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We present an information geometric characterization of quantum driving schemes specified by su(2; C)
time-dependent Hamiltonians in terms of both complexity and efficiency concepts. Specifically, starting from
pure output quantum states describing the evolution of a spin-1/2 particle in an external time-dependent magnetic
field, we consider the probability paths emerging from the parametrized squared probability amplitudes of
quantum origin. The information manifold of such paths is equipped with a Riemannian metrization specified
by the Fisher information evaluated along the parametrized squared probability amplitudes. By employing a
minimum action principle, the optimum path connecting initial and final states on the manifold in finite time
is the geodesic path between the two states. In particular, the total entropy production that occurs during the
transfer is minimized along these optimum paths. For each optimum path that emerges from the given quantum
driving scheme, we evaluate the so-called information geometric complexity (IGC) and our newly proposed
measure of entropic efficiency constructed in terms of the constant entropy production rates that specify the
entropy minimizing paths being compared. From our analytical estimates of complexity and efficiency, we
provide a relative ranking among the driving schemes being investigated. Moreover, we determine that the
efficiency and the temporal rate of change of the IGC are monotonic decreasing and increasing functions,
respectively, of the constant entropic speed along these optimum paths. Then, after discussing the connection
between thermodynamic length and IGC in the physical scenarios being analyzed, we briefly examine the link
between IGC and entropy production rate. Finally, we conclude by commenting on the fact that an higher entropic
speed in quantum transfer processes seems to necessarily go along with a lower entropic efficiency together with
a higher information geometric complexity.
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I. INTRODUCTION

The goodness of an algorithm can be assessed by a variety
of criteria [1]. In general, to quantify the performance of
algorithms in both classical and quantum settings, one con-
siders the asymptotic scaling of a complexity measure such
as runtime or space usage with problem size [2]. Runtime is
measured by the number of elementary operations employed
by the algorithm. In particular, being in the framework of
quantum computing [3], runtime can be specified in terms of
the number of quantum gates applied to qubits in a quantum
circuit model [4]. In general, when ranking the performances
of various algorithms that solve the same task, one usually
considers the asymptotic behavior in the problem size of the
time or space complexity of the algorithm. The choice of
focusing on the asymptotic behavior is dictated by the fact that
for small input sizes, almost any algorithm can be sufficiently
efficient. Addressing questions concerning the computational
performance of algorithms can be rather tricky. For instance,
specifying how long it takes for the algorithm to produce the
desired output or how much memory it needs to generate it
can depend on a number of factors, including the speed of
the computer, the programming language, the efficiency of
the implementation, and the value of the input. What does

“efficient” mean, exactly? Do efficient algorithms exhibit a
lower degree of complexity? Which type of complexity are we
referring to? A partial list of complexity measures we may be
making reference to includes conceptual complexity, compu-
tational complexity, space complexity, and time complexity. It
is possible to propose efficiency measures that capture differ-
ent aspects of the algorithm. For instance, Traub’s efficiency

index ηTraub
def= p/ε is an asymptotic estimate of the efficiency

of an iterative method for computing a simple real root of an
nth degree polynomial. This index depends on the order p of
convergence to the solution and on the complexity parameter
ε denoting the number of function evaluations per iteration.
Clearly, one may think of proposing alternative efficiency
measures, including one that takes into account the number
of logical operations performed during the algorithm as pro-
posed by Kung and Traub in Ref. [5]. For an overview of
different efficiency measures for distinct iterative methods, we
refer to Ref. [1].

In recent years, numerous investigations have been car-
ried out with the goal of providing physical insights from
Riemannian geometric characterizations [6–8] of thermody-
namical concepts such as entropy production and efficiency
[9–12]. In Ref. [9], using the notions of thermodynamic
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length, thermodynamic divergence, and entropy production
rate, the authors obtained geometric lower bounds on the
entropy production in reversible quantum Markovian systems
specified by master equations. In Ref. [10], making extensive
use of thermodynamic geometry [7], the authors presented
a general technique for optimizing the thermodynamic effi-
ciency in microscopic quantum heat engines working close to
equilibrium. In Ref. [11], employing solely thermodynamic
geometry arguments, the authors found a universal tradeoff
between efficiency and power for microscopic quantum heat
engines driven by arbitrary periodic temperature changes. In
Ref. [12], relying heavily on information geometric tech-
niques [6], the authors proposed an information geometric
interpretation of the entropy production for a total system and
the partial entropy productions for subsystems. Furthermore,
spin models were used in Ref. [12] to explain in an analyti-
cal fashion these physical findings of information geometric
origin.

In this paper, building upon our previous results reported
in Refs. [13–15] and inspired by the findings uncovered in
Refs. [9–12], we provide a quantitative link between the
concepts of information geometric complexity and entropic
efficiency by studying the entropic dynamics on information
manifolds emerging from exactly solvable time-dependent
two-level quantum systems that mimic quantum search
Hamiltonians. Our motivation for considering this type of
work can be explained by pointing out a number of previous
results our proposed analysis relies on. First, there is our
previous investigation carried out in Ref. [16] concerning the
physical connection between quantum search Hamiltonians
and exactly solvable time-dependent two-level quantum sys-
tems [17,18]. Second, there are our previous attempts in trying
to provide an information geometric perspective on the char-
acterization of tradeoffs between speed and thermodynamic
efficiency in quantum search algorithms [13–15]. Unfortu-
nately, despite the agreement on the importance that quantum
algorithms should be fast and thermodynamically efficient
[19], there does not exist, to the best of our knowledge, any
unifying theoretical description on this matter. Our work here
aims at being a nontrivial step forward in this direction.

We provide an information geometric analysis of quantum
driving schemes characterized by su(2; C) time-dependent
Hamiltonians by means of both complexity and efficiency
concepts. From the knowledge of the pure output quan-
tum states specifying the evolution of a spin-1/2 particle
in an external magnetic field, we construct the probability
paths emerging from the parametrized squared probabil-
ity amplitudes. The Fisher information evaluated along
the parametrized squared probability amplitudes provides
a Riemannian metrization for such information manifolds.
Imposing a minimum action principle, it happens that the op-
timum path connecting initial and final states on the manifold
in finite time is the geodesic path between the two states. In
particular, the total entropy production that occurs during the
quantum transfer is minimized along these optimum paths.
For each optimum path that arises from the given quantum
driving Hamiltonian, we compute the so-called information
geometric complexity (IGC) and our newly proposed measure
of entropic efficiency. The latter quantity is expressed in terms
of the constant entropy production rates that characterize the

entropy minimizing paths being examined. From our calcula-
tions of complexity and efficiency, we give a relative ranking
among the driving schemes being compared. Moreover, we
show that the efficiency and the temporal rate of change
of the IGC are monotonic decreasing and increasing func-
tions, respectively, of the constant entropic speed along these
optimum paths. Then, after elaborating on the connection
between thermodynamic length and IGC, we briefly discuss
the relation between IGC and entropy production rate. Finally,
we conclude by providing some remarks on the fact that an
higher entropic speed in quantum transfer processes appears
to necessarily lead to a lower entropic efficiency together with
a higher IGC.

The layout of the remainder of this paper is as follows.
In Sec. II, we present the IGC concept. In Sec. III, af-
ter introducing the concepts of thermodynamic length and
thermodynamic divergence, we propose our measure of en-
tropic efficiency. In Sec. IV, we describe the quantum driving
schemes being studied and explain how to generate probabil-
ity paths from the output quantum pure state emerging from
the quantum mechanical evolution. Then, having identified the
elapsed time as the key statistical parameter [20], we apply our
proposed information geometric theoretical construct to four
distinct quantum mechanical driving scenarios in Sec. V. Our
final remarks appear in Sec. VI. Finally, technical details are
located in Appendices A, B, C, and D.

II. INFORMATION GEOMETRIC COMPLEXITY

In this section, we introduce the concepts of information
geometric entropy (IGE) and IGC.

The IGE is a measure of complexity that was originally
introduced in Ref. [21] in the context of the information
geometric approach to chaos (IGAC) theoretical setting devel-
oped in Ref. [22]. For brevity and readability of the paper, we
do not mention any superfluous detail on the IGAC. However,
for the interested reader we suggest considering the concise
discussion on the IGAC in Ref. [23]. In what follows, we
present the concept of IGE.

Suppose that the points {p(x; θ )} of an n-dimensional
curved statistical manifold Ms are parametrized in terms of
n real valued variables (θ1,..., θn), where

Ms
def= {

p(x; θ ) : θ = (θ1,..., θn) ∈ Dtot
θ

}
. (1)

The microvariables x belong to the microspace X , while the
macrovariables θ are elements of the parameter space Dtot

θ

defined as

Dtot
θ

def= (Iθ1 ⊗ Iθ2 ... ⊗ Iθn ) ⊆ Rn. (2)

The quantity Iθ j in Dtot
θ is a subset of Rn and specifies the

range of allowable values for the statistical macrovariables θ j .
The IGE is proposed as a measure of temporal complexity of
geodesic paths within the IGAC. The IGE is defined as

SMs (τ )
def= log ṽol[Dθ (τ )], (3)

where the average dynamical statistical volume ṽol[Dθ (τ )] is

ṽol[Dθ (τ )]
def= 1

τ

∫ τ

0
vol[Dθ (τ ′)]dτ ′. (4)
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We emphasize that Dθ (τ ′) in Eq. (4) is an n-dimensional sub-
space of Dtot

θ ⊆ Rn whose elements {θ} with θ = (θ1,..., θn)
are such that θ j (τ0) � θ j � θ j (τ0 + τ ′) with τ0 being the
initial value assumed by the affine parameter that specifies
the geodesic paths as will be explained in more detail shortly.
Observe that the operation of temporal average is denoted with
the tilde symbol in Eq. (4). For clarity, we underline the fact
that ṽol[Dθ (τ )] in Eq. (4) is defined in terms of two sequential
integration procedures. A first integration occurs on on the
explored parameter space and yields vol[Dθ (τ ′)]. Then, as
second integration specifying a temporal averaging procedure
is performed over the duration of the process and leads ulti-
mately to ṽol[Dθ (τ )]. Moreover, the volume vol[Dθ (τ ′)] in the
right-hand side of Eq. (4) specifies the volume of an extended
region on the manifold Ms. It is defined as

vol[Dθ (τ ′)] def=
∫
Dθ (τ ′ )

ρ(θ1,..., θn)dnθ . (5)

The quantity ρ(θ1,..., θn)
def= √

g(θ ) is the so-called Fisher
density and is equal to the square root of the determinant g(θ )

of the Fisher-Rao information metric tensor gi j (θ ), g(θ )
def=

det[gi j (θ )]. The quantity gi j (θ ) is given by

gi j (θ )
def=

∫
p(x|θ )∂i log p(x|θ )∂ j log p(x|θ )dx, (6)

with ∂i
def= ∂/∂θ i. The expression of vol[Dθ (τ ′)] in Eq. (5)

becomes more transparent for manifolds with information
metric tensor whose determinant can be factorized as

g(θ ) = g(θ1,..., θn) =
n∏

j=1

g j (θ
j ). (7)

In this case, the IGE in Eq. (3) can be recast as

SMs (τ )

= log

{
1

τ

∫ τ

0

[
n∏

j=1

(∫ τ0+τ ′

τ0

√
g j[θ j (ξ )]

dθ j

dξ
dξ

)]
dτ ′

}
.

