
PHYSICAL REVIEW E 105, 034136 (2022)

Cleaning large-dimensional covariance matrices for correlated samples
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We elucidate the problem of estimating large-dimensional covariance matrices in the presence of correlations
between samples. To this end, we generalize the Marčenko-Pastur equation and the Ledoit-Péché shrinkage
estimator using methods of random matrix theory and free probability. We develop an efficient algorithm that
implements the corresponding analytic formulas based on the Ledoit-Wolf kernel estimation technique. We
also provide an associated open-source Python library, called SHRINKAGE, with a user-friendly API to assist
in practical tasks of estimation of large covariance matrices. We present an example of its usage for synthetic
data generated according to exponentially decaying autocorrelations.
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I. INTRODUCTION

In experimental research, when working with large data
sets, one often faces a generic problem of determining cor-
relations between multiple entities of interest, on the basis of
observed data. This problem, in its minimalistic form, can be
formulated as follows: One performs T measurements of a
statistical system with N degrees of freedom, Yi, i = 1, . . . , N ,
and collects the observations in a matrix Y = [yit ] of dimen-
sions N × T , where yit is the t th measured value of the ith
entity. The challenge lies in estimating from this data set the
underlying two-point covariances,

Ci j = 〈YiYj〉, (1)

collected in the so-called population (a.k.a. true or signal) co-
variance matrix, C = [Ci j]. (We assume throughout the paper
that the data has already been centered, 〈Yi〉 = 0.)

This setting is very general, commonly encountered in
physics, finance, genomics and bioinformatics, signal pro-
cessing and acoustics, image recognition, speech recognition,
cancer research, climatology, neuroscience, and many other
areas. Below we sketch several such occurrences, also in each
case providing relevant orders of magnitude (marked with the
symbol ∼) for N and T ; we will see that, crucially, both these
numbers are typically quite large and of comparable value.

For instance, in lattice QCD, one may consider [1]
neutron-antineutron two- and three-point correlation func-
tions, described using N (∼ a few dozen) parameters related
to the number of dynamics time steps. One simulates field
configurations on the lattice, thereby obtaining T samples
(in one version of the procedure, one sample per gauge field
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configuration, thus T ∼ a few dozen) for these correlation
functions. These samples are used to estimate the statistical
correlation matrix between the N degrees of freedom, neces-
sary for a least-squares fit to the correlation functions.

In cosmology [2], when investigating cosmic shear, i.e., the
distortion of images of distant galaxies by weak gravitational
lensing caused by the large-scale structure, the basic observ-
able is the shear two-point correlation function, computed
from products of ellipticities of galaxy pairs located within
given angular bins, N ∼ a hundred to thousands. This corre-
lation function can be estimated from mock simulations, only
T ∼ a few thousands, as they are computationally expensive.

In finance, one needs to know correlations between N
investment assets, e.g., S&P 500 stocks (N ∼ a few hundred),
to construct optimal, well-diversified portfolios, in the spirit
of Markowitz theory [3–5]. We estimate these correlations
from T daily stock returns (T ∼ hundreds to thousands, due
to stationarity requirements).

In genomics [6], one analyzes expression profiles of N
genes (N ∼ thousands, from which we may select a subset of
differentially expressed genes, say N ∼ a hundred) to describe
similarities and functional groupings of them. Each gene is
sampled T times in a microarray experiment (T ∼ a few
observation times), and the resulting data matrix Y , having
chosen some suitable gene expression measure, is called a
gene expression matrix.

In signal processing and acoustics [7], one considers an
array of N (∼ a dozen) directional sensors, and performs
so-called beamforming, combining elements of an antenna
array in such a way as to have constructive or destructive
interference along given directions. But (frequency-domain)
beamforming algorithms, such as the Capon beamformer, re-
quire knowledge of the correlation matrix between the array
outputs, which in turn is estimated from T (∼ a few dozen)
samples.
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In anomaly detection in hyperspectral images [8], one has
a sensor image comprised of N spectral bands (∼ a hundred),
i.e., collected narrow ranges of the electromagnetic spec-
trum. When the goal is detecting anomalous pixels in such
an image, one needs the Mahalanobis distance between each
(N-dimensional) pixel and their background mean that in turn
requires the correlation matrix between the bands, estimated
from a local sliding window of pixels, of length T which is not
too large to cover a homogeneous area of space (∼ hundreds).

II. COVARIANCE MATRIX ESTIMATORS

A. Classical regime

This problem of estimating the covariance matrix is thus of
paramount importance in very diverse fields of science, and
has accordingly inspired a large body of research. Actually,
a situation that is even more typical than what the above
examples show is that of N � T , meaning that one is able to
collect many more samples than there are correlated entities.
This is the textbook regime of classical multivariate statistics:

N finite and T → ∞. (2)

In this setting, the usual sample covariance estimator,

E = 1

T
YY �, (3)

converges almost surely to C, making it a strongly consistent
estimator of the population covariance matrix. In particular,
the expected value of the Frobenius norm of the difference
(E − C), i.e., the mean squared error (MSE),

L(E ) = 〈‖E − C‖2〉 = 〈Tr (E − C)2〉, (4)

tends to zero in this limit (2). From the point of view of
estimation theory, L is a loss function and measures the quality
of an estimator, here E . In the classical statistical regime, the
loss is zero for the sample estimator E (3).

B. Big data regime and noise cleaning

Yet, quite often, like in the examples outlined above, one
rather faces a different limit, that of both N and T large and of
comparable magnitude,

N, T → ∞ and
N

T
→ q, (5)

with q some positive constant. In this big data regime, the
simultaneous estimation of ∼N2 elements of C from T ∼ N
samples leads to substantial noise (variance) in the sample
estimator E , rendering the whole process close to meaning-
less. To put it in a practical context of one of the examples, if
a financial manager wanted to allocate assets according to a
Markowitz-type procedure, and used E in the relevant formu-
las (which seems a very natural thing to do!), they would be
optimizing their portfolio for noise! Clearly, more powerful
statistical methods are required [3].

In mathematical terms, the MSE loss (4) is no longer zero
in the big data regime. The challenge is then to construct other
estimators � of C which have a lower value of the loss as com-
pared to the sample estimator E . Such novel estimators would
have some of the statistical noise cleaned, rendering them

more useful in practice. (For instance, our portfolio manager
could more safely use such � in the Markowitz formulas.)
Due to the prevalence of big data scenarios in scientific and
industrial applications and the generic nature of the estimation
problem, this challenge has been met in recent years with
considerable effort. We will now outline some key results, as
well as add a new brick to the construction.

C. Bayesian approach and linear shrinkage

One way to search for estimators that are optimal in the
regime (5), i.e., at finite q, is through an approach generally
known as shrinkage. The idea is to construct estimators with
higher bias, yet much lower variance, so the MSE (4) (which
can be decomposed as bias2 + variance) is in effect reduced
(shrunk).

This concept of shrinkage has been first introduced in
the problem of estimating the mean 
μ of an N-dimensional
normally-distributed variable 
Y with given covariance matrix
σ 2I, based on a single observation 
y. The standard least-
squares (or maximum-likelihood) estimator is simply


μLS = 
y. (6)

However, James-Stein (JS) [9] demonstrated that a biased
estimator of the mean,


μJS =
(

1 − (N − 2)σ 2

‖
y‖2

)

y, (7)

in dimension N � 3, has in fact a lower MSE than (6), pre-
cisely due to reduced variance, which more than compensates
for increased bias. The existence of the JS estimator is of-
ten expressed as Stein’s paradox, that when estimating three
or more parameters simultaneously, there exists a combined
estimator with better MSE than any method handling them
separately. The paradox’s resolution lies in noticing that we
are reducing the total MSE, not that of individual components,
and so the JS estimator should really be used only when this
total error is of interest rather than the individual errors.

