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Thermodynamic geometry of spin-one lattice models.
I. Spin and quadrupolar orders and critical scaling functions in one dimension
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State space Riemannian geometry is obtained for the one-dimensional Blume-Emery-Griffiths model and its
Blume-Capel and Griffiths model limits, and its (pseudo)critical as well as noncritical parameter regimes are
extensively investigated. Two codimension one geometries are obtained by taking suitable hypersurfaces in the
three-dimensional state space manifold, and the induced thermal metrics are accordingly interpreted in terms
of constrained fluctuations. The three-dimensional scalar curvature and the two two-dimensional curvatures
are shown to be consistent with Ruppeiner’s conjecture relating the inverse of the singular free energy to the
thermodynamic scalar curvature. Moreover, they are found to be in an excellent agreement over a greater part
of the noncritical region with the corresponding correlation lengths for the spin and the quadrupolar order
parameters. The scaling function for the free energy near the pseudocritical and tricritical points is obtained
thermodynamically by using Ruppeiner’s conjecture. A connection is made between the sign change in the
curvatures and the change in fluctuation patterns of the order parameters. In the accompanying paper we shall
analyze the geometry of the spin-one model in its mean field approximation.
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I. INTRODUCTION

Thermodynamic geometry (TG), as pioneered by Rup-
peiner and other researchers, has been extensively used to
probe a wide range of thermodynamic systems including
fluids, magnetic systems, and several black hole solutions.
Employing a metric based on second moments of thermal fluc-
tuation TG renders a Riemannian geometric structure to the
thermodynamic state space of the system [1,2]. The thermody-
namic metric quantifies in a coordinate-independent way the
classical distinguishability between thermodynamic states, so
that the easier it is for two states to fluctuate into each other
the shorter the separation between them and vice versa.

TG forges a surprising and remarkable connection between
its geometric invariants, which are calculated solely from
thermodynamics and the underlying statistical mechanical de-
scription of the system. Thus, in an early insight Ruppeiner
conjectured that in the vicinity of the critical point the state
space scalar curvature R is equal to the correlation volume ξ d

up to a constant of order unity. Using hyperscaling [3], this
insight could be further refined to an equality of the scalar
curvature with the inverse of the critical free energy up to
a universal constant κ which depends only on the universal
critical exponents,

R = κ
1

ψs
, (1)

where the critical Massieu function ψs is related to the critical
free energy density φs in the usual way, φ = −T ψ . The above
equation, considered as a differential equation for the free en-
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ergy, could be profitably used to calculate the scaling function
of the singular free energy, thus providing a thermodynamics-
based alternative to the more challenging calculation based on
renormalization group analysis [4,5]. This geometry-energy
equation in the Riemannian state space is a centerpiece of TG
and is reminiscent of the Einstein’s equation which relates
space-time curvature to matter energy distribution. It will
therefore be apt to refer to the conjectured equality in Eq. (1)
as the Ruppeiner equation.

It turns out that the Ruppeiner equation can be thought of
as the stronger form of a broader conjecture relating geometry
to thermodynamics, one which becomes exact in the limit of
the critical point. It will be shown in this work, as also has
been shown elsewhere, that the conjecture relating curvature
to the correlation volume as

R ∼ ξ d (2)

(where d is spatial dimension) extends to regions much be-
yond criticality. We shall refer to it as the weak form of
Ruppeiner’s conjecture. The weak conjecture has found much
use recently in calculating the phase coexistence curves and
the Widom lines for fluids and other systems [6–9].

Remarkably, the scalar curvature packs even more infor-
mation about the underlying statistics of interactions via its
signature. Thus, it is commonly believed that a positive sign
(in the convention used in [1]) of R is indicative of statistically
repulsive interactions, while a negative sign is suggestive of
statistically attractive interactions [9–15]. For example, the
scalar curvature has always been seen to diverge to negative
infinity at criticality. However, the issue of signature of R
is nuanced as suggested recently in [16], and it still awaits
a more fundamental resolution. In addition, scalar curvature
in three-dimensional or higher dimensional parameter space
has been investigated for only a handful of thermodynamic

2470-0045/2022/105(3)/034134(17) 034134-1 ©2022 American Physical Society

https://orcid.org/0000-0002-8923-3403
https://orcid.org/0000-0003-2403-7134
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.034134&domain=pdf&date_stamp=2022-03-24
https://doi.org/10.1103/PhysRevE.105.034134


RIEKSHIKA SANWARI AND ANURAG SAHAY PHYSICAL REVIEW E 105, 034134 (2022)

systems [16–18]. It is of interest to pursue the geometry of
higher dimensional parameter spaces to see if apart from the
scalar curvature the sectional curvatures could also signify
underlying physics.

More generally, R is to be understood as a qualified mea-
sure of interactions. While its behavior is well understood
broadly, a finer understanding of the geometric curvature is
still an ongoing work. In light of this it is important to record
the behavior of R for a range of thermodynamic systems. In
this context, exactly solved models can serve as important
testing grounds to verify the conjectures of TG and to further
explore the features of R inasmuch as they offer an analyti-
cal control over the partition function and also possibly the
correlation length. One of the most important such models
used to successfully verify TG is the one-dimensional Ising
model which has a (pseudo)critical point at zero temperature
in zero magnetic field. The scalar curvature earlier worked
out numerically in [19] was later found to be a surprisingly
simple expression [20]. Some other cases where TG has been
applied to exactly solved models are the Ising model on a
Bethe lattice [21], the Ising model on planar random graphs
[22], the spherical model [23] and the one-dimensional Potts
model [24], and a decorated two-parameter Ising spin chain
with frustration [25].

An Ising model with lattice spins Si = ±1 naturally gen-
eralizes to the spin-one model with lattice spins Si = 0,±1.
What might seem like an innocuous addition of a degree of
freedom to the lattice sites results in a rich and varied phase
structure of the spin-one model. This is because in addition
to the Ising-model-like interactions, the spin-one model ad-
mits the possibility of a nontrivial biquadratic coupling of
quadrupoles S2

i to each other and their interaction with an
ordering field independent of the magnetic field. In effect,
the thermodynamics of a spin-one model is governed by two
order parameters, the spin 〈Si〉 and the quadrupole moment
〈S2

i 〉. Both the order parameters, while kinematically coupled,
are separate stochastic variables and their interplay leads to
a rich phase structure with coexistence surfaces bordered by
critical lines and coexistence lines which meet in one or more
tricritical points.

