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The free-energy landscape of the Sherrington-Kirkpatrick (SK) Ising spin glass is simple in the framework
of the Thouless-Anderson-Palmer (TAP) equations as each solution (which are minima of the free energy) has
associated with it a nearby index-one saddle point. The free-energy barrier to escape the minimum is just the
difference between the saddle point free energy and that at its associated minimum. This difference is calculated
for the states with free energies f > fc. It is very small for these states, decreasing as 1/N2, where N is the
number of spins in the system. These states are not marginally stable. We argue that such small barriers are why
numerical studies never find these states when N is large. Instead, the states that are found are those that have
marginal stability. For them the barriers are at least of O(1). fc is the free energy per spin below which the states
develop broken replica-symmetry-like overlaps with each other. In the regime f < fc we can only offer some
possibilities based around scaling arguments. One of these suggest that the barriers might become as large as
N1/3. That might be consistent with recent numerical studies on the Viana-Bray model, which were at variance
with the expectations of Cugliandolo and Kurchan for the SK model.

DOI: 10.1103/PhysRevE.105.034138

I. INTRODUCTION

The free-energy landscape of disordered systems is the key
to understanding many of their properties. In this paper we
examine the free-energy landscape of the Ising Sherrington-
Kirkpatrick (SK) model [1] within the framework of the
Thouless-Anderson-Palmer (TAP) equations [2]. The free-
energy landscape according to the TAP equations is strikingly
simple [3,4]. For each solution of the TAP equations, which
is a minimum of the free energy, there is an associated saddle
point (which has one negative eigenvalue in its Hessian), and
the number of these pairs of stationary points is exponentially
large in N , the number of spins in the system [5–7]. The
barrier to escape from the minimum is just the difference
in free energy between the saddle point and the minimum.
In Ref. [3] it was shown how one could numerically obtain
the saddle point starting from the minimum. Solutions of the
TAP equations with free energies per spin f lying within
O(1/N ) of the free energy f0 of the state of lowest free energy
correspond to pure states [8]. A feature of the TAP equations is
the existence of a critical free energy fc above which the
solutions have zero overlap with each other [6–8], whereas
in the interval f0 � f < fc, the TAP solutions have overlaps
with each other similar to those in the Parisi replica symmetry
breaking (RSB) solution [9–13].

Right from the earliest days of finding numerical solutions
of the TAP equations it has been observed that the solutions
which are found have marginal stability [14]. Marginal sta-
bility is also found in a wide range of physical systems [15].
We shall define marginal to mean that their Hessian eigen-
values, calculated at the TAP minimum, have a distribution

which has support all the way down to zero. This is surprising
since for the overwhelming majority of TAP minima (that is,
those whose f > fc) there is a gap in their Hessian spectrum
[5–7,16]. Why is it then that numerical work for large values
of N does not find these states (although they can be found
for small values of N [4])? We believe that our work in this
paper provides the explanation of this long-standing puzzle.
We shall also explain why numerical work can find states
with f < fc (and, in fact, quite close to to f0, the free energy
of the pure states) [16,17], which seem not to have RSB
features. There is again a paradox: States at free energies
f < fc without RSB features must be exponentially rare in
comparison to states which would have RSB features of their
overlaps. Nevertheless, we shall give an argument in Sec. V
that such states must exist. These states are the ones which
are found via numerical solutions of the TAP equations. The
“Edwards” procedure [18] of determining the complexity of
the TAP states at a given free energy f leads to the prediction
of a critical free energy fc [6,7] but does not describe well
what one sees in numerical solutions of the TAP equations.
In fact, what one sees is very similar to the behavior found
in quenches from infinite temperature to low temperatures
[16]. Nevertheless, the Edwards procedure seems to be the
only way one can do analytical calculations and we shall
use it extensively in this paper. The Edwards procedure for
calculating a quantity gives its average over all the TAP states
at a specified free energy f , averaged over the spin couplings
Ji j .

The height of the barrier between the minimum and the
saddle point has a probability distribution. A full treatment
would involve calculating the form of this distribution. In this
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paper we have a more modest goal, which is to establish the
N dependence of the typical barriers at particular values of
f , when averaged over Ji j . We find the answer depends on
the regime, f0 � f < fc, f = fc, or f > fc. For f > fc the
barriers at large N are very small as they decrease as 1/N2.
Right at f = fc the barriers are of O(1). The barriers of TAP
states with f > fc are so small that these states will have no
dynamical significance. In fact, in this region the barriers are
such that when solving the TAP equations at large values of N
the iterations typically take one step towards but beyond the
minimum and right over its accompanying saddle towards the
trivial and unphysical minimum at all mi = 0. It is this fact
which explains why TAP solutions with large N at f > fc are
just not found. We are confident of these results as they can
be supported via direct calculations of finite-size corrections
[19] and direct solution of the TAP equations [16].

For f < fc our results are only tentative. A little progress
has been made using a mixture of old arguments [6,7,20]
together with scaling arguments [21]. One possibility that
emerges is that for all f � fc the typical barriers are of
order N1/3. One of the key questions in the theory of spin
glasses is the N dependence of the barriers separating pure
states. The picture of an ordered state consisting of many
pure states comes from the Parisi [9–13] replica symmetry
breaking (RSB) picture of spin glasses. This is a picture which
has been established for mean-field calculations of the equilib-
rium state, and is valid for the SK model. In the RSB picture
the many pure states present have free energies which differ
by O(1). Unless the barriers between them become infinite in
the thermodynamic limit of N → ∞, the pure states will not
be well-defined: If they are finite, then thermal fluctuations
would mix the pure states together and the RSB picture of
many pure states would not be possible. There are old ar-
guments [17,22,23] suggesting that in the SK model these
barriers could depend on the number of spins N as N1/3, which
are at least consistent with the results of simulations [24–28].
Alas neither the arguments nor the simulations can at the
present time be regarded as conclusive. In fact, the most recent
and extensive simulations [29] suggest that the exponent may
even be smaller than 1/3.

The extensive simulations of Bernaschi et al. [29] were not
only done for the SK model but also for another mean-field
model, the Viana-Bray model [30]. For the latter they could
take advantage of the fact that each spin in only coupled to a
finite number of other spins to study systems with very large
values of N . They found that their results seemed to be at
variance with the expectations of Kurchan and Cugliandolo
[31,32] who argued that at least for the SK model the dy-
namics at long times would not be determined by the initial
conditions. Bernaschi et al. [29] found instead that for the
Viana-Bray model the system remained trapped in the vicinity
of its initial state for temperatures below the transition tem-
perature: The system was therefore nonergodic. They were
unsure whether their results would extend to the SK model
for there, because each spin is coupled to all the other N − 1
spins the computation is slow which prevented them studying

large values of N . It would be rather disconcerting if two
different types of mean-field model were to give fundamen-
tally different results. We wanted to determine the barriers for
f < fc for the SK model to see if there were large barriers for
all TAP states with such free energies, just as there must be
between the pure states. Our conclusion in this study is that
indeed the barriers might be large for f < fc (of order N1/3)
when the SK model would also be nonergodic just like the
Viana-Bray model. In Sec. IV other possibilities for f < fc

are also outlined.
In this paper the critical value fc plays a prominent role.

