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Critical crossover phenomena driven by symmetry-breaking
defects at quantum transitions
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We study the effects of symmetry-breaking defects at continuous quantum transitions (CQTs) of homogeneous
systems, which may arise from localized external fields coupled to the order-parameter operator. The problem is
addressed within renormalization-group (RG) and finite-size scaling frameworks. We consider the paradigmatic
one-dimensional quantum Ising models at their CQT, in the presence of defects which break the global Z2

symmetry. We show that such defects can give rise to notable critical crossover regimes where the ground-state
properties experience substantial and rapid changes, from symmetric conditions to characterization of these
crossover phenomena driven by defects. In particular, this is demonstrated by analyzing the ground-state
fidelity associated with small changes of the defect strength. Within the critical crossover regime, the fidelity
susceptibility shows a power-law divergence when increasing the system size, related to the RG dimension of
the defect strength; in contrast, outside the critical defect regime, it remains finite. We support the RG scaling
arguments with numerical results.
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I. INTRODUCTION

Critical phenomena have attracted much interest in recent
decades (see, e.g., Refs. [1–10] and references therein). One of
the reasons is that their emerging features have a great degree
of universality, being largely independent of the microscopic
details. Therefore they have a wide applicability to different
systems and within very different physical contexts. More-
over, they allow us to describe complex phenomena using
a relatively small number of relevant variables, providing a
notable simplification of the analysis of many-body systems.
However, critical phenomena occur under particular condi-
tions, when the system develops long-range correlations, for
example, at continuous phase transitions arising from thermal
or quantum fluctuations.

Some important features of critical phenomena at thermal
and quantum continuous phase transitions are related to the
presence of boundaries [11–17] and the presence of defects
[18–28]. These are not academic issues, since physical sys-
tems generally have boundaries and are subject to localized
defects of various nature. The presence of isolated defects
does not generally change the bulk power-law behaviors char-
acterizing the critical behavior of observables at large scale.
However, their effects may get somehow amplified by the
long-range critical modes at continuous transitions, in the
neighborhood of the defect, and in particular in finite-size
systems. Symmetry-preserving bond defects have been mostly
investigated in the literature, in both classical and quantum
systems (see, e.g., Refs. [18–20,23,26,27]). We mention that

*Authors are listed in alphabetical order.

the local magnetization along a line of symmetry-preserving
bond defects develops a peculiar behavior in classical systems,
being characterized by the continuous variation of its criti-
cal exponent when varying the strength of the bond defects
[18–20]. In contrast, here we focus on defects of different
nature, i.e., those that break the global symmetry within ho-
mogeneous systems.

In this paper we investigate the effects of symmetry-
breaking defects in quantum many-body systems at contin-
uous quantum transitions (CQTs). We address these issues
exploiting renormalization-group (RG) and finite-size scaling
(FSS) frameworks. We argue that, although the presence of
isolated defects does not generally change the bulk power-law
behaviors at CQTs, they can drive notable critical crossover
behaviors when the defects are the only source of sym-
metry breaking in homogeneous systems. In this case they
induce critical crossovers in the ground-state and low-energy
properties, between limiting cases that can be associated
with different boundary conditions: from boundary conditions
(or absence of boundaries) preserving the global symmetry
to boundary conditions breaking the symmetry associated
with the CQT. Therefore, the addition of isolated symmetry-
breaking defects to critical (strictly symmetric) systems can
give rise to substantial changes of the ground states and the
finite-size behavior of the critical modes, even in the large-size
limit within the FSS regime around the CQT. Two different
situations, which develop different RG properties, must be
distinguished: whether the defects are located within the bulk
of the system, or at the boundaries.

We challenge this general scenario within the paradigmatic
one-dimensional quantum Ising systems in a transverse field,
studying the effects of local defects breaking the global Z2

symmetry, within the bulk and at the boundaries. We analyze
the crossover behaviors induced by the defects at its CQT
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when varying their strength. These critical defect crossovers
provide a bridge between situations that can be associated
with different boundary conditions: from translation-invariant
FSS behaviors in Ising rings to FSS behaviors of systems with
parallel fixed boundary conditions (PFBC). The power laws
characterizing these critical crossovers are determined by the
RG dimensions of the perturbations arising from the defects,
which differ for defects within the bulk and at the boundaries.
The scaling theory that we develop is then checked by numer-
ical computations.

An effective characterization of the crossover phenom-
ena driven by symmetry-breaking defects is obtained by
analyzing the ground-state fidelity measuring the overlap
between ground states associated with different defect pa-
rameters. This provides information on the variations of the
ground-state structures due to the defect, whether it gives
rise to substantial changes involving the whole system, or
the changes remain limited to a finite region. We argue
that the susceptibility associated with the defect fidelity di-
verges in the large-size limit within the critical crossover
regime, while it remains finite outside it. Such a power-law
divergence is related to the RG dimension of the defect pa-
rameter.

The paper is organized as follows. In Sec. II we introduce
the models that we consider, i.e., quantum Ising rings without
boundaries [corresponding to periodic boundary conditions
(PBC)] in the presence of one symmetry-breaking defect,
and Ising chains with boundaries [such as open boundary
conditions (OBC)] with defects localized at the boundaries.
In Sec. III we introduce the quantities that we use to monitor
the effects of the symmetry-breaking defects, including the
ground-state fidelity associated with small changes of the
defect parameters. In Sec. IV we outline the description of the
critical defect crossover phenomena in Ising rings, using RG
and FSS frameworks. In Sec. V we discuss the case of Ising
chains with symmetric boundaries, when we add symmetry-
breaking boundary defects. In Sec. VI we present numerical
analyses supporting the scaling behaviors obtained by the RG
and FSS analyses. Finally, in Sec. VII we summarize and draw
our conclusions.

II. QUANTUM ISING MODELS WITH
SYMMETRY-BREAKING DEFECTS

The quantum Ising chain is a useful theoretical laboratory
where fundamental issues of quantum many-body systems can
be thoroughly investigated, exploiting the exact knowledge
of several features of its phase diagram and quantum corre-
lations. Many results for its low-energy properties have been
derived in the ordered and disordered phases, and in particular
at the quantum critical point separating the two phases, in
the thermodynamic limit and in the FSS limit with various
boundary conditions (see, e.g., Refs. [6,7,9,10] and references
therein).

In our study of critical crossover behaviors driven by
symmetry-breaking defects, we consider quantum Ising
chains with ringlike geometry without boundaries and in the
presence of one defect and chains with boundaries, such as
OBC, in the presence of defects localized at the boundaries.

A. Quantum Ising rings with defects

Quantum Ising rings are defined by the Hamiltonian

Ĥr = −J
L∑

x=1

σ̂
(1)
x σ̂

(1)
x+1 − g

L∑
x=1

σ̂ (3)
x , (1)

where L is the system size, σ̂ (i)
x are the Pauli matrices on the

xth site (i = 1, 2, 3 labels the three spatial directions), and
σ̂

(i)
L+1 = σ̂

(i)
1 , corresponding to PBC. In the following we as-

sume ferromagnetic nearest-neighbor interactions with J = 1.
The model undergoes a CQT at g = gc = 1, belonging

to the two-dimensional Ising universality class, separating
a disordered phase (g > gc) from an ordered (g < gc) one
(see, e.g., Refs. [6,10]). Approaching the CQT, the system
develops long-distance correlations, with length scales ξ di-
verging as ξ ∼ |g − gc|−ν where ν = y−1

g = 1 and yg is the
RG dimension associated with the difference g − gc. The
ground-state energy gap gets suppressed as � ∼ ξ−z where
z is the dynamic critical exponent z = 1. Another indepen-
dent critical exponent arises from the RG dimension of the
symmetry-breaking homogeneous longitudinal field h cou-
pled to

∑
x σ̂ (1)

x , which is yh = (2 + d + z − η)/2 = 2 − η/2
where d stands for the system dimension (here d = 1) and
η = 1/4, thus yh = 15/8. We recall that, along the |g| < 1
line, the longitudinal field h drives quantum first-order tran-
sitions. Around gc, the interplay between ξ and the size L of
the system gives rise to FSS [10,29], defined as the large-L
limit keeping ξ/L constant.

