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A general topic of current interest is the analysis of diffusion problems in singularly perturbed domains
with small interior targets or traps (the narrow capture problem). One major application is to intracellular
diffusion, where the targets typically represent some form of reactive biochemical substrate. Most studies of
the narrow capture problem treat the target boundaries as totally absorbing (Dirichlet), that is, the chemical
reaction occurs immediately on first encounter between particle and target surface. In this paper, we analyze
the three-dimensional narrow capture problem in the more realistic case of partially reactive target boundaries.
We begin by considering classical Robin boundary conditions. Matching inner and outer solutions of the
single-particle probability density, we derive an asymptotic expansion of the Laplace transformed flux into
each reactive surface in powers of ε, where ερ is a given target size. In turn, the fluxes determine the splitting
probabilities for target absorption. We then extend our analysis to more general types of reactive targets by
combining matched asymptotic analysis with an encounter-based formulation of diffusion-mediated surface
reactions. That is, we derive an asymptotic expansion of the joint probability density for particle position and
the so-called boundary local time, which characterizes the amount of time that a Brownian particle spends in the
neighborhood of a point on a totally reflecting boundary. The effects of surface reactions are then incorporated
via an appropriate stopping condition for the boundary local time. Robin boundary conditions are recovered in
the special case of an exponential law for the stopping local times. Finally, we illustrate the theory by exploring
how the leading-order contributions to the splitting probabilities depend on the choice of surface reactions. In
particular, we show that there is an effective renormalization of the target radius of the form ρ → ρ − �̃(1/ρ ),
where �̃ is the Laplace transform of the stopping local time distribution.

DOI: 10.1103/PhysRevE.105.034141

I. INTRODUCTION

A topic of increasing interest is the analysis of two-
dimensional (2D) and three-dimensional (3D) diffusion in
singularly perturbed domains [1–25]. Two broad classes of
problem are diffusion in a domain with small interior targets
or traps, and diffusion in a domain with an exterior boundary
that is reflecting almost everywhere, except for one or more
small holes through which particles can escape. One major
application of these studies is molecular diffusion within bio-
logical cells, where interior targets could represent (possibly
reactive) intracellular compartments and holes on the bound-
ary could represent ion channels or nuclear pores [26,27].
Quantities of interest at the level of bulk diffusion include
the steady-state solution (assuming it exists) and the approach
to the steady state, as characterized by the leading nonzero
eigenvalue λ1 of the negative Laplacian [1–3,12] or by the
so-called accumulation time [25]. In addition, the flux into an
interior target can be used to determine an effective reaction
rate [4,17]. At the single-particle level, the solution of the
diffusion equation (or more general Fokker-Planck equation)
represents the probability density to find the particle at a par-
ticular location. One is now typically interested in calculating
the splitting probabilities and conditional mean first passage
times for a particle to be captured by an interior target (narrow
capture) [8,13,15,16,20,21,23,24] or to escape from a domain

through a small hole in the boundary (narrow escape) [5,7,
9–11,14,18,19,22]. For all of these examples, the quantity
of interest satisfies an associated boundary value problem
(BVP), which can be solved using a mixture of matched
asymptotic analysis and Green’s function methods.

Within the context of narrow capture problems in cell biol-
ogy, absorption by a target typically represents some form of
chemical reaction. In almost all studies of diffusion in singu-
larly perturbed domains, the boundary conditions imposed on
the small targets are taken to be totally absorbing (Dirichlet).
A totally absorbing target means that the only contribution to
the effective reaction rate is the transport process itself, since
the chemical reaction occurs immediately on first encounter
between particle and target. In other words, the reaction is
diffusion limited rather than reaction limited [28]. However,
a more realistic scenario is to consider a combination of a
transport step and a reaction step, both of which contribute to
the effective reaction rate. Collins and Kimball [29] incorpo-
rated an imperfect reaction on a target surface ∂U by replacing
the Dirichlet boundary condition with the Robin or partially
reflecting boundary condition,

−D∇c(x, t ) · n = κ0c(x, t ), x ∈ ∂U .

Here, c(x, t ) is the particle concentration, n is the unit normal
at the boundary that is directed towards the center of the target,
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D is the diffusivity, and κ0 (in units of m/s) is known as the
reactivity constant. The above boundary condition implies that
there is a net flux of particles into the target (left-hand side),
which is equal to the rate at which particles react with (are
absorbed by) the target (right-hand side). The latter is taken to
be proportional to the particle concentration at the target, with
κ0 the constant of proportionality. The totally absorbing case
is recovered in the limit κ0 → ∞, whereas the case of an inert
(perfectly reflecting) target is obtained by setting κ0 = 0. In
practice, the diffusion-limited and reaction-limited cases cor-
respond to the regimes ξ � R and ξ � R, respectively. Here,
R is a geometric length scale such as the radius of a spherical
target and ξ = D/κ0 is known as the reaction length. Note that
there have been a few studies of bulk diffusion in singularly
perturbed domains containing targets with Robin boundary
conditions [1–3,6]. It is also possible to obtain Robin bound-
ary conditions by spatially homogenizing a target with mixed
boundary conditions [19] or by considering a stochastically
gated target in an appropriate limit [30]. However, as far as
we are aware, there have not been any detailed studies at the
single-particle level.

As recently highlighted by Grebenkov [31], the single-
particle probabilistic interpretation of the partially reflecting
boundary condition is much more complicated than the
Dirichlet boundary condition. The latter is easily incorporated
into Brownian motion by introducing the notion of a first
passage time, which is a particular example of a stopping
time. On the other hand, the inclusion of a totally or partially
reflecting boundary requires a modification of the stochastic
process itself. Mathematically speaking, one can construct
so-called reflected Brownian motion in terms of a boundary
local time, which characterizes the amount of time that a
Brownian particle spends in the neighborhood of a point on
a totally reflecting boundary [32,33]. The resulting stochastic
differential equation, also known as the stochastic Skorokhod
equation [34], can then be extended to take into account chem-
ical reactions, thus providing a probabilistic implementation
of the Robin boundary condition [35,36]. A simpler concep-
tual framework for understanding partially reflected Brownian
motion is to model diffusion as a discrete-time random walk
on a hypercubic lattice Zd with lattice spacing a. At a bulk
site, a particle jumps to one of the neighboring sites with
probability 1/2d , whereas at a boundary site, it either reacts
with probability q = (1 + ξ/a)−1 or returns to a neighboring
bulk site with probability 1 − q. Since the random jumps are
independent of the reaction events, it follows that the random
number of jumps N̂ before a reaction occurs is given by a
geometric distribution: P [N̂ = n] = q(1 − q)n, with integer
n � 0. In particular, E[N̂] = (1 − q)/q = ξ/a. Introducing
the rescaled random variable 	̂ = aN̂ , one finds that [31,37]

P [	̂ � 	] = P [N̂ � 	/a] = (1 − q)	/a = (1 + a/ξ )−	/a

→
a→0

e−	/ξ .

That is, for sufficiently small lattice spacing a, a reaction
occurs (the random walk is terminated) when the random
number of realized jumps from boundary sites, multiplied
by a, exceeds an exponentially distributed random variable
(stopping local time) 	̂ with mean ξ . Assuming that a partially
reflected random walk on a lattice converges to a well-defined

continuous process in the limit a → 0 (see Refs. [35,36]), one
can define partially reflected Brownian motion as reflected
Brownian motion stopped at the random time [31,38,39]

T = inf{t > 0 : 	t > 	̂},

where 	t is the local time of the reflected Brownian motion.
The latter is the continuous analog of the rescaled number of
surface encounters (aN̂), and P [	̂ > 	] = e−	/ξ . The reaction
length ξ thus parameterizes the stochastic process. (Note that
it is also possible to construct more general partially reflecting
diffusion processes by considering the continuous limit of
more general Markovian jump processes [40].)