TAP solutions with free energies f > fc have no overlap
with each other, while those with free energies f < fc have
overlaps with each other and when constructing the Edwards
complexity average one needs replica symmetry breaking
techniques when f < fc [6,8,33]. However, in numerical stud-
ies fc seems to be invisible [16,17]: One just converges to TAP
solutions at free energies f < fc which have no overlap with
each other. The actual value which they converge to depends
on the numerical technique used [16,17], but is always lower
than fc. In fact, in Ref. [17] we found methods which yielded
TAP solutions which were very close to f0. Why such solu-
tions with no replica symmetry breaking of their overlaps can
exist will be explained in Sec. V.

In Sec. II we present a formalism for the calculation of the
barrier height for a TAP solution. To do this we shall focus
on the Taylor series expansion in q about a TAP (minimum)
solution [see Eq. (20)], and work out the coefficient (called
c) of the cubic term and the quadratic term (called a) in the
expansion. In the large N limit, this is sufficient to determine
the (barrier) height of the saddle point above the minimum,
provided the N dependence of a and c can also be determined.
Other procedures have been used for studying barriers, etc.,
in spin glasses, notably the comprehensive paper of Ref. [33],
which involved the use of both replicas and two-group replica
symmetry breaking [34,35]. Supersymmetry methods have
also been used [36,37]. However, all these methods run into
similar difficulties when finding the N dependence of the bar-
rier heights, i.e., the N dependence of the coefficients a and c.

In Sec. III we present the main results of our calcula-
tions. The actual calculations are tedious and lengthy, so we
have relegated them to four Appendices. In Appendix A we
describe once more the Edwards-style calculation of the com-
plexity of the TAP solutions. In Appendix B we show that
in the thermodynamic limit the coefficient a is 0 (but when
f > fc it is of magnitude 1/N , as demonstrated in Sec. III).
Appendix C provides a result needed in the calculation of the
cubic term c, which is done in Appendix D.

II. THE TAP EQUATIONS AND FREE ENERGY

In this section we present the TAP equations and define
some of the quantities needed to calculate the barriers such
as the coefficients a and c. Our treatment follows closely the
procedure which we used in Ref. [3]. We write the TAP free
energy (multiplied by β = 1/(kBT )) as

Fq(mi )=−β

2

∑
i, j

Ji jmimj − N

4
β2(1 − q)2 − N ln 2+

∑
i

[
1

2
ln

(
1 − m2

i

)+mi tanh−1 mi

]
+ 1

2
β2(1 − q)

(∑
i

m2
i − Nq

)
. (1)
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FIG. 1. The functions Q(q) (continuous line) and the free energy
per spin, fq = F (q)/N , (dashed line) associated with a particular
TAP solution. The minimum and the saddle point occur where Q(q)
crosses the dotted line Q = q. The figure was obtained for N =
200 spins at a temperature T = 0.2Tc, and Tc = 1. At values of q
somewhat smaller than that at the saddle of fq (which appears as a
maximum here), the TAP equations lose their validity [2,19].

All terms but the last term are just the conventional form of
the TAP free energy [2], if q is defined to be q = ∑

i m2
i /N .

Instead the functional of Eq. (1) consists of (N + 1) variables,
the mi and q. Stationarity with respect to mi gives the TAP
equations

∂Fq(mi )/∂mi ≡ Gi

= −β
∑

j

Ji jm j + tanh−1 mi + β2(1 − q)mi

= 0. (2)

We then take the solutions of these N stationarity equations,
mi(q) and construct the functions F (q) ≡ Fq({mi(q)}) and
Q(q) = ∑

i mi(q)2/N . One readily verifies that the stationarity
equation for F (q) reproduces the standard TAP equations,
which are given by Eq. (2) but with q defined to be

∑
i m2

i /N .
An example of F (q) for a particular bond realization and
N = 200 at temperature T = 0.2Tc is plotted in Fig. 1. It is
a concrete realization of the schematic figure in the original
TAP paper [2]. The additional stationarity equation of Eq. (1),

0 = ∂Fq(mi )

∂q
= 1

2
β2

(
Nq −

∑
i

m2
i

)
, (3)

forces Q = q at the stationary points in the full (N + 1)-
dimensional space. Thus, at the minimum and saddle-point of
the free-energy function of Eq. (1) coincides with that for the
free energy of the original TAP free energy. The free-energy
barrier is then just the difference in free energies between the
saddle-point and the minimum.

It is useful to introduce the matrix

(X −1)i j = ∂Gi

∂mj
=

[
1

1 − m2
i

+ β2(1 − q)

]
δi j − βJi j, (4)

and the function g(mi ) by

g(mi ) = tanh−1 mi + β2(1 − q)mi. (5)

The susceptibility matrix of the original TAP equations, (that
is when q is defined to equal

∑
i m2

i /N) is (A−1)i j = ∂mi/∂h j .
It gives the response of the mi to an infinitesimal site de-
pendent field h j . It can be written as a sum of O(1) terms,
involving Xi j plus a term of order 1/N :

Ai j = (X −1)i j − 2β2

N
mimj . (6)

The term of order 1/N plays a very important role [3].
We shall now obtain expressions for the first three deriva-

tives of F (q) at its minimum. Thus, we are expanding about
the minimum in Fig. 1. The saddle point is the maximum of
the function F (q) in that figure. We have shown that when
N is large it is sufficient just to determine the first three
derivatives to calculate the barrier height [16]. In Eq. (1) we
were regarding {mi} and q as independent variables. However,
when expanding the free energy about its the minimum, the
{mi} at the minimum are q dependent, because the TAP equa-
tions {Gi = 0} link them.

A. The first derivative

The function F (q) has first derivative

dF (q)/dq =
∑

i

∂Fq({mi})

∂mi

∂mi

∂q
+ ∂Fq({mi})

∂q

=
∑

i

Gi
∂mi

∂q
+ ∂Fq({mi})

∂q
. (7)

From Eq. (1) we have

∂Fq({mi})

∂q
= 1

2
β2

(
Nq −

∑
i

m2
i

)
. (8)

On using Eq. (2) one can see that the first term in Eq. (7) is
zero. Hence,

dF (q)

dq
= β2

2

(
Nq −

∑
i

m2
i

)
. (9)

Thus, at stationary points where Q = q, this derivative is zero
according to Eq. (3).

B. The second derivative

Differentiating Eq. (7) with respect to q

d2F (q)

dq2
=

∑
i

(
dGi

dq
∂mi/∂q +

∑
i

Gi∂
2mi/∂q2

)

+ d

(
∂Fq({mi})

∂q

)
/dq. (10)

Because Gi(q) = 0 for all values of q, total derivatives like
dnGi/dqn = 0, for any value of n. Thus, the top line of
Eq. (10) gives zero.
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From Eq. (9) the second line of Eq. (10) is

d

(
∂Fq({mi})

∂q

)
/dq = 1

2
β2

(
N − 2

∑
i

mi∂mi/∂q

)
. (11)

Note that the partial derivative of Gi with respect to q is

∂Gi/∂q = −β2mi. (12)

Hence,

∂mi/∂q ≡ vi = β2
∑

j

Xi jm j, (13)

which follows from differentiating the stationarity equa-
tion Gi = 0 with respect to q and noting that dGi/dq = 0 at
the stationary point. Thus, the second derivative is finally

d2F (q)

dq2
= 1

2
β2(N − 2

∑
i

mi∂mi/∂q), (14)

which is equivalent to

d2F (q)/dq2 = Nβ2

2
(1 − ∂Q/∂q)

= Nβ2

2
(1 − 2β2H ) ≡ Na, (15)

where

H = 1

N

∑
i, j

miXi jm j . (16)

In Appendix B we will show that (1 − 2β2H ) vanishes as
N → ∞. For finite values of N it is of order 1/N when f > fc.
We shall argue that it is of order 1/N1/3 for all f � fc.