The JS estimator can be naturally understood within the
empirical Bayes approach (cf. [4] for an extensive discussion):

μ itself is considered a random variable, with a prior distribu-
tion assumed Gaussian of zero mean and some given variance.
Minimizing the MSE (4), where now averaging is with respect
to the joint distribution of 
Y and 
μ, leads to expression (7).
The choice of the prior is dictated by tractability: it is a
conjugate prior with respect to the Gaussian likelihood, which
means that the posterior distribution is analytically calculable;
thus the minimization problem of the loss L can be carried out
explicitly.

Let’s return now to our current problem of covariance
estimation. It has been precisely an analogous Bayesian rea-
soning that led to the first successful attempt at constructing
a shrinkage estimator of C. Indeed, assuming the likelihood
P(Y |C) to be multivariate Gaussian with covariance C, which
is a common starting point in many applications, the so-called
inverse-Wishart prior P(C) turns out to be conjugate to it.
Hence, loss (4) minimization can again be carried out ana-
lytically, and the result is the Ledoit-Wolf linear shrinkage
estimator [10]:

� = αsE + (1 − αs)I. (8)
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It interpolates (with some αs estimated from the data) be-
tween the sample estimator E and the null hypothesis, which
here is the unit matrix; the null hypothesis can also be a
more general prior matrix C0, encoding a more specific prior
belief, achieved by a generalized version of the inverse-
Wishart prior. This simple result (8) has been the workhorse
of large-dimensional estimation, and can be found in all the
applications mentioned in the Introduction.

The choice of the inverse-Wishart conjugate pair is, how-
ever, dictated more by computational tractability than any
insight gleaned from the data, and in fact the observed sample
estimator E strongly constraints the prior distribution of C;
indeed, through the Marčenko-Pastur law (41), which we dis-
cuss later on. The recent strand of research [4,11–14], initiated
by Ref. [15], thus approaches the problem of constructing
shrinkage estimators in greater generality, and with marked
attention to data. This we are now going to outline.

D. Rotationally invariant estimators and nonlinear shrinkage

Consider the eigendecomposition of the sample estimator:

E =
N∑

i=1

λi|λi〉〈λi|. (9)

As we have repeatedly stressed, in the big data regime (5),
the curse of dimensionality means that both the eigenvalues
and eigenvectors have high variance, thus concealing behind
statistical noise the underlying nature of the true C. Suppose,
in the first approximation, that we have no prior belief on
the eigenvectors of C, so our goal is merely to clean the
eigenvalues. In the absence of any preferred direction (bias)
in the eigenvector space, the only available basis is that of E .
In other words, we wish to seek a MSE-optimal estimator of
C in the space of matrices with the eigenvectors |λi〉:

� =
N∑

i=1

ξi|λi〉〈λi|. (10)

This form is called a rotationally invariant estimator (RIE)
[4] because it can alternatively be obtained from a Bayesian
argument with a prior on C invariant under orthogonal simi-
larity transformations. Note that the linear shrinkage estimator
(8) also has the same sample eigenvectors, so it belongs to
the RIE class; its eigenvalues are simple linear functions of
the sample eigenvalues, ξi = αsλi + 1 − αs. This Ledoit-Wolf
estimator, despite being better in terms of the MSE (4) than
the plain sample estimator, is nonetheless not optimal. Indeed,
we will find out that the MSE-optimal shrunk eigenvalues
ξi are nonlinear functions of λi, making (10) an example of
nonlinear shrinkage.

E. Oracle RIE

Minimizing the MSE in this space (10) is a quadratic prob-
lem, and so its solution is straightforward,

ξi = 〈λi|C|λi〉 = 1

N

N∑
j=1

c jO(λi, c j ), (11)

where we introduce the eigendecomposition of the population
covariance matrix,

C =
N∑

j=1

c j |c j〉〈c j |, (12)

as well as the overlaps between the eigenvectors of E and C,

O(λi, c j ) = N |〈λi|c j〉|2. (13)

Note that the scalar products 〈λi|c j〉 are of order 1/
√

N , and
so the factor of N makes the overlaps of order 1 in the large-N
limit. The solution (11) can be rewritten as an integral,

ξi =
∫

dcρC (c)cO(λi, c), (14)

making use of the density of eigenvalues of C,

ρC (c) = 1

N

N∑
j=1

δ(c − c j ), (15)

where δ is the Dirac delta. This form is especially convenient
in the big data limit (5).

The formal solution (11) is unfortunately not useful in
practice as it depends on the knowledge of C, which is the
very object we wish to estimate. After all, the purpose of this
research is uncovering from data as much information about
C as possible. Since it requires insight into the unknown, this
solution is called the oracle estimator.

It is, however, a documented phenomenon that a MSE-
optimal estimator may in fact happen to be independent of the
parameter being estimated. A canonical example is estimating
the population variance σ 2 of a Gaussian random variable Y .
If we restrict the search space to estimators of the form cV ,
where V = 1

T

∑T
t=1(Yt − Ȳ )2 is the sample variance estimator,

and we are looking for a constant c which minimizes the MSE,
〈(cV − σ 2)2〉, then we find c = T/(T + 1), independently of
the true σ 2.

Indeed, a similar miracle occurs for our oracle estimator
(11) in the big data limit (5). In this regime, it turns out that the
right-hand side can be entirely expressed as a function of the
sample estimator E , which can of course be easily computed
based on the data at hand, without any recourse to C. This has
been first demonstrated for uncorrelated samples by Ledoit
and Péché (LP) [15], who derived an analytic expression (53)
for the ξ ′

i s, dependent only on E rather than C.
The purpose of the current paper is to extend this result

to samples that are correlated. Our framework will be that of
random matrix theory (RMT), as well as some ideas from the
free probability calculus. In the next section, we will review
the relevant notions of these theories.

III. RANDOM MATRIX THEORY FOR COVARIANCE
ESTIMATION

A. Random matrix theory transforms

Let’s start by recalling a few definitions and relations
which are useful in the derivation below. For a self-adjoint
random matrix, an example of which is the sample covariance
estimator E , the fundamental object is the resolvent, also
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known as the Green’s function. It is a matrix-valued function
of a complex argument z:

GE (z) = (zI − E )−1. (16)

To fix attention, think of E as coming from the ensemble
of N × N matrices of the form (3), with Y a rectangular
N × T random matrix. We will also assume Y to have nor-
mally distributed entries. Our problem will then turn out to be
analytically feasible, but at the same time it will be argued
that the results are in fact representative of a wider class
of matrices; hence, this assumption is less restrictive than it
appears. Now, returning to the resolvent (16) in full generality,
one may suppose that the randomness of E makes it a random
function; however, the claim is that in the large-N limit it is
self-averaging, that is, independent of any realization of E ,
but converging to a deterministic matrix. With a slight abuse
of notation, we will keep calling that deterministic function
GE (z). In other words, the average of the resolvent over the
ensemble of E can be replaced by the resolvent for a single
realisation of E when N → ∞.