We want to study the effects of localized defects breaking
the Z2 symmetry of model (1), such as the one described by
the Hamiltonian term

D̂k = −κ σ̂
(1)
k , (2)

where the parameter labeled by the Greek letter κ controls the
strength of the defect, while the Roman index k denotes the
defect site. Such a defect also breaks the translation invariance
of the original model (1). Its effects within the first-order
transition line for g < gc has been analyzed in Refs. [30,31],
where it gives rise to a defect-driven CQT between different
quantum phases. In the following, we focus on the critical
crossover phenomena driven by D̂k at the CQT for g ≈ gc.

We note that the defect (2) provides a bridge between
translation-invariant systems with PBC for κ = 0 [cf. Eq. (1)]
and models with PFBC when κ → ∞ (due to the fact that
the state at site k gets fixed to the eigenstate of σ̂

(1)
k with

eigenvalue s = 1). Note that, in the presence of n > 1 equal
defects like that in Eq. (2), the limit κ → ∞ gives rise to an
effective multipartition of the system, where the n subsystems
separated by the defects can be considered as effectively dis-
connected chains with PFBC.

The effects of the local perturbation arising from defect
may get amplified by long-distance correlations at CQTs.
Although they do not alter the leading power-law behavior,
scaling functions may acquire a nontrivial dependence on the
external localized field, i.e., the parameter κ in Eq. (2). Indeed,
as we shall see, one symmetry-breaking defect gives rise to
a critical crossover behavior entailing substantial and rapid
changes of the ground-state properties.
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B. Quantum Ising chains with boundary defects

We also consider another class of symmetry-breaking de-
fects, localized at the boundaries of the model. As we shall
see, they give rise to similar critical crossover effects at
quantum transitions, but characterized by different critical
exponents. Quantum Ising chains with OBC are defined by
the Hamiltonian

Ĥb = −J
L−1∑
x=1

σ̂
(1)
x σ̂

(1)
x+1 − g

L∑
x=1

σ̂ (3)
x . (3)

As before, we fix J = 1. We discuss the effects of longitudinal
fields localized at the boundaries, such as those described by
the Hamiltonian term

B̂ = −ζ
(
σ̂

(1)
1 + σ̂

(1)
L

)
, (4)

where ζ plays the role of parallel boundary field. This kind
of defect allows us to interpolate between systems with OBC
at ζ = 0 and systems with PFBC in the limit ζ → ∞. The
effects of boundary fields such as that in Eq. (4) have been
already discussed in Ref. [32]. We will add further results to
characterize the critical crossover that they give rise.

III. OBSERVABLES

A. Gap, magnetization, and two-point function

We define the gap � as the energy difference between the
first excited state and the ground state. We recall that the
power law of the asymptotic finite-size behavior of the gap is
not changed by the presence of defects or by different choices
of the boundary conditions. However, the amplitude of the
leading behavior does depend on these features. For example,
at the critical point one has

�(L) = C�

L
+ O(L−2), (5)

with C� = π/2, π, 4π , respectively, for PBC, OBC, and
PFBC [32–36].

We also address the expectation value of the longitudinal
order-parameter operator σ̂ (1)

x on the ground state |
0〉, i.e.,
the magnetization,

Mx = 〈
0| σ̂ (1)
x |
0〉, (6)

its two-point correlation function

G(x, y) ≡ 〈
0| σ̂ (1)
x σ̂ (1)

y |
0〉, (7)

as well as the corresponding susceptibility and correlation
length,

χx =
∑

y

G(x, y), ξ 2
x =

∑
y D(x, y)2G(x, y)

2χx
, (8)

where D(x, y) is the minimum distance between the sites x
and y (this definition takes into account the ring geometry). In
our analyses of position-dependent observables, such as Mx,
χx, and ξx, we consider particular values of x, such as the
central site for chains with boundaries. For Ising rings with
defect, one may choose either the site x = k of the defect or
the opposite site x = k + L/2 at the largest distance.

We also study the spatially averaged quantities

Ma = 1

L

∑
x

Mx, χa = 1

L

∑
x

χx, (9)

and

ξ 2
a =

∑
x,y D(x, y)2G(x, y)

2
∑

x χx
. (10)

B. RG invariant quantities

To characterize the crossover behavior due to the defects,
we consider a set of RG invariant quantities, which we will
generically denote with R in the following. They are the ratios
between the correlation lengths and the size:

Rξx ≡ ξx/L, Rξa ≡ ξa/L . (11)

Moreover we may consider ratios of correlation function at
different scaling distance, such as

RGx ≡ G(x, x + X1L)

G(x, x + X2L)
, (12)

where X1 and X2 are fixed fractions of the size L, such as X1 =
1/2 and X2 = 1/4. A natural choice for Ising chains is that of
identifying x with the center of the chain. For Ising rings one
may also consider the average definition

RGa ≡
∑

x G(x, x + X1L)∑
x G(x, x + X2L)

. (13)

We also consider the so-called Binder parameter depending
on one point x,

Ux =
∑

u,v,w〈
0|σ̂ (1)
x σ̂ (1)

u σ̂ (1)
v σ̂ (1)

w |
0〉
L
( ∑

u〈
0|σ̂ (1)
x σ̂

(1)
u |
0〉

)2 , (14)

or its spatially averaged version,

Ua =
∑

x,u,v,w〈
0|σ̂ (1)
x σ̂ (1)

u σ̂ (1)
v σ̂ (1)

w |
0〉( ∑
x,u〈
0|σ̂ (1)

x σ̂
(1)
u |
0〉

)2 . (15)

C. Ground-state fidelity associated with the defect

To characterize the effects of the defects, we may also con-
sider the ground-state fidelity quantifying the overlap between
the ground states for different defect parameters (see, e.g.,
Refs. [10,37–39]). The usefulness of the fidelity as a tool to
distinguish quantum states can be traced back to Anderson’s
orthogonality catastrophe [40]: the overlap of two many-body
ground states corresponding to Hamiltonians differing by a
small perturbation vanishes in the thermodynamic limit. Be-
sides that, the corresponding fidelity susceptibility covers a
central role in quantum estimation theory [41,42], being pro-
portional to the so-called quantum Fisher information. The
latter indeed quantifies the inverse of the smallest variance in
the estimation of the varying parameter, such that, in prox-
imity of quantum transitions, metrological performances are
believed to drastically improve [43,44].

To monitor the changes of the ground-state wave function
|
0(L, g, κ )〉 when varying the defect strength κ by a small
amount δκ (keeping the Hamiltonian parameter g fixed), we
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define the fidelity

A(L, g, κ, κ + δκ ) ≡ |〈
0(L, g, κ + δκ )|
0(L, g, κ )〉| .
(16)

Assuming δκ sufficiently small, one can expand Eq. (16) in
powers of δκ:

A(L, g, κ, δκ ) = 1 − 1
2δκ2A2(L, g, κ ) + O(δκ3), (17)

where

A2(L, g, κ ) = ∂2A

∂ δκ2

∣∣∣∣
δκ=0

, (18)

represents the fidelity susceptibility [10,38]. The cancellation
of the linear term in the expansion (17) is essentially related
to the fact that the fidelity is bounded [38], i.e., 1 � A � 0.
One may also consider analogous definitions for the model
(3) with the boundary fields (4), by replacing κ with ζ in the
above equations.

IV. CRITICAL CROSSOVER DRIVEN BY
SYMMETRY-BREAKING DEFECTS

We start to consider the case of the Ising ring with one
symmetry-breaking defect [cf., Eq. (2)], whose location is
irrelevant, since the original model (1) is invariant under trans-
lations.