C. The third derivative

Using Eqs. (10) and (11) the third derivative can be seen
to be

d3F (q)/dq3 = −β2
∑

i

∂ (mi∂mi/∂q)/∂q

= −β2
∑

i

(∂mi/∂q)2 − β2
∑

i

mi∂
2mi/∂q2.

From Eq. (13), ∑
j

X −1
i j ∂mj/∂q = β2mi, (17)

so

β2∂mi/∂q =
∑

j

[
δi j

(
2mi(

1 − m2
i

)2 ∂mi/∂q − β2

)
∂mj/∂q

+ X −1
i j ∂2mj/∂q2

]
.

Hence,

∂2mi/∂q2 =
∑

j

Xi j

[
2β2∂mj/∂q − 2mj(

1 − m2
j

)2 (∂mj/∂q)2

]
.

(18)

Hence,

d3F (q)/dq3 = N

[
− 3β2

N

∑
i

v2
i + 1

N

∑
i

2miv
3
i(

1 − m2
i

)2

]

≡ Nc. (19)

We shall show in Appendix D that c is of O(1) for f � fc.
To summarize: The TAP free-energy landscape for the

Ising SK spin glass is very simple. It consists of an expo-
nentially large number of minima and their associated index
one saddles. The barrier height is the difference in free energy
between the saddle-point and the minimum, as in Fig. 1. For
N large, it is possible to obtain this height from the second and
third derivatives of the free energy, a and c, calculated at the
minimum q = qm, if N is large,

F (q) − F (qm) = N

(
a

2
(q − qm)2 + c

6
(q − qm)3

)
. (20)

The coefficient a is given in Eq. (15) and the coefficient c is
given by Eq. (19). One can determine the N dependence of
the barrier heights B if one knows the N dependence of the
coefficients a and c and this is what is discussed in the next
section.

III. BARRIER HEIGHTS FOR f � fc

In this section we state our main results for the region
f � fc. Our basic approach is to calculate the coefficients a
and c using the methods previously employed to obtain the
complexity (the calculation of which is briefly described in
Appendix A).

The value of q at the saddle point, qs, can be calculated by
finding when dF (q)/dq = 0 in Eq. (20) and is

qs = qm − 2a

c
. (21)

Notice that because a and c are positive qs < qm and this
feature is also visible in Fig. 1.

We shall find that at least for minima whose f � fc, that
the cubic coefficient c is finite and of O(1) and right at f = fc

takes the value 2.439723β2 according to Appendix D.
The quadratic coefficient a is of order O(1/N ) for f > fc

[see Eq. (25)] and is O(1/N1/3) at f = fc [see Eq. (26)]. Then
qs is less than qm by O(1/N ) for f > fc. Thus, in the large N
limit the saddle and the minimum will merge together.

The higher derivatives of F (q) have been neglected in
Eq. (20). The extent to which this is a good approximation
for values of N < 320 is discussed to some extent in [16]. For
large values of N , when qs → qm, it could be expected to be
an excellent approximation. The barrier height B is then

B ≡ F (qs) − F (qm) = N
2a3

3c2
. (22)

Hence, B is of O(1/N2) for f > fc but right at fc it is of O(1).
Our numerical work suggest that once over the saddle in the
direction away from the minimum one often plunges down
towards the paramagnetic solution of the TAP equations, q =
0 and mi = 0. This has a lower free energy that the minimum
when T < Tc but lies however in the region of parameter space
where the TAP equations have no validity [2,19,38].
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In Ref. [3] (see also Ref. [36]), we suggested that vi ≡
β2 ∑

j Xi jm j was proportional the lowest eigenvalue of the
Hessian matrix (inverse susceptibility matrix) Ai j , where
Ai j = (X −1)i j − 2β2mimj/N . The smallest eigenvalue of A,
λmin, must be such that

λmin �
∑

i j viAi jv j∑
i v

2
i

. (23)

Then

λmin � β2H (1 − 2β2H )∑
i v

2
i /N

. (24)

Because the coefficient a of the quadratic term in Eq. (20) is
also proportional to (1 − 2β2H ), Eq. (24) indicates that the
route from the minimum to the saddle point must be starting
from the minimum in the direction of the smallest eigenvector
vi. For TAP solutions with f > fc we argue below that the
finite-size scaling form is

(1 − 2β2H ) ∼ 1

N ( f − fc)2
, (25)

when N ( f − fc)3 � 1. In the opposite limit N ( f − fc)3 → 0,

(1 − 2β2H ) ∼ 1

N1/3
. (26)

In Appendix C we show that
∑

i v
2
i /N ∼ 1/xp, where

xp = 1 − β2

N

∑
i

(
1 − m2

i

)2
. (27)

As f approaches fc, xp ∝ ( f − fc) and right at fc, xp ∼
1/N1/3 ( fc is determined by finding where xp becomes zero
as f is decreased). The finite-size scaling form is

xp = ( f − fc)F (( f − fc)N1/3), (28)

for f > fc: The crossover function F (x) goes to a constant as
x → ∞ and goes like 1/x as x → 0 so right at f = fc, xp ∼
1/N1/3. We suspect that it has the same 1/N1/3 dependence
too for all f < fc, right down to and including the pure states.

Then using Eq. (24) the smallest eigenvalue of the Hessian
matrix for f > fc is

λmin ∼ 1

N ( f − fc)
, (29)

which is a “null” eigenvalue in the large N limit. The other
N − 1 eigenvalues are separated from it by a finite gap
x2

p/(4p) [14,16,38], where

p = β3

N

∑
i

(
1 − m2

i

)3
. (30)

p is finite at f = fc. The null eigenvalue is a consequence
of a broken supersymmetry [36]. The scaling form of λmin as
f → fc is

λmin = 1

N ( f − fc)
F̃[( f − fc)N1/3], (31)

which gives λmin ∼ 1/N2/3 right at f = fc. For f > fc, there
is a finite band gap above the null eigenvalue starting at
x2

p/(4p) [16] which using the crossover form is of order

1/N2/3 right at f = fc. Thus, for f = fc the band gap dis-
appears and the null eigenvalue becomes just the lowest
eigenvalue of the band.

These estimates are consistent with the density of states of
the A matrix, which is of the form ρ(λ) ≈ D

√
λ for small λ

[14] at f = fc. One can obtain λmin via

1 = N
∫ λmin

0
dλ D

√
λ, (32)

which also gives λmin ∼ 1/N2/3. This is consistent with the
band-edge estimate x2

p/(4p) as xp ∼ 1/N1/3 at f = fc. We
would also expect the same form for f < fc as at f = fc, that
is λmin ∼ 1/N2/3 and that the coefficient a of Eq. (20) is also
a ∼ 1/N1/3.

