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Thermodynamic geometry of spin-one lattice models.
II. Criticality and coexistence in the mean-field approximation
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We continue our study of the thermodynamic geometry of the spin one model from A. Sahay and R. Sanwari,
Phys. Rev. E 105, 034134 (2022). by probing the state space geometry of the Blume-Emery-Griffiths model
and the Blume-Capel model in their mean-field approximation. By accounting for the stochastic variables
involved we construct from the thermodynamic state space two complementary two-dimensional geometries
with curvatures Rm and Rq which are shown to encode correlations in the model’s two order parameters, the
magnetization m and the quadrupole moment q. The geometry is investigated in the zero as well as the nonzero
magnetic field region. We find that the relevant scalar curvatures diverge to negative infinity along the critical
lines with the correct scaling and amplitude. We then probe the geometry of phase coexistence and find that the
relevant curvatures predict the coexistence curve remarkably well via their respective R-crossing diagrams. We
also briefly comment on the effectiveness of the geometric correlation length compared to the commonly used
Ginzburg-Landau correlation length vis-à-vis their scaling properties.

DOI: 10.1103/PhysRevE.105.034135

I. INTRODUCTION

In [1] (paper I) we had established the thermodynamic
geometry of the one-dimensional spin one model starting from
its exact free energy obtained via the transfer matrix calcula-
tion. Along with the full three-dimensional scalar curvature,
two sectional curvatures Rm and Rq were also worked out
which were found to correctly encode the correlation lengths
for the spin-spin and the quadrupole-quadrupole correlations,
respectively. We also extensively verified the “strong” Rup-
peiner conjecture relating the inverse of the critical free energy
to the scalar curvature,

R = κ

ψ
, (1)

which we termed the Ruppeiner equation (see [2] for a re-
cent application). Using hyperscaling it is equivalent to the
equality of R with the correlation volume ξ d . Treated as a
differential equation in the singular free energy the Ruppeiner
equation could be solved to obtain the spin scaling function
for the spin one model. Remarkably, the association of the
scalar curvatures with the calculated correlation lengths often
extended to regions far beyond criticality, thus corroborating
what we termed the weak Ruppeiner conjecture. The latter
relates the scalar curvature to the correlation volume over a
range of parameter values reasonably far from criticality,

R ∼ ξ d . (2)

In this work we extend our geometrical analysis to the
mean-field approximation of the spin one model as obtained in
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[3]. The mean-field case immediately poses a challenge since,
unlike the exactly solvable one-dimensional case, it does not
have an in-built correlation length measure to compare with
the scalar curvature. On the other hand, the Riemannian ge-
ometry arising out of the mean-field equations of state has
an intrinsic curvature suggestive of a correlation volume of
the physical system below which the assumptions of classical
fluctuation theory break down. Geometry therefore ends up
enriching the information content of the mean-field thermo-
dynamics. In any case this is the claim we put to test here in
the context of the mean-field Blume-Emery-Griffiths (BEG)
model. Satisfyingly, our subsequent analysis substantiates this
claim from several perspectives and also shines a light on
the geometric correlation length as a somewhat better suited
candidate to analyzing the scaling behavior in comparison
to the commonly used Ginzburg-Landau correlation length.
Also, it is more satisfying, if somewhat mystifying, that we
can obtain the correlation length from the equations of state it-
self without needing to extend the thermodynamics to include
space-dependent terms.

The outline of the work is as follows. In Sec. II we set up
the mean-field Hamiltonian and describe its phase structure
in some detail. While mainly a review, many of the formulas
worked out in this section are integral to a subsequent geo-
metric analysis of criticality and coexistence and, besides, are
not readily available in the literature. We therefore solicit the
patience of the reader. In Sec. III we carefully construct two
thermodynamic geometries of the mean-field model suited
to correlations in its two order parameters. In Sec. III A we
outline our method of computing the scalar curvatures in the
mean-field model. We then discuss the geometry near critical-
ity in Sec. IV and near coexistence in Sec. V. In Sec. IV A we
briefly comment on the scaling properties of the geometric
correlation length as compared to the square gradient one
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obtained via a Ginzburg-Landau extension of the mean-field
Hamiltonian. In Secs. IV B, IV C, and IV D we discuss in
turn the scaling of scalar curvatures near the zero-field critical
line, the tricritical point, and finally near the wing critical
line. In Secs. V A and V B we construct the geometric phase
coexistence curves in zero-field and in non-zero-field regions,
respectively, and compare with the standard phase coexistence
curves. Finally, in Sec. VI we summarize our main results,
underline the key message in our work, and point to some
future directions.

II. THE MEAN-FIELD BEG MODEL AND ITS PHASE
STRUCTURE

The BEG model has the most general reflection symmetric
Hamiltonian for a classical spin one model with nearest-
neighbor interactions. The Hamiltonian for the BEG model
is written as [3]

Hbeg = −J
∑
〈i j〉

Si S j − K
∑
〈i j〉

S 2
i S 2

j

− H
∑

i

Si + D
∑

i

S 2
i . (3)

The Ising-like lattice spin variable Si takes values +1,−1,
and 0. The BEG Hamiltonian, its context, and the limiting case
of the Blume-Capel (BC) model [4,5] were reviewed in paper
I so we shall not repeat them here. We make a minor change in
notation from paper I in that we no longer capitalize the order
parameters for the spin and the quadrupole moment,

m = 〈Si〉; q = 〈
S2

i

〉
, (4)

where m is the average magnetization per site and q is the
average quadrupole moment per site.

The qualitative features of the phase structure are already
captured in the mean-field approximation to the model, to
which we turn now. The mean-field Hamiltonian can be writ-
ten as

Hm f
beg = −

(
Jzm

2
+ H

) ∑
i

Si −
(

Kzq

2
− D

) ∑
i

S2
i , (5)

with z being the coordination number of the lattice. In the
following we shall scale all the quantities by the factor J z
but shall continue to represent the scaled quantities by their
unscaled symbols, so that we have Hm f

beg/Jz → Hm f
beg, H/Jz →

H , D/Jz → D, and for later reference, βJz → β. The ratio
K/J will appear subsequently as ω.

In the mean-field Hamiltonian the effects of spin-spin
and quadrupole-quadrupole interactions are approximated, re-
spectively, by the effective H field and the effective D field.
This results in a single-site Hamiltonian which is solvable,
with the trade-off being that the magnetization m and the
quadrupole moment q are to be obtained self-consistently by
a minimization of the mean-field free energy which is obtain-
able from the partition function,

The self-consistent expressions for the magnetic moment
and the quadrupole moment are obtained as

m = 2 sinh β(m + H )

2 cosh β(m + H ) + eβ D−β q ω
(6)

FIG. 1. Schematic diagram of the mean-field phase structure of
the spin one model in the T -D-H space. Here the ratio K/J is small.
Adapted from [6].

and

q = 2 cosh β(m + H )

2 cosh β(m + H ) + eβ D−β q ω
. (7)

Making use of the above expressions the logarithm of the
partition function can be written as

ψ = logZm f = log
q

1 − q
− 1

2
β(m2 + q2 ω), (8)

and the free energy is

G = −ψ

β
. (9)

Of course, m and q in Eq. (8) still need to satisfy the self-
consistent equations for equilibrium. Keeping in mind that in
the BEG model it is the small values of ω that are physically
relevant, we shall limit our investigations to such cases here.
Nevertheless, we mention that the cases of larger ω (>1) have
an interesting phase structure, some details of which may be
found in [3].