Another important object is the normalized trace of the
resolvent,

gE (z) = 1

N
Tr GE (z). (17)

In the large-N limit, it tends to the Stieltjes transform of the
eigenvalue density ρE (λ),

gE (z) =
∫

dλρE (λ)
1

z − λ
, (18)

and thereby encodes the information about the spectrum of
E . Indeed, evaluating gE (z) near the real axis, that is, at
z = λ − iε, with ε → 0+, and applying the Sokhotski-Plemelj
formula,

1

x − i0+ = p.v.
1

x
+ iπδ(x), (19)

where p.v. stands for the Cauchy principal value, yields

gE (λ − i0+) = πhE (λ) + iπρE (λ), (20)

where

hE (λ) = 1

π
p.v.

∫
dλ′ρE (λ′)

1

λ − λ′ (21)

is the Hilbert transform of the eigenvalue density. The imagi-
nary part of the above expression, on the other hand, is simply
the eigenvalue density ρE (λ).

A notion closely related to the resolvent is that of the mo-
ment generating function (MGF), also called the M transform.
In its matrix form, analogous to (16), it is defined as

ME (z) = zGE (z) − I. (22)

Its normalized trace,

mE (z) = 1

N
Tr ME (z) = zgE (z) − 1, (23)

has a useful property of generating, in the 1/z expansion, the
moments of E ,

mE (z) =
∞∑

k=1

mE ,kz−k, (24)

where,

mE ,k =
〈

1

N
Tr Ek

〉
N→∞−→

∫
dλρE (λ)λk. (25)

In the free probability theory [16,17], one commonly uses
instead of mE (z) another generating function, the ψ transform,

ψE (z) = mE (1/z), (26)

since it produces the moments as coefficients of the z expan-
sion rather than 1/z as in (24).

Let’s remark at this point that we have introduced our
objects in pairs: a matrix version and its normalized trace
version. In free probability, only the latter is relevant, and that
is because there we only deal with distributions of eigenval-
ues. Here we are, however, also concerned about eigenvectors,
and thus we need to encode the rotational information too,
which we do in the more general matrix form. This is why we
distinguish between scalar and matrix versions of the MGFs
and related objects.

B. Free multiplication and further transforms

The normalized-trace transforms of free probability, es-
pecially the ψ- ransform (26), play a central role in free
multiplication [16,17].

We are given two large (N → ∞) random matrices, A and
B; in particular, we know their respective eigenvalue densities,
ρA(λ) and ρB(λ). We assume they are free with respect to each
other; freeness is a matrix analog of statistical independence
of random variables. In such a case, it turns out it is possible to
derive the eigenvalue density of their matrix product, ρAB(λ),
based solely on the individual densities. To be more precise, A
and B should be self-adjoint, so their eigenvalues are real and
the densities are real valued, but the product AB won’t then
typically be self-adjoint. If A is positive-definite, and B has
trace different from zero, then the alternative product

√
AB

√
A

has the same moments as AB, and is self-adjoint. This we will
call the free product.

The prescription to do so makes use of a χ transform,
which is the functional inverse of the ψ transform (26):

χE (ψE (z)) = ψE (χE (z)) = z. (27)

Furthermore, yet another useful object, the S transform, is
related to the above as

SE (z) = 1 + z

z
χE (z). (28)

A justification for such a seemingly arbitrary construction is
that in this language the law of free multiplication becomes
very straightforward, namely, the S transforms are simply
multiplicative under the free product of matrices:

SAB(z) = SA(z)SB(z). (29)

The logic here is that the known eigenvalue densities of the
constituents A and B are used to calculate the respective Stielt-
jes transforms (18) of both matrices, then their ψ transforms
through the simple formula (26), whereupon functional inver-
sion gives the χ transforms (27), and finally the S transforms
(28). After multiplying the two according to (29), we follow
the above path backward to eventually find the eigenvalue
density of the free product

√
AB

√
A.
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C. The sandwich model

Remember that our present goal is to demonstrate that the
oracle estimator (14), with the eigenvector overlaps (13), can
be expressed entirely in terms of the observable E , rather than
the true and unknown C. To this end, we need to somehow
model the relationship between C and E or, equivalently,
between C and the observed data Y . Such a model, simplistic
as it may be, should be capable of capturing essential features
of the data-generating process.

Recall that Y = [yit ] is an N × T matrix of observations,
all of which we now treat as random variables. The simplest
possible model is that these entries are normally distributed,
in such a way that the samples of a given entity are uncor-
related among themselves, while any two entities i and j are
correlated according to the population matrix Ci j :

〈yit y js〉 = Ci jδts. (30)

This structure has been extensively studied. The topic of the
current publication is to take it one step further in a very
natural direction [18–20]: by replacing the Kronecker delta in
(30) with an arbitrary matrix Ats, real symmetric, and positive
semidefinite:

〈yit y js〉 = Ci jAts. (31)

We also assume

1
T Tr A = 1, (32)

so the decomposition on the right-hand side is unambigu-
ous. You may think of the data set generated synthetically
by a multivariate stochastic process (e.g., a multidimensional
Ornstein-Uhlenbeck process or a VARMA process), alter-
natively the data set consisting of historic observations; Ats

describes autocorrelations between samples.
Note that, crucially, these autocorrelations are assumed

identical for all the entities, i.e., decoupled from the cross
correlations. It would be quite interesting to extend this work
to a more general coupled structure, 〈yit y js〉 = Ci jts.

For a stationary stochastic process, the autocorrelation ma-
trix A is a Toeplitz matrix,

Ats = a(|t − s|), (33)

with a some function such that a(0) = 1 (to ensure normalized
trace). A simple and often physically justified case is that of
exponentially decaying autocorrelations,

a(t ) = e−t/τ , (34)

with autocorrelation time τ . This model is a good starting
point for systems exhibiting short-range correlations between
samples.

The model (31) is simple enough to allow for an analytical
solution (below), yet, as in the central limit theorem, it is
believed to describe in the large-dimensional limit a broader
class of distributions (not necessarily Gaussian), only perhaps
without fat tails. In fact, even fat tails may be accounted for:
It is known that the maximum-likelihood estimator of corre-
lations for fat-tailed random variables is the robust Maronna
estimator; and it turns out [21] it can be expressed in the form
(31) with a proper choice of A.

Yet another application [22] of the model (31) is that a
proper choice of A allows us to describe the exponentially
weighted moving average (EWMA) estimator of C. Essen-
tially, instead of treating all the samples equally as in the
sample estimator E (3), older samples are given lower weights
than newer ones, thereby taking into account possible non-
stationarity of the data. (We plan to address these cases in a
separate publication.)

An attentive reader may wonder at this point how it is that
while C is unknown (and we are trying to estimate it), we
seem to presume the knowledge of A. Indeed, in the latter
two applications, we mentioned (the Maronna and EWMA
estimators), A plays more of a technical role: It turns out
that the structures appearing in other contexts (covariance
estimation under fat tails or samples getting obsolete due to
nonstationarity, respectively), can be translated to the lan-
guage of (31) with a certain A. In the first example, though,
we should genuinely try to estimate A (e.g., via estimating τ )
from the data. However, an alternative way of thinking is that
τ is an effective parameter, giving our model an additional
degree of freedom; that added flexibility can then be used to fit
the data better. A thorough investigation of this topic is left for
another paper, but already at this point we announce the logic
of the matter: the resulting RIE, toward which we are working,
will obviously depend on τ , and in a real-world scenario that
would allow us to choose this effective autocorrelation time
so the loss function (4) is lower than for A = I. Interestingly,
even though the MSE clearly depends on the unknown C, we
will see a way of fitting τ even without the knowledge of C.