Naturally, therefore, spin-one lattice models have been
extensively used to model the behavior of interacting sys-
tems with two types of ordering processes. One of the most
popular spin-one models, the Blume-Emery-Griffiths (BEG)
model originally formulated to study the phase behavior
He3-He4 mixtures, has been widely used to model diverse
phenomena. As a model for the phase behavior in Helium
mixture it successfully captures the phenomena of superfluid
ordering as well as phase separation depending on the rel-
ative concentration of the He3 impurity [26]. In addition,
the BEG model has been used in the context of simple flu-
ids to model condensation and solidification [27], in binary
alloys to model ferromagnetism and phase separation [28],
and in microemulsions [29], to name a few. In the limit of
zero biquadratic coupling, known as the Blume-Capel (BC)
model [30,31], it has been used to model phase behavior
in magnetic systems wherein depending on the strength of
crystal field splitting the transition between a paramagnet and
a magnetically ordered state changes from first order to second
order.

In this work we initiate the study of TG for classical higher
spin lattice models beginning with an investigation of the
one-dimensional spin-one models, namely, the Blume-Emery-
Griffiths model and its limiting cases of the BC model and the
Griffiths model [32], where in the latter case the quadratic spin
coupling is set to zero. In addition to the advantage of being
exactly solved, the one-dimensional spin-one models retain
much of the rich phase behavior of their higher dimensional
counterparts. Thus, these models continue to display a locus
of pseudocritical points, a pseudotricritical point and zero
temperature phase coexistence, much of which is amenable
to a geometric treatment. Besides, the parameter space of
BEG models is three-dimensional, which provides an avenue
to explore higher dimensional scalar curvature and various
sectional curvatures. In addition, the fact that there are two
order parameters in the model gives rise to the possibility
of two correlation lengths for some parameter values, and it
would be worthwhile exploring if geometry encodes different
correlation lengths. In this work we hope to make good use of
the given opportunity. In our subsequent work (paper II) we
investigate the geometry of criticality and coexistence for the
mean field spin-one model [33].

This paper is organized as follows. In Sec. II we ob-
tain the transfer matrix starting with the Hamiltonian of the
one-dimensional spin-one model and briefly review its zero
temperature phase diagram. In Sec. III we outline our method
for obtaining induced thermodynamic geometries from the
ambient metric and then argue our case for the two hyper-
surface geometries we believe are most relevant to our model.
Section IV presents a thermodynamic calculation of the scal-
ing form of the singular free energy, including the spin scaling
functions, and we make a connection with the Ruppeiner
equation. In Sec. V we report our results for the geometry
of the one-dimensional BEG model and undertake a detailed
survey in different parameter regimes. In Sec. VI we obtain
the singular free energy and the geometry of the Griffiths
model, and finally in the concluding Sec. VII we summarize
our key results, underline some limitations, and try to define
the scope of our work.

II. THE ONE-DIMENSIONAL SPIN-ONE MODEL

The most general Hamiltonian of a reflection symmetric
spin-one chain of N atoms with nearest-neighbor interaction
is

H = −J
N∑
i

SiSi+1 − K
N∑
i

S2
i S2

i+1 − H
N∑
i

Si + D
N∑
i

S2
i .

(3)

The lattice spin variable Si is Ising like and can take
values +1,−1, and 0. In addition to the bilinear coupling
terms of strength J and a magnetic field H that couples to
the magnetic moment, the Hamiltonian contains a biquadratic
coupling term of strength K and a crystal field D which
couples to the quadrupole moment. The coupling strengths J
and K are positive in the original BEG model [26] with the
K = 0 limit being the BC model [30,31]. In this report we
shall restrict ourselves to the case of nonnegative values of
spin exchange and biquadratic exchange, namely, K, J � 0.
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The spin-one models have two densities (order parameters),
the mean magnetization and the mean quadrupole moment,
which in the translationally invariant case are

M = 〈Si〉; Q = 〈
S2

i

〉
. (4)

The one-dimensional ring of N spins is exactly solvable in
the large N limit using the standard transfer matrix technique
[34]. The transfer matrix for the Hamiltonian in Eq. (3) is
three-dimensional,

T =
⎛
⎝e(−D+H+J+K )β e(H−D)β/2 e(−D−J+K )β

e(H−D)β/2 1 e−(D+H )β/2

e(−D−J+K )β e−(D+H )β/2 e(−D−H+J+K )β

⎞
⎠. (5)

This gives rise to three eigenvalues in general, λ1 > λ2 >

λ3. In the limit of infinite N , i.e., the thermodynamic limit, the
logarithm of the largest eigenvalue λ1 becomes the free energy
per spin. The free energy (Massieu function) for the zero-field
BEG model, H = 0, can be obtained in a closed form,

ψ = ln
[

1
2 e−β(D+J )

(
eβD+βJ + e2βJ+βK + eβK +

√
W

)]
, (6)

where

W = (
eβD+βJ + e2βJ+βK + eβK

)2

− 4
(−2eβD+2βJ + eβD+βJ+βK + eβD+3βJ+βK

)
.

While there is no finite temperature phase transition for the
one-dimensional case, its thermal behavior richly responds to
the interplay of various coupling strengths in the Hamiltonian.
At the pseudocritical point the eigenvalues λ1 and λ2 become
asymptotically equal. At the pseudotricritical point all three
eigenvalues become asymptotically equal.

The correlation length can be obtained in a standard
manner via the ratio of the largest and the next-to-largest
eigenvalues. Interestingly, owing to the fact that there are two
correlation functions corresponding to the spin-spin and the
quadrupole-quadruple correlations, the spin-one model admits
the possibility of two separate correlation lengths. Indeed, this
possibility is realized for the zero-field BEG model where due
to increased symmetry of the transfer matrix there are separate
correlation lengths for spin and quadrupole fluctuations, given
respectively as

ξ−1
1 = log

λ1

λ2
,

ξ−1
2 = log

λ1

λ3
. (7)

For the nonzero H field there is only one correlation length ξ1

for correlations in both order parameters [34].
We now discuss the phase structure for the one-

dimensional case. Our review closely follows [34], and even
Figs. 1 and 2 are exactly the same as those in [34] including
the figure labels. In any case the diagrams are easily ob-
tainable from the transfer matrix. Figure 1 shows the phase
diagram of the one-dimensional BEG model at T = 0. The
phase structure of the BC model is very similar. Two phases
with Q = 1 and M = ±1 coexist on the a line that is posi-
tioned at zero magnetic field. Similarly, two phases Q = M =
0 and Q = M = 1 or Q = −M = 1 coexist on the positive
and negative f lines symmetrically placed across the H = 0
axis along ±H = D − J − K . There is a discontinuous phase

FIG. 1. Zero temperature phase diagram for the spin-one model
in the H -D plane with J > 0, J + K > 0. Two phases coexist on the
a line and the f lines in the T = 0 plane, and they are a locus of pseu-
docritical points on approaching from T > 0. Point c is a triple point
at which three phases coexist in the T = 0 plane. On approaching
from T > 0 it shows pseudotricritical behavior. Adapted from [34].

change on crossing these lines at zero temperature, whereas on
approaching these lines from T > 0 one sees pseudocritical
behavior. The intersection of the a line with the f lines is the
triple point c at which three phases coexist. On approaching
the c line from T > 0 pseudotricritical behavior is seen.