One major advantage of the above formulation of partially
reflected Brownian motion is that it provides a theoretical
framework for investigating more general diffusion-mediated
surface phenomena [41–43]. In particular, by considering the
joint probability density P(x, 	, t ) for the pair (Xt , 	t ), where
Xt is the particle position at time t and 	t is the boundary
local time, one can analyze the bulk dynamics in a domain
with perfectly reflecting boundaries and then incorporate the
effects of surface reactions via an appropriate stopping condi-
tion for the boundary local time. In particular, the probability
density p(x, t ) for partially reflected Brownian motion can be
expressed as the Laplace transform of a propagator P,

p(x, t ) =
∫ ∞

0
e−γ 	P(x, 	, t )d	,

where γ = ξ−1 = κ0/D. This so-called encounter-based ap-
proach allows one to go beyond the case of constant reactivity
(Robin boundary conditions) by considering more general
probability distributions �(	) = P [	̂ > 	] for the stopping
local time 	̂, and setting [41–43]

p(x, t ) =
∫ ∞

0
�(	)P(x, 	, t )d	.

For example, reaction rates could depend on the number of
encounters between the particle and surface. The separation of
the bulk dynamics from surface reactions means that all of the
geometrical aspects of the diffusion process are disentangled
from the reaction kinetics. Geometrical features include the
structure of both reactive and nonreactive surfaces. In the case
of the narrow capture problem in a bounded domain �, the
exterior boundary of the domain, ∂�, would correspond to a
nonreactive surface, say, while the reactive surfaces would be
given by the interior target boundaries. In the case of small
targets, matched asymptotic methods provide a way to further
separate geometrical effects. That is, the bulk dynamics is
partitioned into an outer solution that depends on the exterior
boundary and an inner solution that depends on the geometry
of the targets.

In this paper, we analyze the 3D narrow capture problem
for N small spherical targets with partially reactive boundary
surfaces. (For simplicity, we consider the unbounded domain
� = R3; however, see the discussion in Sec. V.) We proceed
by combining the encounter-based approach to diffusion-
mediated surface reactions [41–43] with matched asymptotic
methods [24]. We begin by considering the narrow capture
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problem for reactive surfaces with classical Robin boundary
conditions; see Sec. II. Working in Laplace space, we con-
struct an inner solution around each target, and then match it
with an outer solution in the bulk. This yields an asymptotic
expansion of the Laplace transformed flux into each reactive
surface in powers of ε, where ε is the nondimensionalized
target size. The Laplace transformed fluxes are then used to
determine the splitting probabilities in the small-s limit, where
s is the Laplace variable. In Sec. III we briefly summarize
the encounter-based formulation of diffusion-mediated sur-
face reactions developed in Ref. [42]. In particular, we define
the boundary local time 	t for diffusion in a domain R3\U
with a perfectly reflecting boundary ∂U and write the BVP
for the associated propagator. It turns out that for the narrow
capture problem, it is more convenient to work directly with
the BVP rather than using the spectral decomposition of the
propagator and the so-called Dirichlet-to-Neumann operator
[31,41,42].

In Sec. IV, we use matched asymptotics to analyze the
corresponding propagator BVP for the narrow capture prob-
lem, in which the reactive boundaries of the targets are
replaced by totally reflecting boundaries. This then allows us
to incorporate generalized surface reactions by considering
an appropriately defined distribution �(	) of stopping local
times. We thus obtain an asymptotic expansion of the inner
solution for the Laplace transformed probability density and
the corresponding target fluxes. We also show that our results
for Robin boundary conditions in Sec. II are recovered in
the special case �(	) = e−γ 	. We illustrate the theory by
exploring how the leading-order contribution to the splitting
probabilities depends on the choice of surface reactions. In
particular, we show that there is an effective renormalization
of the radius ερ j of the jth spherical target of the form ρ j →
F (ρ j ) ≡ ρ j − �̃(1/ρ j ), where �̃ is the Laplace transform of
the stopping local time distribution. That is, the probability
that the particle is absorbed by the jth target has the leading-
order form

π j (x0) = εF (ρ j )

|x j − x0| + O(ε2).

In the particular example of a constant reactivity κ0,

F (ρ j ) = ρ
γ

j ≡ ρ j − ρ j

1 + γ ρ j
, γ = κ0

D
.

Finally, in Sec. V we discuss possible extensions of the anal-
ysis to bounded domains and nonspherical targets.

II. NARROW CAPTURE PROBLEM: ROBIN BOUNDARY
CONDITIONS

Consider a set of N small partially absorbing targets Uk ⊂
R3, k = 1, . . . , N ; see Fig. 1. Each target is assumed to have
a volume |U j | ∼ ε3L3 with U j → x j ∈ R3 uniformly as ε →
0, j = 1, . . . , N . Here, L is the minimum separation between
the targets. For concreteness, we will take each target to be
a sphere of radius r j = ερ j . Thus, Ui = {x ∈ R3, |x − xi| �
ερi}. Let p(x, t |x0) be the probability density that at time t a

particle is at X(t ) = x, having started at position x0. Setting⋃N
j=1 Uk = Ua ⊂ R3, we have

∂ p(x, t |x0)

∂t
= D∇2 p(x, t |x0), x ∈ R3\Ua, (2.1a)

p(x, t |x0) → 0, |x| → ∞, (2.1b)

D∇p(x, t |x0) · nk = −κ0 p(x, t |x0), x ∈ ∂Uk, (2.1c)

together with the initial condition p(x, t |x0) = δ(x − x0).
Here, nk is the unit normal into the surface ∂Uk .
Equation (2.1b) is a Robin boundary condition with the con-
stant reactivity parameter κ0 having units m/s [29]. Dirichlet
and Neumann boundary conditions are recovered in the limits
κ0 → ∞ and κ0 → 0, respectively.

A. Matched asymptotics

In order to calculate various quantities of interest, it is more
convenient to work in Laplace space,

D∇2 p̃(x, s|x0) − sp̃(x, s|x0) = −δ(x − x0), x ∈ R3\Ua,

(2.2a)

p̃(x, s|x0) → 0, |x| → ∞, (2.2b)

D∇ p̃(x, s|x0) · nk = −κ0 p̃(x, s|x0), x ∈ ∂Uk. (2.2c)

Let p̃∞(x, s|x0) denote the solution in the case of totally
absorbing targets, which corresponds to taking the limit κ0 →
∞ in Eqs. (2.2):

D∇2 p̃∞(x, s|x0) − sp̃∞(x, s|x0) = −δ(x − x0)

for x ∈ R3\Ua, (2.3a)

p̃∞(x, s|x0) → 0, |x| → ∞, (2.3b)

p̃∞(x, s|x0) = 0, x ∈ ∂Uk. (2.3c)

Equations (2.3) define a BVP that has previously been solved
using matched asymptotics and Green’s function methods
[12,16,24]. Similar methods can be used to solve the full BVP
(2.2) by matching appropriate “inner” and “outer” asymp-
totic expansions in the limit of small target size ε → 0; see
Figs. 1(b) and 1(c). However, given that p̃∞ is known, it is
more convenient to decompose the solution for finite κ0 as

p̃(x, s|x0) = p̃∞(x, s|x0) + ũ(x, s|x0), (2.4)

with

D∇2ũ(x, s|x0) − s̃u(x, s|x0) = 0, x ∈ R3\Ua, (2.5a)