We next explain why the coefficient a is of order 1/N
for f > fc. To obtain this result we have to use the leading
correction to the TAP free energy [2,19]. (Note that this is
“controversial”; Plefka [38,39] has long advocated different
corrections which we have discussed before [3,16].) Owen’s
correction [19] is

F = Fq(mi ) − 1
4 ln[xp]. (33)

The term Fq(mi ) is O(N ) while the correction term is of O(1).
There are other correction terms which are negligible in the
finite-size scaling limit Nx3

p ∼ N ( f − fc)3 of O(1) as N � 1.
(This can be compared to the finite-size scaling combination
near Tc of the SK model Nτ 3 where τ = T/Tc − 1 [21].) The
1/N correction to the coefficient a is then

a = 1

4N

(
1

x2
p

(
∂xp

∂q

)2

− 1

xp

∂2xp

∂q2

)
. (34)

The derivatives ∂xp/∂q and ∂2xp/∂q2 are finite as xp → 0.
For example, ∂xp/∂q → 2 − 6q. Hence, the finite-size scaling
form of a is as ∼1/(Nx2

p) for Nx3
p � 1. This leads to the

barriers B being as small as O(1/N2) for f > fc. It is the
existence of such small barriers when f > fc at large values
of N which prevents one finding numerical solutions of the
TAP equations in this free-energy range.

To summarize: for TAP states with f > fc the barriers are
of O(1/N2), and are of O(1) at f = fc.

IV. BARRIERS FOR f < fc

For f < fc (that is, for solutions which have RSB like
overlaps with other solutions of free energy f ) there exists
no information from direct solutions of the TAP equations to
guide us. However, it would be possible (at least in princi-
ple) to extend the calculations presented in Appendices A,
B, C, and D into this regime. In fact, the equations just for
the calculation of the complexity (the analogues of those in
Appendix A) were written down long ago [6,8]. Solving these
equations is very difficult and has never been achieved [33],
and the only success has been for the limit f → f0. Then the
solution has very similar features to the Parisi form of q(x),
x ∈ [0, 1] [12]. In the opposite limit of f → fc, we suspect
that the solutions go over to those with replica symmetry with
the “breakpoint” x1 going to zero in this limit.

However, Eq. (21) does lead to some information. We have
suggested that for f < fc that a is of order 1/N1/3, so we
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need to find what happens to c. When f � fc we show in
Appendix D that c remains finite. A possibility for f < fc is
that c = h( fc − f )N1/6), where the crossover function h(x) is
of O(1) for x → 0, to go to a constant at f = fc, but decreases
as 1/x at large x. (The scaling combination of ( fc − f ) and
N used here parallels that for the number of steps of replica
symmetry breaking [21], where we have changed (Tc − T )
to ( fc − f ) as was suggested in [7].) This would make c of
O(1/N1/6) as N → ∞ at fixed any fixed f < fc.

Support for this possibility comes from an old result of
Dasgupta and Sompolinsky [20]. One can write

Q = 1

N

∑
i

m2
i = 1

N

∑
λ

m2
λ, (35)

where we have expressed the magnetizations in terms of
the eigenvectors of the matrix Ai j . (Actually, the authors of
Ref. [20] used instead the eigenvectors of Ji j , but Ai j is the
better choice for our argument.) We are arguing that in the
change from the minimum to the saddle goes along the lowest
eigenvector of the Ai j . The Dasgupta and Somplinsky argu-
ment, which relies on the use of replica symmetry breaking,
suggests that this lowest eigenvector made a contribution to
Q of order m2

λmin
/N ∼ 1/N1/6, which means that c must be

of magnitude O(1/N1/6), on using Eq. (21), when a is of
O(1/N1/3). Then qm − qs ∼ 1/N1/6.

In the replica treatment of the complexity there are func-
tions η(x) and η∗(x) [6,8]. η(1) = β2/N

∑〈m2
λ〉, where here

〈· · · 〉 denotes an average over all TAP solutions [6]. In the
opposite limit of x → 0, η(0) is the average over the most
“distant” solutions in solution space and it is those which
Dasgupta and Sompolinsky focused upon.

If c does go at large N as 1/N1/6 for f < fc, then the TAP
states with f < fc will have barriers which scale as N1/3, as
can be seen using Eq. (22) if a ∼ 1/N1/3.

With so many states having large barriers (there are an ex-
ponentially large number of states with f < fc), the SK model
would have the the same nonergodic properties as Bernaschi
et al. [29] found in the Viana-Bray model. The dependence of
c on N as 1/N1/6 indicates that it is zero in the thermodynamic
limit and suggests that by generalizing the calculations of
Appendix D for f < fc and including the consequences of
replica symmetry breaking it might be possible to actually
prove it. This is worth considering in light of the importance
of explaining the simulation results of Ref. [29] but would be
very challenging [33].

Another possibility could be that c stays finite when av-
eraged over all states of free energy f and only goes to zero
for the pure states. If c ∼ ( f − f0)1/6, then pure states which
have free energies per spin f larger than f0 by an amount
of O(1/N ), would be associated with barriers which grow
as N1/3 [17]. If this is the correct possibility, then the SK
model would behave as suggested by Cugliandolo and Kur-
chan [31,32]. Another possibility could be that c stays finite
on average but it acquires a very wide distribution so that at
a subset of the TAP minima the coefficient c is very small,
of order 1/N1/6. To investigate which, if any, of these pos-
sibilities is correct requires the extension of the calculations
in Appendix D into the region where f < fc, and the use of
replica symmetry breaking and the incorporation of finite N
effects.

The coefficient a always is small, dependent on some in-
verse power of N in the large N limit. Its small value is
related to the existence of the null eigenvalue. The existence
of the null eigenvalue is in a sense obvious [36,37]. This is
because the complexity, which is the log of the number of
TAP solutions is a function of temperature T and free energy
per spin f . Any increase in, say, T will cause an exponentially
large decrease in the number of TAP solutions. A TAP solu-
tion, defined here as the minimum and its associated saddle
point, will disappear through the merging of the saddle and
the minimum, which happens if a = 0. Thus, the coefficient
a must for any given solution have a value taken from its
probability distribution, and this value gives us via Eq. (21)
the value of qs − qm. In Appendix D we obtain its average
value for f � fc by using the Edwards average over the bonds
Ji j of all solutions of free energy f . The much harder task
of studying the distribution of c and the distribution of the
barriers when f < fc is a challenge for the future.

V. TAP SOLUTIONS WITHOUT RSB OVERLAPS
FOR f < fc

Our studies in Refs. [16,17] showed that numerical meth-
ods existed which produced solutions with free energies per
spin f < fc (some gave results close to f0) but no signs
of replica symmetry breaking of their overlaps. One might
wonder whether replica symmetric states with f < fc should
even exist, given that there are an exponentially large number
of solutions with f < fc with RSB features. We next give an
argument that replica symmetric states must exist with free
energies at free energies f < fc.