Figure 2 is the zero temperature phase diagram of the one-
dimensional Griffiths model, which is the BEG model in the
limit of zero quadratic coupling, J = 0. On the d line an infi-
nite number of phases coexist in the limit of infinite N . This is
because, for D < K on the d line, the S = 0 spin is energeti-
cally ruled out while the up and down spins are equally likely
in the absence of a discriminating quadratic coupling. In other
words, the model behaves like a collection of independent

FIG. 2. Zero temperature phase diagram of the spin-one model
in the H -D plane with J = 0, K > 0. Infinite phases coexist on the
line d , and no pseudocritical behavior is seen. Two phases coexist
along the f lines, and pseudocritical behavior is seen on approaching
from T > 0. The point b is a triple point but not a pseudotricritical
point. Adapted from [34].
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Ising spins, which also rules out any pseudocritical behavior
in approaching the line from T > 0. On the other hand, just
as for the case J > 0 the f line continues to show two-phase
coexistence at T = 0 as well as pseudocritical behavior on
approaching from T > 0. The point b is a triple point but no
longer a pseudotricritical point.

Understandably, the zero temperature phase diagram in
Figs. 1 and 2 is straightforward, with straight line phase
boundaries, because it is influenced only by energy consid-
erations in the absence of any thermal or quantum fluctuation.
The region to the right of the f lines in both figures is the one
where the D “field” in the Hamiltonian, Eq. (3), is greater than
the combined strength of the attractive couplings J and K , so
that the energetically preferred state is the one with all spins
set to zero.

It will be of interest to see how far the state space geometry
encodes the microscopic statistical interactions of the chain.
In particular one would like to find out if the state space scalar
curvature is representative of the two correlation lengths ξ1

and ξ2 and as to how successful it is in encoding the pseu-
docritical and -tricritical behaviors in the model. In the next
section we shall set up two two-dimensional geometries for
the BEG model, namely, the ones intrinsic to the D surface
and the H surface. Quite satisfyingly, we shall be able to
amply demonstrate in our subsequent analysis that the two
geometries faithfully represent the underlying correlations in
the two order parameters.

III. SECTIONAL THERMODYNAMIC GEOMETRIES
OF THE ONE-DIMENSIONAL SPIN-ONE MODEL

In this section we obtain two two-dimensional sectional
geometries from the three-dimensional parameter space of the
one-dimensional spin-one model and argue why they are a
suitable choice for encoding separately the correlations in the
spin and the quadrupolar order parameters. Intrinsic thermo-
dynamic metrics on a hypersurface are obtained as a pullback
of the ambient metric and physically correspond to restricting
spontaneous fluctuations in suitable thermodynamic quanti-
ties, the general framework of which was developed in [35] in
the context of black hole thermodynamics. In a more direct
form the thermodynamic geometry pertaining to restricted
fluctuations was used in [36] and [37].1

We first set up the equilibrium thermodynamic relations
beginning with the free energy per site as the log of the
partition function,

ψ = 1

N
log

∑
{Si}

exp[−β Hbeg]. (8)

It shall be profitable in the following to think of the param-
eter D as a tunable external field coupled to the quadrupole
moment, just as the magnetic field H couples to spin. At
the same time the self-interaction parameters J, K are to be
thought of as fixed for a given system. The “total” energy per
site E and the “internal” energy per site U are obtained as

1For other work on extrinsic curvature in thermodynamic geometry
see [38]. Our context and scope are different.

properly chosen derivatives of the Massieu function

− ∂ψ

∂β

∣∣∣∣
H,D

= E = 1

N
〈Hbeg〉,

− ∂ψ

∂β

∣∣∣∣
ν,μ

= U = 1

N
〈Hbeg〉 + HM − DQ, (9)

where ν = βH, μ = βD. The differential of the Massieu
function can accordingly be expressed either in terms of the
variation in total energy or in the internal energy,

dψ (β, H, D) = −E dβ + β M dH − β Q dD (10)

or

dψ (β, ν, μ) = −U dβ + M dν − Q dμ. (11)

If all the fluctuations are unconstrained, then the Rie-
mannian metric of fluctuations is three-dimensional. We take
the Massieu function as our starting point and differenti-
ate it twice with respect to the entropic intensive variables
β, ν = βH, μ = βD to generate the full metric. In our ge-
ometric notation we have x1 = β, x2 = ν, x3 = μ, and for
the extensive quantities X1 = U, X2 = M, X3 = Q. Then the
three-dimensional thermodynamic metric is the covariance
matrix for fluctuations in extensive variables,

g i j = ∂2ψ

∂xi ∂x j
= 〈
Xi 
Xj〉. (12)

The inverse of the grand metric in Eq. (12) gives the equi-
librium fluctuations in the entropic intensive variables. We
write it with raised indices, so we have the following Einstein
summation gikgk j = δi

j :

(g−1)i j ≡ gi j = 〈
xi 
x j〉. (13)

From the above metric the fluctuations in the intensive vari-
ables T, H, D can be found by obtaining their differential
relation with the entropic intensive variables [35]:


T = − 1

β2

β,


H = − ν

β2

β + 1

β

ν,


D = − μ

β2

β + 1

β

μ. (14)

Using Eq. (13) the fluctuations in intensive variables can be
calculated. The variance of T is

〈(
 T )2〉 = 1

β4
g11. (15)

The variance of H is

〈(
 H )2〉 = ν2

β4
g11 − 2

ν

β3
g12 + 1

β2
g22, (16)

and that of D is

〈(
 D)2〉 = μ2

β4
g11 − 2

μ

β3
g13 + 1

β2
g33. (17)

Similarly we could obtain the cross moments such as
〈
T 
H〉 etc.
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The thermodynamic metric for a system with a given fluc-
tuation constraint can be shown to be the metric induced on
the hypersurface generated by the corresponding constraint
[35]. Thus, let the coordinates for the parameter space be
xi with i = 1, . . . , n. Then a hypersurface in the parameter
space, to which the spontaneous fluctuations are restricted, is
given by setting some function f of the coordinates xi to be
zero,

f (x1, x2, . . . ) = 0. (18)

This defines a codimension one hypersurface in the state
space, which can be labeled by n − 1 coordinates ya intrinsic
to the hypersurface. We shall call it the f surface. The compo-
nents of the full metric along the f surface give the projection
metric in the n-dimensional parameter space,

g( f ) i j = gi j − ∂i f ∂ j f

gkl∂k f ∂l f
, (19)

where ∂i f is along the normal to the f surface. In addition
to the n-dimensional projection metric we can also write the
(n − 1)-dimensional induced metric on the f surface via the
usual pullback of the full metric on the f surface,

h( f ) ab = g( f ) i j
∂xi

∂ya

∂x j

∂yb
= g i j

∂xi

∂ya

∂x j

∂yb
. (20)