To recapitulate, we assume a simple data-generating
model, a Gaussian random matrix Y with the correlation struc-
ture (31). Since a linear combination of Gaussian variables
remains Gaussian, it is easy to show that an equivalent for-
mulation is that of a linear combination of standard normal
variables,

Y =
√

CX
√

A, (35)

with X = [xit ] an N × T matrix consisting of independent
identically distributed N (0, 1) random variables; in particular,
〈xit x js〉 = δi jδts. (The square roots are well-defined as C and A
are positive semidefinite.) The modeled relation between the
sample estimator E and the true C is therefore

E = 1
T

√
CXAX �√

C. (36)

Its structure is that of a sandwich consisting of several layers
of matrices multiplied together.

D. Marčenko-Pastur equation

Remember that we are on a quest to express the oracle
estimator (11) through E rather than C. The first step has been
to set up a model between the two matrices, tractable on one
hand and realistic enough on the other. The sandwich model
(36) has been our choice, allowing not only for correlated
samples (a phenomenon observed in practical applications)
but also technical extensions such as the Maronna or EWMA
estimators.

The second step is to express this relationship mathemat-
ically through the random matrix theory transforms defined
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above. We will see that this language will allow us to rewrite
the eigenvector overlaps (13) entirely in terms of E .

There are two levels to this construction. First, we have
already remarked that (36) is a product of matrices; in fact,
we see that up to a certain reshuffling of factors it is a product
of C, A, and the standardized Wishart random matrix:

W = 1
T XX �. (37)

It turns out that from the point of view of free probability, this
reshuffling does not matter, as we elucidate in Appendix A (it
is essentially due to the cyclic property of trace), and so the
free multiplication law (29) leads directly to [19]

SE (z) = SC (z)SA(qz)
1

1 + qz
. (38)

The last term is the S transform of the Wishart matrix (37),
SW (z) = 1/(1 + qz). The additional factor q = N/T in the
argument of SA(qz) comes from the difference in dimensions
between A and C.

Using elementary algebra and relations between the vari-
ous transforms, (38) can be rewritten in a suggestive form:

m ≡ mE (z) = mC (Z ),
Z (z)

z
= SA(qm)

1 + qm
. (39)

In other words, the scalar (i.e., the normalized-trace version)
MGF (23) of the sample estimator, evaluated at a complex
argument z, which we denote for short m ≡ mE (z), is equal
to the scalar MGF of the population covariance matrix but
evaluated at a different complex argument Z , mC (Z ). This
complex transformation z → Z depends on m, and does so
through the S transform of the autocorrelation matrix A. Note
that we may equivalently express the right-hand side through
the ransform (27), Z/z = χA(qm)/qm, which will in fact be
more convenient for us. We will refer to (39) as the (scalar)
generalized Marčenko-Pastur equation.

Let’s also mention that (39) is sometimes spelled in the
literature by explicitly writing the MGF of C as an integral
(18): ∫

dλρC (λ)
λ

Z − λ
= m. (40)

In particular, this equation for A = I, i.e., with Z = z/(1 +
qm), is the classical Marčenko-Pastur law of 1967 [23]; that
is why we call (39) generalized. We will, however, refrain
from such a lengthy integral expression, preferring instead the
brevity offered by the various transforms we have introduced.

One way of thinking about (39) is the following: Suppose
one is given the true matrices C and A; say, one generates the
data from a stochastic process with these matrices as inputs.
Consequently, the MGF of C and the S transform of A can
be (at least in principle) calculated. Then (39) is a system
of equations with unknown m. In some cases, this system
is explicitly solvable; for instance, for C = IN and A = IT ,
we have mC (u) = 1/(u − 1) and SA(u) = 1, directly from the
definitions, and hence (39) becomes a quadratic equation for
m, qm2 + m(1 + q − z2) + 1 = 0. Solving this equation, and
using the Sokhotski-Plemelj formula (20), leads to the density
of eigenvalues of E ,

ρE (λ) = 1

2πqλ

√
(λ+ − λ)(λ − λ−), (41)

with λ± ≡ (1 ± √
q)2. This is the famous Marčenko-Pastur

density [23], and it beautifully demonstrates the very prob-
lem we are trying to solve in this paper: the true correlation
eigenvalue is in this case ci = 1 (with multiplicity N), but
the observed sample eigenvalues λi are scattered around 1,
smeared by statistical noise; the more so the greater q = N/T
is, i.e., the more we are into the big data regime (and irre-
spective of how many samples T we have collected!); the
underlying eigenvalue 1 is hidden inside this blob of sample
eigenvalues, [λ−, λ+].

Assuming the knowledge of C and A, and calculating
m ≡ mE (z) from them, is thus a useful perspective on the
generalized Marčenko-Pastur equation (39), but this is not the
problem we are trying to solve. Rather, we know m, which
is straightforward to compute from the observed data through
the sample estimator E . We also suppose we know A, which,
as we have discussed above, is either a technical construct or
can be treated as a set of effective parameters. The goal is
to find C, which will turn the oracle estimator (11) into an
observable quantity.

An attentive reader will now notice, though, that the oracle
estimator depends on the overlaps (13) of the eigenvectors of
C and E , which the scalar Marčenko-Pastur equation is not
capable of capturing. Rather, we need an equation relating the
matrix versions of the transforms in question. Interestingly
enough, such an equation exists, and is in fact completely
parallel to its scalar version (39),

ME (z) = MC (Z ), (42)

with complex numbers Z and z related in the exact same
way as before. This is an N × N matrix equation, expressed
through the matrix MGFs (22). Of course, the previous scalar
version follows by taking normalized trace of both sides. We
will call (42) the matrix generalized Marčenko-Pastur equa-
tion. It has first been derived in Ref. [18] using diagrammatic
methods; [4] presents another derivation via the replica trick
and the low-rank orthogonal Harish-Chandra-Itzykson-Zuber
integral.

IV. NONLINEAR SHRINKAGE FOR CORRELATED
SAMPLES

A. Shrinkage estimator for the sandwich model

We are now ready to return to the problem at hand, which
is to express the oracle estimator entirely through E . The
key point is to rewrite the eigenvector overlaps (13) in the
language of the above transforms and to apply the generalized
Marčenko-Pastur equation (42) and (39) to translate all the
references to transforms of C to those of E only.

To this end, we write the matrix resolvent (16) of E through
the sample eigenvalues and eigenvectors (9) in an integral
form weighted by the eigenvalue density,

GE (z) = N
∫

dλ′ρE (λ′)
1

z − λ′ |λ′〉〈λ′|. (43)

Evaluate this expression near the real axis, at z = λ − i0+, and
retain the imaginary part of the result; the Sokhotski-Plemelj
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formula (19) implies

1

NπρE (λ)
Im GE (λ − i0+) = |λ〉〈λ|. (44)

Insert this equality inside a scalar product with an eigenvector
of C:

1

πρE (λ)
Im 〈c|GE (λ − i0+)|c〉 = O(λ, c). (45)

We have thereby expressed the eigenvector overlap through
the matrix resolvent of E ; still, however, there is an explicit
reference to an eigenvector of C, which we will now remove
in favor of some transform of C.