(8)

We emphasize that for correlated microvariables {x}, g(θ ) is
not factorizable and the general definition of the IGE must be
employed. For a discussion on the effects of microscopic cor-
relations on the IGE of Gaussian statistical models, we refer to
Ref. [24]. Within the IGAC, the leading asymptotic behavior
of SMs (τ ) in Eq. (8) is used to characterize the complexity of
the statistical models being investigated. For this purpose, we
take into consideration the leading asymptotic term in the IGE
expression,

Sasymptotic
Ms

(τ ) ∼ lim
τ→∞ [SMs (τ )]. (9)

We point out that Dθ (τ ′) specifies the integration space that
appears in the definition of vol[Dθ (τ ′)] in Eq. (5). It is
given by

Dθ (τ ′) def= {θ : θ j (τ0) � θ j � θ j (τ0 + τ ′)}, (10)

where θ j = θ j (ξ ) with τ0 � ξ � τ0 + τ ′ and τ0 denoting the
initial value of the affine parameter ξ such that

d2θ j (ξ )

dξ 2
+ 	

j
ik

dθ i

dξ

dθ k

dξ
= 0. (11)

The quantities 	
j
ik in Eq. (11) are the Christoffel connection

coefficients,

	
j
ik

def= 1
2 gjl (∂ig jk + ∂kgil − ∂l gik ). (12)

The integration domain Dθ (τ ′) is an n-dimensional subspace
of Dtot

θ whose elements are n-dimensional macrovariables {θ}
with components θ j bounded by given limits of integration
θ j (τ0) and θ j (τ0 + τ ′). The integration of the n-coupled non-
linear second-order ODEs in Eq. (11) determines the temporal
functional form of such limits. Having defined the IGE, we
call the information geometric complexity (IGC) the quantity
CMs (τ ) defined as

CMs (τ )
def= ṽol[Dθ (τ )] = eSMs (τ ). (13)

In particular, we shall focus on the asymptotic temporal be-
havior of the complexity as described by Casymptotic

Ms
(τ )

τ→∞∼
eSMs (τ ).

To interpret CMs (τ ), we simply give an interpretation of
SMs (τ ). This latter quantity is defined in Eq. (3) as an affine
temporal average of the n-fold integral of the Fisher density
over geodesic paths viewed as maximum probability trajecto-
ries and serves as a measure of the number of the accessible
macrostates in the statistical configuration manifold. More
specifically, the IGE at a specific instant is defined as the
logarithm of the volume of the effective parameter space
explored by the system at that very instant. We introduce
the temporal averaging procedure in Eq. (4) to average out
the possibly very complex fine details of the entropic dy-
namical description of the system on the underlying curved
statistical manifold. Furthermore, we consider the long-time
limit in Eq. (9) to characterize in a proper fashion the chosen
dynamical indicators of chaoticity by removing the transient
effects which enter the computation of the expected value of
the volume of the effective parameter space. Therefore, the
IGE is constructed to provide an asymptotic coarse-grained
inferential description of the complex dynamics of a system
in the presence of incomplete information. For further details
on the IGE and IGC, we refer to Refs. [25–27].

In this paper, we focus on quantifying the IGC of

parametrized probability paths {px(θ )} with px(θ )
def= p(x|θ )

constructed from the time-dependent transition probabili-
ties between orthogonal initial and final quantum states
{|w〉, |w⊥〉} emerging from selected quantum mechanical evo-
lutions of two-level quantum systems (see Sec. IV). The single
parameter θ used in the parametrization can be regarded as
the statistical version of the elapsed time t . In particular, θ is
assumed to be an experimental parameter that can be char-
acterized by measuring a suitable time-dependent observable
quantity such as the transverse magnetic field intensity B⊥(t ).

Having introduced the IGC concept in Eq. (13), we propose
our measure of entropic efficiency in the next section.
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III. EFFICIENCY

In this section, after recalling the notions of thermody-
namic length and thermodynamic divergence, we propose our
measure of entropic efficiency.

A. Thermodynamic length and divergence

Thermodynamic systems can be specified by Riemannian
manifolds equipped with a thermodynamic metric tensor that
is identical to the Fisher information metric [28], once the
theory of fluctuations is included into the axioms of equilib-
rium thermodynamics [29]. Then, this Riemannian structure
allows one to define the notion of length for fluctuations about
equilibrium states as well as for thermodynamic processes
proceeding via equilibrium states. Originally, Weinhold pre-
sented a Riemannian metric in the space of thermodynamic
equilibrium states employing the second derivatives of the
internal energy with respect to extensive variables in Ref. [30].
Subsequently, Ruppeiner proposed a Riemannian geometric
model of thermodynamics with a Riemann structure defined
by means of a metric tensor specified by second derivatives
of the entropy as a function of extensive variables (such as
volume and mole number, for instance) in Ref. [29]. Salamon
and Berry introduced the notion of thermodynamic length by
employing the energy version of the thermodynamic metric
tensor gαβ (θ ) in Ref. [31],

L(τ̄ /τ∗)
def=

∫ τ̄ /τ∗

0

(
dθα

dtth
gαβ (θ )

dθβ

dtth

)1/2

dtth , (14)

with tth denoting the dimensionless thermodynamic time tth
with 0 � tth � τ̄ /τ∗. Furthermore, τ̄ and τ∗ are the duration
time and the mean internal relaxation time of the physical
process under consideration, respectively. For clarity, we point
out that the mean relaxation time τ∗ is an indicator of how
fast the physical system reaches an equilibrium configuration
with an environment with which it is brought into contact.
In particular, to a smaller value of τ∗ there corresponds a
faster equilibration of the system-environment system. For a
detailed discussion on the concepts of instantaneous and mean
relaxation times in molecular physics, we refer to Ref. [32].
Upon identifying the affine parameter ξ with the dimension-
less thermodynamic time tth and the duration of the process τ

with τ̄ /τ∗, the thermodynamic length in Eq. (14) of a path γθ

with the parameter θ parametrized by an affine parameter ξ

with 0 � ξ � τ in the space of thermal states becomes

L(τ ) =
∫ τ

0

(
dθα

dξ
gαβ (θ )

dθβ

dξ

)1/2

dξ . (15)

The quantity L(τ ) in Eq. (15) is measured by the number of
natural fluctuations along the path γθ . The larger the fluctu-
ations, the closer the points are together. Indeed, in analogy
to Wootters’ statistical distance between probability distribu-
tions [33], the thermodynamic length can be interpreted as a
measure of the maximal number of statistically distinguish-
able thermodynamic states along the path γθ [34]. As a matter
of fact, following Wootters, we can interpret the points θ and
θ + dθ long the path γθ as statistically distinguishable if dθ

is at least equal to the standard fluctuation of θ . In terms
of the distance ds2 = gαβ (θ )dθαdθβ , this is equivalent to

ds2 � 1. Clearly, L(τ ) in Eq. (15) has dimensions of
(energy)1/2 if one uses the energy version of the thermo-
dynamic metric tensor. If, instead, one uses the entropy
version of the thermodynamic metric tensor, then L(τ ) has
dimensions of (entropy)1/2. To better understand the physical
interpretation of the thermodynamic length, it is helpful to
introduce the so-called thermodynamic divergence I (τ ) of a
path γθ with the variable θ expressed in terms of an affine
parameter ξ with 0 � ξ � τ as in Eq. (15),

I (τ )
def=

∫ τ

0

dθα

dξ
gαβ (θ )

dθβ

dξ
dξ . (16)

The quantity I (τ ) in Eq. (16) is a measure of the losses
(or, dissipation) in the process quantified by the total entropy
produced (or dissipated availability [31]) along the path γθ .
Applying the Cauchy-Schwarz inequality with integrals of
functions,[∫ τ

0
f 2
1 (ξ )dξ

][∫ τ

0
f 2
2 (ξ )dξ

]
�

[∫ τ

0
f1(ξ ) f2(ξ )dξ

]2

,

(17)
and using Eqs. (15) and (16), it happens that I � τ−1L2 with

τ
def= τ̄ /τ∗ once we identify f1(ξ ) and f2(ξ ) with ds/dξ and

1, respectively. Therefore, the square of the thermodynamic
length of the path γθ multiplied by the ratio of the internal
relaxation time of the system to the duration of the process
furnishes a lower bound to the dissipation in the process. This
bound is more realistic than the (ideal) reversible bound which

would be equal to zero. The equality I = Imin
def= τ−1L2 is

obtained when the thermodynamic speed is constant along the
path γθ . Therefore, the process exhibits minimum losses when
it produces minimum entropy. This happens when it proceeds
at constant speed, with the entropy production rate being equal
to the squared thermodynamic speed itself.