The second equality stems from the fact that a tangent vector
living on the f surface is orthogonal to the gradient vector
∂i f . The two equivalent metrics in Eqs. (19) and (20) provide
complimentary information on fluctuations. Thus the induced
metric h f gives the fluctuations in coordinates intrinsic to the
f surface,

h( f ) ab = 〈(
Ya 
Yb)〉 f , (21)

and its inverse as

h ab
( f ) = 〈(
ya 
yb)〉 f . (22)

Here Ya labels suitable extensive quantities conjugate to
the local coordinates defined on the hypersurface. On the
other hand, the projection metric directly reads off the f -
constrained variance in the quantities defined on the full
parameter space,

g( f ) i j = 〈(
Xi 
Xj )〉 f ,

gi j
f = 〈(
xi 
x j )〉 f . (23)

For the spin-one model in principle one could restrict the
full set fluctuations in as many ways as one could slice the
state space. Some of them, however, while mathematically
admissible appear to be inaccessible or contrived experimen-
tally. For example, on an M surface wherein the magnetic
moment fluctuations are suppressed, the fluctuations in Q
would have to peculiarly orchestrated owing to the kinematic
coupling between the two. We shall therefore not consider
sectional geometries in which the fluctuations in either M or
Q are completely suppressed.

We are now ready to construct the two two-dimensional ge-
ometries as advertised earlier. Let us first write the geometry
obtained by restricting fluctuations in the intensive variable D.
A D surface in the β-ν-μ parameter space is the hyperplane

f (β, ν, μ) = μ − βD = 0. (24)

A suitable choice of local coordinates on the D surface is

y1 = β and y2 = ν, (25)

so that global coordinates relate to them on the D surface as

β(y1, y2) = y1, ν(y1, y2) = y2, μ(y1, y2) = D y1. (26)

Using Eqs. (24)–(26) in Eq. (20) the components of the in-
duced metric hD on the D surface are

h(D) 11 = g11 + 2D g13 + D2g33,

h(D) 12 = g12 + 2D g32,

h(D) 22 = g22, (27)

where the components gi j have their usual interpretation as
variance of extensive quantities; see Eq. (12). Evidently, the
results for the induced metric in Eq. (27) can be read off
directly by simply setting D to constant in Eq. (11), which
gives

dψ = −U1 dβ + M dν (D constant), (28)

where U1 = U + QD is an enthalpy-like term. By taking sec-
ond derivatives of ψ with respect to β and ν keeping D
constant, we obtain all the components of hD.

It can checked from Eqs. (23) and (17) that on the D surface
the fluctuations in Q are somewhat suppressed in comparison
to the unconstrained case while the fluctuations in M remain
unaffected:

〈 (
Q)2 〉D = 〈 (
Q)2 〉 − 1

β2 〈 (
D)2 〉 ,

〈 (
M )2 〉D = 〈 (
M )2 〉. (29)

Not surprisingly, therefore, as we shall see in the next section,
the scalar curvature on the Q surface is aligned more with
the correlations in the magnetization than in the quadrupolar
order.

Similarly, we can develop the geometry of the H surface by
projecting out the grand metric along the hypersurface defined
by ν − βH = 0, where H is a constant. Following the same
procedure, the components of the induced metric hH along
the local coordinates y1 = β, y2 = μ are

h(H ) 11 = g11 − 2Hg12 + H2g22,

h(H ) 12 = g13 − Hg23,

h(H ) 22 = g33. (30)

Once again, the components of hH can be read off by setting
H to constant in Eq. (11),

dψ = −U2 dβ − Q dμ (H constant). (31)

Here U2 = U − MH is an enthalpy-like term. One can check
from Eqs. (23) and (16) that on the H hypersurface the M
fluctuations are weakened while the Q fluctuations remain
unrestricted:

〈 (
M )2 〉H = 〈 (
M )2 〉 − 1

β2 〈 (
H )2 〉 ,

〈 (
Q)2 〉H = 〈 (
Q)2 〉. (32)
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Evidently, as our subsequent discussion shall bear out, the
scalar curvature on the H surface encodes the correlations in
Q instead of M.

We shall term the intrinsic scalar curvatures associated
with the H surface and the D surface as the curvatures Rq

and Rm respectively. The full three-dimensional grand scalar
curvature shall be denoted by Rg, where the subscript g has
connotations of the grand canonical ensemble in which all
the thermodynamic fluctuations are unrestricted. Finally, we
note that the scalar curvatures for all the two-dimensional
geometries can be obtained as sectional curvatures along their
respective f surfaces of the three-dimensional Riemannian
curvature tensor of the grand metric [35,39].

In the following section we obtain the full scaling form of
the free energy, including the spin scaling function, using only
thermodynamics, and the geometry arising from it.

IV. SINGULAR FREE ENERGY FROM
THERMODYNAMICS

For the one-dimensional spin-one model, as for the one-
dimensional Ising model [3,5], the scaling form for the free
energy (Massieu) near the critical point at T = 0 can be writ-
ten as

ψs(β, h) = n1 t a Y

(
n2

h

tb

)
, (33)

where the scaling field are h and t (∼e−βJ ) while Y (z) is the
spin scaling function which depends only on the combination
z = ht−b. Here a and b are the universal scaling exponents,
while the constants n1 and n2 are nonuniversal and system
dependent. As we shall see in the following, the ordering field
h equals Hβ near the zero-field critical points and (H − D +
J + K )β near the wing critical points. Of course, in general
the spin-one model has three independent scaling fields [40],
so that the spin scaling function would be Y (h1/t b, h2/t c),
with h1 and h2 being some linear combination of μ, ν and
β. However, mainly for ease of computation, we shall restrict
ourselves to the two-dimensional subspace of scaling fields
so that Eq. (33) will apply to our spin-one model. In other
words we are not taking the most general possible directions
of approach to the (pseudo)critical points.

Our investigation of the singular part of the free energy
near the pseudocritical and -tricritical points has two related
intents. First, given that we are able to obtain the scaling of the
free energy on the one hand (Sec. IV A) and the relevant scalar
curvature(s) on the other (Sec. V), we could then verify the
Ruppeiner equation, Eq. (1), by independent checks on both
the sides of the equality. Second, assuming that the Ruppeiner
equation is correct, we solve it as a differential equation in
the free energy (Sec. IV B), and hence obtain the scaling
form(s) of the free energy from among the solutions. In turn it
will help validate the Ruppeiner equation if the spin scaling
function thus obtained is found to agree with independent
numerical checks. As we shall see in the following, the first
case is amply verified in the zero-field limit, while the solu-
tion of the differential equation in the second case leads to
a thermodynamic calculation of the spin scaling function in
nonzero field as in [5] where Ruppeiner calculated the same
for the one-dimensional Ising model.

Taken together, therefore, we are able to obtain the full
scaling form(s) of the free energy from purely thermodynamic
considerations as we now proceed to establish.

