil-
latory temperature such as MTSC probe intrinsically different
properties of the system. The analytical calculation explains
why, even in the limit of very low modulation frequency, some
of the features observed in DSC do not show up in MTSC. Be-
sides the case of PVAC presented in Fig. 12 and in Ref. [15],
the differences between DSC and MTSC experimental results
have been discussed in various papers [8,25–27]. All stud-
ies confirm that, at high modulation frequency, the MTSC
measurements detect a lower value of the heat capacity than
DSC because they are only sensitive to energy transfers which
are fast enough to take place within one period of the mod-
ulation. However, these studies show that it is important to
distinguish between experiments that study thermodynamic
transitions, for instance, in paraffin [25] or PTFE [8,27], and
protein folding [26], which could be observed at equilibrium
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or quasiequilibrium in very slow temperature scans, from
observations of out-of-equilibrium effects in glasses [15]. For
equilibrium transitions, near the transition temperature, in the
limit ω → 0 the modulation of the temperature is sufficient
to change the fraction of the sample which has passed the
transition. Therefore, in this case integrating C(ω, T ) versus T
around the transition temperature and taking the limit ω → 0
recovers the value of the latent heat [27]. Conversely, exper-
iments with glasses out of equilibrium, and calculations for
the three-state model, show that the relaxations detected by
CDSC are different from the dynamic heat capacity measured
by ac-calorimetry, even in the limit ω → 0. This is because the
evolution of the system is not caused by the temperature mod-
ulation. Instead the strongly out-of-equilibrium initial state
tends to spontaneously evolve toward equilibrium when T is
raised in the DSC scan.

Although the conclusions based on the analytical cal-
culations have been obtained with a particular model, the
three-state system, we think that they have a much broader
validity because this model is very generic. It describes a sam-
ple with a free-energy landscape which has many metastable
minima, and which evolves between them under the effect of
thermal fluctuations. These are features which have been pro-
posed for glasses and complex liquids [16] as well as proteins
[28], but can be expected to apply to many systems. Numer-
ical simulations of a bead-spring polymer model known to
be a glass-former have shown that, at low temperature, the
low-frequency component of C′′(ω) is entirely the result of
the dynamics of the system within its inherent structures, i.e.,
the minima of its potential energy landscape [12]. With only
two relaxation times, the three-state system is the simplest
example of a large family which has a nontrivial spectrum.
It is sufficient to test some ideas on temperature-modulated
calorimetry, for instance, by showing how a scan in the mod-
ulation frequency ω detects one frequency after another. For a
real system with many relaxation times, the analytical calcu-
lations that we developed in the appendices cannot be carried
out in practice, but the methods are, in principle, still valid,
at the expense of large matrices of eigenstates. Therefore, the
qualitative aspects of our results should be preserved, such
as, for instance, the fundamental difference between DSC and
MTSC results for a glass. This assumption is supported by the
results on PVAC that we presented. And actually, as shown in
Ref. [13] the three-state system itself could be of interest to
analyze various experimental observations, in cases where the
simple two-state system, with a single relaxation, fails. This
model only describes the configurational heat capacity. This
is indeed a limitation but, in many systems it is however the
contribution which is the most interesting because vibrational
or electronic contributions are generally smoother versus tem-
perature or significantly weaker [9].
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APPENDIX A: ANALYTICAL CALCULATION
OF THE ENERGY OF THE THREE-STATE SYSTEM

AT MODULATED TEMPERATURE.

We consider the case of a temperature modulation around a
fixed average value T0, T (t ) = T0 + Tac(t ) = T0 + AT sin ωt .
To get the energy E (t ) = ∑3

i=1 Pi(t )Ei, given an initial state
of the system at time t = 0 determined by Pi(t = 0), we must
solve the set of Eqs. (6) and the similar equations for P2 and
P3, with ωi j = 1 and the condition

∑3
i=1 Pi = 1.