Indeed, the matrix resolvent of E evaluated at any com-
plex z is equivalent, thanks to the matrix Marčenko-Pastur
equation (42), to the matrix resolvent of C at the transformed
Z = Z (z) (39), which has in turn a simple behavior when
surrounding it with an eigenvector of C:

〈c|GE (z)|c〉 = Z

z
〈c|GC (Z )|c〉 = Z

z

1

Z − c
. (46)

Inserting this to (45),

1

πρE (λ)
Im

Z (z)

z

1

Z (z) − c

∣∣∣∣
z=λ−i0+

= O(λ, c). (47)

In the oracle estimator’s generic eigenvalue ξ (14), the
overlap appears multiplied by the corresponding eigenvalue
c, and integrated over c with the proper eigenvalue density,
ρC (c). This operation, applied to the left-hand side of (47)
produces, according to (23) and (18), the scalar MGF of C
evaluated at the complex argument Z:

1

πρE (λ)
Im

Z (z)

z
mC (Z (z))

∣∣∣∣
z=λ−i0+

= ξ . (48)

The final step is to replace in (48) the scalar MGF of C at
argument Z by the scalar MGF of E at argument z, according
to the scalar Marčenko-Pastur equation (39):

1

πρE (λ)
Im

Z (z)

z
mE (z)

∣∣∣∣
z=λ−i0+

= ξ . (49)

And this is precisely what we set out to achieve! The or-
acle eigenvalue ξ , previously accessible only through the
unknown C, is now expressed solely in terms of the observ-
able E , through the scalar MGF, m = mE (λ − i0+), present
in (49) either explicitly, or inside Z/z = SA(qm)/(1 + qm) =
χA(qm)/qm (39).

Indeed, let’s rewrite (49) even more appealingly. For any
observed sample eigenvalue λi, for i = 1, . . . , N , choose as a
basic quantity,

ui ≡ qmE (λi − i0+) = αi + iβi, (50)

where since we are close to the real axis, the Sokhot-
skiâĂŞPlemelj formula implies (23), (20),

αi = q(πλihE (λi ) − 1), βi = qπλiρE (λi ), (51)

through the directly observable Hilbert transform and density
of eigenvalues of the sample estimator E .

In this notation, (49) becomes the main formula of this
paper, the nonlinear shrinkage for correlated samples,

ξi

λi
= Im χA(ui )

Im ui
, (52)

where we recall the χ transform (27) of A. We note also that
since the S transform (28) is probably better known than the
χ transform, we may replace the latter in (52) by uiSA(ui )/
(1 + ui ).

We stress again the logic behind this formula:
(i) We perform T observations of some N given entities

and collect these measurements in an N × T data matrix Y .
(ii) From this data set, we calculate the standard sample

estimator E (3), and diagonalize it, obtaining, in particular, a
set of sample eigenvalues λi, i = 1, . . . , N . As we have exten-
sively discussed, in the big data regime (5), these eigenvalues
have a crucial component of statistical noise, making them
unreliable for any estimation purposes.

(iii) From this set of sample eigenvalues, we first estimate
the Hilbert transform hE (λ) and density of eigenvalues ρE (λ).
We will discuss a relevant procedure below, based on the
kernel method.

(iv) For any given sample eigenvalue λi, we thus readily
calculate the corresponding αi and βi (51), and so ui = αi +
iβi (50).

(v) Having assumed some model of the autocorrelations
A (see below), we know (at least in principle) the χ (equiv-
alently, S) transform of A. Thus, (52) gives us explicitly the
cleaned (a.k.a. shrunk) eigenvalue ξi. This is an eigenvalue of
an optimal, with respect to the MSE loss function (4), RIE
(10). Since the left-hand side of (52) is the ratio ξi/λi, the
right-hand side may be called a shrinkage factor.

One sanity check is that for q → 0 we are moving from
the big data regime (5) to the classical regime (2), in which
case we should have � = E , as the sample estimator is then
optimal (and of course E belongs to the RIE class). Indeed,
in this limit, ui → 0. An expansion of the S transform around
zero is known [24], and when coupled with the assumed nor-
malization condition of A (32), it implies SA(ui ) → 1, hence
χA(ui ) → ui, and so ξi → λi, as expected.

B. The Ledoit-Péché formula

Historically, the first nonlinear shrinkage formula, and a
cornerstone of the theory we are elaborating here, has been the
LP shrinkage [15] (cf. also Ref. [4]), derived for the sandwich
model in the case of no correlations between samples (30).

To verify that our formula (52) reduces appropriately,
set A = I. Directly from the definitions (16), (22), (23),
(26), the scalar ψ transform of A is ψA(z) = z/(1 − z), from
which the χ transform (27) follows by functional inver-
sion, χA(z) = z/(z + 1); note that the S transform (28) is
simply SA(z) = 1. The shrinkage factor (52) thus becomes
Im (ui/(1 + ui ))/Im ui, that is,

ξi

λi
= 1

|1 + ui|2 = 1

(αi + 1)2 + β2
i

, (53)

which is indeed the celebrated LP formula.
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C. Exponentially decaying autocorrelations

A nontrivial example of a model of correlations between
the samples, often relevant for situations of short-ranged de-
pendence between the steps of a sampling process, is that of
an exponentially decaying function (34), with autocorrelation
time τ . It is a straightforward exercise [18,19] to derive the χ

transform of A,

χA(z) = 1

γ +
√

γ 2 − 1 + 1/z2
, (54)

with γ = coth(1/τ ). The shrinkage factor (52) for this case
follows immediately.

There are other interesting models of autocorrelations,
such as those generated by general VARMA(r1, r2) stochastic
processes,

Yi,a =
r1∑

β=1

bβYi,a−β +
r2∑

α=0

aαεi,a−α, (55)

with ε a matrix of i.i.d. standard Gaussian (or some other
distribution, say Student-t) variables. Such a process has
(r2 + 1) moving average parameters aα , and r1 autoregressive
parameters bβ . Note that the exponential decay is a case of
VAR(1) with a particular set of parameters, b1 = e−1/τ and

a0 =
√

1 − b2
1.

Moreover, as we have alluded to above, specific models of
A appear for the Maronna or EWMA estimators. These issues
are left for another publication.

D. Numerical considerations: Kernel density estimation

As mentioned before, our shrinkage formula (52) for a gen-
eral sandwich model (31) is complete except for one important
component, that is, a numerical method of estimating from
the observed data set the Hilbert transform and density of
eigenvalues of E , which are inputs to the basic variable ui (50)
and (51).

The problem is that the eigenvalue density is approximated
by a numerical histogram, and one cannot use it directly as
an input for the Hilbert transform, which is an integral trans-
form (21). Several ideas have been proposed to alleviate this
difficulty.

A very simple procedure is to choose a small but finite
ε in (50), and approximate ui ≈ qmE (λi − iε). In particular,
Ref. [4] uses this approach with ε = N−1/2 and reports sat-
isfactory behavior. In our numerical experiments, we have,
however, found this algorithm very sensitive to the choice of
ε, and generally unstable.