In the superfluid phase where m �= 0 the quadrupole mo-
ment q can be expressed in terms of m as

q = m coth β(m + H ), (10)

and substituting this value for q in Eq. (6), m can be found
self-consistently. In the normal phase, m = 0, q can be found
from its transcendental equation. Equations (6) and (7) sim-
plify considerably in the BC limit ω = 0.

In Fig. 1 we present a mean-field phase diagram of the BC
model [ω = 0 with the Hamiltonian given by Eq. (3)]. The
qualitative features remain the same for small values of ω

[3,8]. Here A is a coexistence surface in the T -D plane where
phases with positive and negative M coexist. In the limit
D → −∞ only the S = −1, 1 states appear, and the system
is mapped to a spin half Ising model. In the He3-He4 context
it would mean the absence of any He3 impurity. Also, there
are symmetrically placed winglike coexistence surfaces B and
B′ extending into the D-H plane for D > Dtcr. The wings
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(a) (b)

FIG. 2. (a) Plot of the zero-field critical and coexistence lines in the D-T plane for the BC model with ω = 0. The black dot is the tricritical
point at D = 0.4621 and T = 1/3, while the dotted line below is the coexistence curve and the smooth line above is the critical line. (b) The
same phase structure in the x-T plane where x = 1 − q. The coexistence region is covered by the dotted curves. Both panels are adapted from
[3].

act as coexistence surfaces for the paramagnetic states having
different values of m and q. The coexistence surface A and the
wings B and B′ each is bordered on the high-temperature side
with critical lines which join together at the tricritical point
TP. The line of intersection of the three coexistence surfaces
is the triple line F which terminates at the tricritical point.
At the tricritical point the values of the critical exponents β, δ,
and α, where the symbols have the standard meaning as in [7],
are different from their critical values, while the exponents γ

and ν are the same [9].
In Fig. 2(a) we plot the zero-field critical line, tricritical

point, and coexistence line in the D-T plane for the BC limit.
As we have mentioned earlier, the phase structure remains
the same for small values of ω in the BEG model. Referring
readers to [3,10] for detailed derivations, we briefly outline
here some mathematical relations pertaining to the phase
structure. First, in the BC limit the zero-field expression for
magnetization simplifies considerably,

m = 2 sinh(βm)

2 cosh(βm) + eβ D
(BC, H = 0), (11)

and in the vicinity of the critical point the Landau expansion
of the free energy gives

G = − log (2eβ(−D) + 1)

β
+

(
1

2
− β

eβD + 2

)
m2

− [β3(eβD − 4)]

12(eβD + 2)2 m4 + · · · . (12)

The critical points are obtained via the condition ∂2G/∂m2 =
0 at m = 0 and the tricritical point via the additional condition
that ∂4G/∂m4 = 0 at m = 0. This gives the equation of the
zero-field critical line of the BC model as

Dcr = log 2(β − 1)

β
(BC model, H = 0), (13)

and the tricritical point at

βtcr = 3
Dtcr = log 4

3 = 0.4621

}
(BC tricritical point).

Equation (13) should be used only for β � 3. For higher
β values while the equation still gives critical values, it is
for the metastable normal phase, which we shall not pursue
here. It can also be verified that the zero-field coexistence
line starting at the tricritical point touches T = 0 at D = 0.5.
For higher values of D the superfluid state no longer remains
globally stable at any temperature, though it remains locally
stable. In other words, for D > 0.5 the normal state remains
the preferred state for all temperatures down to zero. From
Eq. (13) it may also be easily checked that for D = 0, which
is just the three-state Ising model, the critical temperature is
β = 3/2, and for D → −∞ in which limit the BC model
tends to the two-state Ising model the critical temperature
β → 1 as expected. Also plotted in Fig. 2(b) is the phase
diagram in the x-T plane which shows the critical line, the
tricritical point, and the coexistence region. Here x = 1 − q
refers to the specific concentration of the He3 phase.

We now briefly review the phase structure for the nonzero
field for the BC case. Again, the phase structure is similar
for the BEG case with small ω values. For nonzero field it is
best to invert Eq. (6) for the magnetic moment and express the
magnetic field H in terms of m,

H = 1

β
log

(
m eβD + √

m2e2βD − 4m2 + 4

2(1 − m)

)
− m. (14)

Interestingly, now this becomes a closed-form equilibrium
relation. A typical isothermal plot of H vs m is shown in
Fig. 3(a). The curve is analogous to the P-v isotherm in the
van der Waals gas, and the phase transition point is similarly
obtained by drawing an equal area Maxwell construction. On
further lowering the temperature the isotherm will cross the
critical point via an inflection given by ∂2H/∂ m2 = 0, which
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(a) (b) (c)

FIG. 3. (a) Isotherm in the H − m plane at D = 0.4634, β = 3.08 shows phase coexistence via Maxwell construction at H = 0.000065.
(b) The non-zero-field critical line bordering from above the coexistence region or the “wing” in the D-H -T plane for the BC model with ω = 0.
(c) The projection of the same critical line in the D-H plane. The leftmost point on the D axis is the tricritical point with D = 0.462, H = 0,
and T = 1/3.

in turn obtains the critical value of m in terms of β and D,

mcr =
√

e2βD − 16(e2βD − 4)√
192e2βD − 48e4βD + 4e6βD − 256

. (15)

Further, on taking the second derivative of G in Eq. (9) with
respect to m at m = mcr in Eq. (15) and then plugging in
the value of critical H from Eq. (14) we can obtain simple
relations between the parameters D, H , and β along the non-
zero-field critical line [3],

Hcr = 1

β
log

(
β + √

(β − 3)β − 2√
4 − β

)
− 1

β

√
(β − 3)β,

Dcr = 1

2β
log

(
16

4 − β

)
,

mcr =
√

β − 3√
β

. (16)

It can be easily ascertained from the equation above that along
the non-zero-field critical line (or the “wing” critical line) βcr

ranges from three to four as Dcr ranges from Dtcr to infinity
and Hcr ranges from zero to infinity. In Fig. 3(b) we plot the
non-zero-field critical line in the D-H-T space. The critical
line borders the coexistence “wing” under it, one each sym-
metrically placed in the positive and negative H direction. In
Fig. 3(c) the symmetrically placed wings are projected upon
the D-H plane.