Let nMs be the dimensionality of the parameter space

with θ (ξ )
def= {θα (ξ )}1�α�nMs

and 0 � ξ � τ . Then, the op-
timum paths γθ are paths characterized by the most favorable
affine time ξ parametrization yielding the shortest thermody-
namic length. More explicitly, the optimum paths satisfy the
geodesic equation that can be obtained via variational calculus
by minimizing the action functional represented by the ther-
modynamic length in Eq. (15). One imposes that δL is equal
to zero subject to the constraint that δθα = 0 at the extremum.
We point out that ξ is defined up to changes of scale and origin
and, thus, is not unique. Interestingly, we emphasize that the
optimum paths that minimize L(τ ) in Eq. (15) are the paths
that minimize the divergence I (τ ) in Eq. (16). As a matter
of fact, minimizing I (τ ) under the same working conditions
used in the minimization of L(τ ), it happens that the optimum
paths θα (ξ ) satisfy the equation

d

dξ

[
gαρ (θ )

dθα

dξ

]
− 1

2

dθα

dξ

∂gαβ (θ )

∂θρ

dθβ

dξ
= 0. (18)

It is worth noting that Eq. (18) is the information geometric
analogue of Eqs. (36) and (6) in Refs. [35,36], respec-
tively. For an explicit verification of the interchangeability
between the geodesic equations emerging from the variations
of δ(

∫ √
ds2) and δ(

∫
ds2), we refer to Appendix A. Since op-

timum paths are geodesic paths, the “thermodynamic” speed
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is constant when evaluated along these shortest paths. Hence-
forth, we shall name this speed “entropic” speed vE and define
it as

vE
def=

[
dθα

dξ
gαβ (θ )

dθβ

dξ

]1/2

. (19)

Moreover, optimum paths are also paths specified by constant
entropy production rate rE (that is, the squared invariant norm
of the speed vE), with rE given by

rE
def= d

dτ
I (τ ) = d

dτ

[∫ τ

0

dθα

dξ
gαβ (θ )

dθβ

dξ
dξ

]
, (20)

with the thermodynamic divergence I (τ ) defined in Eq. (16)
and evaluated along the optimum paths. For clarity, we stress
that we are interested here in the global (i.e., integral) problem
of minimizing the entropy production over the complete path.
Alternatively, one may be interested in the local (i.e., differ-
ential) problem of minimizing the rate of entropy dissipation
at each instant of time [37]. Moreover, for completeness,
we point out that both minimum entropy production and
constant entropy production rate occur along geodesic paths
in thermodynamic state space for optimal (linear) processes
with gαβ = gαβ (θ ). For a discussion on the nonconstancy
of the rate of entropy production within the framework of
nonlinearized thermodynamics of irreversible processes with
gαβ = gαβ (θ , θ̇ ), we refer to Ref. [38].

To better grasp the physical interpretation of rE in Eq. (20),
we note two facts. First, the thermodynamic metric tensor

gαβ (θ ) equals δX
2
αβ , with

δX
2
αβ

def= 〈(Xα − 〈Xα〉)(Xβ − 〈Xβ〉)〉. (21)

The quantity δX
2
αβ in Eq. (21) is the covariance matrix

of fluctuations around equilibrium defined in terms of the
thermodynamic variables {Xα (x)} that characterize the Hamil-
tonian of the system. The quantity {x} denotes the set of
relevant configuration space variables. Second, consider the
canonical Gibbs distribution function p(x|θ ) ≡ px(θ ) with
px(θ ) defined as

px(θ )
def= e−θα (ξ )Xα (x)

Z , (22)

with Z being the partition function of the system. Inserting
px(θ ) in Eq. (22) into the usual definition of the Fisher-Rao
information metric tensor gαβ (θ ), it can be shown that this
latter quantity equals the thermodynamic metric tensor. In

other words, gαβ (θ ) is equal to δX
2
αβ in Eq. (21). Then, a

simple calculation yields the following alternative expression
of rE in Eq. (20),

rE = dθα

dξ
δX

2
αβ

dθβ

dξ
=

∑
x

px(θ )

(
d log px(θ )

dξ

)2

, (23)

Therefore, rE in Eq. (23) can be also described as the “prod-

uct” of the fluctuation term δX
2
αβ and the square of the total

rate of change with respect to the affine parameter ξ of the
control parameter θα (ξ ). Note that in heat transfer problems,
be it cooling or heating, the control parameter is given by
temperature. However, in mass transfer problems, in magnetic

systems, and in elastic systems, suitable control parameters
are specified by chemical potential, magnetic field, and stress,
respectively. For a more detailed discussion on the physical
significance of the concept of entropy production rate in rela-
tion to the thermodynamics of a system of spin-1/2 particles
driven by an external magnetic field, we refer to Appendix B.
For the sake of forthcoming discussions, we shall be naming
lengths, divergences, and speeds as “entropic” quantities.

B. Entropic efficiency

In what follows, we propose an efficiency measure ηE with
0 � ηE � 1 for the various driving schemes in terms of the
rate of entropy production rE along the path γθ .

In Ref. [14], we proposed an asymmetric efficiency mea-
sure η

(1)
E where the hottest path corresponded to the least

efficient driving scheme. The efficiency η
(1)
E was defined as

η
(1)
E (rE)

def= 1 − rE

rmax
E

, (24)

where 0 � η
(1)
E (rE) � 1 for any 0 � rE � rmax

E with
η

(1)
E (rmax

E ) = 0. This efficiency was partially inspired by
the definition of thermal efficiency of a heat engine [39] and
by the notion of efficiency of a quantum evolution in the
Riemannian approach to quantum mechanics as presented in
Refs. [40,41]. The thermal efficiency ηthermo of a heat engine
in thermodynamics can be defined as

ηthermo
def= 1 − Qout

Qin
, (25)

with Qout and Qin being the output and input thermal energies

with Wout
def= Qin − Qout � 0 denoting the actual work per-

formed by the heat engine [39]. In the Riemannian approach to
quantum mechanics, instead, the efficiency of a quantum evo-

lution is defined as ηQM
def= 1 − �s/s with 0 � ηQM � 1 and

�s
def= s − s0. The quantity s0 represents the dimensionless

distance along the shortest geodesic path (ideal) γideal joining
the fixed initial (|A〉) and final (|B〉) points of the evolution that
are distinct points on the complex projective Hilbert space.
The quantity s instead, denotes the distance along the effective
(real) path γreal connecting |A〉 and |B〉 and is measured by the
Fubini-Study metric. The quantum evolution is maximally ef-
ficient when the evolution occurs with minimum time-energy
uncertainty. This scenario is specified by ηQM = 1 and hap-
pens when γreal and s approach γideal and s0, respectively.
Concerning this latter inspiration, we replaced the quantum
mechanical condition of maximum energy dispersion with the
information-theoretic requirement of minimum entropy pro-
duction. Then, we found it appropriate to propose a definition
of entropic efficiency of an evolution along a path of minimum
entropic length joining the distinct initial and final points on
the information manifold as the above mentioned quantity
η

(1)
E (rE). In this efficiency definition, rmax

E plays the effec-
tive role of a normalizing factor that makes ηE adimensional
with 0 � η

(1)
E (rE) � 1. Then, unit entropic efficiency can be

achieved when the evolution is characterized by a path that
is maximally cooled (that is, maximally reversible). In such
a case, the total entropy production remains ideally constant
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during the evolution and, as a consequence, the rate of en-
tropy production rE vanishes. Alternatively, one may think of
proposing a different asymmetric efficiency measure η

(2)
E (rE)

where the coolest path is the most efficient. In this case, one
can propose a measure η

(2)
E (rE) given by

η
(2)
E (rE)

def= rmin
E

rE
, (26)

where 0 � η
(2)
E (rE) � 1 for any 0 � rmin

E � rE with
η

(2)
E (rmin

E ) = 1. We point out that both measures η
(1)
E (rE) in

Eq. (24) and η
(2)
E (rE) in Eq. (26) preserve the relative ranking

of paths. In addition, they are asymmetric measures since rmax
E

and rmin
E play special roles in the ranking procedure. However,

in both ranking schemes, rmax
E and rmin

E belong to the set of
entropy production rates that specify the paths being ranked.
Specifically, rmin

E = r (k)
E and rmax

E = r (k′ )
E belong to {r (i)

E }1�i�N̄
for some k �= k′ ∈ {1,..., N̄} with N̄ denoting the number of
driving schemes being ranked. Therefore, rmin

E (rmax
E ) does

not represent an absolute external minimum (maximum)
to be achieved in an ideal best (worst) scenario. Moreover,
depending on the particular tuning of the parameters that
specify the driving Hamiltonian, rmin

E and rmax
E can change.

More explicitly, assuming the tuning of a single parameter
(for instance, the frequency of oscillation of a time-dependent
external magnetic field), there could be a range of values
of this parameter for which (rmin

E , rmax
E ) = (r (k)

E , r (k′ )
E ) and a

different range for which (rmin
E , rmax

E ) = (r (k̃)
E , r (k̃′ )

E ) with k �= k̃
and/or k′ �= k̃′. Motivated by the lack of an absolute optimal
driving scheme of reference (unlike the quantum scenarios
studied in Refs. [40,41]) and maintaining the willingness of
preserving the idea of dependence of the entropic efficiency
on the rate of entropy production (with the coolest paths
being the most efficient and the hottest paths being the least
efficient), we propose in this paper a symmetric measure of
entropic efficiency given by

ηE
(
r (l )

E , r (m)
E

) def= 1 −
∣∣r (l )

E − r (m)
E

∣∣
r (l )

E + r (m)
E

, (27)

with 0 � ηE(r (l )
E , r (m)

E ) � 1 by construction for any pair of
positive r (l )

E and r (m)
E . Furthermore, ηE(r (l )

E , r (m)
E ) preserves

the relative ranking of paths that one obtains by means of
η

(1)
E (rE) and η

(2)
E (rE). For an explicit check of this conser-

vation behavior, we refer to Appendix C. Clearly, although
preserving the relative ranking of paths, η

(1)
E (rE) and η

(2)
E (rE)

assume relatively different numerical values. For instance,
while η

(2)
E (rE) → 1 as rE → rmin

E , η(1)
E (rE) → 1 in the extreme

scenario in which rE → 0. Moreover, while η
(1)
E (rE) → 0 as

rE → rmax
E , η

(2)
E (rE) → 0 in the extreme scenario in which

rE → ∞. In our paper, one of the two values between r (l )
E and

r (m)
E (say, r (m)

E ) is picked as rmin
E for a given range of values of

the Hamiltonian parameter being tuned. Then, our proposed
measure of efficiency assumes unit value when r (l )

E = r (m)
E

with r (m)
E

def= rmin
E and tends to vanish when r (l )

E � rmin
E . For

a detailed physical discussion on the idea of irreversible en-
tropy production when analyzing the causes of inefficiency in
thermodynamic systems, we refer to Ref. [42].