A. Zero-field scaling of the free energy

On setting the scaling field h to zero in Eq. (33) the scaling
function becomes Y (0) = 1. This always renders a closed-
form expression to the free energy of the one-dimensional
spin-one model and, as we show below, it becomes possible
to filter out the leading singular terms in the scaling regions.

We first consider the a line of Fig. 1 for which D < J + K .
We recall that the a line is a locus of pseudocritical points for
the magnetization but not for the quadrupolar order. Satisfy-
ingly, it is possible to separate the singular and regular parts of
the free energy (or the Massieu function) near the a line, which
we shall explain now. Recalling the expression for zero-field
Massieu function in Eq. (6) we rewrite it keeping in mind that
D < J + K and arrive at an expression of the form

ψ = (J + K − D)β

+ ln 1
2 (1 + e(D−J−K )β + e−2Jβ + √

1 + w), (34)

where

w = e2(D−J−K )β + 8e(D−2J−2K )β + e−4Jβ

+ 2e−2Jβ − 2e(D−3J−K )β − 2e(D−J−K )β.

The logarithmic term in Eq. (34) goes to zero as β → ∞.
This is because with D < J + K all the exponential terms
within the logarithm, including those comprising w, are less
than one and approach zero as β becomes larger. Therefore,
we can consider the first term in Eq. (34) as the regular part
ψr of the free energy near criticality and expect the singular
part to be contained in the logarithm. The dominant part of the
singular free energy must be that term in the logarithm which
is the slowest to decay to zero as β becomes larger. In order
to filter out such terms we express the log term for large β as

ψ − ψr = ln
[
1 + 1

2 e(D−J−K )β + 1
2 e−2Jβ + 1

2 (
√

1 + w − 1)
]

(35)

and keep just the linear term in its expansion. However, we
must look at all the terms in the expansion of

√
1 + w. This

is because it leads to a systematic cancellation of all the terms
containing e(D−J−K )β or any of its higher powers which are
inadvertently generated on expanding the square root term.

The correlation length ξ1 obtained from Eq. (7) can also
be analyzed in a similar manner. In the limit of large β it is
seen to go as the inverse of the singular free energy, which is
consistent with hyperscaling near the critical point.

The zero-field scaling behavior near the a line with D <

J + K is finally obtained as

ψs = 1
2ξ−1

1 = e−2Jβ (D < 2K )

= 3
4 ξ−1

1 = 3 e−2Jβ (D = 2K )

= ξ−1
1 = 2 e−(2J+2K−D)β (D > 2K ). (36)
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In the BC limit K = 0 it is easily seen that we get different
scaling behaviours for D < 0, D = 0, and D > 0.

We now consider on the zero-field line the point D = J +
K , which is a triple as well as a pseudotricritical point. As
can be checked from its expression in Eq. (34) the free energy
now goes to zero in the zero temperature limit. Its expression
simplifies to

ψ = ln
(

1 + 1
2 e−2Jβ + 1

2 e−2Jβ
√

1 + 8e(3J−K )β
)
. (37)

After a simple expansion of the logarithm we take the
dominant part of the free energy as the one which is the
slowest to decay as the pseudotricritical point is approached
from nonzero temperatures. Depending on whether K is less
than, equal to, or greater than 3J we have three cases for
the zero-field scaling near the pseudotricritical point with
D = J + K :

ψs =
√

2 e−(J+K )β/2 (K < 3J )

= 2 e−2Jβ (K = 3J )

= e−2Jβ (K > 3J ). (38)

At the pseudotricritical point both correlation functions ξ1

and ξ2 diverge with the following asymptotic relation to the
singular free energy:

ξ1 = 2 ξ2 = ψ−1
s (K < 3J )

= ξ2 = 2
3ψ−1

s (K = 3J )

= 2 ξ2 = ψ−1
s (K > 3J ). (39)

Finally, we consider the f line on which D = |H | + J + K .
With nonzero H it is easier to work with the numerical solu-
tions for the eigenvalues of the transfer matrix. The f line
is a pseudocritical point for both the magnetic order and the
quadrupolar order when approached from nonzero tempera-
tures. For nonzero field both order parameters have the same
correlation length ξ1 [34]. Just as for the pseudotricritical
point the free energy goes to zero on the f line, and its singular
part is double the inverse correlation length

ψs = 1
2 ξ−1

1 = e−(J+K )β/2 (D = |H | + J + K ). (40)

B. Spin scaling function Y (z) from geometry

Having obtained the zero-field scaling of the free energy
we now turn to the calculation of the spin scaling function
Y (z) using thermodynamic geometry. Our derivation of the
spin scaling function closely follows Ruppeiner’s calculation
for the same in [5].

We first express the two-dimensional scalar curvature R as
a ratio of determinants involving derivatives of the free energy
[4,5]:

R = −1

2

∣∣∣∣∣∣
ψ,11 ψ,12 ψ,22

ψ,111 ψ,112 ψ,122

ψ,112 ψ,122 ψ,222

∣∣∣∣∣∣∣∣∣∣ψ,11 ψ,12

ψ,21 ψ,22

∣∣∣∣
2 . (41)

It can be checked that near the (pseudo)critical point, under
sufficiently general circumstances, the background free en-
ergy contribution to R is insignificant in comparison to the
singular term so that in the equation for R above we can
replace ψ by ψs everywhere. With this understanding the
Ruppeiner equation becomes a third-order PDE for ψs. One
can further check that on substituting the scaling form of
the free energy from Eq. (33) in Eq. (41), and hence in the
Ruppeiner equation (1), all factors of the powers of t (β ) and
h cancel out, resulting in a third-order ordinary differential
equation (ODE) for Y (z) [4,5]. This is very much in keeping
with the conjectured exactness of the Ruppeiner equation near
criticality so that the only unknowns are the universal expo-
nents and the universal scaling function. Putting b = ma in
Eq. (33), with m being any positive constant, and temporarily
rescaling z to z = n2h/t b the Ruppeiner equation is obtained
in terms of the derivatives of Y , the constant m, and the free
variable z as

2κ (m2zY ′Y ′′ + (m − 1)2Y ′2 − YY ′′)2

= −mY
{
(m − 1)Y ′2[(m − 2)nY (3)z + (m − 1)2Y ′′]

+Y ′[m3Y (3)z2Y ′′ + (m − 1)YY (3) + (3m − 1)mzY ′′2]
−Y ′′[m3z2Y ′′2 + mYY (3)z + 2(2m − 1)YY ′′]}, (42)

where Y ′,Y ′′,Y (3) denote the first, second, and third deriva-
tives of Y with respect to z.