Admittedly, we have left unexplored much of the parameter
space, which in fact yields very rich phase structure. For
example, at ω = 3.1 there are two more tricritical points sym-
metrically positioned on the critical boundaries of the wings
B and B′ [3,8]. Moreover, negative values of the couplings
J or K significantly change the phase behavior in the spin
one model, [11,12]. We shall not pursue the cases of antifer-
romagnetic spin coupling or a repulsive biquadratic coupling
in this work. While we believe the geometry of these cases
well worth investigating, it will also be more subtle due to
the presence of staggered spin and quadrupolar orders. We
hope to return to these exciting cases in the future. In the

limit J = 0, which we call the Griffiths model, the BEG model
exhibits phase coexistence as well as second-order transition
in the quadrupolar order parameter [13]. In this limit the spin
one model can be mapped onto the spin 1

2 Ising model with a
temperature-dependent magnetic field. Though we did explic-
itly work out the geometry of the Griffiths model in paper I,
the geometry of its mean-field approximation turn out to be
degenerate, as we shall see in the following.

III. CONSTRUCTING THE GEOMETRY OF THE
MEAN-FIELD BEG MODEL

We start by accounting for the independent stochastic
variables present in the full model and its mean-field approx-
imation. To that end we first rewrite the full Hamiltonian (3)
as a sum of stochastic variables

Hbeg = F1 + F2 + F3, (17)

where

F1 = −J
∑
〈i j〉

Si S j − K
∑
〈i j〉

S 2
i S 2

j ,

F2 = −H
∑

i

Si,

F3 = D
∑

i

S 2
i . (18)

The mean values of the random variables are related to the
extensive thermodynamic quantities,

〈F1〉 = U ; 〈F2〉 = −H M; 〈F3〉 = D Q, (19)

where M is the mean total magnetization, Q is the mean total
quadrupole moment, and U is the average “internal” energy of
the BEG system, arising out of mutual interactions between
spins and quadrupole moments at different lattice sites. The
three random variables are independent (though correlated),
thus implying that in the parameter space there are three
independent directions of equilibrium fluctuations.
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Except for the one-dimensional spin one model [6] and
a few special two-dimensional cases it is not possible to
compute the partition function analytically. On the other hand
the mean-field partition function is easily computed, and, as
the Monte Carlo simulations bear out, its phase structure is
qualitatively correct, [14]. Therefore it is worthwhile explor-
ing the geometry of the mean-field model. Unlike the full
Hamiltonian the mean-field model loses all direct information
about the internal correlations and retains only the average
effect of interactions. In particular, the random variable F1

of Eq. (18) is no more independent, thus bringing down the
number of stochastic variables to two. We rewrite (scaled)
Eq. (5) for the mean-field Hamiltonian to delineate the three
random variables,

Hm f
beg = −

(
m

2

∑
i

Si + ω q

2

∑
i

S2
i

)

− H
∑

i

Si + D
∑

i

S2
i ,

= Fm f
1 + F2 + F3. (20)

With its equilibrium fluctuations governed by the fluctuations
and correlations in F2 and F3 the internal energy random
variable Fm f

1 carries no additional information about the un-
derlying system, unlike its full BEG counterpart in Eq. (18).

We emphasize a crucial point here, namely, that even as
the parameter space of the mean-field BEG model is three-
dimensional with independent T, H , and D directions, at any
point in its Riemannian thermodynamic manifold the tangent
space of fluctuating directions is only two-dimensional. We
believe that it is generally true that the number of independent
stochastic variables in any mean-field approximation of any
model is at least one less.

This is similar to the case of the two-state Ising model, to
which we digress for a bit, where the mean-field Hamiltonian
has only one independent random variable, [15,16], while the
full Hamiltonian has two. This can be seen by recalling the
equation of the Ising model Hamiltonian,

Hising = −J
∑
〈i j〉

Si S j − H
∑

i

Si, (21)

and that of its mean-field approximation after rescaling by Jz
as

Hm f
ising = −

(
H + m

2

) ∑
i

Si. (22)

Thus, while the parameter space remains two-dimensional
with T and H as independent directions, the mean-field ap-
proximation in Eq. (22) has the only independent stochastic
variable resulting in a one-dimensional state space geometry.
This is also be seen by examining the expression for the
mean-field entropy S of the two-state Ising model,1

S = log
2√

1 − m2
− m tanh−1 m, (23)

1Indeed, the entropy label S is not to be confused with the spin label
Si.

from which it is clear that the entropy depends only on one
extensive variable, thus rendering the geometry degenerate.

With two independent random variables the mean-field
BEG model in Eq. (5) or (20) permits a nontrivial state
space Riemannian geometry. As stated earlier, at any given
point in the three-dimensional parameter space of the mean-
field model there are only two independent directions of
equilibrium fluctuations. This means that if we take an
arbitrary two-dimensional equilibrium hypersurface in the
three-dimensional parameter space and in principle constrain
the system to undergo spontaneous fluctuations only on the
given hypersurface, then the thermodynamic metric defined
on it will set up a two-dimensional Riemannian manifold.
The thermodynamic metric on the hypersurface is straight-
forwardly obtained by taking the derivatives of the entropy
(or the free energy) only along directions tangent to the hy-
persurface.2 In a sense, each hypersurface carries its own
two-dimensional Riemannian geometry, since, unlike the case
in paper I, there is no ambient three-dimensional metric from
which the projection metrics on these hypersurfaces could be
induced. Apart from this crucial difference with the geometry
of the 1D spin one model we shall construct the relevant
hypersurface geometries for the mean-field case in an exactly
analogous manner.

Following paper I here too we shall pursue the intrinsic
thermodynamic geometries on the constant H surface and the
constant D surface. Similarly, we find it easier to work with
the Massieu functions, which we could express from Eq. (8)
either as ψD(β, ν) with D constant or as ψH (β,μ) with H
constant. The thermodynamic laws relevant to the first and the
second geometries are

dψD = −(U + QD) dβ − M dν, (24)

dψH = −(U − HM ) dβ + D dμ. (25)

In both cases the Massieu function is the same, but the dif-
ferent arguments are emphasized here since the Riemannian
metrics will be built out of the double derivatives in the
arguments.

Following paper I it can be expected that in the first
case the Riemannian geometry would be more sensitive to
the fluctuations in the magnetic moment as compared to the
quadrupole moment, while in the second case the opposite
would be true. Accordingly, we shall sometimes refer to the
first geometry which restricts fluctuations to the constant D
plane in the T -H-D parameter space as the m geometry, with
the metric and scalar curvature on the surface termed the m
metric and Rm, and the second one which limits fluctuations
to the constant H plane the q geometry with its associated q
metric and Rq.

It is immediately obvious from Eq. (20) that the q geometry
becomes degenerate in the normal phase with m = H = 0.
This is because with the q geometry fluctuations restricted to
the H = 0 plane all the coefficients of the stochastic variable

2Indeed, such a construction would break down on hypersurfaces
where one of the directions of independent fluctuations happens to
be orthogonal to the surface.
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∑
i Si, including the variable itself, vanish leaving only a

single random variable
∑

i S2
i free to fluctuate in the plane.