Our argument starts with an old paper of Bray [40]. Bray
asked what is the ordering field of the spin glass. When the
ordering field is applied to a system undergoing a transition
there is no phase transition, as for example in a ferromagnet in
a uniform field. In a spin glass a uniform field only suppresses
the transition down to the de Almeida-Thouless line [41].
However Bray discovered that application of a field along the
largest eigenvector of the Ji j matrix suppressed the transition
to much lower temperatures than the application of a uniform
field. The suggestion we would make is that a field along the
lowest eigenvector of the Ai j matrix is the ordering field. This
is also the eigenvector (see Sec. III) along which one passes
from the minimum to the saddle and is the “null” eigenvector
associated with the broken supersymmetry [36,37].

In the presence of the ordering field one is always in the
paramagnetic phase. In the paramagnetic phase the complex-
ity of the TAP solutions is zero. In zero field there is but
a unique solution, all mi = 0. In the presence of the order-
ing field there might be multiple solutions even if they are
not exponentially numerous (but we have only ever found
just one). Thus, by reducing the temperature towards zero
in the presence of the ordering field and then by turning off
the ordering field one should be able to reach the ground-state
of the SK model (for any realization of the bonds!). (Since
this is an NP hard problem, something must happen to make
this impossible, but we have not discovered what it might be).
However, the argument does illustrate that families of states
with replica symmetry must exist for f < fc.
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APPENDIX A: CALCULATION OF THE EDWARDS
AVERAGE OF THE COMPLEXITY

The formulas of Eq. (15) for the coefficient a and Eq. (19)
for the coefficient c refer to a single solution of the TAP
equations. It will explicitly depend on the bonds Ji j , and the
only way one can make progress analytically is by averaging
over the bonds. These calculations then become variants of
those used long ago for the complexity [5–7], which is related
to Ns( f ), the number of solutions (per unit free-energy range)
with free energy f = F/N , scaled by β). These calculations
will just be briefly summarized in this Appendix. Ns( f ) is
given by

Ns( f ) ≡
∫

W = N2
∫ 1

0
dq

∫ 1

−1
(dmi )δ

(
Nq −

∑
i

m2
i

)

× δ

[
N f −

∑
i

f1(mi, q)

] ∏
i

δ(Gi )|detA|, (A1)

where

f1(m, q) = − log 2 − β2(1 − q2)/4 + (m/2)tanh−1m

+ (1/2) log(1 − m2), (A2)

and Gi is given by Eq. (2) while A is the inverse susceptibility
matrix. The δ function δ(Nq − ∑

i m2
i ) enforces the condition

that Q = q and ensures that Ns( f ) is the number of minima
(or saddle-points). The expression f1(q, m), the single site
expression for the free energy, is obtained by using Gi = 0
to eliminate Ji j from Eq. (1).

In Refs. [5,6] the details of how one proceeds from
Eq. (A1) were given in detail and will not be repeated here.
One obtains the following expression for the complexity 	( f )
for f � fc:

	( f ) = 1

N
ln〈Ns( f )〉J = −λq − u f − (B + 
)(1 − q)

+ (B2 − 
2)/2β2 + ln I, (A3)

where I is defined by the integral

I =
∫ 1

−1

dm√
2πP

(
1

1 − m2
+ B

)
exp

[
λm2 + u f1(m)

− (tanh−1 m − 
m)2

2P

]
, (A4)

where P = β2q. For f < fc the “annealed” average used in
Eq. (A3) is no longer valid and one must calculate 〈ln Ns( f )〉J

(which is proportional to N), and this average then gives
results relevant to a typical system. Its determination requires
the introduction of replicas to handle the averaging over the
logarithm. It turns out also that full replica symmetry breaking
[6,8] is needed so the calculations become very heavy. Here
we shall focus on the case when f � fc when it is possible to
use the annealed average.

The parameters q,
, λ, u, B are determined from the sta-
tionarity equations for 	( f ) for given f . These are

∂	/∂λ ⇒ q = 〈m2〉. (A5)

Here 〈· · · 〉 denotes averaging over the weight function of
Eq. (A4). The variable u allows us to select the TAP solutions
with free energy per spin f . Its stationarity equation is

∂	/∂u ⇒ f = 〈 f1〉. (A6)

Continuing,

∂	/∂B ⇒ B

[
1 − β2

〈
(1 − m2)2

1 + B(1 − m2)

〉]
= 0, (A7)

∂	/∂
 ⇒ 
 = −β2

2
(1 − q) + 〈m tanh−1 m〉/(2q), (A8)

and

∂	/∂q ⇒ λ = B + 
 − 1

2q
+ 〈(tanh−1 m − 
m)2〉

2β2q2

+ uβ2q/2. (A9)

Solving these equations one finds B = 0. The values of q,
λ, 
, and u have to be determined by numerical methods. The
complexity is at its largest at u = 0. These equations are valid
provided

xp = 1 − β2〈(1 − m2)2〉 � 0. (A10)

As f → fc, it is found that xp calculated from these equa-
tions goes to zero, indicating that their validity will cease for
f < fc.

In Appendix C the “normalization”
∑

i v
2
i /N and in Ap-

pendix D the coefficient c of Eq. (19) are calculated for the
region f > fc using methods which are essentially just exten-
sions of those used to obtain the complexity.

APPENDIX B: CALCULATION OF 2β2H

In this section we shall show that in the large N limit that
2β2H = 1. This is the reason why there is a “null” eigenvalue
of the A matrix and why the coefficient a is zero in the
thermodynamic limit. Our demonstration of this is valid for
the bond-average over all solutions of free energy f , if f � fc

(although we would argue that a = 0 also for f < fc). As in
Ref. [3], we start by imagining inserting into Eq. (A1) the
identity

1 = 1√
detX

∫ ∞

−∞

∏
i

dφi√
2π

exp

[
−1

2

∑
i, j

φi(X
−1)i jφ j

]
.

(B1)
This identity holds provided the matrix X is positive definite.
We shall set

(X −1)i j = aiδi j − βJi j, (B2)

where

ai = 1

1 − m2
i

+ β2(1 − q). (B3)

The definition of H is

H = 1

N

∑
i, j

miXi jm j = 1

N

∑
i, j

〈mi〈φiφ j〉φmj〉m,J . (B4)
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The average 〈· · · 〉m,J is the average over the mi and the bonds
Ji j . To calculate H we introduce a “field” λ0 and study

Z (λ0) =
∫

W exp(βλ0

∑
i

φimi ). (B5)

Then

β2

N

∑
i, j

〈φimiφ jm j〉 = β2H = 1

N
∂2 ln Z (λ0)/∂λ2

0, (B6)

as λ0 → 0. 〈· · · 〉 is calculated here with the weight function
W . Note that 〈φimi〉 = 0, and ∂ ln Z (λ0)/∂λ0 = 0 as λ0 → 0.
The bond average is∫ ∏

(i j)

dJi jP(Ji j ) · · ·, (B7)

The δ functions of Gi can be represented in terms of inte-
grals over xi, which run from −i∞ to i∞. The terms involving
Ji j are of the form∫ ∞

−∞

∏
<i j>

dJi j (N/2π )1/2 exp

[
− N

∑
<i j>

J2
i j/2

− β
∑
<i j>

Ji j (ximj + x jmi + φiφ j )

]
detA√
detX

, (B8)

so

W ∼
∫ 1

−1

∏
i

dmi

∫ ∏
i

dxi exp

[
− 1

2

∑
i

a(mi )φ
2
i

+ β
∑
(i j)

Ji jφiφ j − β
∑
(i j)

Ji j (ximj + x jmi )

+
∑

i

g(mi )xi + · · ·
]
. (B9)

Averaging over the bonds Ji j one gets

W ∼
∫ 1

−1

∏
i

dmi

∫ ∏
i

dxi exp

[
− 1

2

∑
i

a(mi )φ
2
i

+
∑

i

g(mi )xi + β2

2N

∑
(i, j)

(ximj + x jmi − φiφ j )
2

]
.