For a time, a standard and comprehensive numerical
solution (for uncorrelated samples) consisted of quite a
complicated scheme termed inverse QuEST (quantized eigen-
values sampling transform) by Ledoit and Wolf [13]. In
essence, it encompasses the following steps: First, suppose
we know the true covariance eigenvalues c1, . . . , cN . The
scalar Marčenko-Pastur relation (39), for z = λ − i0+, can
be manipulated to yield the sample eigenvalue density ρE (λ)
in a parametric form, dependent on the c′

is. [This is the
same train of thought that led to the classical Marčenko-
Pastur density formula (41).] Second, we integrate the density

numerically to find the cumulative distribution function,
CDF(λ) = ∫ λ

0 dλ′ρE (λ′). Third, we invert it numerically to
find the quantile function, i.e., from CDF(λ) = p to λ = Q(p).
Fourth, an assumption is made that the observed eigenval-
ues are distributed according to this quantile function, i.e.,
that we can approximate their positions by λ̃i = Q(i/N ). The
above algorithm (already quite involved) thus estimates the
sample eigenvalues based on known population eigenvalues,
λ̃i(c1, . . . , cN ); this is the QuEST function.

Now the inverse part of the prescription is the following:
In reality, we do not know the c′

is, rather we observe the λ′
is.

We estimate the former by minimizing the MSE between the
QuEST estimates and the measured values:

(c̃1, . . . , c̃N ) = argmin
1

N

N∑
i=1

(λ̃i(c1, . . . , cN ) − λi )
2. (56)

Finally, we calculate λ̃i(c̃1, . . . , c̃N ), from which ui =
qmE (λ̃i), without a regularizer. As we see, the Ledoit-Wolf
inverse QuEST is a complicated algorithm (and we have not
mentioned additional numerical intricacies that need to be
addressed) but provides a very solid and stable solution.

However, recently, Ledoit and Wolf [14] proposed a kernel
method that is computationally straightforward, stable, and
exceptionally easy to use in practice. Both the Hilbert trans-
form and the eigenvalue density are approximated as a sum of
N kernels set up around each λi. That is, for the density we
write

ρE (λ) ≈ 1

N

N∑
i=1

1

biλi
r

(
λ − λi

biλi

)
. (57)

Here r is a kernel function, assumed real, non-negative, nor-
malized (

∫
dx r(x) = 1), centered (

∫
dx x r(x) = 0), and with

unit width [
∫

dx x2r(x) = 1]. The parameters bi (bandwidths)
are local scale factors, determining the width of the individual
peaks. They should be chosen to make the neighboring peaks
overlap. Ledoit and Wolf suggest selecting them identical for
all eigenvalues (i.e., independent of i), and equal to

b = T −1/3. (58)

It is a purely heuristic choice, but we too have found it stable
and accurate.

The Hilbert transform (21) is a linear operation on the
eigenvalue density, hence it transforms the sum (57) into an-
other sum:

hE (λ) ≈ 1

N

N∑
i=1

1

biλi
h

(
λ − λi

biλi

)
. (59)

where h is the Hilbert transform of r.
The idea is to choose the latter such that its Hilbert trans-

form is analytically tractable and easy to implement. A good
candidate is the Epanechnikov kernel, essentially the non-
negative part [denoted x+ ≡ max(x, 0)] of a parabola,

r(x) = 3

4
√

5

(
1 − x2

5

)+
. (60)
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Its Hilbert transform (21) reads

h(x) = 3x

10π
− 3

4
√

5π

(
1 − x2

5

)
log

∣∣∣∣x − √
5

x + √
5

∣∣∣∣, (61)

where the second term is understood to be zero for x = ±√
5

and log is the natural logarithm.
To sum up, we have straightforward estimates of the sam-

ple eigenvalue density (57) and Hilbert transform (59), with
the heuristic bandwidth (58), and the Epanechnikov kernel
(60) and (61). They are inserted directly into the inputs (51)
to the main shrinkage formula (52).

V. ORACLE ESTIMATION BY CROSS-VALIDATION

A. Moving-window cross validation

We have now completed the main derivation of the paper,
with an essentially analytical formula for shrunk eigenval-
ues; it does require numerical components in the form of the
Epanechnikov kernel estimation, as well as some further fit-
ting procedures described below, needed in realistic situations,
but the expression (52) itself is explicit. There exists, however,
a purely numerical alternative construction that allows one to
estimate the oracle eigenvalues directly from the data set Y ,
with no complicated random matrix theory in the process, and
with excellent performance. We will now outline the method,
and discuss its applicability. It has been introduced in Sec. 8.2.
of Ref. [4], and is a certain modification of the method by
Bartz [25].

Recall that we have started our journey from the oracle es-
timator (11), minimizing the Frobenius norm between the true
C and the sought-for � in the space of RIEs (10). The solution
is simple (as the problem is quadratic), ξi = 〈λi|C|λi〉, but de-
pends on C, which is in principle unknown. The machinery of
random matrix theory in the big data limit (5) is then invoked
to show that the actual dependence is solely on observable
quantities, the sample eigenvalues λi, via one of the shrinkage
formulas discussed in this paper.

This oracle formula can, however, be estimated by a nu-
merical procedure of a moving-window cross validation. First,
imagine we have collected some more samples, and now have
Ttotal > T of them. Consider now a series of K pairs of consec-
utive moving windows. Each such pair consists of a training
(in-sample) window of length T , and a testing (out-of-sample)
window of some length Tout. This pair of windows of length
(T + Tout) we keep shifting K times through the whole data
set; this, in particular, implies K = �(Ttotal − T )/Tout�. For
the μth fold (μ = 0, . . . , K − 1), denote tμ = T + μTout + 1;
following the convention used in the paper that the temporal
index starts from 1, we see that the μth test fold has indices
from tμ up to (tμ + Tout − 1) (both inclusive), while the μth
train fold stretches between (tμ − T ) and (tμ − 1).

For each fold μ, we denote by E train,μ the sample estimator
calculated on the current train fold and, in particular, |λtrain,μ

i 〉
its eigenvectors. On the other hand, by E test,μ denote the
sample estimator calculated on the current test fold.

The claim then is that the oracle eigenvalues can be esti-
mated by the mean over all the folds of the average test sample

estimator in the state given by any train sample eigenvector:

ξmwcv
i = 1

K

K−1∑
μ=0

〈
λ

train,μ
i |E test,μ|λtrain,μ

i

〉
. (62)

In other words, the numerical prescription consists of re-
peating K times a calculation of the (current) train sample
estimator, its diagonalization, then calculation of the (current)
test sample estimator, and finally taking the relevant scalar
product.

An intuition behind this formula is that the unknown C in
the oracle formula can be approximated by the out of sample,
i.e., unknown from the point of view of an in-sample observer,
estimator.

As a side note, let us make the following remark: The test
sample estimator is derived from a data set of shape N × Tout,
i.e., with a different noise ratio than q = N/T . One might
wonder if this mismatch leads then to correct estimation. An
intuition why this should not matter is that the test sample
estimator corresponds in the oracle formula to the true C,
which, after all, knows nothing about q.

Let us also stress the importance of performing cross
validation that preserves the time ordering, i.e., by moving
windows. This is crucial, especially when we believe auto-
correlations are present in the system. The method of Bartz,
mentioned in the beginning, is exactly identical except that
the train and test folds are chosen randomly from among the
samples, thus leveling out any temporal dependence.

B. Isotonic regression

The moving-window cross-validation-estimated oracle
eigenvalues (62) turn out to have a significant variance; this
will be visually clear in the figures below, where they form a
broad cloud of scatter points.