On the other hand the m geometry, which is defined on the D
plane, continues to remain nondegenerate in the normal phase
since any fluctuation orthogonal to the H plane amounts to
a nonzero m as well as H , so that both stochastic variables
need to be retained. A somewhat limiting consequence of this
is that in the normal phase there is only the curvature Rm to
guide us. However, everywhere else in the parameter space
both curvatures inform the underlying correlations in the two
order parameters. We mention here that possibly there could
be a way to resurrect the q geometry in the normal phase by
adding a lattice-dependent energy term to the Hamiltonian in
Eq. (20). We shall not be pursuing this line here but refer to
[15] and [16], where such an approach was used in the context
of the mean-field Ising model.

We also note that the geometry of the isotropic mean-field
BEG model, obtained by setting H = D = 0 in Eq. (20),
was worked out in [17] using an unconventional 2D metric
different from ours in that it was obtained by taking double
derivatives of the Helmholtz free energy with respect to m
and q but not the temperature. While it is not a priori clear
how the resulting line element would relate to the probability
of fluctuation between nearby equilibrium states, the “mq”
scalar curvature obtained from the metric was nevertheless
shown to have the right scaling behavior, and its sign changes
were also shown to be closely aligned to the ferromagnetic
and paramagnetic phases. In this paper, as in paper I, the
metrics always follow from the first and second law variations
of potentials as explained in [18].

A. Calculating the state space scalar curvatures

Finally, we give an outline of our calculations for the metric
and the associated curvature in the mean-field case. Unlike the
one-dimensional case of paper I the mean-field free energy
depends directly as well as indirectly on the parameters β, μ,
and ν via its dependence on m and q, which are themselves im-
plicit functions of the parameters through their self-consistent
Eqs. (6) and (7). As a result any derivative of the free energy
will necessarily involve the derivatives of m or q with respect
to β, ν, or μ, where the set of free parameters depends on
whether the curvature Rq or Rm is being calculated. For exam-
ple, in the calculation of Rm the starting point is the m metric,
which is obtained by taking the Hessian of ψ in Eq. (9) by
considering it as a function of β and ν with D fixed, Eq. (24),

ψD(β, ν) = log
qD(β, ν)

1 − qD(β, ν)

− 1

2
β[mD(β, ν)2 + qD(β, ν)2 ω]. (26)

Now any derivative of ψD with respect to β or ν will
involve derivatives of m(β, ν) or q(β, ν) and to that end we
first rewrite Eqs. (6) and (7) to reflect this,

mD(β, ν) = 2 sinh[β mD(β, ν) + ν]

D (27)

and

qD(β, ν) = 2 cosh[β mD(β, ν) + ν]

D , (28)

where D equals

cosh[β mD(β, ν) + ν] + exp [β D − β ω qD(β, ν)].

After differentiating both sides of Eqs. (27) and (28) we can
solve them simultaneously to obtain the first-order derivatives
back in terms of m and q. The expressions are too large to
report here. Any higher order derivative can therefore consis-
tently be expressed in terms of m and q. Finally, the curvature
Rm is obtained in terms of the parameters β, H , D, and in terms
of m and q. Of course, the equilibrium values of the latter will
depend on the parameters via the implicit relations in Eqs. (6)
and (7).

Similarly, in order to obtain the geometry on hypersur-
faces parametrized by H we rewrite the magnetization and
quadrupole moment as functions of β and μ:

mH (β,μ) = 2 sinh β[mH (β,μ) + H]

D (29)

and

qH (β,μ) = 2 cosh β[mH (β,μ) + H]

D , (30)

where now D is rewritten as

cosh β[mH (β,μ) + H] + exp [μ − β ω qH (β,μ)].

The starting point for geometric calculations on the H
surface is the free energy, Eq. (9), recast as a function of β

and μ and parametrized by H ,

ψH (β,μ) = log
qH (β,μ)

1 − qH (β,μ)

− 1

2
β[mH (β,μ)2 + qH (β,μ)2 ω]. (31)

In an analogous manner the derivatives with respect to β

and μ can be solved for, finally leading to an expression for
the curvature Rq.

IV. GEOMETRY OF CRITICALITY

We now probe the scaling behavior of the state space scalar
curvature in light of the Ruppeiner equation, which relates the
curvature to the inverse of the critical free energy.

With its three-dimensional parameter space the singular
free energy of the BEG model can depend on up to three
independent scaling fields obtained from a linear combination
of deviations of the magnetic field H , the anisotropy field D,
and the temperature T from their respective critical values.
For the full BEG Hamiltonian of Eq. (3) this is indeed the
case as is worked out thoroughly in [24], especially near the
tricritical point. We are unable to ascertain if this will hold out
in the mean-field context, given that the number of random
variables here is reduced to two. In any case since the focus of
our investigation is the geometry in either the H plane or the
D plane we shall restrict the scaling analysis to these planes
only, so that the critical free energy here shall have only two
scaling fields.

Following [18] we first briefly summarize the context for
obtaining the asymptotic form of scalar curvature. The scaling
form of the singular free energy density can be expressed in
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terms of the scaling fields t = (βc − β )/βc and the ordering
field h as

ω(t, h) = n1 t2−α Y (n2 h t−β̃δ ), (32)

where the universal critical exponents α, β̃, and δ have their
usual meanings as critical exponents, while the constants n1

and n2 are nonuniversal and system dependent.3 Y (z) is the
spin scaling function which depends on h and t in a single
argument combination z = ht−β̃δ . Using the scaling form of
free energy from Eq. (32) in the evaluation of R and putting
it back into the Ruppeiner equation in Eq. (1), one obtains a
third-order differential equation for the function Y (z), which
in turn leads to the scaling form of R, [18],

R = β̃(β̃δ − 1)(δ − 1)kB Tc

(2 − α)(1 − α)Y (0)
tα−2. (33)

On the other hand the constant field-specific heat Ch can be
evaluated directly from Eq. (32), and its leading singular part
in zero field is

Ch = − (2 − α)(1 − α)Y (0)t−α

Tc
. (34)

The product of the scaling forms of R and Ch from Eqs. (33)
and (34) given as

RCht2 = −β̃(δ − 1)(β̃δ − 1)kB (35)

is consistent with the conjectured correspondence of R with
the correlation volume ξ d (and hence with the inverse free
energy via hyperscaling). This follows from a well-known
prediction of two-scale-factor universality according to which
the product similar to the one in Eq. (35), with R replaced by
the correlation volume ξ d , is shown to be equal to a constant
which depends only on the universality class [18,20].

In the following we shall present our main results for the
geometry near the zero-field critical line, tricritical point, and
wing critical line. But, first, we pause briefly to make some
general comments in favor of the geometric correlation length
obtained via the state space scalar curvature.

A. Geometric vs the Ginzburg-Landau correlation length:
A divertissement

It shall be the main task of this paper to make a case
that the curvatures Rm and Rq faithfully represent, to a large
extent, the correlation lengths in the order parameters m and
q, respectively. We repeat that unlike the one-dimensional
case where the correlation length is exactly calculable via the
transfer matrix and hence easily comparable to its geometric
counterpart, there is no direct way to determine correlation
length in a mean-field setup since we have already averaged
out the effect of spin-spin interactions here. The standard way
of getting around this limitation is to add a square gradient
term as a first correction to the mean-field Hamiltonian, as-
suming a slow spatial variation in the order parameter [7].