A. Critical crossover behavior driven by the defect

We first show that the perturbation arising from the de-
fect is relevant in critical Ising rings, i.e., the RG dimension
yκ of the corresponding parameter κ is positive. One can
straightforwardly determine yκ by analyzing the correspond-
ing perturbation to the translationally invariant field theory.
This can be written as

Pκ = κ

∫
dτ ϕ(x, τ ), (19)

where ϕ(x, τ ) is the order-parameter field of the Ising transi-
tion, and the integration is over the Euclidean time τ . There
is no integration over the space, because the perturbation is
spatially localized (note that the location of the defect is as-
sumed to be within the bulk, i.e., it is not close to a boundary).
The standard RG analysis of the perturbation Pκ entails a
relation among the RG dimensions of the quantities entering
its definition, given by

yκ + yϕ − z = 0, (20)

where

yϕ = (d + z − 2 + η)/2 = 1/8 (21)

is the RG dimension of the order-parameter field [6,10]. Thus
we obtain

yκ = z − yϕ = 7/8 . (22)

We are now in the position to put forward the scaling
behaviors of the various observables introduced in Sec. III,
within a standard FSS framework [10–13,15–17,33]. Since
the RG dimension of the defect parameter κ is positive, the
defect gives rise to a relevant perturbation, whose effect is
that of moving away from the FSS behavior of the Ising ring

(1), characterized by translation invariance and intact Z2 sym-
metry. The corresponding FSS limit of generic observables is
defined as the large-size limit keeping the scaling variables

W = (g − gc)Lyg, K = κLyκ , (23)

fixed (we recall that yg = ν−1 = 1 for one-dimensional quan-
tum Ising models). This defines the critical crossover regime
driven by the defect, which develops around κ = 0, for
|κ| ∼ L−yκ .

B. Critical crossover behavior of the observables

The critical crossover behaviors of the various quantities
introduced in Sec. III can be put forward as follows. The gap
is expected to behave as

�(L, g, κ ) ≈ L−zD(W, K ), (24)

where D(W, K ) is a universal scaling function, i.e., micro-
scopic variations of the Ising ring Hamiltonian, for example,
adding further next-to-nearest-neighbor couplings between
the spin operators, do not change it (apart from trivial nor-
malizations of the arguments).

The magnetization in the FSS limit is expected to behave
as

Mx(x, L, g, κ ) ≈ L−yϕMx(Xk,W, K ), (25a)

Ma(L, g, κ ) ≈ L−yϕMa(W, K ), (25b)

where yϕ is the RG dimension of the order-parameter field [cf.
Eq. (21)] and

Xk = xk/L, xk = Min[x − k, L − x + k], (26)

where xk is the distance from the defect along the ring. Anal-
ogously, for two-point correlation functions we find

G(x, y, L, g, κ ) ≈ L−2yϕG(Xk,Yk,W, K ), (27)

where Yk = yk/L, and yk is defined analogously to xk . Using
the above results, we may easily derive the FSS behaviors of
the RG invariant quantities R defined in Eqs. (11), (12), and
(13), obtaining

Rx(x, L, g, κ ) ≈ Rx(Xk,W, K ), (28a)

Ra(L, g, κ ) ≈ Ra(W, K ) . (28b)

Analogous scaling behaviors are expected for the Binder pa-
rameters Ux and Ua; cf. Eqs. (14) and (15).

We remark that the above FSS behaviors are defined in
the large-L limit keeping all arguments of the scaling func-
tions fixed, and in particular K = κLyκ . They reflect the fact
that the perturbation arising from the symmetry-breaking de-
fect is relevant, thus affecting, and changing, the asymptotic
translation-invariant FSS functions of the original Ising ring.
We stress again that, unlike quantum first-order transitions
[45,46], they cannot change the bulk power laws at CQTs, but
only the FSS functions [10].

As already mentioned above, the κ → ∞ limit of the de-
fect strength gives rise to systems with PFBC. Therefore we
may interpret the above-reported FSS behaviors as a critical
crossover from the FSS of the translation-invariant Ising ring
to that of systems with PFBC, which is asymptotically real-
ized for any finite value of κ > 0. Therefore, we expect that
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the limit K → ∞ of the scaling functions converges to the
FSS functions for PFBC, which are realized for any finite
κ > 0 asymptotically in the large-L limit.

In particular, the critical gap should behave as

�(L, g, κ > 0) ≈ L−zDpfbc(W ), (29)

for any finite κ > 0, where Dpfbc(W ) is the scaling function
associated with the gap of Ising chains with PFBC,

�pfbc(L, g) ≈ L−zDpfbc(W ), Dpfbc(0) = 4π, (30)

and we also used Eq. (5). Moreover, we expect that

D(W, K → ∞) = Dpfbc(W ) . (31)

Analogous considerations apply to the other observables. For
example, in the case of the RG invariant quantities Ra, whose
scaling is reported in Eq. (28b),

Ra(L, g, κ > 0) ≈ Rpfbc(W ) = R(W, K → ∞), (32)

when taking the FSS limit, keeping κ > 0 fixed.
We finally remark that the critical crossover behaviors

driven by symmetry-breaking defects may appear analogous
to those arising from relevant perturbations at a unstable fixed
point of the homogeneous theory, driving away the RG flow
toward another stable fixed point.

C. Scaling corrections

The asymptotic FSS behaviors are generally approached
with power-law suppressed corrections [10,33], which may
depend on the observable considered. Within CQTs belonging
to the two-dimensional Ising universality class, the contri-
butions of the leading irrelevant operator are suppressed as
L−ω with ω = 2 [33,47,48]. Moreover the leading corrections
related to the breaking of the rotational invariance on the lat-
tice are suppressed as L−ωnr with ωnr = 2, as well [47,49,50].
However, there are also corrections that are suppressed more
slowly. Some quantities are subject to corrections from an-
alytic background contributions [33], for example, those
involving second-moment correlation lengths [cf. Eq. (11)],
for which the leading scaling corrections get suppressed as
L−(1−η) = L−3/4 only, even in the case of systems without
boundaries.

The existence of the defect, breaking translation invari-
ance, gives generally rise to O(1/L) corrections. However,
when studying the effects of its perturbation in the κ → 0
limit keeping κLyκ fixed, the leading scaling corrections are
those arising from the analytic expansion [33] of the scaling
field uκ associated with the defect parameter κ . In particular
at the critical point g = gc, taking into account the parity
property of the defect term, we expect

uκ ≈ κ + c κ3 + · · · . (33)

Since the FSS limit is actually obtained by keeping the prod-
uct uκLyκ fixed, involving the analytic scaling field [10,33],
the third-order correction in Eq. (33) gives rise to O(L−2yκ )
scaling corrections, with 2yκ = 7/4, which decay more slowly
than those arising from the leading irrelevant operators of the
two-dimensional Ising universality class.

D. Critical crossover of the defect fidelity

A discussion of the FSS behavior of the ground-state fi-
delity associated with homogeneous variations of the system
Hamiltonian, within the critical region (around g = gc), can
be found in Refs. [10,51]. Extending these scaling arguments
to the case of localized variations, we arrive at a scaling
hypothesis for the critical nonanalytic part at the CQT and
around κ = 0:

A(L, g, κ, δκ )sing ≈ A(W, K, δK ), δK ≡ δκ Lyκ . (34)

The behavior of its susceptibility A2 is then obtained from
Eq. (34), by expanding A in powers of δK , and matching it
with Eq. (17):

A2(L, g, κ )sing ≈
(

δK

δκ

)2

A2(W, K ) = L2yκA2(W, K ) .

(35)
The above asymptotic FSS behaviors are expected to be ap-
proached with O(L−2yκ ) corrections; see Sec. IV C.