(B10)

The sum over the pairs (i, j) can be extended to all i, j as the
diagonal terms with i = j give a negligible contribution when
N is large. Then, using Nq = ∑

i m2
i , we get

W ∼
∫ 1

−1

∏
i

dmi

∫ ∏
i

dxi exp

[
− 1

2

∑
i

a(mi )φ
2
i

+ β2q

2

∑
i

x2
i + β2

2N

(∑
i

ximi

)2

+ β2

4N

( ∑
i

φ2
i

)2

− β2

N

(∑
i

φimi

)2

+
∑

i

g(mi )xi

]
. (B11)

The terms in the determinant det X {Ji j} are effectively
shifted to det X {Ji j − β

N (ximj + x jmi − φiφ j )}, and the trans-
lation of the Ji j by terms of order 1/N in the matrix elements

of Xi j is negligible, allowing the determinant to be separately
averaged. (The vanishing of B is then consistent with this
neglect.)

The square terms are simplified by the Hubbard-
Stratonovich identity

exp(a2/2) =
∫ ∞

−∞

dx√
2π

exp(−x2/2 + ax). (B12)

We uncouple the square terms involving (
∑

i ximi )2 as fol-
lows:

exp

[
β2

2N
(
∑

i

ximi )
2

]
=

√
N

2π

∫
dV exp

[
− NV 2

2

+ V β
∑

i

mixi

]
. (B13)

The square terms involving (
∑

i φi )2 as follows:

exp

[
β2

4N

(∑
i

φ2
i

)2]
=

√
N

π

∫
dρ exp

[
− Nρ2

+ ρβ
∑

i

φ2
i

]
. (B14)

The cross-term involving (
∑

i φixi )(
∑

j φ jm j ) is uncoupled
via

exp

(
− β2

N

∑
i

φixi

∑
j

φ jm j

)

= N

π

∫
dη dη∗ exp

[
− Nηη∗ + iβη

∑
i

φixi

+ iβη∗ ∑
i

φimi

]
. (B15)

The integrals over V , ρ, and R (see Ref. [5]) are done
by steepest descents. Set V = −β(1 − q) − 
/β and 2R =
β(1 − q) − B/β, where detX−1 = ∏

i(ai − 2βR) exp(2NR2).
Similarly, 2ρ = β(1 − q) − B̃/β. (We expect B = 0, B̃ = B
as λ0 → 0 when B and B̃ satisfy the same equations.) Then
doing the xi integrals (which are up the imaginary axis)

Z (λ0) ∼
∫ ∏

i

dφi exp

[
βλ0

∑
i

φimi − Nηη∗

− 1

2

∑
i

ã(mi )φ
2
i + i

∑
i

βη∗φimi

− 1

2β2q

∑
i

(g̃(mi ) + iβηφi )
2

]
. (B16)

Note

g̃(mi ) = tanh−1 mi + β2(1 − q)mi + βV mi

→ tanh−1 mi − 
mi, (B17)

while

ã(mi) = 1

1 − m2
i

+ B. (B18)
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Doing the integrals over φi one gets

Z (λ0) ∼
∫ ∏

i

dmi exp

[
− 1

2

∑
i

log

[
ã(mi ) − η2/q

ã(mi )

]

− Nηη∗ − 1

2β2q

∑
i

g̃(mi )
2

+
∑

i

(iβη∗mi − i(η/βq)g̃(mi ) + βλ0mi )2

2(ã(mi ) − η2/q)

]
. (B19)

Set Z (λ0) = exp(N /(Nβ2), and η = β2qη̃. Note that η̃ and
η∗ are of order λ0. Then to order λ2

0,

N /(Nβ2) = − A3η
∗2

/2 − η̃2[A2 − β2q(1 − q)]/2

+ η̃η∗(A1 − q) + iη∗λ0A3 − iη̃λ0A1 + λ2
0A3/2.

(B20)

The coefficients are as in Ref. [3]:

A1 = 〈(1 − m2)m(tanh−1 m − 
m)〉, (B21)

A2 = 〈(1 − m2)(tanh−1 m − 
m)2〉, (B22)

A3 = 〈m2(1 − m2)〉. (B23)

We find useful the identity

Maxx,y[−ax2/2 − by2/2 + cxy + dx + ey]

= bd2 + ae2 + 2cde

2(ab − c2)
. (B24)

The maximum occurs at

x = bd + ce

ab − c2
(B25)

and

y = ae + cd

ab − c2
. (B26)

Then

N /(Nβ2) = λ2
0A3q2

2(q − A1)2 + A3[β2q(1 − q) − A2]
, (B27)

so

2β2H = 2β2A3q2

(q − A1)2 + A3[β2q(1 − q) − A2]
. (B28)

This can be shown to equal 1 at the stationary point by use of
the argument sketched below.

In Ref. [3] it was demonstrated that 1 = 2β2H by solving
the stationarity equations numerically to obtain the quantities
in Eq. (B28). Here we shall show that it follows directly from
the stationarity Eqs. (A5)–(A9). With B = 0, Eq. (A4) is

I =
∫ 1

−1

dm√
2πqβ

1

1 − m2
exp

[
λm2 + u f1(m)

− (tanh−1 m − 
m)2

2β2q

]
. (B29)

On integrating by parts we get

I = −
∫ 1

−1

dm√
2πqβ

tanh−1 m

[
2λm + u f ′

1(m)

− 1

β2q
(tanh−1 m − 
m)

(
1

1 − m2
− 


)]

× exp

[
λm2 + u f1(m) − (tanh−1 m − 
m)2

2β2q

]
. (B30)

This can be rewritten as

−1 = 2λ〈m(1 − m2) tanh−1 m〉
+ u

2
〈(1 − m2)(tanh−1 m)2〉 − u

2
〈m tanh−1 m〉

− 1 − 


β2q

[〈(tanh−1 m)2〉 − 
〈m tanh−1 m〉]
− 


β2q
〈m2 tanh−1 m(tanh−1 m − 
m)〉. (B31)

This can be put in terms of the coefficients A1, A2, and A3

and with the help of the saddle-point equations themselves
simplifies to the relation

0 =
(

2λ + 
u + 
2

β2q

)
(A1 − q)

+
(

u

2
+ 


β2q

)
[A2 − β2q(1 − 3q)] + 


(
2λ + 
u

2

)
A3.

(B32)

Similarly, integration by parts gives

I〈1 − m2〉 =
∫ 1

−1

dm√
2πβ2q

exp

[
λm2 + u f1(m)

− (tanh−1 m − 
m)2

2β2q

]

= −
∫ 1

−1

dm√
2πβ2q

m

[
2λm + u f ′

1(m)

− tanh−1 m − 
m

β2q

(
1

1 − m2
− 


)]

× exp

[
λm2 + u f1(m) − (tanh−1 m − 
m)2

2β2q

]
.