D∇ũ(x, s|x0) · nk + κ0ũ(x, s|x0)

= −D∇ p̃∞(x, s|x0) · nk, x ∈ ∂Uk. (2.5b)

The asymptotic analysis then proceeds along the following
lines:

Step (i). Construct the outer solution by shrinking each
spherical target to a point. Introduce the asymptotic expansion

ũ(x, s|x0) ∼ εũ1(x, s|x0) + ε2ũ2(x, s|x0) + · · ·
for x ∈ R3\{x1, . . . , xN }, where x j is the position of the jth
target. We then have the set of BVPs (for m � 0),

D∇2ũm − s̃um = 0, x ∈ R3\{x1, . . . , xN }, (2.6)
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FIG. 1. Brownian particle in a singularly perturbed domain. (a) A particle diffuses in the domain � = R3\ ∪N
j=1 U j exterior to N targets U j ,

j = 1, . . . , N , whose boundaries ∂Ui are partially absorbing. (Diagram is not to scale—the radii of the targets are at least an order of magnitude
smaller than the distances between the targets.) (b) Construction of the inner solution in terms of stretched coordinates y = ε−1(x − xi ), where
xi is the center of the ith target. The rescaled radius is ρi. (c) Construction of the outer solution. Each target is shrunk to a single point. The
outer solution can be expressed in terms of the modified Helmholtz Green’s function and then matched with the inner solution around each
target.

together with certain singularity conditions as x → x j , j =
1, . . . , N . The latter are determined by matching to the inner
solution around each target. The corresponding outer solution
for p̃∞(x, s|x0) is

p̃∞(x, s|x0) = G(x, s|x0) + O(ε), (2.7)

where G(x, s|x0) denotes the Green’s function of the modified
Helmholtz equation in R3,

G(x, s|x0) = e−√
s/D|x−x0|

4πD|x − x0| = 1

4πD|x − x0| + R(x, s|x0),

(2.8)
and R is the regular part of G.

Step (ii). Construct the inner solution around the jth target
by introducing the stretched coordinate y = ε−1(x − x j ) and
taking ṽ(y, s|x0) = ũ(x, s|x0) to be the corresponding inner
solution. Equations (2.5) imply

D∇2
y ṽ(y, s|x0) − sε2ṽ(y, s|x0) = 0, |y| > ρ j, (2.9a)

D∇yṽ(y, s|x0) · n j + εκ0̃v(y, s|x0)

= −D∇y p̃∞(y, s|x0) · n j, |y| = ρ j . (2.9b)

The details of the analysis of the inner solution will now
depend on how the reaction length ξ = D/κ0 compares to the

typical target size ερ̄, where ρ̄ = N−1 ∑N
i=1 ρ j for example

[3]. We will focus on the regime ξ ∼ ερ̄ by rescaling the reac-
tivity according to κ0 → κ0/ε. (Under this choice of scaling,
we can recover the totally absorbing case by taking κ0 → ∞,
that is, ξ → 0. However, the totally reflecting case κ0 → 0 is
inaccessible.)

Step (iii). Introduce an asymptotic expansion of the inner
solution around the jth target of the form

ṽ ∼ ṽ0 + εṽ1 + O(ε2).

The corresponding inner solution of p̃∞ is

p̃∞ ∼ p̃∞,0 + ε p̃∞,1 + O(ε2), (2.10)

with [24]

p̃∞,0 = G(x j, s|x0)

(
1 − ρ j

|y|
)

, (2.11a)

p̃∞,1 = χ̄ j (s)

(
1 − ρ j

|y|
)

+ first-order spherical harmonics. (2.11b)

(The explicit form of the first-order spherical harmonics is not
needed here, since it does not contribute to the target flux.)
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The coefficient χ j is

χ j (s) = −4πD
N∑

k=1

ρkGk0(s)G jk (s), (2.11c)

where Gk0(s) = G(xk, s|x0) and

Gi j (s) = G(xi, s|x j ) for i 
= j, Gii(s) = R(xi, s|xi ). (2.12)

Step (iv). Substitute the asymptotic expansions of the inner
solutions into Eqs. (2.9). This yields the inner BVPs (assum-
ing s � 1/ε),

D∇2
y ṽm(y, s|x0) = 0, |y| > ρ j, m = 0, 1, (2.13a)

D∇2
y ṽm(y, s|x0) = sε2ṽm−2(y, s|x0) = 0, m � 2, (2.13b)

D∇yṽm(y, s|x0) · n j + κ0̃vm(y, s|x0)

= −D∇y p̃∞,m(y, s|x0) · n j, |y| = ρ j, m � 0. (2.13c)

These are supplemented by far-field conditions obtained by
matching with the near-field behavior of the outer solution.

Step (v). Match the inner and outer solutions at each order
in ε. That is, given the outer solution ũn, match the far-field be-
havior of ṽn around the jth target with the near-field behavior
of ũn (with ũ0 = p̃∞). Then use the near-field behavior of the
solution ṽn to determine the singularity condition for ũn+1 as
x → x j . (The inner and outer solutions of p̃∞ already match.)

Let us begin with the leading-order contribution to the
inner solution. Matching the far-field behavior of ṽ0 with the
near-field behavior of p̃∞ shows that

∇2
y ṽ0(y, s|x0) = 0, |y| > 1, ṽ0 ∼ 0 as |y| → ∞;

(2.14a)

D∇yṽ0(y, s|x0) · n j + κ0̃v0(y, s|x0)

= −D∇y p̃∞,0(y, s|x0) · n j, |y| = ρ j . (2.14b)

In the case of a spherical target of radius ρ j , we have

ṽ0 = Gj0(s))

1 + γ ρ j

ρ j

|y| , γ = κ0

D
. (2.15)

It follows that ũ1 satisfies Eq. (2.6) together with the singular-
ity condition

ũ1(x, s|x0) ∼ 1

1 + γ ρ j

G j0(s)ρ j

|x − x j | as x → x j .

In other words, ũ1 satisfies the inhomogeneous equation

D∇2ũ1 − s̃u1 = −4πD
N∑

j=1

Gj0(s)ρ j

1 + γ ρ j
δ(x − x j ), x ∈ R3.

(2.16)

This can be solved in terms of the modified Helmholtz
Green’s function,

ũ1(x, s|x0) = 4πD
N∑

j=1

Gj0(s)ρ j

1 + γ ρ j
G(x, s|x j ). (2.17)

We now match the far-field behavior of ṽ1 with the nonsingu-
lar near-field behavior of ũ1 around the jth target,

ṽ1(y, s|x0) → 4πD
N∑

k=1

Gk0(s)ρk

1 + γ ρk
G jk (s), (2.18)

as |y| → ∞. We thus obtain a solution of the form

ṽ1(y, s|x0) = χ ′
j

(
1 − ρ j

|y|
)

+ (χ ′
j + χ j )

ρ j

(1 + γ ρ j )|y|
+ first-order spherical harmonics, (2.19)

with

χ ′
j (s) ≡ 4πD

N∑
k=1

Gk0(s)
ρk

1 + γ ρk
G jk (s). (2.20)

Combining our various results, the full inner solution is

p̃(y, s|x0) = p̃∞,0(y, s|x0) + ṽ0(y, s|x0)

+ ε[ p̃∞,1(y, s|x0) + ṽ1(y, s|x0)] + O(ε2)

= Gj0(s)

(
1 − ρ j

|y| + ρ j

(1 + γ ρ j )|y|
)

(2.21)

+ ε(χ ′
j + χ j )

(
1 − ρ j

|y| + ρ j

(1 + γ ρ j )|y|
)

.