Having introduced the IGC in Eq. (13) and the entropic
efficiency in Eq. (27), we are ready to describe the quantum
driving schemes that we study in the next section.

IV. QUANTUM DRIVING SCHEMES

In this section, we introduce the quantum driving schemes
being investigated and mention the manner in which one can
generate probability paths from the output quantum pure state
emerging from the quantum mechanical evolution.

A. Probability paths from driving schemes

Inspired by the link between analog quantum search
and two-level quantum systems [16,43] and following
Refs. [14,44], we suppose that the normalized output quantum
state of a su(2; C) time-dependent Hamiltonian mimicking a
continuous-time quantum search algorithm can be described
as

|ψ (θ )〉 def= eiϕw (θ )
√

pw(θ )|w〉 + eiϕw⊥ (θ )
√

pw⊥ (θ )|w⊥〉, (28)

where the input is the normalized N
def= 2n-dimensional n-

qubit source state |s〉 def= |ψ (θ0)〉. Observe that |ψ (θ )〉 belongs
to the two-dimensional subspace of Hn

2, the n-qubit complex
Hilbert space spanned by the set of orthonormal state vec-
tors {|w〉, |w⊥〉} and containing |s〉. Furthermore, ϕw(θ ) and
ϕw⊥ (θ ) denote real quantum phases of the states |w〉 and |w⊥〉,
respectively. Taking our source state |s〉 to be identified with
|w⊥〉, our analysis will focus on the space of probability distri-

butions {p(θ )} with p(θ )
def= (pw(θ ), pw⊥ (θ )) where pw(θ )

def=
|〈w|ψ (θ )〉|2 and pw⊥ (θ )

def= |〈w⊥|ψ (θ )〉|2 specify the success
and failure probabilities of the driving Hamiltonian, respec-

tively. For clarity, we underline that X def= {x} = {w, w⊥}
forms here the space of configuration variables with px(θ )
being a probability mass function since {x} is a discrete set.
In particular, the space of probability distributions {p(θ )} is
equipped with the natural Riemannian distinguishability met-
ric given by the Fisher information metric gαβ (θ ). In the case
of a discrete microspace X , gαβ (θ ) is defined as

gαβ (θ )
def=

∑
x∈X

px(θ )∂α log [px(θ )]∂β log [px(θ )]. (29)

Furthermore, under suitably chosen working conditions [45],
gαβ (θ ) can be taken to be proportional to the Fubini-Study
metric. Indeed, the Fubini-Study metric can be written as
gFS

αβ (θ ) = (1/4)[gαβ (θ ) + 4σ 2
αβ (θ )] ∝ gαβ (θ ) when the vari-

ance of the phase changes σ 2
αβ (θ ) is equal to zero. It happens

that one can always set this term equal to zero provided
that one rephases in a favorable manner the basis vectors
used in the decomposition of |ψ (θ )〉 as originally discussed
in Ref. [45]. We emphasize that the output state |ψ (θ )〉 is
parametrized in terms of a single continuous real parameter
θ that emerges from the elapsed computing time t of the
algorithm (or, equivalently, driving Hamiltonian). The param-
eter θ , a statistical version of t , plays the role of a statistical
macrovariable employed to distinguish neighboring quantum
states |ψ (θ )〉 and |ψ (θ )〉 + |dψ (θ )〉 along a path through the
space of quantum mechanical pure states. It can be viewed
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as an experimental parameter that can be determined by mea-
surement of a conventional observable that varies with time
such as a time-dependent transverse magnetic field intensity.
Our main objective here is to calculate the IGC of the opti-
mum cooling paths, that is paths on the manifold of state space
parametrized by θ along which one drives the system while
minimizing the entropy production. Then, after evaluating the
entropic efficiency of each driving scheme being considered,
we wish to find out whether or not there is any link between
this entropic efficiency and the IGC of the optimum cooling
paths generated by the driving schemes themselves.

In what follows, we describe how the normalized pure
states {|ψ (θ )〉} that we consider emerge as outputs of suitable
su(2; C) time-dependent Hamiltonian evolutions that mimic
quantum search Hamiltonian motion.

B. Quantum driving schemes

We recall that su(2; C) is the Lie algebra of the special
unitary group SU(2; C) and is generated by three traceless

and anti-Hermitian generators {iσx, − iσy, iσz} where �σ def=
(σx, σy, σz ) is the Pauli vector operator [46]. We study quan-
tum evolutions specified by means of Hamiltonian operators
Hsu(2; C)(t ) defined as

Hsu(2; C)(t )
def= a(t )(iσx ) + b(t )(−iσy) + c(t )( iσz ), (30)

with a(t ), b(t ), and c(t ) being time-dependent complex
coefficients. Adopting the su(2; C)-Hamiltonian models ter-
minology, let us introduce the concepts of complex trans-

verse field and real longitudinal field, denoted as ω(t )
def=

ωx(t ) − iωy(t ) = ωH(t )eiφω (t ) and �(t ), respectively. Obvi-
ously, ωH(t ) represents the modulus |ω(t )| of ω(t ). Then,

setting a(t )
def= −iωx(t ), b(t )

def= iωy(t ), and c(t )
def= −i�(t ),

the su(2; C)-Hamiltonian becomes

Hsu(2; C)(t )
def= ωx(t )σx + ωy(t )σy + �(t )σz. (31)

We assume that the transverse fields ω(t ) lie in the xy-plane
while the longitudinal fields �(t ) are oriented along the z-
axis. We observe that the su(2; C)-Hamiltonian can be recast

as Hsu(2; C)(t )
def= −�μ · �B(t ) when taking into consideration

the evolution of a spin-1/2 particle in an external time-

dependent magnetic field �B(t ). As usual, �μ def= (eh̄/2mc)�σ
denotes the magnetic moment of the electron with μBohr

def=
eh̄/(2mc) being the so-called Bohr magneton. The quantity
|e| denotes the absolute value of the electric charge of an
electron while m is the mass of an electron. Moreover, h̄
and c denote the reduced Planck constant and the speed
of light, respectively. To understand the relation between
the set of field intensities {ωH(t ), �H(t )} and the magnetic

field �B(t ), we decompose �B(t ) as �B(t )
def= �B⊥(t ) + �B‖(t ), with

�B⊥(t )
def= Bx(t )x̂ + By(t )ŷ and �B‖(t )

def= Bz(t )ẑ. Then, it follows

that B⊥(t ) ∝ ωH(t )
def= |ω(t )| and B‖(t ) ∝ �H(t )

def= |�(t )|.
More specifically, the exact relation in terms of field compo-
nents between {Bx(t ), By(t ), Bz(t )} and {ωx(t ), ωy(t ), �(t )} is

expressed by the equalities

Bx(t ) = −2mc

eh̄
ωx(t ), By(t ) = −2mc

eh̄
ωy(t ), and

Bz(t ) = −2mc

eh̄
�(t ). (32)

Furthermore, in terms of field intensities B⊥(t ) and B‖(t ), one
obtains

B⊥(t ) = 2mc

|e|h̄ ωH(t ), and B‖(t ) = 2mc

|e|h̄ �H(t ). (33)

Despite its apparent simplicity, it is a highly challenging
matter studying the evolution of an electron specified by the
Hamiltonian Hsu(2; C)(t ) by means of exact analytical expres-
sions of complex probability amplitudes and real transition
probabilities from an initial source state to a final target state.
The quantum mechanical time propagator U (t ),

U (t )
def=

(
α(t ) β(t )

−β∗(t ) α∗(t )

)
, (34)

with ih̄U̇ (t ) = Hsu(2; C)U (t ) and U̇ def= ∂tU , is unitary and
demands that the probability amplitudes α(t ) and β(t )
must satisfy the normalization condition |α(t )|2 + |β(t )|2 =
1. Then, {|w〉, |w⊥〉} being a set of orthonormal state vectors
that span the two-dimensional search space of the Hn

2, the time

evolution of a source state |s〉 def= x|w〉 + √
1 − x2|w⊥〉 with

x
def= 〈w|s〉 can be described by the mapping,

(x,
√

1 − x2)
U (t )→ (α(t )x + β(t )

√
1 − x2, − β∗(t )x

+ α∗(t )
√

1 − x2). (35)

Thus, the probability P|s〉→|w〉(t ) that under U (t ) the source
state |s〉 transitions into the target state |w〉 becomes

P|s〉→|w〉(t )
def= |〈w|U (t )|s〉|2

= |α(t )|2x2 + |β(t )|2(1 − x2)
+ [α(t )β∗(t ) + α∗(t )β(t )]x

√
1 − x2. (36)

As evident from Eq. (36), it is necessary to possess the ex-
act analytical expression of the evolution operator U (t ) in
terms of the complex probability amplitudes α(t ) and β(t )
to calculate the exact analytical expression of P|s〉→|w〉(t ).
For completeness, a general parametrization of α(t ) and β(t )
is given in Appendix D. Inspired by our results reported
in Ref. [16] and, above all, making use of the findings in
Refs. [17,18], we focus our attention on four distinct quantum
mechanical driving scenarios where P|w⊥〉→|w〉(t ) can be ana-
lytically expressed. The states |w〉 and |w⊥〉 with 〈w⊥|w〉 =
δw⊥, w are chosen so that σz|w〉 = +|w〉 and σz|w⊥〉 = −|w⊥〉.
The quantity that specifies the four scenarios is the modulus

|ω(t )| of the complex transverse field ω(t ), ωH(t )
def= |ω(t )| ∝

B⊥(t ). However, for experimental convenience, we assume
that φ̇ω(t ) = ω0 and �(t ) = −(h̄/2)ω0 with ω0 a negative
constant in all four scenarios. More general temporal behav-
iors φ̇ω(t ) and �(t ) can be chosen provided that the so-called
generalized Rabi condition φ̇ω(t ) + (2/h̄)�(t ) = 0 is satisfied
as pointed out in Ref. [17,18]. The first case specifies the orig-
inal Rabi scenario where we assume a constant field intensity