In order to solve for Y (z) we assume it to be an even
function of z and expand it as an even series in z with unknown
coefficients,

Y (z) = a0 + a2 z2 + a4 z4 + · · · . (43)

Clearly, about the zero-field line of Fig. 1 Y (z) will be an
even function of z although it is not a priori clear whether
the scaling function is symmetric about the f line. As our
numerical studies seem to suggest, probably there are different
scaling functions Y±(z) above and below the f line. In any
case we shall restrict our investigation to regions above the
f wings and continue to assume an even symmetry for the
scaling function Y+(z) there. Our numerical checks do confirm
this form for Y+(z) even as we are unable to find a satisfactory
explanation for the same.

Furthermore, the usual assumption Y (0) = 1 sets the coef-
ficient a0 = 1. Therefore, of the three constants of integration
generated by integrating the third-order ODE in Y only one
is left undetermined. Plugging in the series expansion of Y (z)
from Eq. (43) into Eq. (42) one obtains

0 = (m(2m − 1) − κ )

+ m
(
16a2

2m3 − 24a2
2m2 + 14a2

2m − 3a2
2 + 6a4

)
a2

z2

+ O(z4). (44)

Further simplification results from an additional input
coming from thermodynamic geometry. As we shall be es-
tablishing in the next subsection, for the one-dimensional
spin-one model the relevant section curvatures are exactly
inverse those of the free energy, namely, κ = 1 in the pseu-
docritical and the pseudotricritical limit. Barring a few, most
of the checks are numerical. On approaching the a line the
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curvature Rm follows the Ruppeiner equation (1) with κ = 1
while Rq remains finite, and on approaching the f line and the
pseudotricritical point c both Rm and Rq follow the Ruppeiner
equation with κ = 1. See Fig. 7(c) below for an example.

This sets the value of the positive constant m to unity as
can easily be checked by putting κ = 1 in

m = 1
4 (

√
8κ + 1 + 1),

which is obtained by setting to zero the coefficient of the
zeroth power of z in Eq. (44). Therefore, geometry quickly
leads to the result that for the one-dimensional spin-one model
the exponents a = b.

Finally, Eq. (44) simplifies to

0 = 3
(
a2

2 + 2a4
)

a2
z2 +

(
5a4

2 + 22a4a2
2 + 30a6a2 − 36a2

4

)
a2

2

z4

+ O(z6). (45)

Setting the coefficient of each power of z to zero leads to a
series solution for Y which has the closed-form expression,

Y (z) =
√

1 + (z/n)2, (46)

where we have reverted to z = h/t a as in in Eq. (33) and the
constant n is related to a2 and n2.

Combining with the results of the previous section we can
now present the formal structure of the singular free energy
for the one-dimensional spin-one model,

ψs(t, h) = n t Y

(
h

n t

)

=
√

(n t )2 + h2. (47)

This is the key result of this section. The different values of
the constant factor n are the ones multiplying the exponentials
in the zero-field scaling expressions for ψs obtained in the
previous Sec. IV A. Thus, Eq. (36) for the scaling near the
a line has n = 1, 3, 2, Eq. (38) near the pseudotricritical point
has n = √

2, 2, 1 and Eq. (40) near the f line has n = 1. The
reduced temperature t is always defined here such that the ex-
ponents a = b = 1. The reduced temperature for the spin-one
model is not always equal to e−βJ as in the one-dimensional
Ising case but, as we saw in the previous subsection, is of
the more general form e−βX where X is a linear combination
of the coupling strengths in the Hamiltonian, with its form
depending on the relative strength of the coupling terms. Fi-
nally, as mentioned earlier, the ordering field is h = βH in the
vicinity of the pseudocritical a line and the pseudotricritical
point, while around the upper and lower f lines it is h =
(H − D + J + K )β and h = (H + D − J − K )β respectively.

As alluded to earlier, numerical checks show that the differ-
ential equation (42) for Y (z) with κ = 1 is not satisfied inside
the f wings. This suggests that the form of the scaling func-
tion Y−(z) must be different. We defer a detailed investigation
of this observation to the future.

Having utilized the strong conjecture of Ruppeiner to ob-
tain the scaling function from thermodynamic geometry we
turn our attention now to the investigation of the thermody-
namic curvature vis-à-vis the correlation length, a relation

which encompasses both the strong and the weak aspects
of the conjecture. We shall examine the curvatures Rq and
Rm for different parameter ranges and also comment on the
three-dimensional scalar curvature Rg.

V. GEOMETRY OF THE J > 0 CASE, THE
ONE-DIMENSIONAL BEG AND BC MODELS

We now discuss the thermodynamic geometry of the one-
dimensional BEG model, namely, the spin-one model with
J > 0. The Griffiths model (J = 0) shall be discussed sepa-
rately in the next section. The zero temperature phase diagram
for this case is given in Fig. 1. As discussed earlier, on line a
the correlation lengths of the two order parameters M and Q
are different, ξ1 
= ξ2, while at the pseudotricritical point c and
on the f line ξ1 = ξ2.

From several scalar curvature vs correlation length plots we
shall see that ξ1 and ξ2 correspond well with the scalar curva-
tures Rm and Rq, respectively, for a wide range of parameter
values, far beyond criticality. There are apparent variations to
the theme, however, possibly reflecting attributes of R apart
from its association with the magnitude of the correlation
length. We hope to address these observations in a future
investigation.

As a warm-up and to set the stage for what follows, we
do a lightning review of the geometry of the one-dimensional
ferromagnetic Ising model first discussed in [19,20]. The free
energy and the correlation function can be obtained via the
transfer matrix in the standard manner. The singular part of
free energy near the pseudocritical point T = 0, H = 0 in the
β-H plane has the well-known scaling form [3]

ψs = e−2 J β

[
1 +

(
H β

e−2 J β

)2]1/2

, (48)

and the correlation length is obtained as

ξ−1 = log

(
e2βH + W + 1

e2βH − W + 1

)
, (49)

where W 2 = −2e2βH + e4βH + 4e2(H+2J )β + 1, while the
scalar curvature is obtained as a simple expression [20]

R = − cosh(β H )
1√

exp(−4J β ) + sinh2(β H )
− 1. (50)

It can be checked that R follows the Ruppeiner equation at
the pseudocritical point (H = 0, β → ∞) with the propor-
tionality κ = 1 and −R → 2ξ . Satisfyingly, even for nonzero
magnetic field, which takes the system away from criticality,
the curvature R closely “envelops” the correlation length with
the former asymptoting to −2 as ξ decays to zero for large β.
Trends in R are shown in Fig. 3(a) for zero field and Fig. 3(b)
for nonzero field.

Thus, an exploration of the one-dimensional Ising model
reinforces both the strong and the weak ends of Ruppeiner’s
conjecture. Both features will appear as a common theme in
the geometry of the one-dimensional spin-one model to be
discussed below. In particular, the weak end of Ruppeiner’s
conjecture, which has not been sufficiently emphasized in the
literature, occurs as a recurring motif in this work.
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(a) (b)

FIG. 3. Temperature plots of −R and ξ for the one-dimensional Ising model with the coupling J set to unity. (a) The magnetic field is set
to zero. Curvature goes as twice the correlation length at low temperatures. (b) The magnetic field is nonzero and is set to H = 0.1. Curvature
maintains a steady distance with the correlation length.