Introducing the renormalized target radius

ρ
γ
j = ρ j − ρ j

1 + γ ρ j
, (2.22)

we can write the inner solution as

p̃(y, s|x0) = Gj0(s)

(
1 − ρ

γ

j

|y|
)

+ εχ
γ

j (s)

(
1 − ρ

γ

j

|y|
)

+ O(ε2), (2.23)

where

χ
γ
j (s) = −4πD

N∑
k=1

Gk0(s)ργ

k G jk (s). (2.24)

B. The flux into a target

The probability flux into the jth target at time t is

Jj (x0, t ) = −D
∫

∂U j

∇p(x, t |x0) · n jdσ (2.25)

for j = 1, . . . , N , where dσ is the surface measure. Having
obtained an ε expansion of the inner solution in stretched
coordinates, we can determine a corresponding expansion of
the Laplace-transformed flux through the jth target by substi-
tuting Eq. (2.23) into the Laplace transform of Eq. (2.25),

J̃ j (x0, s) = −Dε2
∫

|y|=ρ j

∇ p̃(y, s|x0) · n jdσy

= Dρ2
j

∫ 2π

0

∫ π

0

∂

∂r

∣∣∣∣
r=ρ j

p̃(y, s|x0) sin θdφdθ.

(2.26)
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We thus obtain the result

J̃ j (x0, s) ∼ 4πεDρ
γ

j

[
Gj0(s)

− 4πεD
N∑

k=1

Gk0(s)ργ

k G jk (s)

]
+ O(ε3). (2.27)

One application of diffusion to a target in an unbounded
domain is calculating the effective Smoluchowski reaction
rate in terms of the steady-state flux into the target. Suppose
that there is a continuous concentration c(x, t ) of noninteract-
ing diffusing particles with background concentration c0, that
is, c(x, t ) → c0 as |x| → ∞. The steady-state flux into the
jth target is obtained by integrating over the initial position x0

according to

Jj = c0 lim
s→0

s
∫
R3

J̃ j (x0, s)dx0, (2.28)

with J̃ j (x0, s) given by Eq. (2.27). Using the fact that∫
R3

G(x, s|x0)dx0 = 1

s
,

it follows that to leading order,

Jj ≈ 4πc0εDρ
γ

j = 4πc0Drj

1 + εD/κ0r j
, (2.29)

where r j = ερ j is the target radius. This recovers the modified
Smoluchowski reaction rate obtained by Collins and Kimball
for a partially reactive spherical surface with reactivity κ0/ε

[29]. In particular, note that one way to interpret the effect of
imperfect reactivity is that the effective target size is reduced
according to

r j → r j

1 + εD/κ0r j
,

thus making it more difficult for a diffusing molecule
to encounter it. This result generalizes to other types of
diffusion-mediated surface reactions; see Sec. V.

Another quantity of interest is the splitting probability that
the particle is eventually captured by the kth target,

πk (x0) =
∫ ∞

0
Jk (x0, t ′)dt ′ = J̃k (x0, 0). (2.30)

Introduce the survival probability that the particle has not been
absorbed by a target in the time interval [0, t], having started
at x0:

S(x0, t ) =
∫
R3\Ua

p(x, t |x0)dx. (2.31)

Differentiating both sides of this equation with respect to t and
using Eqs. (2.1) implies that

∂S(x0, t )

∂t
= D

∫
R3\Ua

∇ · ∇p(x, t |x0)dx

= D
N∑

k=1

∫
∂Uk

∇p(x, t |x0) · ndσ = −
N∑

k=1

Jk (x0, t ).

(2.32)

Laplace transforming Eq. (2.32) and noting that S(x0, 0) = 1
gives

sS̃(x0, s) − 1 = −
N∑

k=1

J̃k (x0, s). (2.33)

An asymptotic expansion of the splitting probability π j (x0)
defined in Eq. (2.30) can now be obtained by taking the limit
s → 0 in Eq. (2.27),

π j (x0) = lim
s→0

J̃ j (x0, s) = ερ
γ
j

[
1

|x j − x0|

− ε
∑
k 
= j

ρ
γ

k

|xk − x0||xk − x j |

]
+ O(ε3), (2.34)

since R(x j, 0|x j ) = 0.

III. BOUNDARY LOCAL TIME AND THE PROPAGATOR

In this section, we introduce the encounter-based formu-
lation of diffusion-mediated surface reactions developed in
Ref. [42]. We begin by giving a brief heuristic definition of
the boundary local time. For more rigorous treatments, see
Refs. [32–34]. Consider the Brownian motion Xt ∈ R, and let
T (A, t ) denote the occupation time of the set A ⊂ R during
the time interval [0, t],

T (A, t ) =
∫ t

0
IA(Xτ )dτ. (3.1)

Here, IA(x) denotes the indicator function of the set A ⊂ R,
that is, IA(x) = 1 if x ∈ A and zero otherwise. From the def-
inition of the occupation time, the local time density T (a, t )
at a point a ∈ R is defined by setting A = [a − h, a + h] and
taking

T (a, t ) = lim
ε→0+

1

2h

∫ t

0
I[a−h,a+h](Xs)ds. (3.2)

We thus have the following formal representation of the local
time density:

T (a, t ) =
∫ t

0
δ(Xτ − a)dτ, (3.3)

where T (a, t )da is the amount of time the Brownian particle
spends in the infinitesimal interval [a, a + da]. Note, in par-
ticular, that∫ ∞

−∞
T (a, t )da =

∫ ∞

−∞

∫ t

0
δ(Xτ − a)dτda =

∫ t

0
dτ = t .

As we mentioned in Sec. I, local time plays an important
role in the pathwise formulation of reflected Brownian motion
[33]. For the sake of illustration, consider a Wiener process
confined to the interval [0, L] with reflecting boundaries at
x = 0, L. Sample paths are generated from the stochastic dif-
ferential equation

dX (t ) =
√

2DdW (t ) + DdT (0, t ) − DdT (L, t ), (3.4)

where T (x, t ) is given by Eq. (3.3) so that, formally speaking,

dT (0, t ) = δ(Xt )dt, dT (L, t ) = δ(Xt − L)dt .
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In other words, each time the Brownian particle hits the end at
x = 0 (x = L), it is given an impulsive kick to the right (left).

Following Ref. [42], we now define the boundary local
time for diffusion in R3\U for a single obstacle with a totally
reflecting surface ∂U ,

	t = lim
h→0

D

h

∫ t

0
�[h − dist(Xτ , ∂U )]dτ, (3.5)

where � is the Heaviside function. Note that 	t has units of
length due to the additional factor of D. Given the definition
of the boundary local time 	t for reflected Brownian motion at
a surface ∂U , one can construct partially reflected Brownian
motion by introducing the stopping time [38,39,42]

Tγ = inf{t > 0 : 	t > 	̂}, (3.6)

with 	̂ an exponentially distributed random variable that rep-
resents a stopping local time. That is, P [	̂ > 	] = e−γ 	 with
γ = ξ−1 = κ0/D. Let p(x, t |x0) be the probability density
for a Brownian particle to be at position x ∈ R3\U at time
t , having started at x0 and given a constant inverse reaction
length γ . Then,

∂ p(x, t |x0)

∂t
= D∇2 p(x, t |x0), x ∈ R3\U , (3.7a)

∇p(x, t |x0) · n = −γ p(x, t |x0), x ∈ ∂U , (3.7b)

p(x, 0|x0) = δ(x − x0). (3.7c)

More precisely, p is the probability density of a particle that
has not yet undergone a surface reaction,

p(x, t |x0)dx = P [Xt ∈ (x, x + dx), t < Tγ |X0 = x0].

