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Self-similar inhomogeneous stationary states under constrained dynamics
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The dynamics of n rigid objects, each having d degrees of freedom, is played out in the configuration space
of dimension nd . Being rigid, there are additional constraints at work that renders a portion of the configuration
space inaccessible. In this paper, we make the assertion that treating the overall dynamics as a Markov process
whose states are defined by the number of contacts made between the rigid objects provides an effective coarse-
grained characterization of the otherwise complex phenomenon. This coarse graining reduces the dimensionality
of the space from nd to one. We test this assertion for a one-dimensional array of curved squares each of which
is undergoing a biased diffusion in its angular orientation.
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I. INTRODUCTION

It is widely recognized that quenched spatial disorder has
rather nontrivial consequences on the long-time behavior of
a system of interacting constituents driven by an external
field, resulting in such intriguing and complex phenomena
as macroscopic density inhomogeneity leading to phase sep-
aration [1] and a nonmonotonic field-induced drift velocity
as a function of the field strength [2]. While unveiling of
such fascinating effects has mostly been for the case in which
the interacting constituents are point particles, the issue of
whether similar effects may be observed with a collection of
extended objects being driven by a field and interacting via
arguably the simplest possible interaction of steric hindrance
has received little attention in the literature. The focus on
pointlike constituents largely stems from the challenges as-
sociated with a theoretical analysis of a system of interacting
extended objects in terms of suitable coarse-grained variables,
in the spirit of a tractable statistical mechanical description,
and the lack of a general prescription to guide one with the
identification of such variables. In this work, we aim to fill
in these gaps (i) by showing how a system of rigid extended
objects interacting through steric hindrance may exhibit non-
trivial long-time behavior, both static and dynamic, including
a noise-induced phase transition, nonmonotonic dependence
of the field-induced velocity as a function of the field strength
even in the absence of any quenched disorder, and (ii) by ad-
ducing a remarkable and hitherto-unexplored coarse-grained
description that allows to capture effectively the dynamics of
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the system and in particular the signatures of the underlying
phase transition.

Understanding how extended objects move individually in
space [3] as well as how a collection of them behave and
organize themselves [4,5] has been a topic of recent research
[6]. However, study of the role of their shapes in determin-
ing the long-term behavior of the collection has mostly been
limited to the case of elongated shapes inducing alignment
[7–9]. The fact that shapes can interlock and hence attain dif-
ferent functionality has largely been explored in the colloidal
literature [10,11]. The role of this interlocking in macroscopic
systems has received little attention [12,13].

A general extended object would consist of bounding sur-
faces that at some parts are locally concave while at others
are convex. This gives rise to the possibility of interlocking
between locally convex and concave regions of these objects
through compensation of curvature. However, even convex
structures like truncated polyhedron can interlock through
compensation of slopes (and not of curvature) of the engaging
surfaces [14].

II. ONE-DIMENSIONAL PERIODIC ARRAY OF
RIGID POLYGONS

When a large number of extended objects, among which
interlocking may happen, move in a common space, it is
evidently of interest to ask about the configuration(s) that the
system would settle to in the stationary state attained at long
times under the dynamics of transition between the various
possible configurations. In order to explore this issue, we will
consider in this work a representative system comprising a
one-dimensional periodic array of n > 1 rigid polygons each
of which is undergoing in presence of drive and noise a rota-
tional motion in two dimensions about its fixed center under
the constraint that no two polygons overlap (steric hindrance).
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FIG. 1. Two curved and flat squares of diameter 2a whose centers
are separated by � is shown in panels (a) and (b), respectively.
The angles φ1 ∈ [−180◦, 180◦) and φ2 ∈ [−180◦, 180◦) characterize
the orientation of the two squares. Each curved square is made by
subtracting four equal circular segments of height δ from a square
of length

√
2a. Panels (c), (d), (e), and (f): Accessible (dark gray)

and inaccessible (light gray) regions curved out of the configuration
space (φ1, φ2) of two curved squares. The boundary between the two
regions corresponds to configurations in which the two squares touch
each other. For two different values of �, while (c) and (e) represent
the case of δ = 0.2a, and panels (d) and (f) represent flat squares
(δ = 0).

All the polygons are identical in every respect. The drive is
the same for all the polygons and rotates them individually
in the same direction that we may take to be the clockwise
direction without loss of generality. The noise is taken to be
uncorrelated in time as well as between the different polygons.
As representative examples of polygons in two dimensions,
we will consider curved squares obtained by subtracting four
equal circular segments of height δ > 0 from a square of
length

√
2a, see Fig. 1(a). In the limit of δ going to zero,

the polygons are flat squares. By controlling the height of the
circular segments, one may generate a variety of shapes.