Note that for finite values of κ > 0, i.e., keeping κ > 0
fixed in the large-size limit, the above FSS behavior is not
expected to hold anymore. Indeed, since the asymptotic FSS
behavior does not change for any κ > 0, we simply expect
that the variation of the fidelity is much smoother, due to the
fact that the ground states for κ > 0 and κ + δκ are expected
to differ only in a finite region around the defect. Therefore,
its susceptibility is not expected to diverge with increasing the
lattice size:

A2(L, g, κ > 0) = O(1) . (36)

The above behaviors of the fidelity and its susceptibility
will be confirmed by numerical computations.

V. CRITICAL CROSSOVER DRIVEN BY BOUNDARY
DEFECTS

We now discuss the case of Ising systems with boundaries,
such as that defined in Eq. (3) with OBC, in the presence of
parallel boundary fields as those in Eq. (4), which also give
rise to a relevant perturbation. Changing ζ from 0 to ∞ moves
the system from the symmetric OBC to the PFBC that violate
the global Z2 symmetry. The main difference with the case
of defects within rings is that the RG dimension of boundary
fields ϕb differs from that of fields in the bulk. Indeed, within
the two-dimensional universality class, its scaling dimension
turns out to be yb = 1/2 [14–16], instead of the bulk value
yϕ = 1/8. Thus, using the same formula (22), after replacing
yϕ with yb, we obtain

yζ = z − yb = 1/2 . (37)

The corresponding scaling variable is given by

Z = ζ Lyζ . (38)

The critical crossover driven by the boundary fields is ex-
pected to hold in the large-L limit keeping Z fixed, thus for
ζ ∼ L−yζ .

The critical crossover of the gap is described by the scaling
equation [32]

�(L, g, ζ ) ≈ L−zD(W, Z ) . (39)
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On the other hand, its finite-ζ behavior scales as

�(L, g, ζ > 0) ≈ L−zDpfbc(W ) (40)

independently of ζ > 0, where Dpfbc(W ) is the FSS function
of the gap with PFBC. We again expect that

D(W, Z → ∞) = Dpfbc(W ) . (41)

Therefore, systems with boundary defects of finite strength
ζ > 0 develop the same FSS of those with PFBC, indepen-
dently of the actual value of ζ .

The scaling behavior of Eqs. (39) and (40) has been analyt-
ically shown to hold in Ref. [32]. In particular, at the critical
point g = gc, the critical crossover interpolates between the
value D(W, Z = 0) = π [corresponding to the amplitude of
the gap for systems with OBC; cf. Eq. (5)] to D(W, Z =
∞) = 4π (corresponding to the amplitude of the gap for
systems with PFBC).

The magnetization and correlation functions are expected
to behave as

Mx(x, L, g, ζ ) ≈ L−yϕMx(X,W, Z ), (42)

G(x, y, L, g, ζ ) ≈ L−2yϕG(X,Y,W, Z ), (43)

where X = x/L and Y = y/L. Analogous FSS equations are
obtained for the other quantities defined in Sec. III. For
example, we may consider the most natural definition of
second-moment correlation (8), taking ξ ≡ ξx with x located
at the center of the chain, and obtain

Rξ (L, g, ζ ) ≡ ξ/L ≈ Rξ (W, Z ) . (44)

We can also derive scaling formulas for the ground-state fi-
delity associated with the boundary fields, analogous to those
for the Ising ring with one defect, by replacing K with Z , and
δK with δZ:

A(L, g, ζ , δζ )sing ≈ A(W, Z, δZ ), δZ ≡ δζ Lyζ , (45)

A2(L, g, ζ ) ≈ L2yζA2(W, Z ) . (46)

Note that even boundary defects give rise to a power-law
growth of A2 when increasing L, but this is significantly
slower than the case of bulk defects; indeed, A2 ∼ L since
yζ = 1/2. Again for finite fixed ζ we expect A2(L, g, ζ ) =
O(1).

The power-law approach to the above asymptotic FSS be-
haviors can be inferred by the analysis reported in Sec. IV C.
The leading scaling corrections are generally expected to be
O(L−1), arising from the presence of the boundaries and the
analytic expansion of the scaling field associated with ζ (since
2yζ = 1). A slower approach should still characterize the
observables involving second-moment correlation length, as
L−3/4, due to background contributions.

We finally note that Ising chains with OBC and in the pres-
ence of symmetry-breaking defects in the bulk (i.e., far from
the boundaries), such as those described by the Hamiltonian
term (2), are expected to develop a critical crossover behavior
driven by the defect as well, similar to that of quantum Ising
rings, discussed in Sec. IV. While the scaling behavior is still
controlled by the RG dimension yκ = 7/8, the corresponding
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LΔ(L)
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L=20
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2.550

2.552

π/2

4π

K=1

g=1

FIG. 1. Critical crossover of the gap �(L, g, κ ) at the critical
point gc = 1. The collapse of the data of Lz � vs K = κLyκ (with z =
1 and yκ = 7/8) supports the scaling behavior reported in Eq. (24).
The dashed lines indicate the limiting cases: D(0, K → 0) = π/2
and D(0, K → ∞) = 4π , which can be obtained from Eq. (5), cor-
responding to PBC and PFBC. The inset shows that the scaling
corrections at K = 1 are consistent with the expected O(L−7/4) sup-
pression; see Sec. IV C (the gray line is drawn to guide the eye).

scaling functions are expected to differ, because they inter-
polate between a system with OBC (when κ = 0) and the
κ → ∞ limit consisting of a system with two subsystems
of size L1 and L2 (where L1, L2 are the distances of the de-
fect from the boundaries) having mixed boundary conditions:
OBC on one side and fixed boundary conditions on the other
one (corresponding to the position of the defect).

VI. NUMERICAL RESULTS

To support the scaling behaviors put forward in the previ-
ous sections, we now present some numerical results, obtained
by exact diagonalization (up to L = 20 sites) and by density-
matrix renormalization group (DMRG) for larger systems (up
to L = 40; see the Appendix for details of the implementation
for systems with PBC). Note that, unlike Ising chains in the
presence of symmetry-preserving bond defects, we cannot
exploit the Jordan-Wigner transformation to map the system
into a quadratic fermionic model, due to the presence of Z2

symmetry-breaking longitudinal fields. Indeed, the nonlocal-
ity of the Jordan-Wigner transformation cannot be reabsorbed
in the presence of the symmetry-breaking defect given in
Eq. (2), giving rise to nontrivial string terms of fermionic
operators.

A. Critical defect crossover in Ising rings

We first report results supporting the critical crossover be-
havior driven by the symmetry-breaking defect (2) in quantum
Ising rings, as discussed in Sec. IV. These are obtained around
the critical point gc = 1; actually most of them are exactly at
g = gc.

The energy difference between the two lowest levels (i.e.,
the gap) at the critical point is reported in Fig. 1. The behavior
of the various curves for different sizes L matches the scaling
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FIG. 2. Critical crossover of the average magnetization Ma, de-
fined in Eq. (6), at the critical point gc = 1. The figure shows the
rescaled data Lyϕ Ma vs K = κLyκ , with yϕ = 1/8 and yκ = 7/8. The
collapse of the data for various lattice sizes along a universal FSS
curve supports the scaling in Eq. (25b). The inset shows that the
scaling corrections at a fixed value K = 1 are consistent with the
expected O(L−7/4) behavior; see Sec. IV C (the gray line is drawn to
guide the eye).

ansatz (24). In particular, data for L �(L) as a function of
K = κLyκ range from π/2 to 4π , consistent with the crossover
from PBC to PFBC. In fact, the amplitude C� of the leading
behavior � ≈ C�/L at the critical point goes from C� = π/2,
for systems without boundaries corresponding to κ = 0, to
C� = 4π , in the K → ∞ limit of PFBC corresponding to
finite κ .