Given that 	t is a nondecreasing process, the condition t < Tγ

is equivalent to the condition 	t < 	̂. This implies that [42]

p(x, t |x0)dx = P [Xt ∈ (x, x + dx), 	t < 	̂|X0 = x0]

=
∫ ∞

0
d	 γ e−γ 	P [Xt ∈ (x, x + dx), 	t

< 	|X0 = x0]

=
∫ ∞

0
d	 γ e−γ 	

∫ 	

0
d	′[P(x, 	′, t |x0)dx],

where P(x, 	, t |x0) is the joint probability of the position Xt

and boundary local time 	t of reflected Brownian motion. We
shall refer to P as the propagator. (Note that Grebenkov refers
to the density p as the conventional propagator and denotes it
by the symbol G [42,43]. The corresponding joint probability
density P is called the full propagator. In our paper, we use
G to denote a Neumann Green’s function and simply refer to
P as the propagator of reflected Brownian motion.) Using the
identity∫ ∞

0
d	 f (	)

∫ 	

0
d	′ g(	′) =

∫ ∞

0
d	′ g(	′)

∫ ∞

	′
d	 f (	)

for arbitrary integrable functions f , g, it follows that

p(x, t |x0, γ ) =
∫ ∞

0
e−γ 	P(x, 	, t |x0)d	. (3.8)

Since the Robin boundary condition maps to an exponential
law for the stopping local time 	̂t , the probability density

p(x, t |x0, γ ) can be expressed in terms of the Laplace trans-
form of the propagator P(x, 	, t |x0) with respect to the local
time 	.

The crucial observation is that one is free to change the
probability distribution of the stopping local time 	̂. Given
some distribution �(	) = P [	̂ > 	], one can define a gener-
alized partially reflecting Brownian motion whose probability
density is given by [42]

p(x, t |x0) =
∫ ∞

0
�(	)P(x, 	, t |x0)d	. (3.9)

In other words, the encounter-based formulation provides a
framework for exploring a range of surface reaction mech-
anisms that go well beyond the constant reactivity case
and exponential law �(	) = e−γ 	 associated with the Robin
boundary condition. For example, one could consider a reac-
tivity κ (	) that depends on the local time 	 (or the rescaled
number of surface encounters). The corresponding distribu-
tion of the stopping local time 	̂ would then be

�(	) = exp

[
− 1

D

∫ 	

0
κ (	′)d	′

]
. (3.10)

However, for a more general surface reaction mechanism, one
cannot calculate the probability density p(x, t |x0) by solv-
ing a BVP, since the Robin boundary condition no longer
holds. This motivates the construction of the propagator
P(x, 	, t |x0), which is carried out in Ref. [42] using a non-
standard integral representation of the probability density
p(x, t |x0) and spectral properties of the so-called Dirichlet-to-
Neumann operator. In this paper, it will be more convenient to
work directly with the BVP for the propagator. In the case of
a partially reactive boundary ∂U , the BVP takes the following
form [42]:

∂P(x, 	, t |x0)

∂t
= D∇2P(x, 	, t |x0), x ∈ R3\U (3.11a)

−D∇P(x, 	, t |x0) · n = −D∇p∞(x, t |x0) · n δ(	)

+D
∂

∂	
P(x, 	, t |x0), x ∈ ∂U , (3.11b)

P(x, 	 = 0, t |x0) = −∇p∞(x, t |x0) · n, x ∈ ∂U , (3.11c)

lim
	→∞

P(x, 	, t |x0) = 0, (3.11d)

P(x, 	, 0|x0) = δ(x − x0)δ(	), x ∈ R3\U , (3.11e)

where p∞ is the probability density for a totally absorb-
ing surface. Note that multiplying the boundary condition
(3.11b) by e−γ 	, integrating with respect to 	 ∈ [0,∞), and
using integration by parts combined with Eq. (3.11c) recovers
the standard Robin boundary condition for p(x, t |x0). In the
Appendix, we present an alternative derivation of Eq. (3.11)
that is based on a Feynman-Kac equation; see, also, Ref. [44].

IV. NARROW CAPTURE PROBLEM: GENERALIZED
SURFACE REACTIONS

In this section, we use the encounter-based formulation
[42] to analyze the narrow capture problem shown in Fig. 1 in
the case of more general diffusion-mediated surface reactions.
For simplicity, we take each target to have the same rule for
surface reactions so that we only need to keep track of a single
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boundary local time that does not distinguish between targets.
The BVP for the propagator of the system shown in Fig. 1 can
then be written down by analogy with Eq. (3.11). Again it will
be more convenient to work in Laplace space so that

D∇2P̃(x, 	, s|x0) − sP̃(x, 	, s|x0)

= −δ(x − x0)δ(	), x ∈ R3\Ua, (4.1a)

−D∇P̃(x, 	, s|x0) · nk = −D∇ p̃∞(x, s|x0) · nk δ(	)

+D
∂

∂	
P̃(x, 	, s|x0), x ∈ ∂Uk, (4.1b)

P̃(x, 	, s|x0)

∣∣∣∣
	=0

= −∇ p̃∞(x, s|x0) · nk, x ∈ ∂Uk, (4.1c)

lim
	→∞

P̃(x, 	, s|x0) = 0. (4.1d)

It is convenient to eliminate the terms involving Dirac δ func-
tions by setting

P̃(x, 	, s|x0) = p̃∞(x, s|x0)δ(	) + Ũ (x, 	, s|x0), (4.2)

with

D∇2Ũ (x, 	, s|x0) − sŨ (x, 	, s|x0) = 0, x ∈ R3\Ua,

(4.3a)

−D∇Ũ (x, 	, s|x0) · nk = D
∂

∂	
Ũ (x, 	, s|x0), x ∈ ∂Uk,

(4.3b)

Ũ (x, 	, s|x0)

∣∣∣∣
	=0

= −∇ p̃∞(x, s|x0) · nk, x ∈ ∂Uk, (4.3c)

lim
	→∞

Ũ (x, 	, s|x0) = 0. (4.3d)

A. Asymptotic expansion of the propagator

Following along analogous lines to the asymptotic analysis
of Sec. II, we separately consider outer and inner solutions for
the propagator. In the outer region [step (i)], Ũ (x, 	, s|x0) is
expanded as

Ũ (x, 	, s|x0) ∼ Ũ1(x, 	, s|x0) + εŨ1(x, 	, s|x0) + · · · ,

where

D∇2Ũm(x, 	, s|x0) − sŨm(x, 	, s|x0) = 0,

x ∈ R3\{x1, . . . , xN }, (4.4a)

lim
	→∞

Ũm(x, 	, , s|x0) = 0. (4.4b)

Equations (4.4) are supplemented by singularity conditions as
x → x j , j = 1, . . . , N , which are determined by matching to
the inner solution.