In our model, we may already anticipate nontrivial physical
effects on the basis of the fact that the constituent objects
are extended. Let us first consider the no-noise situation.
Referring to Figs. 1(a) and 1(b), we realize that as the poly-
gons are being rotated in the clockwise direction, there may
come an instant of time at which neighboring polygons get
interlocked. In such a situation, further increase of the drive

strength would only reinforce the interlocking. What noise
is expected to do is to bring about unlocking, provided that
the noise is strong enough. What is the physical implication
of interlocking? It would lead to a state in which despite the
drive, the polygons would not be rotating and hence, there will
be no longitudinal current along the one-dimensional array;
here the longitudinal current at a given time instant is defined
as the angular velocity averaged over neighboring polygons.
Interlocking will happen only when for a fixed height δ of the
circular segments, the ratio �/a of the separation � between
the centers of two consecutive polygons to the diameter a
of the polygons is small, see Fig. 1(a). As the ratio increases,
the polygons get further apart. Beyond a critical value of this
ratio, the polygons cannot interlock, and then there will be
a nonzero current along the array at any drive strength. It is
worthwhile to mention that the zero-current state could have
been trivially reached if we had chosen the drive strength to be
a quenched-disordered random variable different for different
polygons, so that some of them rotate slower than others, and
then obviously the slowest of all polygons would have led
to long stretches of time over which neighboring polygons
interlocked with this slowest polygon do not get to rotate. In
this sense, the zero-current state if and when attained in our
system would be a spontaneously generated state emerging
not owing to any disorder but solely from the steric hindrance
between neighboring polygons. On the basis of the foregoing,
we thus see an intricate and nontrivial interplay of the various
dynamical parameters at work: the strength of the noise, the
drive strength, and the parameters δ and �/a. It is certainly of
interest to chart out the possible long-time dynamical scenario
as one varies these parameters. It is evident that interlocking
plays an essential role in generating nontrivial dynamics: Had
we taken objects that albeit extended do not interlock into
one another (e.g., disks), one could not have generated a
zero-current state.

Now, since each polygon has one degree of freedom [the
angle φ ∈ [−180◦, 180◦), see Fig. 1(a)], the dynamics takes
place in the n-dimensional configuration space of the system.
However, owing to the nonoverlapping constraint, the dy-
namics would be restricted to only certain accessible regions
of the configuration space. While the boundaries between
the accessible and the inaccessible region correspond to the
polygons having at least one point of contact, the interior of
the accessible regions would correspond to no contact and
hence unhindered motion of the polygons. As the configura-
tion of the polygons changes with time, so does the number
of contacts among them. Consequently, the dynamics of the
system may be characterized by monitoring how the number
of such contacts changes as a function of time. However,
characterizing the dynamics by the number of contacts does
not keep track of the identity of the polygons in contact. In this
sense, the dynamics of contacts offers a coarse-grained lower-
dimensional characterization of the dynamics of polygons.
We may invoke a further coarse-graining by considering the
number of contacts to be a binary variable taking values 1 or
0 corresponding respectively to either presence or absence of
contact. In this sense, we do not make any distinction between
Figs. 1(a) and 1(b) as regards number of contacts. Note that
since we are dealing with those shapes that can interlock,
the boundary between the accessible and inaccessible regions
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will have locally concave and convex regions. As already
mentioned above, we do not consider disk-shaped objects,
which evidently do not interlock.

A. Configuration space for two polygons

Let us illustrate the aforementioned idea of dynamics of
contacts with respect to Fig. 1(a). The accessible and the in-
accessible region that is carved out of the configuration space
(φ1, φ2) correspond respectively to the dark gray and the light
gray region in Figs. 1(c)–1(f), while the boundary between
the two regions corresponds to configurations in which one
polygon touches the other. Figures 1(c) and 1(e) correspond
to curved squares (δ �= 0). As the ratio �/a is increased,
the size of the inaccessible region grows and consequently
the accessible space shrinks. A similar thing happens for flat
squares (δ = 0) as shown in Figs. 1(d) and 1(f). A conse-
quence of shrinking accessible region is a decrease in the
longitudinal current of the system. For the shapes to rotate
in a persistent manner, it is essential that the accessible region
forms a continuous patch in the (φ1, φ2) configuration space
[see the dark gray patch in Figs. 1(c) and 1(e)]. In situations
where this condition is not satisfied [isolated dark gray patches
in Figs. 1(d) and 1(f)], the shapes cannot rotate persistently.