In Fig. 2 we report some results for the averaged mag-
netization defined in Eq. (6) at g = gc. While the bare data
points behave differently for various system sizes, a nice data
collapse when plotting L1/8Ma vs K = κL7/8 is observed, thus
supporting the FSS ansatz (25b). Leading scaling corrections
are O(L−7/4), coming from the analytical expansion (33) of
the defect scaling field.

Further evidence of the critical crossover is provided by a
numerical analysis of the ratio

ξa

ξa,0
≡ ξa(L, g = gc, κ )

ξa(L, g = gc, κ = 0)
= Rξ (L, g = gc, κ )

Rξ (L, g = gc, κ = 0)
, (47)

presented in Fig. 3. Note that the analysis of the ratio ξa/ξa,0,
instead of ξa/L, turns out to be cleaner, because it is subject
to smaller scaling corrections, somehow suppressing those
that are already present at the critical point for κ = 0. The
data appear to approach an asymptotic scaling function, in
agreement with the scaling equation (28b). In this case, the
leading scaling corrections to Rξ are O(L−3/4) (see also the
inset of Fig. 3) coming from the analytical background at the
CQT (see the discussion in Sec. IV C).

The above results definitely confirm the scaling predic-
tions for the critical crossover behavior driven by the defects,
moving away from the translation-invariant and Z2-symmetric
FSS of the critical Ising ring (1).
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L=14
L=16
L=18
L=20

0 0.05 0.1 0.15 0.2

L
-3/4

1.11

1.12 K=1

FIG. 3. The correlation length ξa, defined in Eq. (10), along the
critical defect crossover at the critical point gc = 1. We plot the ratio
ξa/ξa,0 vs K = κLyκ , where ξa,0 is the correlation length at κ = 0;
see also Eq. (47). The data approach an asymptotic scaling function,
in agreement with the scaling equation (28b). The inset shows that
the scaling corrections at a fixed value K = 1 are consistent with the
asymptotic power-law O(L−3/4) suppression; see Sec. IV C. (the gray
line is drawn to guide the eye).

1. The defect ground-state fidelity

Interesting features of the critical crossover driven by de-
fects emerge when looking at the ground-state fidelity [cf.
Eq. (16)]. As discussed in Sec. IV D, we expect that the
fidelity, and in particular the associated susceptibility (18),
exhibits qualitatively different behaviors around κ = 0 and for
any finite and fixed κ > 0.

In Fig. 4 we report some results for the fidelity A at the
critical point and for κ = 0, as a function of δκ . The top
panel shows the fidelity as a function of δκ , which appear
suppressed at smaller and smaller values of δκ , when in-
creasing the system size. Plotting the same data vs δK =
δκLyκ , with yκ = 7/8, a nice collapse toward an asymptotic
curve emerges, thus supporting the FSS behavior (34) (bot-
tom panel). Corrections to the asymptotic FSS are suppressed
consistently with the power law L−7/4, as expected from the
analysis of Sec. IV C.

Figure 5 shows results for the fidelity susceptibility A2

at the critical point g = gc [52]. They confirm the scaling
Eq. (35), and in particular that in the critical crossover regime
A2 diverges as L2yκ = L7/4 with increasing L. This shows that,
at the critical point and around κ = 0, the impact of the defect
(2) on the system ground state is quite strong.

Finally we have also done the analogous computations
for κ = 1, therefore relatively far from the critical crossover
region where κ ∼ L−yκ is involved in the critical defect
crossover around κ = 0. As shown in Fig. 6, the ground-state
fidelity for κ = 1 and δκ > 0 becomes rapidly independent
of L with increasing system size. This implies that the
corresponding fidelity susceptibility A2 remains finite with
increasing L, as predicted by Eq. (36). This behavior turns out
very different from the anomalous L2yk divergence character-
izing the critical crossover behavior around κ = 0.
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FIG. 4. The ground-state fidelity (16) associated with the defect,
at the critical point gc = 1. The top panel reports the plain data for
κ = 0 as a function of δκ , showing that they tend to get suppressed
at smaller and smaller values of δκ when increasing the size of the
system. The bottom panel shows them vs δK = δκLyκ . The clear
collapse of the curves definitely supports the scaling behavior (34).
The inset of the bottom figure shows that the scaling corrections
at δK = 1 are consistent with the expected O(L−7/4) decay; see
Sec. IV C.

B. Critical crossover arising from boundary defects

We now consider boundary defects such as those arising
from boundary fields in Ising chains; cf. Eq. (4). Some results
for the critical crossover of the gap have been already re-
ported in Ref. [32]. Here we supplement them with results for
the ground-state fidelity measuring the overlap of the ground
states for different values of the boundary-field parameter ζ .

As discussed in Sec. V, we expect a critical crossover
scenario analogous to that found for Ising rings, with the
main difference that the fidelity susceptibility is expected to
diverge as L2yζ , thus as L, with increasing the size, at criticality
and around ζ = 0. The results in Fig. 7 nicely confirm these
predictions. We also explicitly checked that corrections to the
asymptotic FSS are suppressed as L−1, as expected from the
analysis of Sec. IV C (data not shown). On the other hand,
like for bulk defects, the fidelity susceptibility for finite ζ > 0
converges to a constant. This is demonstrated by the data for
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FIG. 5. The fidelity susceptibility A2 [cf. Eq. (17)] associated
with one defect within Ising rings, at the critical point gc = 1 and
around κ = 0. Note that, by symmetry, A2 is invariant under κ →
−κ . The plain data already suggest that A2 around κ = 0 diverges
with increasing L. The inset shows a plot of L−2yκ A2 vs K = κLyκ

with yκ = 7/8, which represents robust evidence in favor of the
scaling behavior (35) and in particular the L7/4 divergence with
increasing L.

the fidelity at ζ = 1 as a function of δζ , shown in Fig. 8, which
appear to rapidly converge to a function of δζ independent
of L.

C. FSS keeping the defect strength fixed

Let us go back to the quantum Ising ring (1) with one
symmetry-breaking defect (2). As a final check of the crit-
ical crossover scenario, we provide numerical evidence that
the asymptotic FSS for κ > 0 does not depend on κ , and it
corresponds to that for κ → ∞, when the system becomes
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0.99996

0.99998

1

A

L=12
L=16
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L
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A
2
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FIG. 6. The ground-state fidelity at the critical point, for κ = 1 vs
δκ . With increasing system size, the curves become rapidly indepen-
dent of L, thus implying that the corresponding fidelity susceptibility
A2 remains finite with increasing L. This is clearly visible from the
data for A2 shown in the inset, which appear to clearly approach a
constant value with increasing L.

034139-8



CRITICAL CROSSOVER PHENOMENA DRIVEN BY … PHYSICAL REVIEW E 105, 034139 (2022)

-0.2 0 0.2 0.4

ζ
0

5

10

15

20

A
2

L=8
L=12
L=16
L=18
L=20

-1 -0.5 0 0.5 1
Z

0

0.2

0.4

0.6

0.8

A
2
L

-1

FIG. 7. The fidelity susceptibility A2, associated with the bound-
ary defects within Ising chains with OBC, at the critical point gc = 1
and around ζ = 0. Note that, by symmetry, A2 is invariant under ζ →
−ζ . The inset shows a plot of L−2yζ A2 vs Z = ζLyζ with yζ = 1/2.
The data clearly support the RG prediction that A2 diverges as L2yζ ,
within the critical crossover region, keeping Z fixed.

equivalent to an Ising chain with PFBC. In other words, the
FSS limit keeping κ > 0 fixed must be independent of κ , as
discussed at the end of Sec. IV B; see in particular Eq. (32).