(B33)

This can be reduced with the help of the stationarity equa-
tions to

0 =
(

2λ + 
u

2

)
A3 +

(
u

2
+ 


β2q

)
(A1 − q). (B34)

Then using Eqs. (B32) and (B34) the right-hand side of
Eq. (B28) can be shown to equal unity.
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APPENDIX C: CALCULATION OF THE NORMALIZATION Nz = ∑
i v

2
i /N

Recall that vi is defined as

vi = ∂mi/∂q = β2
∑

j

Xi jm j ; (C1)

in this Appendix we shall obtain its “normalization,”

Nz = 1

N

∑
i

v2
i = β4

N

∑
i

∑
j

∑
k

Xi jm jXikmk . (C2)

This quantity plays an important role in our calculations of λmin in Eq. (23) and also of c in Appendix D.
We will make use of the identity

1 = 1

detX

∫ ∞

−∞

∏
i

d φi√
2π

∏
i

d ρi√
2π

exp

[
− 1

2

∑
i, j

φi(X
−1)i jφ j − 1

2

∑
i, j

ρi(X
−1)i jρ j

]
, (C3)

to write

Nz = β4

N

∑
i

∑
j

∑
k

〈φiφ j〉mj〈ρiρk〉mk . (C4)

We proceed now as with the calculation of 2β2H . After bond averaging there is now a term [see Eq. (B10)],

exp

[
β2

4N

∑
i, j

(ximj + x jmi − φiφ j − ρiρ j )
2

]
= exp

[
β2q

2

∑
i

x2
i + β2

2N

(∑
i

ximi

)2

+ β2

4N

( ∑
i

φ2
i

)2

+ β2

4N

( ∑
i

ρ2
i

)2

− β2

N

∑
i

φixi

∑
j

φ jm j

− β2

N

∑
i

ρixi

∑
j

ρ jm j + β2

2N

( ∑
i

φiρi

)2]
. (C5)

We shall introduce as before the term involving V to uncouple the (
∑

i ximi )2 term, η1 and η∗
1 to uncouple the term∑

i φixi
∑

j φ jm j , and η2 and η∗
2 to uncouple the term

∑
i ρixi

∑
j ρ jm j . The term can be rewritten using

exp

[
β2

2N

( ∑
i

φiρi

)2]
=

√
N

2π

∫ ∞

−∞
d K exp

[
− NK2

2
+ Kβ

∑
i

φiρi

]
. (C6)

Like in Eqs. (B13)– (B15) we introduce three fields and compute

Z (λ1, λ2, λ3) =
∫

W exp

[
βλ1

∑
i

φimi + βλ2

∑
i

ρimi + βλ3

∑
i

φiρi

]
. (C7)

Then

NZ = ∂3 ln Z

∂λ1∂λ2∂λ3
, (C8)

in the limit when these fields go to zero. On doing the xi integrals (which are up the imaginary axis) one gets

Z (λ1, λ2, λ3) ∼
∫ ∏

i

d ρid φi
1

detX
exp

[
βλ1

∑
i

φimi + βλ2

∑
i

ρimi + βλ3

∑
i

φiρi − Nη1η
∗
i + iβη∗

1

∑
i

φimi

− Nη2η
∗
2 + iβη∗

2

∑
i

ρimi − NK2/2 + Kβ
∑

i

φiρi −
∑

i

[
(g̃(mi) + iβη1φi + iβη2ρi )2

2β2q

− 1

2
ã(mi )φ

2
i − 1

2
ã(mi )ρ

2
i

]]
∼

∫ ∏
i

d φidρi
1

detX
exp

(
− Nη1η

∗
1 − Nη2η

∗
2 − NK2/2

+
∑

i

{
iβη∗

1φimi+iβη∗
2ρimi− g̃(mi )2

2β2q
−iη1g̃(mi )φi/(βq)−iη2g̃(mi )ρi/(βq)

+ η1η2φiρi/q+βλ1φimi+βλ2ρimi+βλ3φiρi
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+ Kβφiρi − 1

2

[
ã(mi ) − η2

1/q
]
φ2

i − 1

2

[
ã(mi ) − η2

2/q
]
ρ2

i

})
. (C9)

We next use the identity of Eq. (B24) to do the integrals over φi and ρi. Set a = ã(mi ) − η2
1/q, b = ã(mi ) − η2

2/q, c =
β(K + λ3 + η1η2/(βq)), d = βλ1mi − iη1g̃(mi )/(βq) + iβη∗

1mi, e = βλ2mi − iη2g̃(mi )/(βq) + iβη∗
2mi. Then

Z ∼
∫

W
∏

i

d mi exp

{
− NK2/2 − Nη1η

∗
1 − Nη2η

∗
2 +

∑
i

[
bd2 + ae2 + 2cde

2(ab − c2)
− g̃(mi )2

2β2q
− 1

2
log

[
ab − c2

ã(mi )2

]}
. (C10)

Introduce K̃ = K + λ3 + η1η2/(βq). To quadratic order the argument of the exponential is

Arg = −N

2
[K̃ − λ3 − η1η2/(βq)]2 − Nη1η

∗
1 − Nη2η

∗
2 +

∑
i

− 1

2β2q
g̃(mi )

2+
[

bd2 + ae2 + 2βK̃de

2(ab − β2K̃2)
− 1

2
log

ã(mi )2 − β2K̃2

ã(mi )2

]
.

(C11)

We now eliminate η1, η
∗
1, η2, η

∗
2. These are of order of the λi.

We will take it that in the limits of λ1, λ2, λ3 → 0, then η1, η
∗
1 ∼ λ1 and η2, η

∗
2 ∼ λ2. The stationarity equation for K̃ then is

−N (K̃ − λ̃3) + β2K̃
∑

i

(
1 − m2

i

)2/(
1 − β2K̃2

(
1 − m2

i

)2 = 0, (C12)

where terms of higher order in the λi have been dropped. Note that here λ̃3 = λ3 + η1η2/(βq). We shall now work close to the
critical value of uc where

τ ≡ xp = 1 − β2 1

N

∑
i

(
1 − m2

i

)2
(C13)

is small. We shall use the notation τ for xp when it is small and to emphasize its similarity with the variable (1 − T/Tc) in critical
behavior phenomena. Then the equation for K̃ reduces to

λ̃3 = τ K̃ − c4K̃3 + · · · , (C14)

where c4 = β2 1
N

∑
i(1 − m2

i )4. Its solution is of the form

K̃ = λ̃3

τ
F

(
c4λ̃

2
3/τ

3). (C15)

The function F (x) goes to 1 as x → 0 and goes as 1/
√

x as x → ∞. We shall work in the limit of small x ≡ c4λ̃
2
3/τ

3.
The terms in Eq. (C14) give a contribution to Arg,

Arg/N = −τ K̃2/2 + K̃ λ̃3 + c4K̃4/4. (C16)

Then the leading contribution at small x, where K̃ = λ̃3/τ , is

Arg/N = λ̃2
3/(2τ ). (C17)

This gives a contribution to Arg of

Arg = −N
λ1λ2λ3

4τβq
, (C18)

using η1 = iλ1/2 and η2 = iλ2/2 (see below).
Put η1 = β2qη̃1 and η2 = β2qη̃2. We want the term of order λ1λ2λ3, in the limit when all the λi → 0. We thus need to

determine the dependence of η1, η
∗
1, η2, η

∗
2 on λ1, λ2 in the contribution to Arg from

Arg ∼ −Nη1η
∗
1 − Nη2η

∗
2

+ [
ã(mi)(iβη∗

2mi − iη2
g̃(mi)