B. The case of n > 2 polygons: “Configuration space”
{φ1 . . . φn} and “corner space” {Dn−1 . . . D0}

For a periodic array of n polygons, each performing a rota-
tion about a fixed point, the angle φi(t ) describes the trajectory
of the ith polygon in time. The overall dynamics of the n poly-
gons happen in the higher-dimensional “configuration space”
described by the coordinates {φ1 . . . φn}. The corresponding
“hypersurface” embedded in the n-dimensional configuration
space that is equivalent to the boundaries in Fig. 1(c)–1(f)
would correspond to contacts whose value Nc ranges from
1 to n in our coarse-grained description. Note that Nc just
counts the number of cases in a given configuration of poly-
gons for which contacts have been made between neighboring
polygons. These contacts define the dimensionality Dm of the
corners on the “hypersurface” in the following way: Dm =
nd f − Nc; here d f is the number of degrees of freedom of
the individual shapes [12]. In our example, since the polygons
can only rotate in two dimensions about their fixed centers,
we have d f = 1. Thus, Dm can take values as {Dn−1 . . . D0};
Dn does not lie on the “hypersurface” and is hence excluded
from the counting. The coordinates {Dn−1 . . . D0} describe the
“corner space.”

C. Markovian dynamics on space defined by the dimesionality
of the corners

Corners of different dimensionalities (i.e, the Dm’s) can
be thought of as states that are populated as the system of
polygons under consideration evolves in time from one con-
figuration to another. The dynamics of transition from one
state to another can then be encoded in the form of a Markov
chain generated by a transition matrix whose elements give
the probability of transition from one state to another in an
elementary time step of the dynamics. Specifically, the off-
diagonal elements of the transition matrix give the probability

of transition between two different states, while the diagonal
elements give the probability of dynamical self-loops whereby
a state does not evolve in time. Invoking Markovianity may be
justified on the basis of the fact that what a given state would
evolve to would depend just on itself and not on how the given
state is arrived at dynamically. We have discussed later in the
text a numerical check of Markovianity of the coarse-grained
dynamics.

It is pertinent to state right at the outset our main results
that concern the stationary state of the system attained at
long times. We construct from the motion of the polygons
the dynamics of transition (in particular, the probability of
transition) between the corner states and thereby obtain the
stationary state of the corner dynamics. We establish that the
stationary-state dynamics of the corner states is Markovian
in nature. The stationary state of the dynamics in the corner
space is found to coincide with the one obtained on feeding the
constructed probability of transition between the corner states
into the Markov chain model of corner dynamics and solving
it to obtain the stationary state. The stationary state obtained
from analyzing the Markov chain implies an inhomogeneous
probability measure over the corner states, whereby certain
specific states are preferred over others. Remarkably, for large
n, the relative ordering of the preference varies nonmonoton-
ically with the dimensionality of the corners and hence with
the number of constraints, implying thereby that a moderately
constrained state is the most preferred one. Had the probabil-
ity measure been homogeneous, which would have been the
case in the absence of drive or contacts, one would have had
a monotonic dependence on the number of constraints, with
the least-constrained state being the most preferred state. A
particularly remarkable revelation of our study is the fact that
the stationary-state probability measure of corner states for
varying n shows distinct scaling behavior, implying thereby
that the state space for different n is self-similar. A practical
utility of self-similarity is that one can extract the long-time
state of a system for large n by studying a much smaller
system.

Our next salient result concerns the average angular veloc-
ity of polygons in the stationary state of the system. We show
that at a fixed noise strength, the average angular velocity
shows a striking nonmonotonic dependence on the strength
of the drive. On the other hand, this velocity when consid-
ered at a fixed drive and as a function of the noise strength
shows an abrupt increase in its value beyond a critical noise
strength. This effect conforms to what we had anticipated
earlier in the paper that interlocking does not allow the ve-
locity to grow unless the noise is of critical strength. Then it
succeeds in unlocking the polygons and causes the velocity
to grow. The behavior of the velocity as a function of the
noise strength resembles a noise-induced phase transition.
Based on our gathered wisdom regarding phase transitions,
one would expect a different behavior of the relaxation times
across the critical point. Indeed, on analyzing the gap between
the leading and the subleading eigenvalue of the transition
matrix of the Markov chain model, we find that the gap that
dictates the timescale of relaxation of the Markov dynamics
shows a marked change in its behavior close to the critical
noise strength. Although not evidently true, such a match is
a demonstration that our coarse-grained description in terms
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of corners on the hypersurface captures quite remarkably the
stationary-state behavior of the polygon dynamics.