To avoid problems arising from possible change of nor-
malizations of the scaling variable W , we proceed as follows.
We consider the RG invariant quantities introduced in Sec. III.
In particular, we consider Rξ ≡ Rξx, RG ≡ RGx, and U ≡ Ux;
cf. Eqs. (11), (12), and (14), with x given by the position of
the defect. Their FSS behavior for κ > 0 must generally be
R(L, g) ≈ R(W ) independently of κ . Since Rξ is a monotonic
function, for κ > 0, we may also write

U (L, g, κ ) ≈ FU (Rξ ), RG(L, g, κ ) ≈ FG(Rξ ), (48)
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FIG. 8. The ground-state fidelity at the critical point, for ζ = 1 vs
δζ . With increasing the system size, the curves become rapidly inde-
pendent of L, implying that the corresponding fidelity susceptibility
A2 remains finite with increasing L. This behavior is very different
from the L2yζ divergence characterizing the critical crossover behav-
ior around ζ = 0; see Fig. 7.
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FIG. 9. Plots of RG vs Rξ for κ = 1, 10. Data for κ = 1 and
κ = 10 appear to approach the same asymptotic curve. Data for
L = 32, 40 are obtained by means of DMRG.

where FU and FG depend on the universality class only, with-
out free normalizations. Numerical results in Fig. 9, for κ = 1
and κ = 10, confirm that RG approaches the same scaling
function of Rξ , independently of κ . Analogous evidence has
been found for U (not shown).

As a further check, in Fig. 10 we show data for the aver-
aged quantity Rξa defined in Eq. (11) evaluated at g = gc, for
κ = 1 and κ = 10. They show that the large-L extrapolations
using the expected L−3/4 asymptotic behavior are compatible
between κ = 1 and κ = 10, and are definitely different from
the value at κ = 0. Therefore, concerning the behavior at finite
κ > 0, outside the critical crossover regime where κ ∼ L−yκ ,
the numerical results confirm that the asymptotic FSS behav-
ior is independent of the defect strength κ > 0, whenever they
are computed keeping κ fixed.

Finally, we note that the average quantities RGa and Ua

[defined in Eqs. (13) and (15)] when plotted vs Rξa [defined
in Eq. (11)] show universal curves that look very similar when
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FIG. 10. Data for Rξa vs L−3/4 at the critical point and for κ =
1, 10, compared with the value for κ = 0 given by the exact result
R�

ξa = 0.187789 . . . (indicated by the dashed line), easily obtained
from the critical two-point function [7]. We also show some data
at κ = 0 for relatively small lattice sizes, to highlight how the κ =
0 data approach the asymptotic exact value with increasing L. The
large-L extrapolations for κ = 1, 10 are compatible with each other,
and approximately equal to R�

ξa ≈ 0.1962 (violet cross in the plot),
differing from the value at κ = 0. They support the fact that the FSS
at finite fixed κ > 0 is expected to be independent of κ .
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FIG. 11. The averaged quantities RGa vs Rξa ≡ ξa/L. The vertical
dotted black and straight violet lines represent, respectively, the R�

ξa

critical values for PBC and PFBC, corresponding to the limiting
cases of critical defect crossover for κ = 0 and κ → ∞. Although
their values at g = gc, indicated by the vertical lines, differ signifi-
cantly (see also Fig. 10), the FSS curves of the averaged quantities
turn out to be very similar when moving from κ = 0 to a finite κ .

moving from κ = 0 to a finite κ , i.e., from PBC to PFBC.
This is shown, e.g., in Fig. 11, where we plot RGa vs Rξa

for κ = 0 and κ = 10. Actually, this is quite unexpected: al-
though the values of RGa and Rξa at g = gc differ significantly
(Rξa ≈ 0.1878 for κ = 0 and Rξa ≈ 0.1962 for κ = 10), the
FSS curves of the averaged quantities for κ = 0 and κ > 0
turn out to be very close.

VII. CONCLUSIONS

We have investigated the effects of symmetry-breaking
defects at CQTs, arising from localized external fields coupled
to the order-parameter operator. At CQTs the presence of
isolated defects does not generally change the bulk power-law
behaviors of observables at large scale. However, when the
defects are the only source of symmetry breaking (i.e., the
original lattice system is strictly symmetric under the global
symmetry, without boundaries or with boundaries preserv-
ing the symmetry), they drive critical crossover behaviors
entailing substantial and rapid changes of the ground-state
and low-energy properties. The limiting cases of these critical
defect crossovers can be associated with different boundary
conditions: from boundary conditions preserving the global
symmetry to ones breaking the symmetry. Therefore, the ad-
dition of symmetry-breaking defects can drive relevant effects
in finite-size systems (or in the neighborhood of the defect),
leading to substantial changes in the finite-size behavior of the
low-energy critical modes, even in the large-size limit within
the FSS regime around the CQT. Two different situations must
be distinguished: whether the defects are located within the
bulk of the system or at the boundaries. Indeed, they lead
to scaling scenarios controlled by different RG exponents
associated with the universality class of the CQT.

The above scenario has been investigated within the
paradigmatic one-dimensional quantum Ising models in a

transverse field, whose CQT is related to the spontaneous
breaking of a global Z2 symmetry. We analyze the effects
of localized defects breaking the global Z2 symmetry, arising
from external longitudinal fields localized at one site of the
system. We consider both bulk and boundary defects.

Using standard RG arguments within FSS frameworks, we
develop a scaling theory to describe the critical crossover
behaviors driven by the symmetry-breaking defects. In par-
ticular, one localized symmetry-breaking defect in critical
Ising rings turns out to develop a critical crossover between
translation-invariant Ising rings without boundaries and Ising
systems with fixed and parallel boundary conditions. We dis-
cuss the critical crossover behavior of several observables,
such as the magnetization and the correlation function of the
longitudinal spin variables.

An effective characterization of the critical defect
crossover is achieved by analyzing the ground-state fidelity,
measuring the overlap between ground states associated with
different defect parameters; cf. Eq. (16). Its associated sus-
ceptibility is proportional to the quantum Fisher information,
which quantifies the reachable accuracy of the varying defect
parameter. The fidelity provides information on the structure
change of the ground state under variations of the defect,
whether they give rise to substantial changes involving the
whole system, or the changes remain limited to a finite region.
In particular, within the critical crossover regime, the fidelity
susceptibility diverges as a power Lε, where ε = 2yκ = 7/4
for bulk defects (yκ = 7/8 is the RG dimension of the defect
parameter) and ε = 2yζ = 1 for boundary defects (yζ = 1/2
is the RG dimension of the parameter associated with the
boundary defects). On the other hand, the fidelity suscepti-
bility remains finite, i.e., O(1), outside the critical crossover
region (where |κ| ∼ L−yκ or |ζ | ∼ L−yζ ), i.e., for defects with
finite strength. This means that a change of the defect strength,
from κ > 0 to κ + δκ with δκ 	 1, causes only local changes
of the ground state, unlike at κ = 0 where the changes involve
the whole critical system, giving rise to the divergence of the
fidelity susceptibility.

We have also presented numerical computations, obtained
by exact diagonalization and DMRG, to support the the-
oretical FSS framework describing the critical crossover
phenomena driven by symmetry-breaking defects at CQTs.
They nicely confirm the scaling theory of the critical defect
crossover.

It is worth noting that the critical crossover phenomena
driven by symmetry-breaking defects are analogous to the
critical crossovers between different fixed points of the bulk
theory, arising from a relevant perturbation at an unstable
fixed point, driving away the RG flow toward a stable fixed
point (see, e.g., Refs. [8,53]).

The critical crossover phenomena driven by defects that we
have discussed in this paper are quite general. Their emer-
gence is expected to occur in generic models at CQTs in the
presence of symmetry-breaking defects. Analogous phenom-
ena are expected in the presence of n > 1 defects located
in the bulk. Of course, for higher-dimensional systems an-
other relevant factor concerns the spatial dimension of the
defect, i.e., if it is localized at one point, along a line or
within a surface. However, the RG arguments outlined here
can be straightforwardly extended to allow for more complex
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structures of defects in higher-dimensional quantum models.
In this respect, one key feature is related to the value of the
RG dimension of the corresponding defect parameter.