034143-7



CAFARO, RAY, AND ALSING PHYSICAL REVIEW E 105, 034143 (2022)

ω
(1)
H (t )

def= 	 with P (1)
|w⊥〉→|w〉(t ) = sin2[(	/h̄)t]. The remaining

three cases are generalized Rabi scenarios with field intensity
assumed to be exhibiting oscillatory, power law decay, and
exponential law decay behaviors. In summary, we have

ω
(1)
H (t )

def= 	, ω
(2)
H (t )

def= 	 cos (λt ), ω
(3)
H (t )

def= 	/(1 + λt )2, and ω
(4)
H (t )

def= 	e−λt . (37)

Note that ω
(2)
H (t ) � 0 for 0 � t � (π/2)λ−1. In all four cases,

it happens that P ( j)
|w⊥〉→|w〉(t ) with 1 � j � 4 is given by [18]

P ( j)
|w⊥〉→|w〉(t ) = sin2

[∫ t

0

ω
( j)
H (t ′)

h̄
dt ′

]
. (38)

Interestingly, since the resonance condition is satisfied,
P ( j)

|w⊥〉→|w〉(t ) in Eq. (38) depends only on the integral of the
transverse field intensity ωH(t ). The transition probabilities
P (k)

|w⊥〉→|w〉(t ) in Eq. (38) are the key ingredients that we exploit
to provide an expression of the parametrized output quantum
states |ψ (θ )〉.

Having introduced the IGC in Eq. (13), the entropic ef-
ficiency in Eq. (27), and our chosen quantum mechanical
driving schemes, we are ready to apply our proposed theo-
retical analysis.

V. APPLICATIONS

In this section, we apply our theoretical construct to four
distinct quantum mechanical driving scenarios.

To apply our scheme, we need to find the optimum cooling
(probability) paths before evaluating the information geomet-
ric complexity CMs in Eq. (13), the entropic speed vE in
Eq. (19), the rate of entropy production rE in Eq. (20), and
the entropic efficiency ηE in Eq. (27) along these geodesic
trajectories. To find these paths γθ : θ �→ p(θ ) with θ = θ (ξ )
and ξ being an affine parameter, we proceed as follows. For
each Schrödinger evolution characterized by a specific expres-
sion of ωH(t ) [that is, the modulus of the complex transverse
field ω(t ) that is proportional to B⊥(t )], we arrive at the

regular probability paths {p(θ )} with p(θ )
def= [pw(θ ), pw⊥ (θ )]

as prescribed in the previous section. Then, having {p(θ )}, we
calculate the Fisher information g(θ ) = Eθ [{∂θ log[px(θ )]}2]
with Eθ [V] denoting the expected value of the random vari-
able V with respect to the probability mass function px(θ )
along these probability paths. The Fisher information enters
the geodesic equation for θ = θ (ξ ). Finally, upon integrat-
ing the geodesic equation, we find the most favorable time
parametrizations of γθ and, consequently, the optimum cool-
ing paths {poptimum(θ )}.

Before starting our geodesic analysis, we recall for com-
pleteness that the trajectories connecting two quantum states
|A〉 and |B〉 generated by an optimal-speed unitary evolution
U can be regarded as geodesic curves on the Bloch sphere.
From a geometric standpoint, these unitary operators {U }
can be described by means of rotations of the Bloch sphere
around the axis that is orthogonal to the hemispherical plane
containing the origin along with |A〉 and |B〉 [47]. In our paper,
instead, optimality means minimum entropy production and
not time-optimality. In addition, minimum entropy production

probability paths are geodesic paths on the parametric mani-
fold with elements specified by the parameter θ and not on the
Bloch sphere of pure quantum states.

1. Constant ωH

The first driving scheme that we consider is characterized
by a constant ω(1)

H (t ) = 	. In this case, the space of probability

distributions {p(θ )} with p(θ )
def= [pw(θ ), pw⊥ (θ )] is specified

by the success and failure probabilities

pw(θ )
def= sin2

(
	

h̄
θ

)
and pw⊥ (θ )

def= cos2

(
	

h̄
θ

)
, (39)

respectively. The probabilities in Eq. (39) present a periodic

oscillatory behavior with period T
def= (π h̄)/	 while the Fisher

information g(θ ) assumes the constant value g0
def= (2	/h̄)2.

Finally, the geodesic equations yielding the most favorable
time parametrizations of γθ becomes

d2θ

dξ 2
+ 1

2g

dg

dθ

(
dθ

dξ

)2

= 0. (40)

Given that g(θ ) = g0 together with supposing nonvanishing
positive initial conditions θ (ξ0) = θ0 and θ̇ (ξ0) = θ̇0, integra-
tion of the geodesic equation leads to the following optimum
paths:

θ (ξ ) = θ0 + θ̇0(ξ − ξ0). (41)

From the expression of the optimum paths in Eq. (41), we can
evaluate CMs in Eq. (13), vE in Eq. (19), rE in Eq. (20), and
ηE in Eq. (27). Specifically, we get

CMs (τ ) = 	

h̄
(τ + τ0 − 2ξ0)θ̇0, vE(	)

= 2	

h̄
θ̇0, and rE(	) =

(
2	

h̄

)2

θ̇2
0 . (42)

From Eq. (42), we observe that vE(	) ∝ 	, rE(	) ∝ 	2, and
CMs (τ ) grows linearly in time with dCMs/dτ ∝ vE = r1/2

E .
It is transparent from Eq. (42) that ω

(1)
H (t ) = 	, the modulus

of the complex transverse field that specifies the su(2; C)
driving Hamiltonian, is the parameter to be tuned to find
a suitable tradeoff between speed and efficiency (or, speed
and information geometric complexity) within our analysis
of quantum mechanical evolutions. For clarity, we emphasize
that the expression of rE in Eq. (42) can be obtained either
from Eq. (20) or Eq. (23). In particular, we point out that
the rate of entropy production inherits the typical initial-state
dependence of the entropy production [48] as evident from its
expression in Eq. (42). These last two clarifications apply to
all quantum driving scenarios that we study here. Moreover,
we remark that the linear growth with respect to the temporal
variable τ of the IGC is not completely unexpected. Indeed,
in all cases being considered here, there is only one control
parameter θ and, roughly speaking, the explored parametric
volumes reduce to explored lengths. Finally, since the motion
is geodesic, the covariant acceleration vanishes and the evo-
lution of the control parameter occurs with constant entropic
speed. For this reason, to compare the various driving schemes
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using the IGC, the quantity that gains more relevance is the
rate of change dCMs/dτ of the IGCs with respect to τ .

2. Oscillating ωH

The second driving scheme that we study is specified by
ω

(2)
H (t ) = 	 cos(λt ) with λ ∈ R+ being a frequency parame-

ter. In this case, the space of probability distributions {p(θ )}
with p(θ )

def= [pw(θ ), pw⊥ (θ )] is given by

pw(θ )
def= sin2

[
	

h̄λ
sin (λθ )

]
and pw⊥ (θ )

def= cos2

[
	

h̄λ
sin (λθ )

]
, (43)

respectively. The probabilities pw(θ ) and pw⊥ (θ ) exhibit

a periodic oscillatory behavior with period given by T
def=

π/λ. Furthermore, since pw(θ ) reaches its maximum value

sin2[	/(h̄λ)] at t∗ def= π/(2λ), we must impose the constraint
	/λ = h/4 in order for pw(θ ) to reach one as its maximum
value. From Eq. (43), we get g(θ ) = (2	/h̄)2 cos2(λθ ) while
the geodesic equation becomes

d2θ

dξ 2
− λ tan (λθ )

(
dθ

dξ

)2

= 0. (44)

Remaining in the working assumptions of nonvanishing pos-
itive initial conditions θ (ξ0) = θ0 and θ̇ (ξ0) = θ̇0, integration
of the geodesic equation leads to optimum paths θ (ξ ) of the
form

θ (ξ ) = 1

λ
sin−1[λ cos (λθ0)(ξ − ξ0)θ̇0 + sin (λθ0)]. (45)

As pointed out earlier, from the optimum paths in Eq. (45), we
can evaluate CMs in Eq. (13), vE in Eq. (19), rE in Eq. (20),
and ηE in Eq. (27). We obtain

CMs (τ ) = 	

h̄
(τ + τ0 − 2ξ0)θ̇0|cos (λθ0)|, vE(	)

= 2	

h̄
|cos (λθ0)|θ̇0, and rE(	)

=
(

2	

h̄

)2

cos2 (λθ0)θ̇2
0 , (46)

where λ = λ(	)
def= (4	)/h. From Eqs. (46) and (42), we

notice that the IGC keeps growing linearly in time with
dCMs/dτ ∝ vE = r1/2

E . The geodesic motion, however, yields
cooler optimum paths that are explored with a smaller entropic
speed.