3To avoid confusion we shall refer to the “critical exponent β”
by the symbol β̃ while reserving the symbol β for the inverse
temperature.

TABLE I. Table comparing in different dimensions the Ising
critical exponent ν obtained via the standard renormalization group
calculations (labeled “true”), the ones obtained via thermodynamic
geometry (labeled “geometric”), and the mean-field value.

Dimension True ν Geometric ν Mean field ν

2 1 1 0.5
3 0.630 0.667 0.5
4 0.5 0.5 0.5

From the resulting Ginzburg-Landau (GL) Hamiltonian we
can obtain a correlation length which scales at h = 0 as

ξm f ∼ t−1/2 (G-L mean field) (36)

irrespective of the universality class to which the critical point
belongs. Thus the exponent ν = 1/2, and the upper critical
dimension for ordinary critical points in d = 4.

We recall that the geometric method of estimating the
scalar curvature is distinctly different. The curvature length
scale in the state space manifold is the one beyond which the
local flatness approximation does not hold, and this translates
in the thermodynamic system to the physical volume scale be-
low which the local correlation effects become strong enough
for the assumptions of classical thermodynamic fluctuation
theory to become invalid [18]. In other words, it is the corre-
lation volume. Significantly, scalar curvature proves to be an
in-built, invariant measure of the correlation length obtained
using information already available from thermodynamics.

In this work for the BEG model, as for the van der Waals
case earlier, [18,21], the universality class remains of the Ising
type with well-known critical exponents obtained theoreti-
cally. As we shall also see in the following the state space
scalar curvature is always found to have the same scaling near
the critical point for models, which belong to the Ising class,

R ∼ t−2 (Ising class). (37)

Given that the state space scalar curvature scales as the corre-
lation volume ξ d we can obtain the exponent ν from geometry
in a straightforward manner. In Table I we compare the Ising,
the geometric, and the mean-field critical exponent ν for dif-
ferent dimensions

While all this should certainly not be taken as a suggestion
of any superiority of the geometric correlation length over
the square gradient one (the latter has a very well-founded
basis and well-established usefulness), it certainly does help
substantiate the Ruppeiner conjecture relating the state space
scalar curvature to the correlation length, especially near crit-
icality. Additionally, we hope it could also inform the RG
calculations [22], and, coupled with the fact that the geometric
curvature is straightforward to calculate, it could also help
speed up such calculations. Significantly, as was pointed out
in [23] in the context of simple fluids, and in paper I for the
one-dimensional spin one model, the association of R with
the correlation length might go far beyond the neighborhood
of the critical region. In fact, we shall have ample opportunity
in the following to confirm that, consistent with Widom’s ar-
guments equating the correlation lengths across the interface,
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the scalar curvatures in the coexisting phases reasonably agree
with each other in places far enough from criticality.

In the following sections we investigate, in turn, the ther-
modynamic geometry near the critical points and near the
coexistence points, both in the zero-field and in the nonzero
magnetic field.

B. Geometry near the zero-field critical line λ

1. The m geometry

We first discuss the BC case (ω = 0), for which we are able
to obtain relatively tractable algebraic expressions. In order to
obtain a scaling expression of the scalar curvature Rm we first
find its value in the normal phase with m = 0,

Rm = − N
2D2(−2β + eβD + 2)2 , (38)

where

N = (1 + 2e−βD)(DeβD − 2)

×{D[−2β + (β + 1)eβD + 2] − eβD − 2}.
We then expand R−1

m in powers of the small parameter t =
(βc − β )/βc in the neighborhood of the critical line given by
Eq. (13). The dominant term in the expansion is

R−1
m = −2(βc − 1)D2

c t2 + O(t3) (39)

This also shows that Rm is always negative near criticality
since βc > 1 for any finite D as shown in Eq. (13).

On the other hand, the zero-field specific heat Ch in the
normal phase is obtained as

Ch = 2β2D2eβD

(eβD + 2)2 , (40)

and near the critical point it can be expanded as

Ch = (βc − 1) D2
c + O(t ). (41)

Hence, from Eqs. (39) and (41), the product

Rm Ch t2 = − 1
2 (42)

is what one would get by putting in mean-field values of
exponents in Eq. (35), namely, (α, β̃, γ , δ) = (0, 1/2, 1, 3).
This establishes the appropriateness of the scalar curvature
Rm in encoding the zero-field critical behavior in the BEG
model and further strengthens the association of Rm with the
correlation volume of fluctuations in m, at least in the critical
region. To complete the picture we also present the scaling
behavior of Rm with the magnetic field H in the D plane, along
the t = 0 line. It works out to

Rm ∼ h−4/3 (t = 0, critical point). (43)

We turn now to the case of nonzero coupling between
the quadrupole moments, namely, the full BEG case. The
algebraic expressions involved are too lengthy, so we resort to
numerical investigations for fixed values of the ratio K/J = ω

and the neighborhood of a fixed critical point. With a nonzero
ω the zero-field quadrupole moment in the normal phase is
now obtainable via an implicit relation,

q = 2eβqω−βD

2eβqω−βD + 1
. (44)

Near the critical point in the normal phase this implicit equa-
tion can be used to express a small deviation of the quadrupole
moment from its critical value in terms of the deviation of
the temperature from its critical value. It can be checked
that the dependence on temperature is linear. Finally, a series
expansion in the normal phase of Rm and Ch in the vicinity of,
for example, the critical point at βc = 2.239, Dc = 0.45 with
ω = 0.1 is given as

R−1
m = −0.3451 t2 + O(t )3 (45)

and

Ch = 0.2155 − 0.4848 t + O(t )2. (46)

We note that while the scaling of Rm is correct, the product
of amplitudes RmCht2 equals 0.62 and not the universal value
of 1/2 as expected with mean-field exponents and as verified
in the case of the BC limit in the preceding. Nevertheless the
product is always found to be greater than half and less than
unity. For example, for the critical point at βc = 2.3932, Dc =
0.47 with ω = 0.1 the product equals 0.756, and for βc =
2.0126, Dc = 0.45 with ω = 0.2 the product equals 0.537.
Thus it is seen that while the product has a weak dependence
on the ratio ω and on the location of the critical point, it
still remains small everywhere. We defer further analysis to
a future investigation.

We now briefly discuss some general features of this geom-
etry for the zero-field case. In Fig. 4(a) we obtain a semilog
plot of the scalar curvature Rm vs β across the critical line
at D = 0.4. Rm is seen to diverge to negative infinity from
both the normal and superfluid phases. Further extending the
semilog plot of Rm into the superfluid phase we see in Fig. 4(b)
that after dropping to low values sufficiently far away from the
critical line the curvature Rm begins a slower climb to negative
infinity on approaching the zero temperature. In Fig. 4(c) the
magnetization fluctuation σ 2

m is seen to diverge at the critical
point from either side and, it can be established, decays to
2/3 as β → 0 and to zero as β → ∞ in the superfluid phase,
irrespective of D.