For example, one may consider the effect of one symmetry-
breaking defect, such as that in Eq. (2), in the bulk of
a two-dimensional quantum Ising model with symmetric
boundary conditions, such as PBC or OBC. Then, one can
analyze the corresponding RG perturbation (19) using the RG
dimensions associated with the three-dimensional Ising uni-
versality class (see, e.g., Refs. [8,10] and references therein),
obtaining a positive RG dimension yκ for the defect param-
eter, yκ = z − yϕ = (z − η)/2 ≈ 0.482 (using z = 1 and η ≈
0.036). One then expect that one single symmetry-breaking
defect in (strictly symmetric) two-dimensional quantum Ising
system drives a critical crossover analogous to that found in
quantum Ising rings, characterized by the divergence of the
fidelity susceptibility associated with the defect (in this case
we again expect A2 ∼ L2yκ within the critical defect crossover,
with 2yκ ≈ 0.964).

Finally, the quantum-to-classical mapping [6,10] allows us
to extend the quantum scaling scenarios to classical systems
with one more spatial dimension and one more dimension of
the defect. For example, a critical crossover scenario anal-
ogous to that driven by one symmetry-breaking defect in
critical quantum Ising rings is expected to emerge in the case
of a classical two-dimensional Ising systems defined in a slab
with PBC and in the presence of a defect line that breaks the
Z2 symmetry.

We conclude by mentioning that the scaling theory put
forward in this paper, which describes the critical crossover

behaviors driven by symmetry-breaking defects, can be veri-
fied with high accuracy in spin systems with a few dozen of
qubits [as numerically done for chains of length L ∼ O(10)].
It would be tempting to check our predictions in near-term
experiments with quantum simulators operating on a limited
amount of controllable qubits [54–56].

APPENDIX: DMRG COMPUTATIONS ON CHAINS
WITH PBC

DMRG is commonly used with OBC rather than PBC,
as the former allows us to obtain more accurate numerical
results, a fact that is usually associated with the presence of
entanglement entropy in the system at hand. Nevertheless,
we used DMRG with PBC by enforcing the presence of the
additional operator

−σ̂
(1)
1 ⊗ 1̂ ⊗ · · · ⊗ 1̂ ⊗ σ̂

(1)
L (A1)

into the superblock Hamiltonian.
We have implemented a combination of the standard

two-site infinite-system and finite-system DMRG algorithms
(respectively iDMRG and fDMRG) [57,58]. Before com-
puting any observable in the fDMRG, the stability of the
ground-state energy is verified within a discrepancy of 10−8

between two sequential lattice sweeps. We have also checked
the stability of all our outcomes under increasing the bond
dimension m of the blocks. Data for κ = 1, 10, at the quantum
critical point, show small errors (smaller than the marker size,
in all the plots presented in this paper) for a relatively small
bond dimension m = 15, 12, for L = 32 and 40, respectively.

[1] K. G. Wilson, The renormalization group and critical phenom-
ena, in Nobel Lectures in Physics, edited by Ekspöng, Vol. 6
(World Scientific, Singapore, 1993).

[2] M. E. Fisher, The renormalization group in the theory of critical
behavior, Rev. Mod. Phys. 46, 597 (1974).

[3] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena,
4th ed. (Clarendon Press, Oxford, 2002).

[4] J. Cardy, Scaling and Renormalization in Statistical Physics
(Cambridge University Press, Cambridge, 1996).

[5] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Con-
tinuous quantum phase transitions, Rev. Mod. Phys. 69, 315
(1997).

[6] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge
University Press, Cambridge, 2011).

[7] P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field
Theory (Springer-Verlag, New York, 1997).

[8] A. Pelissetto and E. Vicari, Critical phenomena and
renormalization-group theory, Phys. Rep. 368, 549 (2002).

[9] H. Nishimori and G. Ortiz, Elements of Phase Transitions and
Critical Phenomena (Oxford University Press, Oxford, 2011),
chap. 10.

[10] D. Rossini and E. Vicari, Coherent and dissipative dynamics at
quantum phase transitions, Phys. Rep. 936, 1 (2021).

[11] K. Binder, in Critical Behavior at Surfaces, edited by C. Domb
and J. L. Lebowitz, Phase Transitions and Critical Phenomena
Vol. 8 (Academic Press, London, 1983), p. 1.

[12] M. N. Barber, in Finite-Size Scaling, edited by C. Domb and J.
L. Lebowitz, Phase Transitions and Critical Phenomena Vol. 8
(Academic Press, London, 1983), p. 145.

[13] H. W. Diehl, in Field-Theoretic Approach to Critical Behavior
at Surfaces, edited by C. Domb and J. L. Lebowitz, Phase
Transitions and Critical Phenomena Vol. 10 (Academic Press,
London, 1986), p. 75.

[14] I. Affleck and A. W. W. Ludwig, Universal Noninteger
‘Ground-State Degeneracy’ in Critical Quantum Systems, Phys.
Rev. Lett. 67, 161 (1991).

[15] J. Cardy and D. C. Lewellen, Bulk and boundary operators in
conformal field theory, Phys. Lett. B 259, 274 (1991).

[16] R. Chatterjee and A. Zamolodchikov, Local magnetization in
critical Ising model with boundary magnetic field, Mod. Phys.
Lett. A 9, 2227 (1994).

[17] E. Sela and A. K. Mitchell, Local magnetization in the boundary
Ising chain at finite temperature, J. Stat. Mech. (2012) P04006.

[18] R. Z. Bariev, Effect of linear defects on the local magnetization
of a plane Ising lattice, Zh. Eksp. Teor. Fiz. 77, 1217 (1979)
[Sov. Phys. JETP 50, 613 (1979)].

[19] B. M. McCoy and J. H. H. Perk, Two-Spin Correlation Func-
tions of an Ising Model with Continuous Exponents, Phys. Rev.
Lett. 44, 840 (1980).

[20] M. P. Nightingale and H. W. J. Blöte, Linear defects in two
dimensional systems: A finite size investigation, J. Phys. A:
Math. Gen 15, L33 (1982).

034139-11

https://doi.org/10.1103/RevModPhys.46.597
https://doi.org/10.1103/RevModPhys.69.315
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1016/j.physrep.2021.08.003
https://doi.org/10.1103/PhysRevLett.67.161
https://doi.org/10.1016/0370-2693(91)90828-E
https://doi.org/10.1142/S0217732394002082
https://doi.org/10.1088/1742-5468/2012/04/P04006
http://www.jetp.ras.ru/cgi-bin/e/index/e/50/3/p613?a=list
https://doi.org/10.1103/PhysRevLett.44.840
https://doi.org/10.1088/0305-4470/15/1/007


FRANCHI, ROSSINI, AND VICARI PHYSICAL REVIEW E 105, 034139 (2022)

[21] A. C. Brown, Critical properties of an altered Ising model, Phys.
Rev. B 25, 331 (1982).

[22] M. Oshikawa and I. Affleck, Defect Lines in the Ising Model
and Boundary States on Orbifolds, Phys. Rev. Lett. 77, 2604
(1996).

[23] M. Oshikawa and I. Affleck, Boundary conformal field theory
approach to the critical two-dimensional Ising model with a
defect line, Nucl. Phys. B 495, 533 (1997).

[24] M.-C. Chung, M. Kaulke, I. Peschel, M. Pleimling, and W.
Selke, Ising films with surface defects, Eur. Phys. J. B 18, 655
(2000).

[25] D. Fichera, M. Mintchev, and E. Vicari, Quantum field theories
and critical phenomena on defects, Nucl. Phys. B 720, 307
(2005).