In the following subsections we shall sort our observations
of the scalar curvatures Rq, Rm, and Rg for different relative
strengths of the couplings H, D, J, and K .

A. The zero-field case

The region of interest in this subsection will be the pseu-
docritical a line and the pseudotricritical c point of Fig. 1,
and we shall observe the curvature, correlation length, or
the free energy as we approach these points from nonzero
temperatures. We shall discuss the cases J > K and J = K
separately, and in both we shall deal first with Rq followed by
Rm and Rg, scanning in each case D values to the left of, at,
and beyond the pseudotricritical point.

1. The case J > K

This case is the most relevant to the BEG model inasmuch
as it refers to He3 − He4 mixtures since for such mixtures K
is much less than J . Similarly, it is also relevant to the BC
model for which K = 0. The a line, the pseudotricritical point
c, and the part of x axis to its right in Fig. 1 constitute the
zero-field line. The a line is a pseudocritical line with respect
to M fluctuations but not for Q fluctuations.

First, we consider Rq and ξ2 on the whole of the zero-field
line. We note that we can obtain a closed-form expression for
Rq by setting H to zero in the thermodynamic metric defined

on the constant H surface, Eq. (31). While the zero-field ex-
pression for Rq is too large to be shown here, we obtain much
smaller expressions for some special cases which we shall
present on appropriate occasions. It is seen that for values of
D < K − J the magnitude of Rq maintains an approximately
constant distance with the correlation length ξ2, with Rq con-
verging to −1 and the latter to zero as T tends to zero.

At D = K − J the curvature Rq converges to a value
slightly less than −1, which depends only on the ratio K/J ,
with the minimum value of −1.25 in the BC limit K = 0
irrespective of the value of J . In Figs. 4(a) and 4(b) where we
plot together the variation in the magnitude of Rq and ξ2 with
respect to β, it can be seen that they maintain a separation of
approximately one lattice unit for D � K − J . We also note
that the association of the scalar curvature to the correlation
length has no connection to criticality here.

For K − J < D < K + J the curvature Rq does not match
ξ2 for the full range of temperature. While it parallels with
ξ2 for small values of β (high temperature) it soon enough
diverges away to more and more negative values, Fig. 4(c).
The negative divergence, however, is always less than or equal
to the rate of divergence of ξ1 or, equivalently, the negative
divergence of Rm as discussed below. While the apparently
anomalous divergence could possibly provide some clue to
the nature of underlying statistical interactions, we shall defer
such questions to a future investigation.

(a) (b) (c)

FIG. 4. Plots of −Rq and ξ2 against β for different ranges of D values, with H = 0, D < J + K , and K < J . In all subfigures J = 0.05, K =
0.03. (a) D = −0.029 < K − J , (b) D = −0.02 = K − J , and (c) D = 0.05 > K − J . In (a) and (b) the curvature remains almost parallel to
the decaying correlation length, while in (c) it diverges away after running parallel for a while.
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(a) (b) (c)

FIG. 5. Plots of −Rq and ξ2 against β for different ranges of D values, with H = 0, D � J + K , and K < J . In all subfigures J = 0.05, K =
0.03. In (a) with D = 0.08 = K + J(pseudotricritical point), the ratio −Rq/ξ2 is plotted against the inverse temperature. In (b) with D = 0.09 <

2J and in (c) with D = 0.11 > 2J both Rq and ξ2 are plotted against β.

At the pseudotricritical point D = J + K , the negative of
Rq and ξ2 both remain parallel and diverge asymptotically as
e(J+K )β/2, which is in line with Eq. (38). It can be checked that
asymptotically −Rq ∼ 2 ξ2, which is consistent with Eq. (39)
with Rq → ψ−1 in the pseudotricritical limit. Significantly,
even at temperatures much farther from zero Rq is already
approximately twice ξ2 as can be seen in Fig. 5(a).

Beyond the tricritical point, for J + K < D < 2J , the mag-
nitude of Rq and that of ξ2 again run parallel to each other with
the former converging to −2 and the latter decaying to zero
as T tends to zero. This is shown in Fig. 5(b). For D = 2J
the curvature Rq converges to a value between −2 and −4
with the latter value fixed for the BC limit irrespective of J .
For D > 2J Rq behaves anomalously and diverges to negative
infinity as shown in Fig. 5(c).

In the BC limit (K = 0) the tricritical point expression for
Rq simplifies to

Rq = N1

D1
(D = J, H = 0, K = 0), (51)

where N1 and D1 are given in Eq. (A1) in the Appendix.
We now consider Rm and the three-dimensional scalar cur-

vature Rg on the zero-field line. Closed-form expressions are
not available for these curvatures since the eigenvalues of the
transfer matrix with nonzero H are to be obtained by solving a
cubic equation. The curvature Rm and the correlation length ξ1

run parallel to each other up to the pseudotricritical point, i.e.,
for D � J + K . The ratio of the curvature to correlation length
is fully consistent with Eq. (36) for all range of values of the
parameter D, with Rm → ψ−1

s towards zero temperature. In
Fig. 6(a) we observe that the ratio Rm/ξ1 soon enough ap-

proaches a value of 2, which, for the chosen parameter values
in the figure, is consistent with Eq. (36). The full curvature
Rg is seen to closely parallel the curvature Rm. In Figs. 6(b)
and 6(c) we plot together the products of Rm and Rg with
ψs for different values of D, with the latter subfigure at the
pseudotricritical value D = J + K .

We note here that the two-dimensional scalar curvature
Rm is seen to follow the Ruppeiner equation near criticality
with the proportionality κ = 1. While Rg still follows the
Ruppeiner conjecture at criticality in that it goes as the inverse
of singular free energy, the proportionality constant κ does
not appear to be a universal number, though it is still of order
one. There are patterns to the variation. For example, at the
pseudotricritical point for K < 3J the constant κ = 3.5, while
for K � 3J it is equal to 3. A fuller understanding of this issue
will necessary involve the full scaling form of the free energy
with three scaling fields t, h1, and h2 and exponents a, b, and
c [40], a line we do not pursue here. For work relating the
three-dimensional scalar curvature to the singular free energy
in systems at finite Tc we refer the reader to [17].

Beyond the pseudotricritical point while the correlation
length ξ1 decays to zero at low temperatures Rm does not
match with ξ1 and diverges in the negative direction.