It is convenient to introduce the variables Qi(t ) = Pi(t ) −
Peq

i (T0), where Peq
i (T0), henceforth denoted by P0

i , are the
equilibrium probabilities at temperature T0. The condition∑3

i=1 Pi = 1 implies
∑3

i=1 Qi = 0, so that E (t ) is determined
by Q1 and Q2 only. Note that we make no assumption
regarding the size of Qi compared to Peq

i . In strongly out-of-
equilibrium situations it may happen that |Qi/Peq

i | � 1.
As we assume Tac � T0, the rates of the thermally activated

transitions Wi j (t ) [Eq. (5)] can be expanded around their val-
ues W 0

i j at temperature T0 to first order in Tac as

Wi j (t ) = W 0
i j + Tac(t )

Bi j

T 2
0

W 0
i j . (A1)

Using these expansions, the equation for dQ1/dt , deduced
from Eq. (6) splits into four components,

dQ1

dt
= C1 + C2 + C3 + C4, (A2)

with

C1 = −P0
1 W 0

12 + P0
2 W 0

21 − P0
1 W 0

13 + P0
3 W 0

31,

C2 = −Q1
[
W 0

12 + W 0
13 + W 0

31

] + Q2
[
W 0

21 − W 0
31

]
,

C3 = Tac
1

T 2
0

[−P0
1 B12W

0
12 − P0

1 B13W
0

13

+P0
2 B21W

0
21 + P0

3 B31W
0

31

]
,

C4 = −Q1
Tac

T 2
0

[
B12W

0
12 + B13W

0
13 + B31W

0
31

]
+ Q2

Tac

T 2
0

[
B21W

0
21 − B31W

0
31

]
. (A3)

Component C1 vanishes due to the detailed balance condition
at temperature T0. Component C2, in which we used Q3 =
−(Q1 + Q2), is of the form C2 = −AQ1 + BQ2 if we intro-
duce the notations A and B of the two brackets that it contains.
Component C3 can be written C3 = Tacγ1 by introducing a
notation for the bracket divided by T 2

0 and component C4 can
be written C4 = −CQ1Tac + DQ2Tac by introducing C and D
to designates the two brackets divided by T 2

0 . The quantities
A, B, C, D and γ1 are time independent, while Tac = AT sin ωt
depends on time. A similar calculation for the time evolution
of Q2 leads to

dQ2

dt
= B′Q1 − A′Q2 + Tacγ2 + D′Q1Tac − C′Q2Tac, (A4)

with

A′ = W 0
21 + W 0

23 + W 0
32,

B′ = W 0
12 − W 0

32,
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γ2 = 1

T 2
0

[−P0
2 B21W

0
21 − P0

2 B23W
0

23

+P0
1 B12W

0
12 + P0

3 B32W
0

32

]
,

C′ = 1

T 2
0

[
B21W

0
21 + B23W

0
23 + B32W

0
32

]
,

D′ = 1

T 2
0

[
B12W

0
12 − B32W

0
32

]
. (A5)

The equations for Q1 and Q2 can therefore be put in the matrix
form

d

dt

(
Q1

Q2

)
=

(−A B
B′ −A′

)(
Q1

Q2

)

+ Tac

[(
γ1

γ2

)
+

(−C D
D′ −C′

)(
Q1

Q2

)]

= M

(
Q1

Q2

)
+ Tac

[(
γ1

γ2

)
+ N

(
Q1

Q2

)]
, (A6)

where we have introduced two matrices M and N . The first
term in the right-hand side determines the solution in the
absence of temperature modulation that we denote by Q̃1, Q̃2,
which was studied in Ref. [13]. To solve

d

dt

(
Q̃1

Q̃2

)
= M

(
Q̃1

Q̃2

)
, (A7)

we can expand Q̃1 Q̃2 on the eigenvectors 
U (1) and 
U (2) which
diagonalize the matrix M

M 
U (i) = λi 
U (i). (A8)

The eigenvalues λ1 and λ2 are

λ1,2 = 1
2 [−(A + A′) ±

√
�], (A9)

with � = (A − A′)2 + 4BB′. The system parameters which
are compatible with the existence of a thermal equilibrium
are such that λ1,2 < 0. Each eigenvalue corresponds to an
eigenvector 
U (i) (i = 1, 2). Its components are denoted as