[26] V. Eisler and I. Peschel, Entanglement in fermionic chains with
interface defects, Ann. Phys. (Berlin) 522, 679 (2010).

[27] P. Calabrese, M. Mintchev, and E. Vicari, Entanglement entropy
of quantum wire junctions, J. Phys. A 45, 105206 (2012).

[28] G. Cuomo, Z. Komargodski, and M. Mezei, Localized magnetic
field in the O(N) model, J. High Energ. Phys. 02 (2021) 134.

[29] V. Privman, editor, Finite Size Scaling and Numerical Simula-
tion of Statistical Systems (World Scientific, Singapore, 1990).

[30] M. Campostrini, A. Pelissetto, and E. Vicari, Quantum transi-
tions driven by one-bond defects in quantum Ising rings, Phys.
Rev. E 91, 042123 (2015).

[31] A. Pelissetto, D. Rossini, and E. Vicari, Out-of-equilibrium
dynamics driven by localized time-dependent perturbations
at quantum phase transitions, Phys. Rev. B 97, 094414
(2018).

[32] M. Campostrini, A. Pelissetto, and E. Vicari, Quantum Ising
chains with boundary fields, J. Stat. Mech. (2015) P11015.

[33] M. Campostrini, A. Pelissetto, and E. Vicari, Finite-size scaling
at quantum transitions, Phys. Rev. B 89, 094516 (2014).

[34] T. W. Burkhardt and I. Guim, Finite-size scaling of the quan-
tum Ising chain with periodic, free, and antiperiodic boundary
conditions, J. Phys. A: Math. Gen. 18, L33 (1985).

[35] G. G. Cabrera and R. Jullien, Universality of Finite-Size Scal-
ing: Role of the Boundary Conditions, Phys. Rev. Lett. 57, 393
(1986); Role of the boundary conditions in the finite-size Ising
model, Phys. Rev. B 35, 7062 (1987).

[36] M. N. Barber and M. E. Cates, Effect of boundary conditions
on the finite-size transverse Ising model, Phys. Rev. B 36, 2024
(1987).

[37] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement
in many-body systems, Rev. Mod. Phys. 80, 517 (2008).

[38] S.-J. Gu, Fidelity approach to quantum phase transitions, Int. J.
Mod. Phys. B 24, 4371 (2010).

[39] D. Braun, G. Adesso, F. Benatti, R. Floreanini, U. Marzolino,
M. W. Mitchell, and S. Pirandola, Quantum-enhanced mea-
surements without entanglement, Rev. Mod. Phys. 90, 035006
(2018).

[40] P. W. Anderson, Infrared Catastrophe in Fermi Gases with Local
Scattering Potentials, Phys. Rev. Lett. 18, 1049 (1967).

[41] S. L. Braunstein and C. M. Caves, Statistical Distance and the
Geometry of Quantum States, Phys. Rev. Lett. 72, 3439 (1994).

[42] M. G. A. Paris, Quantum estimation for quantum technology,
Int. J. Quant. Inf. 7, 125 (2009).

[43] P. Zanardi, M. G. A. Paris, and L. Campos Venuti, Quantum
criticality as a resource for quantum estimation, Phys. Rev. A
78, 042105 (2008).

[44] C. Invernizzi, M. Korbman, L. Campos Venuti, and M. G. A.
Paris, Optimal quantum estimation in spin systems at criticality,
Phys. Rev. A 78, 042106 (2008).

[45] M. Campostrini, J. Nespolo, A. Pelissetto, and E. Vicari, Finite-
Size Scaling at First-Order Quantum Transitions, Phys. Rev.
Lett. 113, 070402 (2014).

[46] A. Pelissetto, D. Rossini, and E. Vicari, Finite-size scaling at
first-order quantum transitions when boundary conditions favor
one of the two phases, Phys. Rev. E 98, 032124 (2018).

[47] M. Caselle, M. Hasenbusch, A. Pelissetto, and E. Vicari, Irrel-
evant operators in the two-dimensional Ising model, J. Phys. A
35, 4861 (2002).

[48] P. Calabrese, M. Caselle, A. Celi, A. Pelissetto, and E. Vicari,
Nonanalyticity of the Callan-Symanzik β-function of two-
dimensional O(N) models, J. Phys. A 33, 8155 (2000).

[49] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Two-
point correlation function of three-dimensional O(N) models:
The critical limit and anisotropy, Phys. Rev. E 57, 184 (1998).

[50] M. Caselle and M. Hasenbusch, Critical amplitudes and mass
spectrum of the 2D Ising model in a magnetic field, Nucl. Phys.
B 579, 667 (2000).

[51] D. Rossini and E. Vicari, Ground-state fidelity at first-order
quantum transitions, Phys. Rev. E 98, 062137 (2018).

[52] A2 is computed by taking differences of the ground-state fidelity
for κ and κ + δκ , with δκ 	 1. The numeric second derivative
is indeed computed with finite δκ = 10−4, inverting Eq. (17).
However, we checked the convergence for δκ → 0, so that the
corresponding relative error on the data, which is of the order
of ≈10−4 for the point at the peak for L = 20, is always much
smaller than the size of the symbols shown in Fig. 5.

[53] A. Pelissetto, P. Rossi, and E. Vicari, Crossover scaling from
classical to nonclassical critical behavior, Phys. Rev. E 58, 7146
(1998).

[54] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M.
Greiner, Quantum simulation of antiferromagnetic spin chains
in an optical lattice, Nature (London) 472, 307 (2011).

[55] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman,
K. Wright, and C. Monroe, Demonstration of a small pro-
grammable quantum computer with atomic qubits, Nature
(London) 536, 63 (2016).

[56] A. Cervera-Lierta, Exact Ising model simulation on a quantum
computer, Quantum 2, 114 (2018).

[57] S. R. White, Density Matrix Formulation for Quantum Renor-
malization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[58] U. Schollwöck, The density-matrix renormalization group in
the age of matrix product states, Ann. Phys. 326, 96 (2011).

034139-12

https://doi.org/10.1103/PhysRevB.25.331
https://doi.org/10.1103/PhysRevLett.77.2604
https://doi.org/10.1016/S0550-3213(97)00219-8
https://doi.org/10.1007/s100510070014
https://doi.org/10.1016/j.nuclphysb.2005.05.018
https://doi.org/10.1002/andp.201000055
https://doi.org/10.1088/1751-8113/45/10/105206
https://doi.org/10.1007/JHEP02(2022)134
https://doi.org/10.1103/PhysRevE.91.042123
https://doi.org/10.1103/PhysRevB.97.094414
https://doi.org/10.1088/1742-5468/2015/11/P11015
https://doi.org/10.1103/PhysRevB.89.094516
https://doi.org/10.1088/0305-4470/18/1/006
https://doi.org/10.1103/PhysRevLett.57.393
https://doi.org/10.1103/PhysRevB.35.7062
https://doi.org/10.1103/PhysRevB.36.2024
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1142/S0217979210056335
https://doi.org/10.1103/RevModPhys.90.035006
https://doi.org/10.1103/PhysRevLett.18.1049
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1103/PhysRevA.78.042105
https://doi.org/10.1103/PhysRevA.78.042106
https://doi.org/10.1103/PhysRevLett.113.070402
https://doi.org/10.1103/PhysRevE.98.032124
https://doi.org/10.1088/0305-4470/35/23/305
https://doi.org/10.1088/0305-4470/33/46/301
https://doi.org/10.1103/PhysRevE.57.184
https://doi.org/10.1016/S0550-3213(00)00074-2
https://doi.org/10.1103/PhysRevE.98.062137
https://doi.org/10.1103/PhysRevE.58.7146
https://doi.org/10.1038/nature09994
https://doi.org/10.1038/nature18648
https://doi.org/10.22331/q-2018-12-21-114
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1016/j.aop.2010.09.012