3. Power law decay of ωH

The third driving scheme is characterized by ω
(3)
H (t ) =

	/(1 + λt )2. In this case, the space of probability distributions

{p(θ )} is given by p(θ )
def= [pw(θ ), pw⊥ (θ )] with

pw(θ )
def= sin2

[
	

h̄λ

(
1 − 1

1 + λθ

)]
and pw⊥ (θ )

def= cos2

[
	

h̄λ

(
1 − 1

1 + λθ

)]
, (47)

respectively. Provided that 	/λ = h/4, pw(θ ) in Eq. (47)
exhibits an asymptotic monotonic convergence to one. More-
over, the Fisher information is given by g(θ ) = (2	/h̄)2(1 +
λθ )−4 while the geodesic equation is

d2θ

dξ 2
− 2λ

1 + λθ

(
dθ

dξ

)2

= 0. (48)

As previously mentioned, we keep assuming nonvanishing
positive initial conditions θ (ξ0) = θ0 and θ̇ (ξ0) = θ̇0. Then,
integrating the geodesic equation, we obtain the optimum
paths given by

θ (ξ ) =
(1 + λθ0)2 + λθ̇0

[
(ξ − ξ0) − 1+λθ0

λθ̇0

]
λ2θ̇0

[ 1+λθ0

λθ̇0
− (ξ − ξ0)

] . (49)

From the optimum paths in Eq. (49), we compute CMs in
Eq. (13), vE in Eq. (19), rE in Eq. (20), and ηE in Eq. (27).
In particular, we get

CMs (τ ) = 	

h̄
(τ + τ0 − 2ξ0)θ̇0

1

[1 + λ(	)θ0]2 , vE(	)

= 2	

h̄

1

[1 + λ(	)θ0]2 θ̇0, and rE(	)

=
(

2	

h̄

)2 1

[1 + λ(	)θ0]4 θ̇2
0 , (50)

with λ(	)
def= (4	)/h. Analogous to the first and second sce-

narios, the motion on the manifold associated with the third
scenario proceeds at constant entropic speed vE and, thus, ex-
hibits minimum entropy production. The IGC keeps growing
linearly in time with dCMs/dτ ∝ vE = r1/2

E . In particular, this
third scenario is characterized by a geodesic motion that gives
rise to optimum paths that are cooler than those corresponding
to the second scenario.

4. Exponential decay of ωH

The fourth driving scheme is characterized by ω
(4)
H (t ) =

	e−λt . In this case, the space of probability distributions

{p(θ )} is given by p(θ )
def= [pw(θ ), pw⊥ (θ )], where

pw(θ )
def= sin2

[
	

h̄λ
(1 − e−λθ )

]
and pw⊥ (θ )

def= cos2

[
	

h̄λ
(1 − e−λθ )

]
, (51)

respectively. We note that as long as 	/λ = h/4, the prob-
ability pw(θ ) in Eq. (51) presents an asymptotic monotonic
convergence to one. Employing Eq. (51), the Fisher in-
formation becomes g(θ ) = (2	/h̄)2e−2λθ and the geodesic
equation is

d2θ

dξ 2
− λ

(
dθ

dξ

)2

= 0. (52)

Integrating the geodesic equation and assuming a set of nonva-
nishing positive initial conditions θ (ξ0) = θ0 and θ̇ (ξ0) = θ̇0,
the optimum paths become

θ (ξ ) = θ0 − 1

λ
log[1 − λθ̇0(ξ − ξ0)]. (53)
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FIG. 1. We plot in panel (a) the rescaled entropy production rate r̃E versus λ, the parameter that characterizes the field intensity. In panel
(b), we depict the behavior of the entropic efficiency ηE versus λ. In panel (c), we plot C̃Ms versus τ with C̃Ms being the rescaled version
of the information geometric complexity CMs in its long-time limit. In panels (a), (b), and (c), the dotted, dashed, thin solid, and thick solid
lines correspond to the constant, oscillatory, exponential law decay, and power law decay field intensity behaviors, respectively. Finally, we set
θ0 = 1 in all plots and λ = 1/2 in panel (c).

From the optimum paths in Eq. (53), we calculate CMs in
Eq. (13), vE in Eq. (19), rE in Eq. (20), and ηE in Eq. (27).
In particular, we obtain

CMs (τ ) = 	

h̄
(τ + τ0 − 2ξ0)θ̇0e−λθ0 , vE(	)

= 2	

h̄
e−λ(	)θ0 θ̇0, and rE(	) =

(
2	

h̄

)2

e−2λ(	)θ0 θ̇2
0 ,

(54)

where λ(	)
def= (4	)/h. We observe that the IGC grows lin-

early in time with dCMs/dτ ∝ vE = r1/2
E . In Fig. 1, we

compare the four driving schemes for relatively small values
of λ. We have three plots in Fig. 1. In plot (a), we represent the
rescaled entropy production rate r̃E with rE = (2	/h̄)2θ̇2

0 r̃E

as a function of λ. In plot (b), we depict the behavior of
the entropic efficiency ηE versus λ. In plot (c), we represent
the behavior of C̃Ms versus τ . The quantity C̃Ms denotes
the rescaled version of the information geometric complexity
CMs in its long-time limit with Casymptotic

Ms
= (	/h̄)θ̇0C̃Ms . In

plots (a), (b), and (c), the dotted, dashed, thin solid, and thick
solid lines correspond to the constant, oscillatory, exponential
law decay, and power law decay field intensity behaviors,
respectively. Finally, we set θ0 = 1 in all plots and λ = 1/2
in plot (c). Then, comparing Eqs. (50) and (54), we arrive at
the conclusion that for values of λ sufficiently large this fourth
scenario yields the coolest optimum paths that are explored at
the slowest entropic speed. In particular, when θ0 ∈ R+ and

λ(	)
def= (4	)/h � 1, the following chain of inequalities hold

true:

0 � e−λθ0 � 1/(1 + λθ0)2 � |cos (λθ0)| � 1. (55)

Therefore, for values of the parameter λ sufficiently large,
the power law decay strategy outruns the exponential decay
strategy in terms of entropic speed. To estimate numeri-
cally a typical value of λ from a physics standpoint, we
recall that λ = (4	)/h, 	 = (|e|h̄B⊥)/2mc, and thus, λ =
(1/π )(|e|/mc) B⊥. Therefore, for a magnetic field with in-
tensity B⊥ of the order of 0.1 T (a half of a value typical of
neodymium magnets), λ ≈ 18 [MKSA]. Interestingly, there
are parametric regions specified by smaller values of λ (for in-
stance, 0 � λ � 1), where the exponential-decay strategy can
outperform the power-law strategy in terms of entropic speed.

However, its performance declines in terms of either higher in-
formation geometric complexity or lower entropic efficiency.
In Fig. 2, we have three plots. In plot (a), we depict the entropy
production rate rE versus λ and set θ0 = 1. The thin solid and
thick solid lines denote the exponential law and the power
law decay scenarios, respectively. The intersection between
the two lines occurs at λ � 2.51. In plot (b), we illustrate
the parametric region D(θ0, λ) where r (exponential)

E (θ0, λ) �
r (power-law)

E (θ0, λ) (black region). Finally, in plot (c) we visu-

alize the ratios R CMs

def= C (exponential)
Ms

/C (power-law)
Ms

(thick solid

line) and RrE

def= r (exponential)
E /r (power-law)

E (thin solid line) versus
λ with θ0 set equal to one. We emphasize that the exponential
law decay scheme outperforms the power law decay scheme
in terms of both entropy production rate and information ge-
ometric complexity in the limit of sufficiently large values of
λ. As a final remark, we remark that in all four scenarios it

happens that dĊMs/dvE = 1/2 � 0 with ĊMs

def= dCMs/dτ .
Moreover, setting the efficiency ηE in Eq. (27) equal to
ηE(rmin, rE) with rE = v2

E, we have

dηE

dvE
= − 4rminvE

(rmin + v2
E)2 � 0. (56)

Therefore, the entropic efficiency ηE is a monotonic decreas-
ing function of the entropic speed vE while the temporal rate
of change of the information geometric complexity ĊMs is
a monotonic increasing function of vE with dηE/dvE � 0 and
dĊMs/dvE � 0, respectively. A summary of the relative rank-
ing among the driving schemes considered appears in Table I.

VI. CONCLUDING REMARKS

We present here a summary of our main findings along with
possible future directions.

A. Summary of results

We provided an information geometric description of quan-
tum driving schemes specified by su(2; C) time-dependent
Hamiltonians [see Eq. (31)] in terms of both complexity [see
Eq. (13)] and efficiency [see Eq. (27)] concepts. Specifically,
starting from the parametrized pure output quantum states
{|ψ (θ )〉} describing the evolution of a spin-1/2 particle in
an external time-dependent magnetic field, we considered
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FIG. 2. In panel (a), we plot the entropy production rate rE versus λ and set θ0 = 1. The thin solid and thick solid lines represent the
exponential law and the power law decay scenarios, respectively. The intersection between the two lines occurs at λ � 2.51. In panel (b),
we plot the parametric region D(θ0, λ) where r (exponential)

E (θ0, λ) � r (power-law )
E (θ0, λ) (black region). Finally, in panel (c) we plot the ratios

RCMs

def= C (exponential)
Ms

/C (power-law)
Ms

(thick solid line) and R rE

def= r (exponential)
E /r (power-law)

E (thin solid line) versus λ with θ0 set equal to one. We note
that the exponential law decay scheme outperforms the power law decay scheme in terms of both entropy production rate and information
geometric complexity in the limit of sufficiently large values of λ.

the probability paths {p(θ )} emerging from the parametrized
squared probability amplitudes of quantum origin with θ de-
noting statistical parameter corresponding to the elapsed time.
The information manifold Ms of such paths was equipped
with a Riemannian metrization specified by the Fisher in-
formation gαβ (θ ) evaluated along the parametrized squared
probability amplitudes. Employing a minimum action prin-
ciple, the optimum path connecting initial and final states
on the manifold in finite time tuned out to be the geodesic
path between the two states. In particular, the total entropy
production that occurs during the transfer is minimized along
these optimum paths [see Eqs. (41), (45), (49), and (53)].
For each optimum path that emerges from the given quantum
driving scheme, we evaluated [see Eqs. (42), (46), (50), and
(54)] the IGCs, the entropic speeds, and the rates of entropy
production used to define our entropic efficiency measure in
Eq. (27). From our analytical estimates of complexity and
efficiency, we provided a relative ranking among the driving
schemes being investigated (see Fig. 1, Fig. 2, and Table I).