III. METHODS

We now turn to a derivation of our results. For our one-
dimensional periodic array of curved polygons, the dynamics
involves noisy rotation of each polygon in two dimensions
about its fixed center in presence of a drive. In other words,
each polygon performs a driven-diffusive motion in the space
of its orientation angle φ ∈ [−180◦, 180◦). The rotational mo-
tion of the polygons during a small time interval between
t and t + �t corresponds to update of the angle φi; i = 1,

2, . . . , n as

φi(t + �t ) = φi(t ) + Dηi

√
�t + F�t . (1)

Here ηi is a mechanical noise that causes independent rotation
of the squares and F is the drive or the bias. The parameter D
characterizes the strength of the noise term. We assume ηi to
be a Gaussian, white noise, namely with zero mean and corre-
lations in time given by 〈ηi(t )η j (t )〉 = δi j and 〈ηi(t )η j (t ′)〉 =
0 for t �= t ′. Note that the noise acting on different poly-
gons are completely uncorrelated. In order to implement the
nonoverlapping constraint between neighboring polygons in
numerical experiments that we perform with the polygons,
we associate with each polygon a set of 2d points that are
contained inside it. Let Qi(t ) denote this set for the ith polygon
at time t ; i = 1, 2, . . . , n. At a given time instant, the neigh-
boring polygons are considered to be in contact if their edges
are within a predetermined distance ε. We consider noisy
instead of deterministic dynamics, since in absence of noise,
the biased system would for high bias values get jammed due
to interlocking and the dynamics would remain stuck in such
a configuration for all subsequent times. Presence of noise
allows the system to escape from such jammed configurations.

Corresponding to the rotational motion of the polygons,
all the elements of Qi undergo the same rotational transfor-
mation: Qi(t + �t ) = R(�φi)Qi(t ). Here R(�φi ) is the 2d
rotation matrix and �φi ≡ φi(t ) − φi(t + �t ) is the incre-
mental change in the orientation φ in time �t . All the φi’s
are updated sequentially at each simulation time step subject
to the constraint that the intersection of no two sets Qi is a null
set, i.e., Qi ∩ Qj = ∅∀ i, j. For cases where the update results
in one shape overlapping with the other, i.e., Qi ∩ Qj �= ∅,
the proposed dynamical move is rejected in numerical ex-
periments. In such situations, the shape continues to be in
its previous state, i.e., Qi(t + �t ) = Qi(t ). Two neighboring
shapes with set of points Qi and Qi±1 are said to be in contact
if they are within a neighborhood of each other, i.e., if the
pairwise Euclidean distance matrix between them has values
smaller than ε.

IV. RESULTS AND DISCUSSION

A. Dynamics in the configuration space {φ1, φ2, . . . , φn}
In the absence of bias, F = 0, a clockwise move is as likely

as an anticlockwise move, and the resulting dynamics in φ is
diffusive. However, if F �= 0, then the resulting dynamics is a
driven diffusive motion, whereby the polygons move prefer-
entially in either the anticlockwise or the clockwise direction

FIG. 2. (a) Average angular velocity 〈ω〉 as a function of the drive
strength F in the stationary state of the system for three different
values of the noise strength D for a chain of n = 40 curved squares,
where the squares are separated by a distance � = 1.65a. The inset
shows the variation of 〈ω〉 with F for representative values of the
ratio �/a. (b) Variation of 〈ω〉 as a function of noise strength D at
a fixed bias F = 1.0. The inset shows the variation of 〈ω〉 with the
noise strength D for representative values of the drive strength F for
n = 40.

(in clockwise direction, in the convention we have adopted).
The bias F has two effects on the overall dynamics: (i) It
generates a rotational drift and (ii) it enforces the interlocking
of the shapes. We find that the average angular velocity 〈ω〉
varies nonmonotonically with the strength F of the bias: It
increases initially with the bias; however, larger bias values
enforce interlocking and the average velocity drops to zero.
Beyond a critical bias F c, the mobility of the system be-
comes negative. The variation of the average angular velocity
〈ω〉 = 〈φi(t ) − φi(t + �t )〉(t,i) with the strength of the bias F
for three representative values of noise strength D is shown
in Fig. 2(a). The inset to the figure shows the variation in
the angular velocity as a function of the bias F for different
values of the parameter �/a. We find that when we have
�/a > 2, the polygons never touch each other and the average
angular velocity increases linearly with the drive. For values
of �/a � 2, the angular velocity changes nonmonotonically
with F . However, the magnitude of 〈ω〉 for a given value of
drive F decreases with decrease in �/a. A similar decrease
in 〈ω〉 for a given drive is observed for decreasing δ that is
measure of the extent of curvilinearity.
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FIG. 3. (a) Representative configurations C(t ) for our model of
one-dimensional array of n = 10 curved squares rotating about their
fixed centers, see text. The number of constraints Nc and the dimen-
sionality Dm associated with each configuration C(t ) are mentioned
along with it. The arrows mark the spatial position at which the
squares touch each other. A given dimensionality of the corner may
correspond to same number of arrows that are however arranged
differently, see the case for D4. (b) The graph represents an example
of possible transitions between various states D9 . . . D1 in the system,
where the nodes denote the states and the arrows denote the direction
of transition.