The idea of Ref. [22] is extraordinarily simple and effec-
tive: fit isotonic regression to the estimated oracle eigenvalues,
i.e., a monotonic function closest to the observations. We shall
see that such a simple estimator is very hard to beat. Nonethe-
less, we shall also demonstrate that our VARMA shrinkage
may be superior, once a proper search for its parameters is
executed.

VI. EXAMPLES

All the functionalities we have expounded on in this pa-
per, including the Epanechnikov kernel estimation of hE (λ)
and ρE (λ), and computing the shrunk or cleaned eigenvalues
(52), under several sensible models of A, as well as the cross
validation and isotonic regression procedures for the oracle
eigenvalues, have been collected in an open-source Python
module called SHRINKAGE. No URLS allowed in text. Move to
references per journal requirements. It is versatile, extensible,
and, we hope, easy to use [26].

Below we present a few examples produced by this library,
with version 1.1.0. We work here with synthetic data, that is,
we randomly generate the data matrix Y of dimensions N =
500, T = 1000 according to some given models of C and A.

Since the true C is known, we will be able to quantify
the efficiency of various shrinkage methods. We will measure
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TABLE I. Frobenius ratios for the three examples of synthetic
data considered, and various shrinkage methods. (*) means that while
the fit of VARMA shrinkage parameters in examples 1 and 2 is that
of an exp-decay, in example 3 we fit a three-parameter VARMA(1, 1)
model.

Example 1 Example 2 Example 3

Oracle mwcv 13% 23% 34%
Oracle mwcv isotonic 12% 22% 34%
LP 53% 33% 60%
Effective LP 33% 26% 37%
VARMA fit 12% 24% 27% (*)

it by the MSE (4); more precisely, for a given shrinkage
estimator � we will calculate its Frobenius ratio:

F = Tr (� − C)2

Tr (E − C)2
. (63)

The lower it is, the better the cleaning scheme; in other words,
� should be closer to C than E is. The Frobenius ratios found
in the analysis to follow are summarized in Table I.

A. Example 1: Gaussian + VAR(1)

First, we assume a multivariate Gaussian distribution of
Y , with the underlying true covariance matrix C having two
distinct eigenvalues, 1 and 3, in 50% proportions, and with
the autocorrelation matrix A given by the exponential decay
model (34), with the autocorrelation time τ = 3. This case
encompasses the first group of Fig. 1.

Figures 1(a)–(c) show the same histogram of the sample
eigenvalues λ′

is (peach), as well as the Epanechnikov-
kernel-approximated density of eigenvalues ρE (λ) (orange),
enveloping the histogram. We see how broad this distribu-
tion is, completely obscuring behind statistical noise the true
eigenvalues 1 and 3. We expect that shrinkage will narrow
down this histogram, making it more localized about the true
eigenvalues.

The first shrinkage approach we choose is the simplest
but very powerful isotonic regression fitted to the cross-
validation-estimated oracle eigenvalues (62) (with K = 10
and Tout = 50). Their histogram (aqua) and density (teal) in
Fig. 1(a) reveal two clear peaks close to 1 and 3. The very
low Frobenius ratio of 12% further confirms how effective this
shrinkage prescription is.

In Fig. 1(b), we suppose for a moment that we are igno-
rant of the fact that there are autocorrelations in Y , and we
choose to apply the LP shrinkage (53) [which recall is valid

(a) (b)

(c) (d)

FIG. 1. Synthetic data model: Gaussian distribution, C with eigenvalues 1 and 3 in 50% proportions, A exp-decay with τ = 3. Fig-
ures 1(a)–(c) are the empirical (bars) and kernel-density estimated (lines) distributions of the eigenvalues for the data and various estimators.
Figure 1(d) contains plots of the shrinkage relationship ξ (λ) considered in the previous figures, as well the cross-validation-estimated oracle
eigenvalues (triangles).
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for the sandwich model with no auto-correlations (30)]. The
histogram (pale pink) and density (pale purple) of these ξLP

i is
only slightly narrowed as compared to the sample spectrum.
The Frobenius ratio of 53% is large.

One might argue at this point [28] that the reason why
the LP formula does not shrink the eigenspectrum enough is
that it underestimates the noise level q = N/T . Indeed, when
autocorrelations with a characteristic time τeff are present
in the system, the effective number of samples is Teff =
T (1 − e−1/τeff ) ∼ T/τeff, smaller than T . An interesting exer-
cise would therefore be to find an effective number of samples
(by varying τeff) such that the LP estimator performs better in
terms of the Frobenius ratio. A caveat here is that it would
be illegal to minimize the Frobenius ratio itself; it is, after
all, an unknown quantity, dependent on C. One can, however,
employ the following trick: fit rather to the scatter points of the
cross-validation-estimated oracle eigenvalues (by minimizing
the MSE between the two). Indeed, we thus get Teff = 426,
with the Frobenius ratio F = 33%. It is significantly lower
than for the true-T LP result, thus demonstrating the validity
of this effective approach. Visually, the histogram (lilac) and
density (violet) in Fig. 1(b) start slowly developing two peaks
in the vicinity of 1 and 3.

Finally, apply our VARMA shrinkage formula (52). Since
the data-generating process is known and, in particular, A is
that of an exp-decay model with τ = 3, one could be tempted
to use the same VARMA parameters in the shrinkage formula.
But one should immediately object that this information is not
available in any real-world scenario. However, just like with
the effective Teff above, there is a way to fit τ to the data even
without knowing C; indeed, to the cross-validation-estimated
oracle eigenvalues. In this way, τ becomes an effective pa-
rameter, giving our model greater flexibility than the LP case.
Figure 1(c) shows the histogram (mauve) and density (ma-
roon) of the shrunk eigenvalues ξi. The fit here is τ = 2.9 and
we observe how the broad expansion of the sample eigenval-
ues is efficiently shrunk to two peaks close to 1 and 3, the
true eigenvalues. Note, in passing, that the best fit is slightly
different from the true τ = 3, which may be an expression of
a small bias present in the cross-validation-estimated oracle
eigenvalues. The Frobenius ratio is much lower, too, at about
12%. This number is comparable to the (much simpler) iso-
tonic regression estimator from Fig. 1(a).

B. Example 2: Student-t + VMA(1)

To further simulate a real-world situation, now generate
the data matrix Y from the Student-t distribution with μ = 5
degrees of freedom (i.e., with heavy tails), and with the auto-
correlation matrix A of the VMA(1) (vector moving average)
model with parameters a0 = 0.8, a1 = 0.5, cf. (55). In other
words, the distribution is quite far from the Gaussian, nor
the correlations between samples are exponentially decaying.
(The model for C stays as before, with two peaks at 1 and 3.)

Looking at Fig. 2, we see now that all four shrinkage
estimators perform quite similarly, with the best isotonic
regression at 22% Frobenius ratio, the LP at 33%, the effec-
tive LP (with fitted Teff = 811) at 26%, while our exp-decay
shrinkage (with fitted τ = 1.1) has 24%. Two peaks are visible
in all cases.