U (i) =
(

U (i)
1

U (i)
2

)
. (A10)

Matrix M is not a symmetric matrix. It is not orthogonal
and it is easy to check that its eigenvectors are not orthogonal
to each other, i.e.,

U (1)
1 U (2)

1 + U (1)
2 U (2)

2 �= 0. (A11)

However, those vectors are not colinear,

U (1)
1 U (2)

2 − U (1)
2 U (2)

1 �= 0, (A12)

and therefore they nevertheless define a basis for the Q̃1, Q̃2

space. On this basis, 
̃Q can be written as


̃Q = a(t ) 
U (1) + b(t ) 
U (2). (A13)

Equation (A13) defines a system of two scalar equations for a
and b. Its determinant is

DU =
∣∣∣∣U (1)

1 U (2)
1

U (1)
2 U (2)

2

∣∣∣∣. (A14)

It does not vanish due to the relation Eq. (A12). Solving
Eq. (A7) leads to

da(t )

dt

U (1) + db(t )

dt

U (2) = λ1a(t ) 
U (1) + λ2b(t ) 
U (2), (A15)

which can be viewed as a system of two equations for the
unknowns

X = da(t )

dt
− λ1a(t ) Y = db(t )

dt
− λ2b(t ), (A16)

which can be written

U (1)
1 X + U (2)

1 Y = 0,

U (1)
2 X + U (2)

2 Y = 0. (A17)

The determinant of this system is again the determinant DU

of Eq. (A14), which is nonzero. As the right-hand side of the
system is zero, the only solution of the system is X = 0, Y =
0. According to Eq. (A16) it implies that the general solutions
for a(t ) and b(t ) are exponential relaxations,

a(t ) = a(t0) exp[−(t − t0)/τ1], (A18)

b(t ) = b(t0) exp[−(t − t0)/τ2], (A19)

where τ1,2 = −1/λ1,2. The values of a(t = 0) and b(t = 0)
are determined by the initial state of the system, which are
assumed to be known so that Q̃1 Q̃2 are fully determined by
Eqs. (A13) and (A18), (A19).

This solution for Q̃1 Q̃2, which corresponds to the evolution
of the system in the absence of the modulation Tac of the
temperature, exhibits two relaxation times τ1, τ2. They make
up the spectrum of the thermal relaxations of the three-state
system which determines how an out-of-equilibrium state re-
laxes but also the response to the temperature modulation Tac.

Let us denote by q1, q2 this response to Tac, i.e., look for a
solution of Eq. (A6) under the form Q1 = Q̃1 + q1 and Q2 =
Q̃2 + q2. They are solution of

d

dt

(
q1

q2

)
= M

(
q1

q2

)
+ Tac

[(
γ1

γ2

)
+ N

(
Q1

Q2

)]
. (A20)

Since we assumed that Tac � T0 the response to the modula-
tion is itself of secondary order, so that, in the last term of
Eq. (A20), which is of the order of Tac we can replace Q1, Q2

by Q̃1 Q̃2, which have been obtained above.
Defining

�1 = γ1 − CQ̃1 + DQ̃2,

�2 = γ2 + D′Q̃1 − C′Q̃2, (A21)

the equation for q1, q2 becomes

d

dt

(
q1

q2

)
= M

(
q1

q2

)
+ Tac

(
�1

�2

)
. (A22)

The last term of its right-hand side is fully known once Q̃1

and Q̃2 have been computed. Expanding q1 and q2 on the
eigenstates of matrix M as


q = α(t ) 
U (1) + β(t ) 
U (2), (A23)
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the calculation of α(t ) and β(t ) to get the response to Tac can
proceed along the same lines as the derivation of a(t ) and b(t )
presented above. It amounts to solving

dα

dt
+ α/τ1 = Tacδ1, (A24)

dβ

dt
+ β/τ2 = Tacδ2, (A25)

with

δ1 = 1

DU

∣∣∣∣�1 U (2)
1

�2 U (2)
2

∣∣∣∣ δ2 = 1

DU

∣∣∣∣U (1)
1 �1

U (1)
2 �2

∣∣∣∣. (A26)