Next consider the inner solution around the jth target [steps
(ii)–(iv)]. Introduce the stretched coordinates y = ε−1(x − x j )
and 	̂ = 	/ε, and take Ṽ (y, 	̂, s|x0) = εŨ (x, 	, s|x0) to be the
corresponding inner solution. Equations (4.3) then imply that

D∇2
yṼ (y, 	̂, s|x0) − sε2Ṽ (y, 	̂, s|x0) = 0, |y| > ρ j, (4.5a)

D∇yṼ (y, 	̂, s|x0) · n j = −D
∂

∂	̂
Ṽ (y, 	̂, s|x0), |y| = ρ j,

(4.5b)

Ṽ (y, 	̂ = 0, s|x0) = −∇y p̃∞(y, s|x0) · n j, |y| = ρ j .

(4.5c)

The choice of scaling for 	 is consistent with a reactivity
of O(1/ε), as assumed in Sec. II. Introducing a perturbation
expansion of the inner solution around the jth target of the
form

Ṽ ∼ Ṽ0 + εṼ1 + ε2Ṽ2 + O(ε3) (4.6)

then yields the following pair of equations for m = 0, 1:

D∇2
yṼm(y, 	̂, s|x0) = 0, |y| > ρ j, (4.7a)

D∇yṼm(y, 	̂, s|x0) · n j = −D
∂

∂	̂
Ṽm(y, 	̂, s|x0), |y| = ρ j,

(4.7b)

Ṽm(y, 	̂ = 0, s|x0) = −∇y p̃∞,m(y, s|x0) · n j, |y| = ρ j .

(4.7c)

Here, p̃∞,m(y, s|x0), m = 0, 1, are given by Eqs. (2.11). The
inner and outer solutions are now matched at each order in ε

[step (v)]. That is, given the outer solution Ũn−1, match the
far-field behavior of Ṽn around the jth target with the near-
field behavior of Ũn−1. Then use the near-field behavior of
the solution Ṽn to determine the singularity of Ũn in the limit
x → x j .

Let us begin with the leading-order contribution to the
inner solution. Matching the far-field behavior of Ṽ0 with the
near-field behavior of εp∞δ(	) (which is zero) shows that
the solution to Eq. (4.7a) for m = 0 is of the form

Ṽ0(y, 	̂, s|x0) = c j (	̂)

|y| . (4.8)

Substituting into the boundary conditions (4.77b) and (4.7c)
implies that

dc j (	̂)

d 	̂
+ ρ−1

j c j (	̂) = 0. (4.9)

Hence, c j (	̂) = c j (0)e−	̂/ρ j and

Ṽ0(y, 	̂, s|x0) = c j (0)e−	̂/ρ j

|y| , (4.10)

with

c j (0) = −ρ j∇y p̃∞,0(y, s|x0) · n j ||y|=ρ j

= ρ jG j0(s)
d

dρ

(
1 − ρ j

|y|
)∣∣∣∣

|y|=ρ j

= Gj0(s). (4.11)

Rewriting Eq. (4.10) in terms of the original unstretched
coordinates then determines the singularity condition for Ũ0,

Ũ0(x, 	, s|x0) ∼ Gj0(s)

|x − x j |e−	/r j as x → x j .

The solution of Eq. (4.4) for m = 0 is thus given by

Ũ0(x, 	, s|x0) = 4πD
N∑

j=1

Gj0(s)e−	/r j G(x, s|x j ), (4.12)
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where r j = ερ j . We now match the far-field behavior of Ṽ1

with the nonsingular near-field behavior of Ũ0 around the jth
target. This yields

Ṽ1(y, 	̂, s|x0) → 4πD
N∑

k=1

Gk0(s)e−	̂/ρkG jk (s) (4.13)

as |y| → ∞, with Gi j defined in Eq. (2.12). Following the
analysis of Sec. II, we obtain the general solution

Ṽ1(y, 	̂, s|x0) = 4πD

[ N∑
k=1

Gk0(s)e−	̂/ρkG jk (s)

](
1 − ρ j

|y|
)

+ a j (	̂)

|y| + first-order spherical harmonics. (4.14)

Substituting (4.14) into the boundary conditions (4.7b) and
(4.7c) implies that

da j (	̂)

d 	̂
+ ρ−1

j a j (	̂) = 4πD
N∑

k=1

Gk0(s)e−	̂/ρkG jk (s), (4.15)

with

a j (0) = −ρ j∇y p̃∞,1(y, s|x0) · n j ||y|=ρ j

= ρ jχ j (s)
d

dρ

(
1 − ρ j

|y|
)∣∣∣∣

|y|=ρ j

= χ j (s). (4.16)

Hence,

a j (	̂) = χ j (s)e−	̂/ρ j + 4πDGj0(s)	̂ e−	̂/ρ jG j j (s)

+ 4πD
N∑

k 
= j

Gk0(s)
e−	̂/ρk − e−	̂/ρ j

ρ−1
j − ρ−1

k

G jk (s). (4.17)

Combining our various results yields the O(ε) contribution to
the inner solution for the propagator:

Ṽ1(y, 	̂, s|x0) = 4πD

[
N∑

k=1

Gk0(s)e−	̂/ρkG jk (s)

](
1 − ρ j

|y|
)

+ χ j (s)

|y| e−	̂/ρ j + 4πD

|y| Gj0(s)	̂ e−	̂/ρ jG j j (s)

+ 4πD

|y|

{
N∑

k=1

Gk0(s)

[
e−	̂/ρk − e−	̂/ρ j

ρ−1
j − ρ−1

k

]
G jk (s)

}
+ first-order spherical harmonics. (4.18)

Having obtained an asymptotic expansion of the inner so-
lution of the propagator in Laplace space, we can use the
transform (3.9) to construct the corresponding asymptotic ex-
pansion of the probability density. First, Laplace transforming
Eq. (3.9) gives

p̃(x, s|x0) =
∫ ∞

0
�(	)P̃(x, 	, s|x0)d	. (4.19)

The case of Robin boundary conditions is recovered by set-
ting �(	) = e−γ 	 with γ = κ0/D and κ0 a constant reactivity.
Recall that in the analysis of Sec. II, we rescaled κ0 according
to κ0 → κ0/ε so that �(	) = e−κ0	/εD = e−q	̂ with 	̂ = 	/ε.
Therefore, we take � = �(	̂) and rewrite Eq. (4.19) as

p̃(x, s|x0) = ε

∫ ∞

0
�(	̂)P̃(x, ε	̂, s|x0)d 	̂. (4.20)

Introducing stretched coordinates then gives the corre-
sponding transform of the inner solution around each

target:

p̃(y, s|x0) =
∫ ∞

0
�(	̂)[ p̃∞(y, s|x0)δ(	̂) + Ṽ (y, 	̂, s|x0)]d 	̂.

(4.21)

Substituting the asymptotic expansions (2.10) and (4.6), and
using the fact that the integral of an asymptotic expansion is
also an asymptotic expansion, we have

p̃ ∼ p̃0 + ε p̃1 + ε2 p̃2 + O(ε3), (4.22)

with

p̃m(y, s|x0) (4.23)

=
∫ ∞

0
�(	̂)[ p̃∞,m(y, s|x0)δ(	̂) + Ṽm(y, 	̂, s|x0)]d 	̂.

Substituting Eqs. (4.10) and (4.18) into (4.23) for m = 0
and m = 1, respectively, yields

p̃0(y, s|x0) = Gj0(s)

[
1 − ρ j

|y| + �̃(1/ρ j )

|y|
]

(4.24)

and

p̃1(y, s|x0) = p̃∞,1(y, s|x0) + 4πD

[
N∑

k=1

Gk0(s)�̃(1/ρk )G jk (s)

](
1 − ρ j

|y|
)

+ χ j (s)

|y| �̃(1/ρ j ) + 4πD

|y| Gj0(s)ψ̃ (1/ρi )G j j (s)

+ 4πD

|y|

⎧⎨⎩∑
k 
= j

Gk0(s)

[
�̃(1/ρk ) − �̃(1/ρ j )

ρ−1
j − ρ−1

k

]
G jk (s)

⎫⎬⎭ + first-order spherical harmonics. (4.25)
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We have introduced the stopping local time density,

ψ (	) = −d�(	)

d	
, ψ̃ (q) = 1 − q�̃(q). (4.26)

It can be checked that (4.24) and (4.25) recover Eq. (2.23), on
setting �(	) = e−γ 	 and �̃(q) = (q + γ )−1.