The following points are of particular interest:
[i] We established a link between the IGC and the ther-

modynamic length. Specifically, the IGC can be regarded
as a measure of the “average” maximal number of statisti-
cally distinguishable states along the path γθ since we have
CMs (τ ) = 〈L(ξ )〉τ0�ξ�τ . The validity of this equation holds
for the models we have investigated here. We do not expect
this relation to hold in its neat form in higher-dimensional

parameter spaces where, for instance, the equality between

ds
def= [gαβ (θ )dθαdθβ]1/2 and dV def= [g(θ )]1/2dnθ with θ =

(θ1,..., θn) does not hold anylonger. After all, CMs is related
to volume elements dV while L is a length emerging from the
integration of infinitesimal line elements ds.

[ii] We brought to light that the IGC of a geodesic path
is connected to the entropy production rate along that path. In
particular, the rate of change in time of the IGC is proportional
to the square-root of the entropy production rate along the
path γθ where θ = θ (ξ ) with τ0 � ξ � τ , dCMs/dτ ∝ r1/2

E ,
with the constant of proportionality being equal to 1/2. The
validity of this relation holds for the models we considered.
It would be interesting to explore what happens in more com-
plicated scenarios with a richer Hamiltonian dynamics with
more tunable parameters.

[iii] We determined that the entropic efficiency ηE is a
monotonic decreasing function of the entropic speed vE while
the temporal rate of change of the information geometric

complexity ĊMs

def= dCMs/dτ is a monotonic increasing func-
tion of vE with dηE/dvE � 0 and dĊMs/dvE � 0. Therefore,
for the driving schemes being considered here, higher speed
values yield less efficient and more complex probability paths.
This is a manifestation of the so-called speed-efficiency trade-
off along with the conjecture, at this stage, that efficiency
demands simplicity: Less (complex) is more (efficient). A
major achievement would be that of constructing a driving

TABLE I. Schematic description of the entropy production rate rE, the entropic efficiency ηE, and the information geometric complexity
CMs in the four su(2;C) Hamiltonian being considered. In the limit of sufficiently large values of the parameter λ used to modify the behavior
of the external driving field, both higher efficiency and lower complexity levels appear to be reached in the case of the driving scheme specified
by an exponential law decay.

Hamiltonian model Rate of entropy production Efficiency Complexity

B⊥, constant higher lower higher
B⊥, oscillating high low high
B⊥, power law decay low high low
B⊥, exponential law decay lower higher lower
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scheme that is simultaneously fast, efficient, and as simple as
possible according to the laws of physics. We believe the work
presented here will help us pursue this goal in future efforts.

B. Outlook

Our work can be improved in a number of ways. One of the
main restrictions of our investigation is its limitation to a sin-
gle control parameter. However, we believe our analysis can
be extended to more than one control variable in a relatively
straightforward manner. Furthermore, our information geo-
metric analysis focuses on pure states and unitary evolution. In
particular, we have ignored considering more realistic scenar-
ios where the quantum system is open to the environment and
dissipation effects in the form of dynamical fluctuations of the
controlled system (which, in general, is described by a mixed
quantum state) become important. In general, the temporal
rate of change of the density operator of an open quantum
system can be expressed in terms of the sum of two terms, the
Hamiltonian piece and the dissipative piece [49]. In a sense,
the information geometric techniques we used here can be
regarded as applied to a closed quantum system viewed as
an open quantum system in the limit in which the dissipative
piece is zero and the rate of change of the density operator
is solely expressed in terms of the Hamiltonian piece. For
a recent nongeometric study on the dynamics of a two-level
system which interacts with a dissipative bosonic environment
at zero temperature specified by a Lorentzian spectral density
function, we refer to Ref. [50]. Moving from unitary evolution
of pure states to open systems described by impure states, a
number of challenges emerge. For instance, for pure states
undergoing unitary dynamics, the Fisher information metric
is essentially the unique contractive Riemannian metric that
can be defined to quantify the distance between states [51,52].
However, there is no unique suitable metric for characterizing
the distance between mixed states describing quantum sys-
tems open to the environment. Furthermore, quantifying in an
analytical manner minimum dissipation protocols in the pres-
ence of a large number of experimentally tunable parameters
is rather challenging from a computational standpoint, in both
classical and quantum scenarios. For a numerically intensive
investigation of nontrivial minimum dissipation protocols for
nanomagnetic (classical) spin models in the presence of a
large number of control parameters, we refer to Ref. [36]. The
extension of our proposed information geometric analysis to
the case of a dissipative dynamics of an open quantum system
interacting with an external environment in the presence of a
large number of tunable parameters can represent a number of
additional challenges. They will be the subject of forthcoming
investigations.

In conclusion, despite its limitations, we believe that the
analysis presented here is a relevant piece of work that joins
the increasing list of recent investigations concerning an infor-
mation geometric characterization of entropy production and
efficiency in both classical and quantum systems [9–12] and
deserves further investigation.
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APPENDIX A: EQUIVALENCE OF GEODESIC EQUATIONS

In this Appendix, motivated by Eq. (18) in Sec. III,
we show that the geodesic equations emerging from con-

sidering the variations δ(
∫ √

ds2) and δ(
∫

ds2) with ds2 def=
gαβ (θ )dθαdθβ ,

d2θρ

dξ 2
+ 	ρ

μν

dθμ

dξ

dθν

dξ
= 0, (A1)

and

d

dξ

(
gμρ

dθμ

dξ

)
− 1

2

dθμ

dξ

∂gμν

∂ξρ

dθν

dξ
= 0, (A2)

respectively, are equivalent. Indeed, using standard tensor al-
gebra techniques, observe that

0 = d

dξ

(
gμρ

dθμ

dξ

)
− 1

2

dθμ

dξ

∂gμν

∂θρ

dθν

dξ

= d

dξ
(gμρ )

dθμ

dξ
+ gμρ

d2θμ

dξ 2
− 1

2

∂gμν

∂θρ

dθμ

dξ

dθν

dξ

= ∂gμρ

∂θν

dθν

dξ

dθμ

dξ
+ gμρ

d2θμ

dξ 2
− 1

2

∂gμν

∂θρ

dθμ

dξ

dθν

dξ

= 1

2

(
∂gμρ

∂θν
+ ∂gνρ

∂θμ

)
dθμ

dξ

dθν

dξ

+ gμρ

d2θμ

dξ 2
− 1

2

∂gμν

∂θρ

dθμ

dξ

dθν

dξ

= gμρ

d2θμ

dξ 2
+ 1

2

(
∂gμρ

∂θν
+ ∂gνρ

∂θμ
− ∂gμν

∂θρ

)
dθμ

dξ

dθν

dξ

= gμρ

d2θμ

dξ 2
+ 	ρ, μν

dθμ

dξ

dθν

dξ

= gρρgμρ

d2θμ

dξ 2
+ gρρ	ρ, μν

dθμ

dξ

dθν

dξ

= d2θρ

dξ 2
+ 	ρ

μν

dθμ

dξ

dθν

dξ
. (A3)

Therefore, we conclude that Eqs. (A1) and (45) are equiv-
alent.

APPENDIX B: PHYSICAL SIGNIFICANCE OF ENTROPY
PRODUCTION RATE

In this Appendix, we discuss the physical significance of
the concept of entropy production rate in Eq. (20) of Sec. III
in relation to the thermodynamics of a system of spin-1/2
particles driven by an external magnetic field.
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1. Negative temperature of a spin-1/2 particle
in an external magnetic field

In statistical physics, phenomena of negative tempera-
tures have much less practical importance than phenomena
of positive temperatures. However, negative temperatures are
characteristic of atomic systems with inverted populations,
and they can be equally well-described from a thermodynam-
ical standpoint. In particular, if the entropy σ of a system
is not a monotonically increasing function of its internal
energy U , then it exhibits a negative temperature whenever

1/T
def= (∂σ/∂U )X is negative with X standing for all the

other extensive variables the entropy might depend upon [53].
More generally, the three essential requirements for a thermo-
dynamical system to be capable of negative temperature are
[54]: (i) To describe the system in terms of the concept of
temperature, the elements of the system must be in thermody-
namical equilibrium among themselves; (ii) there must be an
upper bound to the values of the energy of the allowed states of
the system; (iii) the system must be thermally isolated from all
systems which do not fulfill conditions (i) and (ii). A simple
physical example of a system for which a negative tempera-
ture emerges is given by a spin-1/2 particles in an external
magnetic field with only two energy states available to each
element of the system. Let us assume that the energies of the

upper and lower states are given by ε2
def= +ε and ε1

def= −ε,
respectively, so that the energy gap between the two energy

levels is �ε
def= ε2 − ε1 = 2ε > 0. Furthermore, let us denote

with pε2 and pε1 the probabilities of occupying the upper and
lower states, respectively, with pε2 + pε1 = 1. Making use of
the canonical ensemble formalism in statistical mechanics,
setting the Boltzmann constant kB equal to one, and recalling
that the entropy of the system is the logarithm of the number
of accessible states, it happens that σ (U ) can be recast as

σ (U ) = −
[

Nε2 − U

N�ε
log

(Nε2 − U

N�ε

)
+ U − Nε1

N�ε
log

(U − Nε1

N�ε

)]
, (B1)

where −Nε � U
def= ∑

i pεiεi = 〈E〉 � Nε is the average en-
ergy of the system, with N denoting the total number of
elements of the system. The region of negative slope of this
curve σ (U ) in Eq. (B1) corresponds to negative temperature.
When the lowest possible energy state is fully occupied, we
have pε1 = 1, U = −Nε, and the state is a highly ordered state
at +0◦K with σ = 0. When the highest possible energy state is
fully occupied, instead, we have pε2 = 1, U = +Nε, and the
state is a highly ordered state at −0◦K with σ = 0. The states
at ±0◦K are completely different from a physics standpoint.
When the system is at +0◦K, it cannot become colder since
it cannot give up its energy anymore. When the system is
at −0◦K, instead, it cannot become hotter since it cannot
absorb energy anymore. We remark that a system in a negative
temperature state is very hot and gives up energy to any
system at positive temperature put into contact with it. Nega-
tive temperatures correspond to higher energies than positive
temperatures. Furthermore, unlike what happens for positive
temperatures, an increased internal energy corresponds to

diminished entropy at negative temperatures. At intermediate
energies with −Nε < U < Nε, when some elements are in
the low-energy state and others in the high-energy state, there
is greater entropy since there is less order. Therefore, between
the lowest and the highest energy states of the thermodynamic
system, the entropy passes through a maximum and then
diminishes with increasing U . The maximum (with σmax =
log 2) occurs at U = 0 where pε1 = pε2 = 1/2. Right before
and after U = 0, T = +∞◦K and T = −∞◦K, respectively.
This change of sign in the temperature is a consequence of the
inversion of the population levels with pε2/pε1 = e−β�ε > 1

when 0 < U < +Nε with β
def= (kBT )−1. For a discussion on

experimental realizations of negative temperatures with sys-
tems of interacting nuclear spins, we refer to Refs. [55,56].