In conclusion, we observe an excellent scaling behavior of
Rm and a very good agreement in the trends of Rm and σ 2

m away
from the critical point, especially in the normal phase. We are
unable to account for the weak divergence of Rm towards zero
temperature in the superfluid phase.

2. The q geometry

As mentioned earlier the q geometry becomes degenerate
in the zero-field normal phase as can be seen by evaluating
the determinant of the q metric, which is found to be zero
in the normal phase. It would be worthwhile exploring the
nature of the quadrupole fluctuations σ 2

q in both the normal
and the superfluid phases. In Fig. 5(a) we plot σ 2

q vs β in
the BC limit for D = 0.4 (the same as Fig. 4). Clearly, the
quadrupole fluctuations in the normal phase are small but also
quite flat in that the σ 2

q values change very little all the way
to β = 0 (T → ∞) in which limit σ 2

q → 2/9 irrespective of
D. In addition, we observe that σ 2

q undergoes a discontinuous,
finite jump at the critical point. We also note that the value of
σ 2

q at the critical boundary on the superfluid side is still small,
which is consistent with the fact that zero-field criticality
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(a) (b) (c)

FIG. 4. (a) Plot of log(−Rm ) vs β for the normal and superfluid (or ferromagnetic) phases, in the BC limit ω = 0. (b) log(−Rm ) vs β for
the superfluid phase with β ranging from the critical value to higher values (lower temperatures). (c) Plot of the magnetization fluctuation σ 2

m

vs β. In all panels the value of D = 0.4, and the critical point is at β = 2.211.

in the BEG model is powered by the spin-spin correlations
only [3]. Nonetheless, the discontinuity in σ 2

q brings out the
effect of criticality on the quadrupole-quadrupole interactions,
which appear to be very different in the two phases. The
superfluid scalar curvature Rq faithfully reflects the trend in
the superfluid q-q interactions near criticality. In Figs. 5(b)
and 5(c) we plot along the critical line, in turn, σ 2

q and the su-
perfluid curvature Rq vs D. Both quantities have been plotted
at a fixed relative distance t = (β − βc)/β = 10−5 from the
critical boundary of Fig. 2(a). It is seen that in the vicinity
of the critical boundary within the superfluid phase the q
curvature Rq and the quadrupole fluctuation σ 2

q both remain
small, especially for values of D away from the tricritical
point at Dtcr = 0.462, thereby underscoring the fact that the
correlation length for the order parameter q remains small
near criticality so that it does not play any direct role in phase
ordering here. Near the tricritical point, however, to which we
turn now, the case is not the same.

C. Geometry near the tricritical point

The tricritical point is the culmination of the triple line so
that at this point three phases become one, and in the zero-field
plane it joins the critical line and the coexistence line; see
Fig. 2. The scaling laws at the tricritical point are different
from the critical points, even for the mean-field case [9,24].
For the critical exponent β, while along the rest of the critical

line we have m ∼ t1/2, on approaching the tricritical point
we get m ∼ t1/4. Similarly, for the critical exponent δ, we
have m ∼ H

1
3 for ordinary critical points and m ∼ H

1
5 for the

tricritical point as can be quickly ascertained for the BC case
from Eq. (13) and Eq. (14). Interestingly, the scaling expo-
nents at the tricritical point equal their mean-field values for
dimensions d = 3 as opposed to the upper critical dimension
d = 4 for ordinary critical points. This can be seen from the
formula for the upper critical dimension obtained from the
Ginzburg criterion [24],

du = 2(β/ν + 1).

The zero-field superfluid scalar curvature Rm, however, con-
tinues to diverge at the same rate

Rm ∼ t−2

as elsewhere on the critical line so that, in itself, it does not
signal anything special happening to the m-m correlations at
that point. However, as is apparent from Fig. 5(c) the q geom-
etry already senses the vicinity of the tricritical point, with the
scalar curvature Rq growing in magnitude for D values close
to its tricritical value. This is also true of σ 2

q in Fig. 5(b). At
the tricritical point the superfluid q curvature diverges as

Rq ∼ t−1

with the quadratic fluctuation diverging as σ 2
q ∼ t−1/2. We

therefore conclude that the q-q correlations become more and

(a) (b) (c)

FIG. 5. (a) Plot of quadrupole fluctuation σ 2
q vs β for D = 0.4 in both the normal and the superfluid phases. Notice the discontinuity at

the critical point β = 2.211. Plots along the zero-field critical line of (b) superfluid quadrupole fluctuation σ 2
q vs D and (c) of superfluid scalar

curvature Rq vs D. Refer to Fig. 2(a) for the zero-field critical line. For (b) and (c) all points are at the reduced temperature inverse t = 10−5.
In all panels ω = 0.
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(a) (b) (c)

FIG. 6. (a), (b) The scaling behavior in the superfluid phase near the tricritical point at D = 0.4621, β = 3 for the BC limit (ω = 0).
(a) From the log-log plot of Rm and σ 2

m vs t the slope is seen to be 2 and 1, respectively. (b) The slope from the log-log plot of Rq and σ 2
q vs t is

seen to be 1 and 1/2. (c) The slope of the log of the superfluid heat capacity Ch is 1/2, while in the normal phase Ch remains finite (not shown).

more long range as we approach the tricritical point, with ξq

eventually diverging there. We establish the scaling behavior
of the scalar curvatures in the superfluid phase graphically
from Figs. 6(a) and 6(b). Figure 6(a) presents the log-log plot
of Rm and σ 2

m vs the reduced inverse temperature t . It is easy
to establish the scaling behavior stated above from the log-log
plot. Similarly, the log-log plot in Fig. 6(b) establishes the
scaling behavior of Rq and σ 2

q .
Given that the upper critical dimension for the tricritical

point is three, one would have expected the scaling of the
scalar curvature to be 3/2 so that in three dimensions it would
have led to ν = 1/2 as expected. This is also suggested by the
scaling of the heat capacity Ch near the tricritical point, which
goes as

Ch ∼ t−1/2

in the superfluid phase as shown in Fig. 6(c). Therefore, from
the exponent relation

νd = 2 − α

the scalar curvature ought to scale as t−3/2. Curiously, while
neither Rm nor Rq has this scaling, it is the average of the two
that turns out to be 3/2. Indeed, this could well be nothing
more than a numerical fluke, and we suspect that a three-
dimensional scalar curvature could possibly have been more
apt to probe the tricritical point. We defer further investigation
to the future.

In any case the geometry does inform us that microscop-
ically the tricritical point is different from the rest of the

zero-field critical line in that here both the q-q and the m-m
correlations play a role in the phase transition.

Finally, as in Eq. (43) for the critical case, we obtain the
tricritical scaling of Rm in the D plane along the t = 0 line. It
is found to be

Rm ∼ h−8/5 (t = 0, tricritical point). (47)

This is different from the critical value. While the t = 0 path
is uncommon as a measure of scaling behavior for the corre-
lation length, we do hope that it should be possible to check
these with Monte Carlo simulations or finite-size scaling
studies.