It is worthwhile to mention that similar nonmonotonic de-
pendence of the velocity on field strength for random walks in
presence of a bias has been observed previously, see Ref. [2].
However, an important difference with respect to our work is
that in Ref [2], the random walk takes place on a disordered
lattice, e.g., on a percolation cluster. The appearance of a crit-
ical bias above which the velocity becomes zero is attributed
to the presence of so-called backbends in the lattice, escaping
from which requires motion opposite to the bias direction
and which consequently becomes less and less probable with
increasing bias. Similar effects have recently been observed
in colloidal transport process in presence of obstacles [15,16].
However, in our case, there is no disorder in the system.

The strength of the noise D plays an important role in
determining the dynamics of the system. As discussed in
Fig. 2(a), with increasing drive F , the curved polygons in-
terlock and the average angular velocity 〈ω〉 goes to zero.
This cessation of the persistent rotational motion is most
pronounced when the strength of the noise is weak. With
increasing noise strength, two types of dynamics begin to
compete: (i) interlocking that is enforced by the drive F , and
(ii) unlocking that is facilitated by the noise whose strength
is D. Beyond a critical noise strength, the unlocking phe-
nomenon becomes more dominant. In this parameter regime,
the angular velocity 〈ω〉 begins to increase as a function of
the noise strength D. This noise-induced activity is shown in
Fig. 2(b), where we plot the variation of the angular velocity
〈ω〉 as a function of the noise strength D for F = 1.0. This
variation is plotted for various values of n. This critical noise
strength decreases with lowering of the drive strength F . This
is shown in the inset to Fig. 2(b).

B. Dynamics in the corner space {D1, D2, . . . , Dn}
We now discuss our coarse-grained model. Representative

configurations C(t ) are shown in Fig. 3(a). The number of
constraints Nc and the dimensionality Dm associated with each
configuration C(t ) are mentioned along with it. The arrows

FIG. 4. Shows the state transition matrix T , for representative
values of drive strength F . Here n = 40 and D = 0.1.

mark the spatial position at which the squares touch each
other. In order to analyze the dynamics of the rotating squares
in terms of Dm’s, we now introduce a discrete-time Markov
chain whose state space is constituted by the Dm’s and in
which transitions between the various states are encoded in
a transition matrix P. For a system of n squares, the transition
matrix is a n × n matrix such that its mm′th element gives the
probability of transition from state Dm to state Dm′ . Contrary
to the usual treatments of stochastic processes wherein the
transition matrix is given as part of modeling of the dynamics,
here we construct the state transition matrix from observing
the dynamical trajectories of the Dm’s in simulations. Specifi-
cally, considering a dynamical trajectory of a sufficiently long
duration, the transition probability from state Dm to Dm′ is es-
timated as the fraction of the total time at which one observes
between subsequent time instances a transition Dm → Dm′ .
This gives the state transition matrix T . In order to obtain
the transition matrix P, we normalize the elements of T in a
column such that they add up to unity. The graph in Fig. 3(b)
depicts the transitions between the states D1, D2, . . . , D9 for
a linear array of 10 squares. The nodes in the graph represent
the various states Dm and the arrows denote the direction of
transitions.

C. Inhomogeneous nature of the transition matrix T

Figure 4 shows the state transition matrix T , for representa-
tive values of drive strength F for n = 40. The corresponding
dynamics in the configuration space is shown in Fig. 2(a). The
relative magnitudes of the different transitions are represented
by the gray scale shown alongside. The correctness of our
estimation of the transition probabilities can only be judged a
posteriori from, e.g., a comparison of the numerical result for
the stationary-state distribution of Dm’s with the one obtained
from a theoretical analysis that we detail below.

The behavior of the average current 〈ω〉 in the configura-
tion space (Fig. 2) is reflected in the degree of inhomogeneity
of the state transition matrix T . The degree is quantified by
measuring the variance of the entries of the matrix T . Figure 5
shows the plot of the variance var(T )|Norm. of the entries of
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FIG. 5. The figure plots the variance var(T )|Norm. of the entries
of the state transition matrix T as a function of F for three different
values of the noise strength D, with each curve normalised by its
maximum value.