B. The generalized target fluxes and absorption probabilities

Multiplying both sides of the boundary condition (4.1c) by
�(	) and integrating by parts with respect to 	 shows that

−D∇p(x, t |x0) · n j = D
∫ ∞

0
ψ (	)P(x, 	, t |x0)d	, (4.27)

for x ∈ ∂U j . We have used Eq. (4.1d) and the identity �(0) =
1. Laplace transforming, introducing stretched coordinates,
and integrating with respect to points on the boundary ∂U j

give the flux into the jth target,

J̃ j (x0, s) = Dερ2
j

∫ ∞

0
ψ (	̂)

[ ∫
∂U j

Ṽ (y, 	, s|x0)dσ

]
d 	̂.

(4.28)
Substituting the asymptotic expansion (4.6) of the propagator
then gives

J̃ j (x0, s) ∼ 4πεD

{
F (ρ j )Gj0(s)

− 4πεD[F (ρi ) − ρ jψ̃
′(1/ρ j )]Gj0(s)G j j (s)

− 4πεD
∑
k 
= j

Gk0(s)

[
ρ2

kF (ρ j ) − ρ2
jF (ρk )

ρk − ρ j

]
G jk (s)

}
+ O(ε3), (4.29)

where

F (ρ) = ρ − �̃(1/ρ). (4.30)

We have used Eq. (4.26), which implies that

ρ jψ̃ (1/ρ j ) = ρ j

[
1 − 1

ρ j
�̃(1/ρ j )

]
= F (ρ j ). (4.31)

Hence, the leading-order terms involve an effective renormal-
ization of the target size.

Taking the limit s → 0 in Eq. (4.29) yields a corresponding
asymptotic expansion of the splitting probabilities,

π j (x0) = lim
s→0

J̃ j (x0, s) = εF (ρ j )

{
1

|x j − x0| − ε
∑
k 
= j

1

|xk − x0|

×
[
ρ2

kF (ρ j ) − ρ2
jF (ρk )

ρk − ρ j

]
1

|xk − x j |

}
+ O(ε3).

(4.32)

For the sake of illustration, we list a few possible surface
reaction models in terms of the probability density ψ (	) and
the equivalent encounter-dependent reactivity κ (	) defined in
Eq. (3.10). See Table 1 of Ref. [42] for a more comprehen-
sive list. In each case, we take γ = κ0/D, where κ0 is some
reference reactivity.

(a) Exponential distribution:

ψ (	) = γ e−γ 	, ψ̃ (q) = γ

γ + q
, κ (	) = κ0. (4.33)

(b) Gamma distribution:

ψ (	) = γ (γ 	)α−1e−γ 	

�(α)
, ψ̃ (q) =

(
γ

γ + q

)α

, (4.34a)

and

κ (	) = κ0
(γ 	)α−1e−γ 	

�(α, γ 	)
, (4.34b)

where �(α) is the gamma function and �(α, z) is the upper
incomplete gamma function.

(c) Pareto-II (Lomax) distribution:

ψ (	) = γα

(1 + γ 	)1+α
, ψ̃ (q) = α

(
q

γ

)α

eq/γ �(−α, q/γ ),

(4.35a)

and

κ (	) = κ0
α

1 + γ 	
. (4.35b)

In Fig. 2(a), we plot the probability density ψ (	) as a func-
tion of the stopping local time 	 for the gamma and Pareto-II
models and the particular coefficients α = 0.5, 1, 2. We also
set γ = 1. (The gamma density for α = 1 gives the exponen-
tial model.) In Fig. 2(b), we show the corresponding plots of
the renormalized target radius function, F (ρ) = ρ − �̃(ρ).
In all cases, F (ρ) is a nonlinear, monotonically increasing
function of ρ. Moreover, F (ρ) is sensitive to the value of
the α coefficient that parameterizes each of the two proba-
bility distributions. That is, F (ρ) is a decreasing (increasing)
function of α for fixed ρ in the case of the gamma (Pareto-II)
model; see Fig. 3. Having determined the renormalized radius
F (ρ), we can now explore how the choice of surface reaction
model modifies the leading-order contributions to the splitting
probabilities for more than one target.

For the sake of illustration, consider two spherical targets
of rescaled radii ρ1 and ρ2, such that ρ2 is fixed at unity; see
inset of Fig. 4. Assuming that the target centers are equidistant
from the starting position x0, that is, |x1 − x0| = |x2 − x0|, the
normalized splitting probabilities π̂ j = π j/(π1 + π2) are

π̂ j = F (ρ j )

F (ρ1) + F (ρ2)
. (4.36)

In Figs. 4(a) and 4(b), we plot the leading-order contribution
to the normalized splitting probability π̂1 of the first target as
a function of the target radius ρ1 for the gamma and Pareto-II
models. As expected, π1 = 0.5 when ρ1 = ρ2 = 1. In the case
of the gamma model, π̂1 is a sigmoidlike function of ρ1 whose
steepness increases significantly with the α coefficient. That
is, for large α, small changes in ρ1 lead to large changes in
the renormalized radius, and thus π̂1. The latter effect is much
weaker in the case of the Pareto-II model.

V. DISCUSSION

In this paper, we analyzed the 3D narrow capture problem
for small spherical targets with partially reactive boundary
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FIG. 2. (a) Plots of the probability density ψ (	) as a function of the stopping local time for the gamma and Pareto-II models. (b) Corre-
sponding plots of the renormalized target radius F (ρ ) as a function of the physical radius ρ. We also set γ = κ0/D = 1.

surfaces. We proceeded by combining matched asymptotic
analysis with an encounter-based formulation of diffusion-
mediated surface reactions. In particular, we derived an
asymptotic expansion of the joint probability density (prop-
agator) for the position and boundary local time of reflected
Brownian motion. The effects of surface reactions were then
incorporated via an appropriate stopping condition for the
boundary local time. We illustrated the theory by investigating
how surface reactions affected the splitting probabilities. We
showed that to leading order, there is an effective renormal-
ization of the target radius of the form ρ → ρ − �̃(1/ρ),
where �̃ is the Laplace transform of the stopping local time
distribution.

In order to facilitate the analysis, we made a number
of simplifying assumptions. First, the region � containing
the targets was taken to be unbounded, that is, � = R3.
The analysis of the target fluxes in the small-s limit is con-
siderably more involved when � is bounded. Suppose, in
particular, that the exterior boundary ∂� is totally reflecting.
The corresponding Neumann Green’s function of the modi-
fied Helmholtz equation in � then has a singularity of the

FIG. 3. Plots of F (ρ ) for ρ = 0.5, 1, 2 as a function of the coef-
ficient α for the gamma and Pareto-II models.

form G(x, s|x0) ∼ 1/s. In the case of totally absorbing targets,
the resulting singularities in the asymptotic expansion of the
Laplace transformed fluxes can be eliminated by considering
a triple expansion in ε, s, and � ∝ ε/s [24]. Performing partial
summations over infinite power series in � leads to multiplica-
tive factors of the form �n/(1 + �)n. Since �n/(1 + �)n → 1
as s → 0, the singularities in s are removed. However, extend-
ing this analysis to partially reflecting targets is nontrivial.