2. Physical interpretation of the rate of entropy production

In what follows, we provide a more physical interpretation
of the rate of entropy production given by

rE
def= d

dτ
I (τ ) = d

dτ

[∫ τ

0

dθα

dξ
gαβ (θ )

dθβ

dξ
dξ

]
, (B2)

where I (τ ) is the thermodynamic divergence, by exploiting
our thermodynamic considerations concerning negative tem-
perature spin-1/2 systems in external magnetic fields with
entropy given as in Eq. (B1).

For a physical system in equilibrium with a large thermal
reservoir, it happens that the thermodynamic metric tensor
gαβ [θ (ξ )] in Eq. (B2) represents the covariance matrix of
fluctuations around equilibrium,

δX
2
αβ

def= 〈(Xα − 〈Xα〉)(Xβ − 〈Xβ〉)〉, (B3)

with {Xα (x)} being the thermodynamic variables that specify
the Hamiltonian of the system while {x} are the configura-
tion space variables. Moreover, {θα} are the experimentally
controllable parameters of the system and 〈·〉 denotes the
ensemble average with respect to the canonical Gibbs distribu-
tion function p(x|θ ) ≡ px(θ ) = e−θα (ξ )Xα (x)/Z with Z being
the partition function of the system. After some straightfor-
ward algebra, it can be shown that the thermodynamic metric
tensor and the Fisher-Rao information metric tensor are equiv-
alent. Specifically, we have

gαβ (θ ) = δX
2
αβ =

∑
x

px(θ )
∂ log px(θ )

∂θα

∂ log px(θ )

∂θβ
. (B4)

Using Eq. (B4), rE in Eq. (B2) can be recast as

rE = dθα

dξ
δX

2
αβ

dθβ

dξ
=

∑
x

px(θ )

(
d log px(θ )

dξ

)2

, (B5)

with θ = θ (ξ )
def= [θ1(ξ ),..., θn(ξ )] with n being the dimen-

sionality of the parameter space. From Eqs. (B4) and (B5), we
point out that while the Fisher-Rao information metric tensor
is defined in terms of partial derivatives of the probabilities
with respect to the control parameters, the rate of entropy
production is specified by total derivative of the probabili-
ties d px (θ )

dξ
= ∂ px (θ )

∂θα
dθα

dξ
, with respect to the affine parameter ξ

along the trajectories {θα (ξ )}. For a single control parameter
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θα (ξ ) → θ (ξ ) the above two formulas Eqs. (B4) and (B5) are
deceptively similar,

gαβ (θ ) → g(θ ) =
∑

x

px(θ )

(
∂ log px(θ )

∂θ

)2

,

rE →
∑

x

px(θ )

(
d log px(θ )

dξ

)2

, (B6)

differing only in the use of type of derivative employed to
differentiate the “score function” log px(θ ). Moreover, from
Eq. (B5), we observe that rE can be also described as the

“product” of the fluctuation term δX
2
αβ and the square of the

total rate of change with respect to the affine parameter ξ of
the control parameter θα (ξ ).

To better grasp the significance of the rate of entropy pro-
duction, we consider the following illustrative comparison.
First, we consider a system with probability path defined

by p(θ )
def= [pw(θ ), pw⊥ (θ )] = [sin2(θ ), cos2(θ )] with θ (ξ ) =

(π/2)ξ and 0 � ξ � 1. In this first case, we obtain rE = π2.
This system exhibits features that are similar to those char-
acterizing a two-level system as transparent from the link be-

tween the probabilities defining p(θ )
def= [pw(θ ), pw⊥ (θ )] →

p(β )
def= [pε1 (β ), pε2 (β )]. Here, as in Crooks [28,57], we

use the variable inverse temperature β(ξ ) = [kBT (ξ )]−1 as
the single control parameter θ . For the canonical ensemble

we have pεi (β )
def= e−βεi/Z = e−(βεi+logZ ) with Z def= e−βε1 +

e−βε2 . Noting that
∂ log pεi

dβ
= ε − εi, with ε

def= ∑
i pεi (β )εi we

see that the Fisher information in Eq. (B6) becomes g(θ ) =
δE

2 def= ∑
i pεi (β )(εi − ε̄)2, the variance of the energy fluctua-

tions. Inserting this into the expression for rE in Eq. (B5), and
using d px (θ )

dξ
= ∂ px (θ )

∂β

dβ

dξ
, we find that the entropy production

rate rE is the product of the energy fluctuations δE
2

times the
squared rate of change ( dβ

dξ
)2 of the control parameter along

the trajectory in parameter space

rE = δE
2
(

dβ

dξ

)2

=
(

d pε1

dξ

)2( 1

pε1

+ 1

pε2

)
= π2. (B7)

Note that the second equality in Eq. (B7) arises (after a little
algebra) from comparing the two terms in the first equality,
respectively, to functions of the probabilities. Equation (B7)
is in agreement with the calculation of the rate of entropy
production carried out in the first case. Moreover, we remark
that the quantity d pε1/dξ , which acts as a kind of “probability
velocity” for the two-level system along the trajectory in pa-
rameter space, can be regarded as a relative energy fluctuation
term since d pε1/dξ ∝ δE/ε while the term (1/pε1 + 1/pε2 )
(which, we note, can be viewed as the reciprocal of a reduced
probability mass term) is proportional to the square of the
rate of change of the control parameter β with respect to the
affine time parameter ξ , (1/pε1 + 1/pε2 ) ∝ (dβ/dξ )2. Thus,
the form of Eq. (B7) is reminiscent of a kind of “kinetic energy
of fluctuations” of the two-level system along the trajectory in
parameter space. As a side remark, we refer to Ref. [58] for
an interesting link between the Fisher information function in
information geometry and the concept of entropic acceleration
in thermodynamics. Finally, for further details on negative

temperatures and fluctuations in thermodynamics, we refer to
Ref. [53].

APPENDIX C: PRESERVING THE RELATIVE RANKING

In this Appendix, we check that the relative ranking of the
driving schemes provided by the three distinct measures of
entropic efficiency introduced in Sec. III is preserved.

Recall that the three efficiency measures η
(1)
E (rE), η

(2)
E (rE),

and ηE(r (l )
E , r (m)

E ) are defined as

η
(1)
E (rE)

def= 1 − rE

rmax
E

, η
(2)
E (rE)

def= rmin
E

rE
, and ηE

(
r (l )

E , r (m)
E

)
def= 1 −

∣∣r (l )
E − r (m)

E

∣∣
r (l )

E + r (m)
E

, (C1)

respectively. If we assume that r (i∗ )
E � r (i′∗ )

E , then a straightfor-
ward calculation yields

η
(1)
E

(
r (i∗ )

E

)
� η

(1)
E

(
r (i′∗ )

E

)
, η

(2)
E

(
r (i∗ )

E

)
� η

(2)
E

(
r (i′∗ )

E

)
, and

ηE
(
r (i∗ )

E , rmin
E

)
� ηE

(
r (i′∗ )

E , rmin
E

)
. (C2)

Similarly, when r (i∗ )
E � r (i′∗ )

E , we get

η
(1)
E

(
r (i∗ )

E

)
� η

(1)
E

(
r (i′∗ )

E

)
, η

(2)
E

(
r (i∗ )

E

)
� η

(2)
E

(
r (i′∗ )

E

)
, and

ηE
(
r (i∗ )

E , rmin
E

)
� ηE

(
r (i′∗ )

E , rmin
E

)
. (C3)

Note that i∗ and i′∗ are arbitrary indices with 1 � i∗, i′∗ � N̄
with N̄ being the number of different driving schemes being
ranked. Therefore, given the arbitrariness of the inequalities
r (i∗ )

E � r (i′∗ )
E and r (i∗ )

E � r (i′∗ )
E , we conclude from Eqs. (C2) and

(C3) that η
(1)
E (rE), η

(2)
E (rE), and ηE(r (l )

E , r (m)
E ) rank the driving

schemes in a similar manner by preserving the relative order
from the best one to the worst one.

APPENDIX D: PARAMETRIZATION OF PROBABILITY
AMPLITUDES

In this Appendix, we report a general parametrization
of the probability amplitudes α(t ) and β(t ) that appear in
Eq. (36) of Sec. IV.

Following Refs. [17,18], it happens that α(t ) and β(t ) in
Eq. (36) can be recast as⎧⎪⎨⎪⎩

α(t ) = {
cos [�(t )] − i b√

1+b2 sin [�(t )]
}
ei φω (t )

2 ,

β(t ) = 1√
1+b2 sin [�(t )]ei[ φω (t )

2 − π
2 ],

(D1)

with �(t ) defined as �(t )
def= √

1 + b2
∫ t

0
|ω(t ′ )|

h̄ dt ′, provided
that �(t ) + h̄φ̇ω(t )/2 = b|ω(t )| where b is an arbitrary real
number/parameter. Clearly, |ω(t )| is the magnitude of the
complex transverse field ω(t ) = |ω(t )|eiφω (t ) with |ω(t )| ∝
B⊥(t ) and �(t ) is the real longitudinal field with |�(t )| ∝
B‖(t ). In particular, the resonance regime is specified by b →
0 with α(t ) and β(t ) in Eq. (D1) reducing to{

α(t ) = cos
[∫ t

0
|ω(t ′ )|

h̄ dt ′]ei φω (t )
2 ,

β(t ) = sin
[∫ t

0
|ω(t ′ )|

h̄ dt ′]ei[ φω (t )
2 − π

2 ].
(D2)

For more details, we refer to the original work in
Refs. [17,18].
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