T as a function of the drive F for representative values of
the noise strength D, in which each curve is normalized by
its maximum value. For small values of the drive, the system
encounters fewer steric hindrances, as a result of which the
number of points on the hypersurface is small, and in this
phase, 〈ω〉 grows with F . As the drive increases, the number
of points on the hypersurface increases, and the system be-
comes more constrained. In this phase, the matrix T becomes
increasingly more inhomogeneous, and the variance of its
entries grows with the drive. Increasing constraints hinder the
motion of the squares, and hence, in this phase, 〈ω〉 decreases
with F . With still increasing drive, additional states get popu-
lated, and this finally begins to make the matrix T appear more
homogeneous. However, these additional constraints drive the
system into an overconstrained state where adding extra con-
straints via increasing F have little effects on 〈ω〉.

D. Markovian dynamics on the corner space

1. A check of Markovianity

Given the stationary-state time series data for Dm’s, we
check in the following manner that the dynamics of our
coarse-grained model is Markovian. Given three time in-
stances t1 < t2 < t3, let us define P(Dn3 , t3|Dn2 , t2; Dn1 , t1) as
the conditional probability for the system to be in state Dn3 at
time t3 while conditioned on having been in state Dn2 at time
t2 and in state Dn1 at time t1. On the other hand, we define
P(Dn3 , t3|Dn2 , t2) as the probability for the system to be in
state Dn3 at time t3 while conditioned on having been in state
Dn2 at time t2. A check of Markovianity of the given time se-
ries is to confirm that one has [17] P(Dn3 , t3|Dn2 , t2; Dn1 , t1) =
P(Dn3 , t3|Dn2 , t2). We have checked this numerically for sev-
eral representative values of Dn1 , Dn2 , and Dn3 and also of t1,
t2 and t3, see Fig. 6.

2. A comparison between direct numerical simulation and
stationary state distribution

Following Ref. [18], we now analyze the Markov chain
introduced in the foregoing. As already discussed, the states

FIG. 6. The figure checks the Markovianity of our
coarse-grained dynamics: We find that P(Dn3 , t3|Dn2 , t2; Dn1 , t1) ≈
P(Dn3 , t3|Dn2 , t2) for n = 40, D = 0.1 and representative values
of drive strength F (marked in the figure). Numerically, we have
obtained similar results for several representative values of Dn1 ,
Dn2 , and Dn3 and also of t1, t2, and t3. The solid line represents the
condition P(Dn3 , t3|Dn2 , t2; Dn1 , t1) = P(Dn3 , t3|Dn2 , t2).

of the chain are the corner Dm’s, and the transition matrix
P encodes the information on the probability of transition
between states. For a system of n squares, for which P is an
n × n matrix, the column sum of P is unity since a transition
in an elementary time step should take the system to either a
different state or to itself. The former fact is encoded in saying
that P has a left eigenvector with eigenvalue unity given by
〈1L| = (11 . . . 1) : 〈1L|P = 〈1L|. Let the (n − 1)-dimensional
vector |π〉, which we call the probability vector, be such that
its mth element πDm gives the probability for the system to
be in state Dm. Being a probability vector, the sum of all
entries in |π〉 is unity, i.e., 〈1L|π〉 = 1. It follows from the
definition of the transition matrix that |π〉(1) = P|π〉(0), where
|π〉(α); α = 0, 1, 2, . . . denotes the probability vector at the
αth time step. We have |π〉(α) = (P)α|π〉(0).

Corresponding to the dynamics initiated with the system
being in state Dm0 , the initial probability vector has πDm =
δmm0 . A stationary state (ss) is characterized by a stationary
probability vector |π〉ss satisfying |π〉ss = P|π〉ss, i.e., |π〉ss is
given by the right eigenvector |1R〉 of P with eigenvalue unity:

|π〉ss = |1R〉
〈1L|1R〉 . (2)

The largest eigenvalue λ1 of a transition matrix is unity; the
other eigenvalues λ2 > . . . > λ(n−1) are less than unity [18].

Let us define a correlation function CDmDm′ (τ ) as the joint
probability in the stationary state for the system to be in state
Dm at a certain time and in state Dm′ after a time lag τ . We
introduce an indicator variable nDm such that nDm = 1 if the
system is in state Dm and is zero otherwise. It follows by
definition that (nDm )ss = πDm,ss, where the overline denotes
averaging in the stationary state. We may define (nDm )ss =
〈1L|nDm |π〉ss, wherein the operator nDm acting on |π〉ss

is defined to yield nDm |π〉ss = [000 . . . πDm,ss . . . 0]T , where
T denotes transpose. It follows that 〈1L|nDm |π〉ss = πDm,ss,
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FIG. 7. (a) A comparison of the stationary-state distribution πDm

as obtained from direct simulation of the dynamics of the squares
and from our theoretical analysis, Eq. (2), performed on the contact
space; here F = 1 and D = 0.4. Note that πDm shows a peak at
Dm = Dmax. Panels (b) and (c) compare for τ = 5000 the station-
ary correlation CDmDm′ (τ ) from direct simulations and theoretical
analysis [Eq. (3)], respectively. The top, middle, and bottom panels
correspond to n = 80, n = 60, and n = 40, respectively. All results
show an excellent agreement between theory and simulations.