βq
+ βλ2mi )

2 + η2
2ã(mi )

2q

+ ã(mi )(iβη∗
1mi − iη1

g̃(mi )

βq
+ βλ1mi )

2 + η2
1ã(mi )

2q
+ 2βK̃×

(iβη∗
2mi − iη2

g̃(mi )

βq
+ βλ2mi )(iβη∗

1mi − iη1
g̃(mi )

βq
+ βλ1mi )

]
/(2(ã(mi )

2 − β2K̃2). (C19)

This expression can be handled using the “quadratic” formulas, Eq. (B24) for maximization first in the η1, η
∗
1 sector, then in

the η2, η
∗
2 sector to get an expression involving λ1, λ2 and K̃0. We then pick out the term in λ1λ2λ3.
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The terms in η1 and η2 are decoupled as the coupling terms are small: the term in the 1 variables in Arg is

Arg/(Nβ2) = −qη̃1η
∗
1 + (1/2N )

∑
i

{(
1 − m2

i

)
[iη∗

1mi − iη̃1g̃(mi ) + λ1mi]
2 + β2q

(
1 − m2

i

)
η̃2

1

}
= (A1 − q)η̃1η

∗
1 − (1/2)[A2 − β2q(1 − q)]η̃2

1 − (1/2)A3(η∗
1 )2 + iλ1A3η

∗
1 − iλ1A1η̃1 + (1/2)A3λ

2
1 (C20)

[compare with Eq. (B20)]. Note that we do not need the changes to η1 which are of order K from including the cross term in 1
and 2 terms Eq. (C19) as such terms modify Arg in Eq. (C19) at order K2. Equation (C20) is evaluated at the stationary point
and so changes to the values of η1 and η∗

1 of order K change that expression for Arg to order K2. The maximum occurs when
η1 = iλ1/2 and η2 = iλ2/2 on using Eqs. (B25) and (B26):

η̃1 = iqA3λ1

(q − A1)2 + A3(β2q(1 − q) − A2)
= iqA3

2β2A3q2
= iλ1

2β2q
. (C21)

Then

η∗
1 − iλ1 = iλ1

A1 − q

2β2qA3
(C22)

and

η∗
2 − iλ2 = iλ2

A1 − q

2β2qA3
. (C23)

Define dvi(λ1) = βλ1mi − iη1g̃(mi )/(βq) + iβη∗
1mi then becomes

dvi(λ1) = λ1

2q

[
g̃(mi ) − mi

A1 − q

A3

](
1 − m2

i

)
. (C24)

Note that

1

N

∑
i

midv(λ1) = λ1/2. (C25)

Without the factor λ1, dvi is essentially vi.
The coefficient of the crossterm in K̃ in Eq. (C19) can be written as

cross λ1λ2 = β
∑

i

dvi(λ1)dvi(λ2)/N, (C26)

and together with the other term in λ1λ2λ3 in Eq. (C18) for λ1λ2λ3 we get

1

N

∑
i

v2
i = cross (1 − τ ) − 1/(4βq)

τ
, (C27)

which reduces as f → fc to

1

N

∑
i

v2
i = 0.813241

τ
. (C28)

Thus, the normalization term Nz diverges as ∼1/τ as τ → 0.

APPENDIX D: THE CUBIC TERM C = (1N)
∑

i 2miv
3
i /(1 − m2

i )2

As before,

vi = β2
∑

j

Xi jm j . (D1)

Note that c = C − 3β2 ∑
i v

2
i /N , according to Eq. (19). We shall write

C = 1

N

∑
i

∑
j,k,l

2β6mi(
1 − m2

i

)2 〈φiφ j〉mj〈ρiρk〉mk〈τiτl〉ml . (D2)
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Then [see Eq. (B10)]

exp

[
β2

4N

∑
i, j

(ximj + x jmi − φiφ j − ρiρ j − τiτ j )
2

]

= exp

[
β2q

2

∑
i

x2
i + β2

2N

( ∑
i

ximi

)2

+ β2

4N

( ∑
i

φ2
i

)2

+ β2

4N

( ∑
i

ρ2
i

)2

+ β2

4N

( ∑
i

τ 2
i

)2

− β2

N

∑
i

φixi

∑
j

φ jm j − β2

N

∑
i

ρixi

∑
j

ρ jm j − β2

N

∑
i

τixi

∑
j

τ jm j + β2

2N

( ∑
i

ρiφi

)2

+ β2

2N

(∑
i

φiτi

)2

+ β2

2N

( ∑
i

ρiτi

)2]
. (D3)

We introduce similar fields as in Eq. (C7):

Z (λ1, λ2, λ3, λ4) =
∫

W exp

[
βλ1

∑
i

φimi + βλ2

∑
i

ρimi + βλ3

∑
i

τimi + β3λ4

∑
i

φiρiτimi(
1 − m2

i

)2

]
, (D4)

and calculate

C = 2
∂4 ln Z (λ1, λ2, λ3, λ4)

∂λ1∂λ2∂λ3∂λ4
, (D5)

in the limit when λ1, λ2, λ3 and λ4 → 0. The term in λ4 can be handled by pretending it is imaginary and doing the Airy style
integral. In practice it is easier to progress by recognizing that in the limit when λ1, λ2, λ3 and λ4 → 0, the coupling between
the 1, 2, and 3 sectors is small and then one can approximate the term in λ4

β3λ4
φiρi〈τi〉mi(
1 − m2

i

)2 . (D6)

There are two other permutations involving 〈ρi〉 and 〈φi〉. We introduce η1, η
∗
1, η2, η

∗
2, and η3, η

∗
3 to uncouple the terms of the

form
∑

i φixi
∑

j φ jm j and terms K1, K2, K3 to uncouple the terms of the form (
∑

i ρiφi )2.
The leading order the terms in (say) K1 will be small and the stationarity equation for K1 in terms of λ4 is [see Eq. (C17)] is

−NK1 +
∑

i

β2(K1 + β2λ4dv(i)
mi(

1 − m2
i

)2 )
(
1 − m2

i

)2
. (D7)

Hence,

K1 = β2λ4

2τ
. (D8)

Then the relation between λ3 of the normalization calculation [Eq. (C14)] and its effective value as calculated from Eq. (D8) and
K1 is λ3 ≡ β2λ4/[2(1 − τ )]. (The factor (1 − τ ) arises from the difference between K and K̃ .) The rest of the calculation gives
{β2/[2(1 − τ )N]} ∑

i v
2
i . Hence, we can write

d3F/dq3 = −3β2
∑

i

v2
i +

∑
i

2miv
3
i(

1 − m2
i

)2

= − 3β2
∑

i

v2
i [1 − 1/(1 − τ )] = 3β2τ

1 − τ

∑
i

v2
i ,

(D9)

remembering the other two permutations.
With this form c stays finite as we approach fc, where τ → 0 (as

∑
i v

2
i /N ∼ 1/τ ). Right at fc, c = 2.439723β2 on using

Eq. (C28), and is finite for all f > fc.
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