Another major difference between unbounded and
bounded domains � is that the splitting probabilities are
O(1) rather than O(ε) and

∑N
j=1 πk = 1. Moreover, one can

now construct conditional mean first passage times (MFPTs);
these are infinite when � = R3. The FPT Tk to be captured
by the kth target is

Tk (x0) = inf{t > 0; X(t ) ∈ ∂Uk|X(0) = x0}, (5.1)

with Tk = ∞ if the particle is captured by another target.
Introducing the set of events �k = {Tk < ∞}, the conditional
FPT densities are defined according to

fk (x0, t )dt = P [t < Tk < t + dt |Tk < ∞, X(0) = x0].

One finds that

fk (x0, t ) = Jk (x0, t )

πk (x0)
. (5.2)

Moreover, the Laplace transform of fk (x0, t ) is the generator
of the moments of the conditional FPT density,

E[e−sTk |1�k ] = f̃k (x0, s) = J̃k (x0, s)

J̃k (x0, 0)
(5.3)

and

T (n)
k = E[T n

k |1�k ] =
(

− d

ds

)n

E[e−sTk |1�k ]

∣∣∣∣
s=0

=
(

− d

ds

)n

f̃k (x0, s)

∣∣∣∣
s=0

. (5.4)

In particular, the conditional MFPT Tk = T (1)
k is

πk (x0)Tk (x0) = lim
s→0

dJ̃k (x0, s)

ds

∣∣∣∣
s=0

. (5.5)
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FIG. 4. Two spherical targets with rescaled radii ρ1 and ρ2 (see inset). For simplicity, the initial position is taken to be equidistant from the
centers of the two targets. (a) Plot of leading-order contribution to the normalized splitting probability of the first target, π̂1 ∼ F (ρ1)/[F (ρ1) +
F (ρ2)], as a function of ρ1 for ρ2 = 1, γ = 1 and � given by the gamma distribution. (b) Corresponding plots for � given by the Pareto-II
distribution. We also set γ = κ0/D = 1. Also shown is the normalized splitting probability for totally absorbing targets (κ0 → ∞).

As with the splitting probabilities, the calculation of Tk (x0)
requires taking the limit s → 0 and hence dealing with the
singular nature of the Green’s function.

A second simplifying assumption was to consider spheri-
cally shaped targets. However, as originally shown by Ward
and Keller [1,2], it is possible to generalize the asymptotic
analysis of narrow capture problems to more general target
shapes such as ellipsoids by applying classical results from
electrostatics. In the case of totally absorbing targets, one
simply replaces the target length ρ j in the far-field behavior
of the inner solution by the capacitance Cj of an equivalent
charged conductor with the shape U j . In addition, using the
divergence theorem, it can be shown that the flux into a target
is completely determined by the far-field behavior. It would
be interesting to determine the effective renormalization of
the capacitances in the case of partially absorbing targets. A
third simplification was to take the rule for surface reactions
to be the same for each target, which meant that we only
needed to keep track of a single boundary local time. If each
target were to have a different probability distribution for the
stopping local time, then it would be necessary to introduce
multiple local times 	 j , j = 1, . . . , N [44,45]. The associated
propagator would then be P = P(x, 	1, . . . 	N , t |x0) such that
the marginal probability density becomes

p(x, t |x0) =
∫ ∞

0
d	1�1(	1) . . .

∫ ∞

0
d	N�N (	N )

× P(x, 	1, . . . , 	N , t |x0).

Finally, note that a complementary approach to deal-
ing with partially reactive surfaces arises within the context
of multiscale computational models of reaction-diffusion
(RD) systems. A major challenge in simulating intracellular
processes is how to efficiently couple stochastic chemical
reactions involving low molecular numbers with diffusion
in complex environments. One approach is to consider a
spatial extension of the Gillespie algorithm for well-mixed
chemical reactions [46,47] using a mesoscopic compartment-

based method, although there are subtle issues with regards
to choosing the appropriate compartment size [48–51]. Alter-
natively, one can combine a coarse-grained deterministic RD
model in the bulk of the domain with individual particle-based
Brownian dynamics in certain restricted regions [52–55]; in
this case, considerable care must be taken in the choice
of boundary conditions at the interface between the two
domains. This is somewhat analogous to having to deal
with boundary local times in partially reflecting Brownian
motion.

APPENDIX: DERIVATION OF THE PROPAGATOR BVP
USING A FEYNMAN-KAC FORMULA

Another way to define the propagator P(x, 	, t |x0) intro-
duced in Sec. III is in terms of the expectation of a Dirac
δ function with respect to the distribution of paths between
(x0, 0) and (x, t ),

P(x, 	, t |x0) = 〈δ[	 − DT (∂U , t )]〉Xt =x
X0=x0

, (A1)

where

T (∂U , t ) =
∫ t

0

∫
∂U

δ(Xτ − x)dxdτ. (A2)

That is, the joint probability density is obtained by summing
over all paths whose accumulative boundary local time is
equal to 	. Using a Fourier representation of the Dirac δ

function, Eq. (A1) can be rewritten as

P(x, 	, t |x0) =
∫ ∞

−∞
eiω	G(x, ω, t |x0)

dω

2π
, (A3)

where P(x, 	, t |x0) = 0 for 	 < 0 and

G(x, ω, t |x0) = 〈exp[−iωDT (∂U , t )]〉Xt =x
X0=x0

. (A4)

We now note that G is the characteristic functional of the
Brownian local time, which can be evaluated using a path-
integral representation of the stochastic process. The latter
can then be used to derive the following Feynman-Kac
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equation [56,57]:

∂G(x, ω, t |x0)

∂t
= D∇2G(x, ω, t |x0)

− iωD
∫

∂U
G(x′, ω, t |x0)δ(x − x′)dx′.

(A5)

Multiplying Eq. (A5) by eiω	, integrating with respect to ω,
and using the identity

∂

∂	
P(x, 	, t |x0)�(	) =

∫ ∞

−∞
iωDeiω	G(x, ω, t |x0)

dω

2π
,

with �(	) the Heaviside function, we obtain the result

∂P(x, 	, t |x0)

∂t
= D∇2P(x, 	, t |x0)

− D
∫

∂U

∂P

∂	
(x′, 	, t |x0)δ(x − x′)dx′

− Dδ(	)
∫

∂U
P(x′, 0, t |x0)δ(x − x′)dx′.

(A6)

This is equivalent to the BVP

∂P(x, 	, t |x0)

∂t
= D∇2P(x, 	, t |x0), x ∈ R3\U

− D∇P(x, 	, t |x0) · n

= DP(x, 	 = 0, t |x0) δ(	) + D
∂

∂	
P(x, 	, t |x0),

x ∈ ∂U ,

which reduces to Eq. (3.11) on setting P(x, 	 = 0, t |x0) =
−∇p∞(x, t |x0) · n for x ∈ ∂U . The latter equality can be un-
derstood by noting that a constant reactivity is equivalent to a
Robin boundary condition. Thus,

∇p(x, t |x0) · n = −γ p(x, t |x0)

= −γ

∫ ∞

0
e−γ 	P(x, 	, t |x0)d	. (A7)

The result follows from taking the limit γ → ∞ on both sides
and noting that limγ→∞ γ e−γ 	 is the Dirac δ function on the
positive half-line.
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