as required. We have CDmDm′ (τ ) = 〈1L|nDm′ (P)τ nDm |π〉ss,
yielding

CDmDm′ (τ ) =
n−1∑
k=1

(λk )τ

〈kL|kR〉 〈1L|nDm′ |kR〉〈kL|nDm |π〉ss. (3)

Here we have used Pτ = ∑n−1
k=1 |kR〉〈kL|λτ

k/〈kL|kR〉, wherein
〈kL| and |kR〉 are respectively the (unnormalized) left
and right eigenvectors of P with eigenvalue λk . In the
above expression, nDm′ |kR〉 yields a (n − 1)-dimensional
column vector all of whose elements are zero except
for its m′th element being equal to the m′th element
of |kR〉. As τ → ∞, since all the eigenvalues excepting
the largest one are smaller than unity, CDmDm′ (τ → ∞) =
〈1L|nDm′ |π〉ss〈1L|nm|π〉ss = (nDm )ss(nDm′ )ss, where we have
used Eq. (2).

Figure 7(a) compares the stationary-state distribution
πDm,ss as obtained from direct simulation of the dynamics
of the squares and from our theoretical analysis, Eq. (2),
performed on the contact space, demonstrating an excellent
agreement. This shows that the Markovian dynamics asso-
ciated with the contact space captures the dynamics of the
higher-dimensional configuration space {φ1, φ2, . . . , φn} of
squares, thereby providing an effective lower-dimensional
coarse-grained description of the problem. The data clearly
suggest that the stationary-state probability of states is inho-
mogeneous, and consequently that the system is most likely
to be found at a moderately constrained state, corresponding
to the peak in the stationary-state distribution at Dm = Dmax.
In Fig. 7(b), we compare the stationary correlation CDmDm′ (τ )

FIG. 8. Scaling according to Eq. (4) of the stationary distribution
πDm,ss for different n are plotted in (a) for F = 0.1 and F = 1.0 and
D = 0.4 and (c) for F = 0.1 and F = 1.0 and D = 0.1. The insets
to (a) and (c) show the corresponding variations in Dmax and D̃m. For
the inset in (a) that Dmax ∝ n and D̃m ∝ √

n. However, for the inset
in (b) while Dmax ∝ n, we find D̃m to only weakly depend on n. The
corresponding eigenvalue spectrum of the transition matrix P as a
function of the index of the eigenvalue, for drive F = 1.0 and D =
0.4 and F = 1.0 and D = 0.1 is plotted in (b) and (d), respectively.

as obtained from direct simulations and from our theoretical
analysis [Eq. (3)], again displaying an excellent agreement.

E. Scaling properties of the stationary distribution πDm,ss

As shown in Fig. 8(a), the stationary distribution πDm,ss for
different n shows a remarkable scaling behavior:

πDm,ss(n) = 1

D̃m(n)
F

[
Dm − Dmax(n)

D̃m(n)

]
, (4)

where F (x) is the scaling function, and the parameter D̃m(n)
sets the scale of fluctuations of Dm about Dmax(n). We find that
D̃m(n) scales as

√
n while the peak of the distribution Dmax(n)