D. Geometry near the wing critical line

Here we shall restrict the non-zero-field investigations to
the BC case. The geometric analysis can easily be extended to
nonzero ω values, though we shall not pursue it here.

The critical line in the non-zero-field borders the wing co-
existence region as mentioned previously in our description of
the phase structure around Fig. 3. The intersection of the wing
surface with the constant D plane (for D > (log 4)/3) appears
much like the T -P coexistence line of simple fluids, with
the pressure field replaced by the H field and its conjugate
density replaced by the magnetic moment. In Fig. 7(a) we plot
a wing coexistence curve in the T -H plane for the BC case. It
separates two paramagnetic phases labeled “A” and “B” and
terminates at a critical point, much like in a van der Waals
fluid. We obtain two different scaling behaviors by approach-
ing the critical point from separate directions. In Fig. 7(b)

(a) (b) (c)

FIG. 7. (a) The BC wing coexistence curve in the T -H plane terminating with the (thick dot) critical point at Dcr = 0.474, Hcr =
0.004, βcr = 3.3, and mcr = 0.301. The coexisting phases are labeled A and B. Two directions of approach from the single phase region
to the critical point are shown, one at constant H = Hcr and the other at constant m = mcr . Log-log plots in (b) and (c) show the scaling
behavior in the D plane along, respectively, the constant m curve and the constant H curve. The slopes of Rm and Rq equal 2 in (b) and 4/3 in
(c), while those of σ 2

m and σ 2
q equal 1 in (b) and 2/3 in (c). Also shown in (c) is a log-log plot of Ch with a slope of 2/3.

034135-10



THERMODYNAMIC GEOMETRY OF SPIN-ONE LATTICE … PHYSICAL REVIEW E 105, 034135 (2022)

(a) (b)

FIG. 8. Plots comparing Rm crossing to the free energy crossing (referred to as the Maxwell line). Both plots refer to the same first-order
phase transition in zero field with D = 0.511 and at ω = 0.16. In (a) the magnetization is plotted vs the inverse temperature β. The free energies
of the normal and the superfluid phase become equal at the “Maxwell” line β = 2.6316, while the curvatures Rm in the two phases become
equal at the Rm-crossing line at β = 2.6305. In (b) the curvature Rm for both the phases is plotted and is shown to cross near the Maxwell line
at the aforementioned values of β. At the tricritical point for ω = 0.16 the parameter values are D = 0.5044, β = 2.515.

we obtain log-log plots of Rm, Rq and the fluctuations σ 2
m, σ 2

q
along the constant m curve, with the magnetization fixed at
its critical value. This is the standard path to ascertain critical
exponents from the single phase region [7]. Here we see that
Rm ∼ t−2. Interestingly, Rq also scales in exactly the same
manner, thus suggesting that in non-zero-field region there is
only one correlation length. This is known to be true in the
one-dimensional spin one model [6] and was also confirmed
geometrically in paper I. Meanwhile the heat capacity Cm

remains finite near the critical point so that along the constant
m path the exponent α = 0, thus conforming to exponent
relation νd = 2 − α. We have also checked numerically that
curvature Rm and the heat capacity Cm at the wing critical
point conform to Eq. (42),

Rm Cm t2 = − 1
2 , (48)

which is identical to the case of the van der Waals fluid [18].
In Fig. 7(c) we show the scaling of Rq, σ 2

q , and Ch along the
line H = Hcr . The heat capacity Ch here is analogous to Cp for
fluids. It can be seen that along the constant H line

Rm ∼ t−4/3

and

Ch ∼ t−2/3,

which again conforms to the exponent relation νd = 2 − α.
The amplitude relation of Eq. (42) is not followed, however.
We notice from Fig. 7(c) that once again the curvatures Rm

and Rq both have the same scaling.

V. GEOMETRY OF COEXISTENCE

In addition to encoding critical behavior, thermodynamic
geometry is also known to efficiently probe phase coexistence
and first-order phase transition. This was first discussed in
[23] in the context of simple fluids. Following Widom’s ar-
gument [21] equating correlation lengths in coexisting phases
near criticality to the interface thickness, it was shown [23]
by extensively using the NIST database for simple fluids

that there was an excellent match between the numerically
obtained scalar curvatures in the coexisting liquid and va-
por phases near the critical point. It was also shown that
for a reasonable distance from the critical point the scalar
curvature obtained explicitly from the mean-field van der
Waals model could predict the coexistence curve, thus nicely
complementing the Maxwell construction. In the geometric
context the coexistence point was obtained by locating the
point of intersection of the scalar curvatures and hence (via
the Ruppeiner conjecture) the correlation lengths of the two
phases. This method of constructing the coexistence curve has
since come to be known as the R-crossing method [25–27].
The geometric method advanced in [23] was quickly con-
firmed by numerical studies based on equations of state for
the Lennard-Jones fluids [25]. The authors had found striking
agreement between the phase envelope obtained by the R-
crossing method and the one obtained from simulation data.
In addition to phase coexistence the geometric investigations
have also been fruitful in predicting the Widom line for the
supercritical phase [23,25], though we will not be pursuing
it here. Thermodynamic geometry of phase coexistence has
also been investigated in magnetic systems [16] and black hole
thermodynamic systems [28,29] among others.

In this section we geometrically investigate the phase co-
existence regions in the zero-field region as well as the across
the wings.

A. Zero-field coexistence between the normal
and the superfluid phases

In Fig. 8(a) we plot the magnetization m vs the inverse
temperature β in zero field at D = 0.511 and ω = 0.16. For
high temperatures (small β) only the normal phase with m = 0
exists. On lowering the temperature a metastable superfluid
state (m �= 0) begins to coexist with the globally stable (lower
free energy) normal phase. On further lowering the tempera-
ture beyond the “Maxwell line” the superfluid state achieves
global stability with its free energy “crossing” below that of
the normal phase which is now metastable. This marks the
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(a) (b) (c)

FIG. 9. Free energy crossing points labeled G and the scalar curvature Rm crossing points labeled Rm in the D-T plane for different values
of ω. In each case the plots begin at the tricritical point. The BC limit for which ω = 0 and the tricritical point is at D = 0.4621, T = 1/3.
(b) ω = 0.16 and the tricritical point is at D = 0.5044, T = 0.397. (c) ω = 0.30, and the tricritical point is at D = 0.5405, T = 0.445.

first-order phase transition point as governed by free energy
crossing. On further lowering the temperature the normal
phase disappears, and the only stable (local as well as global)
phase is the superfluid phase. Close to the Maxwell line is a
dashed curve labeled the “Rm crossing line” which indicates
the temperature at which the m curvatures of the coexisting
phases cross each other. This is further elaborated in the
curvature Rm vs β plot in Fig. 8(b), in which the curvatures
Rm of the normal and the superfluid phases are seen to cross
each other at a temperature close to the free energy crossing
temperature indicated by a vertical line.