With Tac = AT sin ωt the solution of Eq. (A24) is obtained
by solving this equation without the right-hand side to get
α(t ) = α0 exp[−(t − t0)/τ1] and then plug this expression
into the full equation assuming that α0 depends on time. This
gives an equation for dα0/dt , which can be integrated to give

α(t ) = α(t0)e−(t−t0 )/τ1 + AT δ1√
ω2 + 1/τ 2

1

× [sin(ωt + φ1) − e−(t−t0 )/τ1 sin(ωt0 + φ1)], (A27)

with

tan φ1 = −ωτ1. (A28)

The solution for β in Eq. (A25) is similar with τ2, δ2, φ2.
In the particular case t0 = 0 we get

α = δ1AT√
ω2 + (1/τ1)2

[sin(ωt + φ1) − sin φ1],

β = δ2AT√
ω2 + (1/τ2)2

[sin(ωt + φ2) − sin φ2]. (A29)

Summarizing we get the solution for Q1 Q2 as(
Q1

Q2

)
=

(
Q̃1

Q̃2

)
+

(
q1

q2

)
, (A30)

with (
Q̃1

Q̃2

)
= a(t = 0)e−t/τ1

(
U (1)

1
U (1)

2

)

+ b(t = 0)e−t/τ2

(
U (2)

1
U (2)

2

)
(A31)

and(
q1

q2

)
=,

δ1AT√
ω2 + (1/τ1)2

sin(ωt + φ1)

(
U (1)

1
U (1)

2

)

+ δ2AT√
ω2 + (1/τ2)2

sin(ωt + φ2)

(
U (2)

1
U (2)

2

)
. (A32)

The energy E (t ) is finally given by

E (t ) = (
Peq

1 (T0) + Q1
)
(E1 − E3)

+ (
Peq

2 (T0) + Q2
)
(E2 − E3) + E3, (A33)

i.e.,

E (t ) = (
Peq

1 (T0) + Q̃1
)
(E1 − E3)

+ (
Peq

2 (T0) + Q̃2
)
(E2 − E3) + E3

+ q1(E1 − E3) + q2(E2 − E3)

= Ẽ (t ) + e(t ), (A34)

where the last term e(t ) designates the contribution which is
due to the temperature modulation, while Ẽ is the contribution
due to the relaxation from the initial state if it was not already
at equilibrium at temperature T0.

APPENDIX B: MODULATION-DEPENDENT
HEAT CAPACITY

This Appendix again considers the case T (t ) = T0 + Tac =
T0 + AT sin ωt . The heat capacity is given by C(T0, t ) =
(dE/dt )/(dTac/dt ). As shown in Appendix A, the energy
can be split in two parts, Ẽ which does not depend on the
temperature modulation, and a contribution which would not
exist without the modulation. Let us henceforth denote by
Cω(t ) the specific heat which is associated to the modulation.
This is this contribution which is measured by temperature-
modulated calorimetry

Cω(t ) = de(t )/dt

(dTac/dt )
= 1

ωAT cos ωt

de(t )

dt
. (B1)

The calculation of de(t )/dt is straightforward from the ex-
pression of e(t ) given in Appendix A, but in doing this
derivation, one should not forget that δ1 and δ2 may depend on
time if the initial state of a measurement was not an equilibrium
state at temperature T0 because they depend on �1, �2 given
by Eq. (A21) which are functions of Q̃1 and Q̃2.

Expanding the trigonometric functions which show up in
the results, such as sin(ωt + φ1), in terms of cos ωt and sin ωt ,
we can distinguish in de(t )/dt the contribution which is in
phase with dTac/dt and a contribution with a phase lag of π/2
with dTac/dt . The expression of de(t )/dt can be written as

de(t )

dt
= �e1 cos ωt + �e2 sin ωt . (B2)

This allows us to define

C′
ω(t ) = |�e1|

ωAT
C′′

ω(t ) = |�e2|
ωAT

. (B3)

These two terms, in phase with the temperature modulation
and in quadrature with it, correspond to the real and imagi-
nary part of the modulation-dependent specific heat, when a
complex notation is used.
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