scales linearly with the number of polygons n. Such a behav-
ior would have been expected if the motion of the polygons
were uncorrelated; the fact that we see a similar behavior in
our case implies weak correlation among the motion of the
different polygons, which is a manifestation of the fact that
Fig. 8(a) corresponds to the situation in which the average
angular velocity 〈ω〉 is nonzero (F = 0.1 and D = 0.4). This
case may be contrasted with the plot shown in Fig. 8(c) for
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which we have 〈ω〉 is almost zero (F = 0.1 and D = 0.1), and
consequently, the concomitant strong correlations between the
motion of the polygons reflect in a different scaling of D̃m(n)
and Dmax(n) with n.The fewer values of Dm’s in Fig. 8(c) is a
reflection of the sparse nature of the corresponding transition
matrix. The observed scaling has two implications: one, that
the systems of corners for different n are self-similar, and,
two, that one may obtain the stationary behavior for large n by
studying a smaller-n system. This latter fact has far reaching
consequences, since simulating the dynamics of squares for
large n typically requires use of prohibitive computational
resources. Since the stationary distribution is obtained from
an analysis of the transition matrix P, one may wonder if any
signature of the aforementioned self-similarity is contained in
P itself. We show in Figs. 8(b) and 8(d) that it is indeed so:
The eigenvalue spectrum of P for different n has a “bulk”
contribution that is invariant with respect to n and a “tail”
contribution that shifts to the right with increasing n. The
bulk contribution contains the eigenvalue unity, and as dis-
cussed above, it is this eigenvalue that determines the
stationary state. Consequently, the fact that the stationary-state
distribution for different n shows scaling behavior is linked
to the bulk eigenspectrum being invariant with respect to n.
The eigenvalues closer to unity are the ones that dictate the
long-time behavior and hence relaxation to the stationary state
[18]. For the parameter regime of Figs. 8(c) and 8(d), the
average angular velocity 〈ω〉 is very small. In this parameter
range of F and D, the eigenvalue spectrum close to unity
is almost flat, i.e., the corresponding relaxation time is very
large.

F. Signatures of the noise induced transition in the dynamics on
the corner space

The difference of its two largest eigenvalues of the tran-
sition matrix T defines the spectral gap spectral gap 1 − λ2

of the Markov process. The inverse of this sets the relaxation
time in the system τ = 1/(1 − λ2). The relaxation time τ

of Markov dynamics constructed for the system described in
Fig. 2(b) is plotted in Fig. 9(b). We find that the relaxation
time τ precipitously drops as the noise strength D crosses
a critical value. This decrease in τ occurs concurrently with
an increase in angular velocity 〈ω〉 of the polygons [see
Fig. 2(b)]. Moreover, similarly to the result for the dynamics
in the cofiguration space [see inset of Fig. 2(b)], the critical
noise strength at which the relaxation time τ drops decreases
to lower values with lowering of the drive strength F . This
is shown in the inset to Fig. 9. Indeed, our description of
the polygon dynamics in terms of transitions between the
corners on the hypersurface identifies the onset of the noise
induced transition well. This reinforces our claim that the one-
dimensional coarse-grained description and the associated
Markovian dynamics of the contacts capture quite remarkably
the stationary-state behavior of the polygon dynamics which
plays out in higher dimensions.

V. CONCLUSION

In this work, we studied a one-dimensional array of curved
squares undergoing noisy rotational motion about their fixed

FIG. 9. The figure shows variation of the relaxation time τ of
the Markovian dynamics on the of the contacts on the hypersurface
{D0, D1, . . . , Dn−1} as a function of D. The inset shows the the
variation τ with the noise strength D for representative values of the
drive strength F for n = 40. The data for the corresponding dynamics
in the configuration space {φ1, φ2, . . . , φn} is described in Fig. 2(b).

centers, and demonstrated how a coarse-grained description
captures effectively the stationary-state behavior of the un-
derlying dynamics. Our observations reported in the paper
would in principle hold true for an array of squares and in
fact for any polygons. However, in certain configurations, two
neighboring polygons can make extended contacts where the
edge of one polygon lies flat on the other. In contrast, the na-
ture of contacts remains always pointlike for curved polygons.
In our coarse-grained description, however, extended contacts
are treated in the same footing as point contacts.

Our coarse-grained description involves going from the
configuration space of squares to that of corners on the “hy-
persurface” that separates the accessible from the inaccessible
regions of the configuration space. In this process, given a
square configuration, we can always associate a unique corner
configuration, but not the other way round. Consequently, one
cannot obtain the dynamical trajectories of square configu-
rations from those of the corner configurations. However, in
the stationary state, if a given subset of square configurations
has the highest probability of occurrence, so would be the
case with the corresponding corner configurations. Then, the
stationary state that one obtains with the corners is also the one
of the parent system, namely, of the squares, and this explains
the effectiveness of the coarse-grained description.

Note that curvilinearity of polygons as measured by the
parameter δ changes the structure of the allowed configuration
space, as shown in Figs. 1(c)–1(f). So long as δ does not
break up the configuration space into isolated patches of ac-
cessible regions, our results will qualitatively be the same for
different δ.

As future directions, it would be interesting to considering
asymmetric shapes or random variation between shapes gen-
erated by having a δ that is a quenched-disordered random
variable along the array. Investigations in these directions are
underway, and will be reported elsewhere. Our approach maps
a higher-dimensional problem to a tractable problem in one
dimension, while retaining its essential dynamical features. It
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is worthwhile to explore the validity of this approach in more
general settings, e.g., where objects can move freely in R3

space, and also in situations where unlike our approach the
details of the shape are not glossed over.
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