C. Example 3: Student-t + VARMA(1, 1)

To make the data distribution even more complicated, now
generate Y from the Student-t distribution with three degrees
of freedom (so, very heavy tails), C with eigenvalues fol-
lowing the inverse-Wishart distribution with κ = 2, and A
that of a VARMA(1, 1) model (55) with a0 = 0.8, a1 = 0.5,
b1 = 0.4. Recall [4] that for C to have random eigenvalues
from the inverse-Wishart distribution with a parameter κ , we
first calculate a noise ratio qIW = 1/(1 + 2κ ) and the corre-
sponding number of samples, TIW = �N/qIW�. Generate an
i.i.d. Gaussian random matrix R of shape N × TIW and form
from it a Wishart random matrix, W = 1

TIW
RR�, i.e., its sample

estimator. Finally, C = (1 − qIW)W −1.
Figure 3 reveals the same set of graphs as in the previous

two examples. There is one difference in the setup, though:
Shown in Fig. 3(c) are the shrunk eigenvalues corresponding
not to an exp-decay shrinkage with some optimal τ fitted to
the cross-validation-estimated oracle eigenvalues, as we did
before, but a more general three-parameter VARMA(1, 1)
shrinkage. We fit a0, a1, b1 by brute force, simply iterat-
ing over a certain grid of values (quite coarse, as this is
simply a proof of concept) and selecting those for which
the MSE distance to the estimated oracle eigenvalues is the
smallest. The main finding from this analysis is that the
Frobenius ratio of 27% of such an optimal fit outperforms the
isotonic regression estimator, the latter with 34%.

In other words, despite severe model mismatch, the mere
fact of incorporating autocorrelations into the shrinkage for-
mula vastly improves the quality of eigenvalue cleaning,
sometimes even better than the numerical isotonic regression
scheme. This bodes well for empirical, real-world applica-
tions, where the underlying data-generating processes are
genuinely unknown.

VII. CONCLUSIONS

The main result of this paper is an exact formula (50)–(52)
for the RIE [that is, sharing the eigenbasis with the standard
sample estimator (3), but with different eigenvalues] (10) of
the true covariance matrix (1), which is optimal with respect
to the MSE (4). The result is crucial in the big-data regime
(5), when the number of correlated entities N is large and of
comparable magnitude with the number of collected samples
T , since then the classical sample estimator contains mostly
statistical noise instead of any information about actual cor-
relations. The main novelty of our formula is that it allows
for correlations between samples, thus extending the method
of LP [15]. Such autocorrelations effectively decrease the
number of samples T , thus making the estimation task even
harder; a specifically tailored solution such as we present here
is therefore of great importance.

We couple our analytical expression with a straightforward
numerical scheme based on the kernel estimation method of
Ledoit and Wolf. This means a numerically stable and ef-
fective pipeline which leads directly from the observed data
set to the cleaned or shrunk eigenvalues. We implement this
end-to-end in an open-source Python library, encouraging its
use to practitioners of various fields of science and industry
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(a) (b)

(c) (d)

FIG. 2. Synthetic data model: Student-t distribution with five degrees of freedom, C with eigenvalues 1 and 3 in 50% proportions, A that
of a VMA(1) model with a0 = 0.8, a1 = 0.5. Figures 2(a)–(c) are the empirical (bars) and kernel-density estimated (lines) distributions of the
eigenvalues for the data and various estimators. Figure 2(d) contains plots of the shrinkage relationship ξ (λ) considered in the previous figures,
as well the cross-validation-estimated oracle eigenvalues (triangles).

where the problem of covariance estimation in the big data
regime appears.

We leave for further work the following questions: One
clear task is to apply our shrinkage formula in a realistic sit-
uation, for instance, a Markowitz-type portfolio optimization,
on different markets, hopefully demonstrating that taking into
account autocorrelations leads to better performance.

Another question is to consider more general, but still
tractable, models of autocorrelations, by which we mean that
their χ transform is analytically accessible, akin to (54). We
have already checked that some low-order VARMA mod-
els, in particular, VAR(1), VMA(1), VARMA(1, 1), VAR(2),
VMA(2), belong to this class and, in fact, they are now avail-
able in the SHRINKAGE library. In fact, we have used here a
VARMA(1, 1) model; it would be very beneficial to devise
better methods of fitting parameters of such higher-order mod-
els (instead of a brute-force evaluation over a given grid), and
interesting to see how they perform, especially compared to
the isotonic regression estimator.

We have talked about how EWMA and Maronna estimators
naturally fit within our framework of autocorrelations. One
task would be to investigate the performance of an EWMA
estimator in a situation of nonstationary data, such as on
financial markets. On the other hand, the Maronna estimator
has a much more involved form, and it would be interesting to
see if it can be handled analytically.

This whole work falls within the class of RIEs, in which
the key assumption is that we possess no belief about the
eigenvectors of C. Once such a bias is available, though, for
example, as a factor model, one could attempt to work out an
appropriate optimal estimator.

Finally, and more speculatively, one could look at non-
symmetric correlations, such as between different entities at
different time moments, say with a time lag of one. Would it
be possible to extend the matrix Marčenko-Pastur equation to
this case, working out a proper generalization of the replica
trick and the HCIZ integral?
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APPENDIX: SCALAR MARČENKO-PASTUR EQUATION
AND FREE PRODUCTS OF RECTANGULAR MATRICES

In this Appendix, we sketch a derivation of the scalar
Marčenko-Pastur equation (38). An important auxiliary result
concerns multiplying rectangular random matrices. If W is
N × T , while V is T × N , then WV is N × N , and VW is
T × T . Since the moments (25) are normalized by the ma-
trix dimension, we find, due to the cyclic property of trace,
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FIG. 3. Synthetic data model: Student-t distribution with three degrees of freedom, C with eigenvalues following the inverse-Wishart
distribution with κ = 2, A that of a VARMA(1, 1) model with a0 = 0.8, a1 = 0.5, b1 = 0.4. Figures 3(a)–3(c) are the empirical (bars) and
kernel-density estimated (lines) distributions of the eigenvalues for the data and various estimators. Figure 3(d) contains plots of the shrinkage
relationship ξ (λ) considered in the previous figures, as well the cross-validation-estimated oracle eigenvalues (triangles).

mVW,k = 1
T Tr (VW )k = q 1

N Tr (WV )k = qmWV,k . Thus, the
scalar MGF (23) satisfies the same relation, mVW (z) =
qmWV (z). A short manipulation then leads to the correspond-
ing relation between the S transforms (28) [19]:

SWV (z) = q(1 + z)

1 + qz
SVW (qz). (A1)

For brevity, denote the prefactor here by f , as it won’t be
important in the following calculation; the important piece is
the q in the argument on the right-hand side.

Consider now the S transform of the sample estimator in
the sandwich model (36). Since the S transform depends on
the matrix through its moments, we have as a consequence of
the cyclic property of trace that

SE (z) = S 1
T XAX �C (z) = S 1

T XAX � (z)SC (z),

where the second equality comes from the free multiplication
law (29). Now, in the first term, we move X � to the front;
this changes the dimension of the matrix, so we need to
compensate according to (A1),

S 1
T XAX � (z) = f S 1

T X �XA(qz) = f S 1
T X �X (qz)SA(qz),

where again the second equality is the multiplication law. We
now again move X to the front, in the first term, obtaining
for the last expression the value of S 1

T XX � (z)SA(qz), according
to (A1). The first matrix here is the standard Wishart random
matrix (37), and so we can write altogether

SE (z) = SC (z)SA(qz)SW (z),

with the q in the argument of SA reminiscent of (A1).
The S transform of the Wishart matrix is well-known [27],
SW (z) = 1/(1 + qz), which completes our proof of the scalar
Marčenko-Pastur equation (38), based on the free multiplica-
tion law (29).
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