The first-order phase transition in zero field is understood
as a phase separation between the normal and superfluid
phases in the context of the BEG model and between the
magnetic and the impurity dominated nonmagnetic phases in
the BC case. In the BC case and also for small quadrupole-
quadrupole coupling (ω small) in the BEG case the phase
separation is governed by superfluid ordering via the order
parameter m. Thus for D > Dtcr the only way to sustain a
superfluid order in the helium mixture (or a magnetic order) is
to separate into two phases with He3 atoms (or nonmagnetic
impurities) dominating the normal phase. For larger values
ω the nonmagnetic intermolecular interaction force between
molecules begins to play an increasingly important role in
phase separation, [3]. Unfortunately, we shall not be able to
examine this trend geometrically since, with the q geometry

FIG. 10. Rq crossing diagram across the wing for the BC case
(ω = 0). Plot of Rq vs H in coexisting phases across the wing region
at D = 0.47 and β = 3.3.

defined only in the superfluid phase, the q curvature in the
normal phase will not be available for comparison.

In each of Figs. 9(a), 9(b), and 9(c), respectively, for
ω = 0, 0.16, 0.3 we plot in the D-T plane two coexistence
curves, the standard one predicted by the free energy crossing,
labeled by points “G,” and the one predicted by the R-crossing
method, with points labeled by “Rm.” Each of the plots starts
from the tricritical point for its ω value. Remarkably enough,
up to a reasonable distance from the tricritical point there is
an excellent agreement in the coexistence curves predicted by
the free energy and by the curvature crossings. We also notice
that as we tune up the quadrupolar interaction by increasing
ω, the range of temperatures for which the coexistence curves
agree increases. This could probably have to do with the ob-
servation in [3] that increasing the intermolecular interaction
strength (quadrupolar coupling in the Hamiltonian) posi-
tively induces phase separation, which at ω = 0 is controlled
solely by the spin-spin interactions. Lack of a nontrivial q
geometry in the normal phase limits our analysis in this
case.

B. Coexistence across the wing region

We compare both the q curvature and the m curvature for
coexisting phases across the wings. We restrict ourselves to
the BC case for simplicity, though the qualitative picture re-
mains the same for small values of ω. We shall be plotting the
coexistence curves between the two paramagnetic phases [re-
fer to Fig. 7(a) showing two coexisting paramagnetic phases
labeled “A” and “B”] in the T -H plane as predicted by the
free energy crossing, the Rm crossing, and the Rq crossing.
Interestingly, it turns out, it is the q geometry whose coexis-
tence curve prediction matches better the standard coexistence
curve obtained via free energy crossing.

In Fig. 10 we plot Rq vs H for coexisting paramagnetic
phases across the wing in the BC model. Rq crossing is seen
to be close to the free energy crossing. Further, in Fig. 11 we
plot the coexistence curves generated by the self-crossings of
the free energy G, of Rm and of Rq. While the Rq generated
coexistence curve is quite close to the standard free energy
coexistence curve, the Rm curve seems to diverge quickly.
This could probably be an indication that the quadrupolar
correlations play an important role in phase separation across
the wing. Of course, any such statement must be supported
by further analysis, which we defer to a future investigation.
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(a) (b) (c)

FIG. 11. The free energy crossing points labeled G and the curvature crossing points labeled Rq and Rm in the H -T plane for (a) D = 0.4681
and βcritical = 3.2, (b) D = 0.47413 and βcritical = 3.3, and (c) D = 0.495105 and βcritical = 3.5. The free energy crossing points lie on the
coexistence “wing” B′ of Fig. 1.

We also note from Fig. 11 that for wing regions closer to
the triple line the coincidence between the Rq and the free
energy coexistence curves persists for a longer distance from
the wing critical point. In Fig. 12 we plot the equilibrium free
energy G vs H for different distances from a wing critical
point. The reference figure for these is Fig. 11(b). The free
energy self-crossing is compared to the Rq crossing in each
subfigure.

The discussions around Figs. 9 and 11 suggest that the
triple line and the tricritical point at its terminus play a strong
role in organizing the thermodynamic behavior around their
vicinity. At least the geometry does carry the signature of the
triple line in a deep neighborhood of it.

VI. CONCLUSIONS

Formally, this paper is a continuation to the mean-field
case of the thermodynamic geometric investigation of spin
one model started in paper I where the one-dimensional spin
one chain was analyzed. Thematically, however, there is a
qualitative difference in the two. In contrast to paper I where
the role of geometry was mainly to confirm that the curvatures
are proportional to the exactly calculable correlation length(s),

in this work geometry is called upon to play a stronger role
in that it predicts a correlation length for the mean-field
model, which otherwise contains no direct information on
correlations.

We have constructed two complementary geometries
which are demonstrably responsive in turn to the correlations
in the magnetization and the quadrupolar order parameters.
Significantly, the scalar curvatures are shown to conform to
the two-scale factor universality relation between the heat
capacity and the correlation volume [20], and the geometric
correlation length is shown to have a superior scaling behavior
compared to the Ginzburg-Landau correlation length. The
tricritical point is also investigated, and, while the geometry
there correctly identifies the role of both the spin and the
quadrupole fluctuations, the curvatures there do not scale as
expected.

Geometric coexistence curves are plotted in the zero- and
non-zero-field regions, and they are found to agree remarkably
well with the standard coexistence curves obtained via the
Maxwell construction. In addition, geometry is also seen to
respond to the relative importance of the two order param-
eters in ordering the phase dynamics in different regimes.
Thus, while the magnetization correlations seem to drive

(a) (b) (c)

FIG. 12. Plots of isotherms of free energy in the G-H plane at D = 0.47413. While the free energy crossing gives the phase transition
point via the Maxwell construction, the green dashed line represents the Rq crossing point. At the critical point βcritical = 3.3. The parameters
here are the same as in Fig. 11(b). (a) β = 3.32, the free energy G crosses at H = 0.004144, while Rq crosses at H = 0.004146 with a relative
separation of 1.62%, (b) β = 3.36 and the G and Rq crossings are at H = 0.003888 and 0.003919 with separation of 4.84%, and (c) β = 3.4
with G and Rq crossings at H = 0.003619 and 0.003717, respectively, with a relative separation of 7.11%. The values of Rq at the Rq crossing
are, respectively, −8618, −1345, and −644.
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phase separation in zero field, it is the quadrupole corre-
lations which appear to drive phase separation in nonzero
field.

Similar to [23] where the geometric investigation of phase
coexistence was first initiated in the context of pure fluids
this work probes phase coexistence in model ferromagnetic
systems. To the best of our knowledge this is the first such
comprehensive work, with similar themes having appeared
previously in a limited sense in [16,17]. On the other hand,
an accurate geometric construction of the coexistence curves
should also be seen as a confirmation of the curvature-
correlation correspondence in the noncritical regions (i.e., the
weak Ruppeiner conjecture).

Our analysis strongly suggests that thermodynamic ge-
ometry provides valid correlation length estimates for the
mean-field models in both critical and noncritical regimes. We

sincerely hope that our studies will motivate a geometry based
analysis of multicritical phenomena and spin models with
multiple order parameters. Further, it would be good to test
and complement the results of our analysis with Monte Carlo
simulations, finite-size scaling studies, and renormalization
group analysis.
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