2. The case J = K

For the case when the spin coupling strength is equal to
the quadrupole coupling, the curvature Rq shows an excellent
correspondence with ξ2 for all values of D. For D < J + K the
curvature Rq runs parallel to ξ2 and asymptotes to −1 as the
correlation length tends to zero for low temperatures. Simi-

(a) (b) (c)

FIG. 6. In all subfigures J = 0.05, K = 0.04. (a) Plot of Rm/ξ1 vs β with D = 0.02. (b) Plots of −Rg × (ψ − ψr ) and −Rm × (ψ − ψr ) vs
β for D = 0.082. (c) Similar as (b) but with D = J + K = 0.09.
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(a) (b) (c)

FIG. 7. In all subfigures J = K = 0.03 and H = 0. (a), (b) Plots of Rq and ξ2 vs β for D = 0.05 and D = 0.07, respectively. (c) Plots of
−Rq ψ and −Rm ψ are shown at the pseudotrictritical point for D = J + K = 0.06.

larly, for D > J + K it asymptotes to −3/2 as ξ2 tends to zero.
For the pseudotricritical point D = 2J , −Rq and ξ2 diverge to
infinity as eJ β with Rq → 2 ξ2 at low temperatures, consistent
with Eqs. (38) and (39). For J = K the zero-field expression
for Rq reduces considerably, and it can be expressed as the
fraction

Rq = N2

D2
, (52)

where the numerator and denominator are given in the Ap-
pendix, Eq. (A2). In Fig. 7(a) the curvature Rq and ξ2 are
plotted for a value of D < J + K and in Fig. 7(b) for D >

J + K . For both cases there is a very good correspondence
between curvature and correlation length as discussed above.

Rm corresponds well with ξ1 up to the pseudotricritical
point. For D < 2J the curvature Rm equals twice ξ1 for low
temperatures, while for the pseudotricritical point D = 2J
it equals ξ1 at low temperatures in line with Eq. (39). For
D < 2J the asymptotic divergence of ξ1 and Rm is e2Jβ , while
at the pseudotricritical point it is eJβ , all of which follow
Eq. (38). Once again, beyond the pseudotricritical point Rm

does not match with ξ1 and diverges in the negative direction
in a manner similar to the J > K case.

In Fig. 7(c) the product of the magnitude of Rm and Rq

with the free energy is plotted for the pseudotricritical value
of D. The two curvatures are seen to approach each other, and
the product quickly reaches a value of κ = 1 following the
Ruppeiner equation. Furthermore, for the three-dimensional
curvature the product Rgψ approaches 3.5 as mentioned ear-
lier (not shown in the figure).

3. The case J < K

For this parameter range we focus mainly on the pseudotri-
critical point at D = JK where the curvature Rq has a more
nuanced detailed scaling behavior compared to the previous
two cases J > K and J = K . Here we shall also be track-
ing the values of the quadrupole moment and its fluctuation
〈(
Q)2〉, the reason for which will soon become clear.

For J < K � 3J Rq diverges to negative infinity as
e(J+K )β/2, and follows the Ruppeiner equation with κ = 1. For
K < 3J the quadrupole moment approaches 1/2 at zero tem-
perature, and its fluctuation diverges as e(J+K )β/2. At K = 3J
the quadrupole moment approaches 2/3 at zero temperature.
For 3J < K < 5J the curvature continues to diverge to minus
infinity at the same rate as the correlation length ξ2, which now
diverges as e2Jβ . However, now at low temperatures the prod-
uct −Rqψs = κ is less than 1, and it decreases substantially as
K approaches 5J . For example, as K increases from 0.149 to
0.1499, for J = 0.03, κ decreases almost ten times from 299

14 400
to 2999

1 440 000 . Thus, while Rq still diverges to negative infinity in
this parameter range, it does not strictly follow the Ruppeiner
equation. This can be seen in Fig. 8(a), where Rm clearly
follows the Ruppeiner equation but not Rq. Meanwhile, for
all values of K > 3J the quadrupole moment tends to 1 and
its fluctuation goes as e(5J−K )β . Therefore, as K approaches
5J the divergence in quadrupole fluctuations keeps flattening.
This might appear curious since the quadrupole-quadrupole
correlation length ξ2 grows steadily as e2Jβ .

At K = 5J , the quadrupole fluctuation completely flattens
and approaches a fixed value of 4. Exactly paralleling this
situation, the curvature Rq also stops diverging and asymptotes

(a) (b) (c)

FIG. 8. Zero-field plots with D at pseudocritical values D = J + K and K > J . (a) Plot of the products of the singular free energy ψ

with Rq and Rm, for J = 0.03, K = 0.14 < 5J, D = 0.17. (b) Plot of Rq and 〈(
Q)2〉 vs β with (b) J = 0.03, K = 0.15 = 5J, D = 0.18 and
(c) J = 0.03, K = 0.16 > 5J, D = 0.19.
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to a fixed negative value of −79/4 at K = 5J , as seen in
Fig. 8(b). The correlation length continues to diverge at the
same rate as before. For K > 5J the quadrupole fluctuation
decays to zero in the zero temperature limit. Now the curva-
ture Rq diverges to posit ive infinity at the same rate as the
correlation length, namely, as e2Jβ . This is shown in Fig. 8(c).
This is interesting because in general the scalar curvature di-
verges to negative infinity at the critical point. For D > J + K
the curvature Rq diverges to positive infinity as e(D−2J )β after
briefly following the correlation length.

The apparent discrepancy between the divergence of the
quadrupole correlation length and at the same time the decay
of the quadrupole fluctuations at the pseudotricritical point is
mathematically understood by examining the expression for
the quadrupole fluctuation [34],

∂2ψ

∂μ2
= 1

N

〈(
N∑

i=1


Qi

)2〉
= Q(1 − Q)

1 − λ3/λ1
, (53)

so that while at the pseudotricritical point λ3 → λ1 which
implies ξ2 → ∞, the numerator could compete with the zero
in the denominator if Q → 1. This is more pronounced for
K > 5J when the quadrupole fluctuation now decays to zero
while the correlation length continues to diverge as before. It
is significant that the curvature Rq tracks this peculiar trend in
quadrupole correlations.

The curvature Rm follows the Ruppeiner equation for all
K > J and for all D � K + J . The asymptotic ratio between
Rm and the singular free energy (and with ξ1) is reached much
before pseudocriticality thus again emphasizing the weak con-
jecture of Ruppeiner. Beyond the pseudotricritical point Rm

behaves exactly as in the previous cases in that it anomalously
diverges to negative infinity at zero temperature even as ξ1

decays to zero.

B. The case H �= 0: The f line and beyond

The non-zero-field region in Fig. 1 comprises the f line,
the regions to its left and right, and the neighborhood of the
pseudotricritical point. We note that since we cannot obtain
closed-form expressions for non-zero-field scalar curvatures,
all the checks will be numerical.

On the f line both curvatures Rq and Rm diverge and follow
the Ruppeiner equation with κ = 1 as shown in Fig. 9. As
is apparent from the figure, both curvatures merge into each
other at low temperatures, which is consistent with the fact
there is only one correlation length ξ1 for nonzero field. The
scaling of scalar curvatures is e(J+K )β/2, which follows from
Eq. (40). The three-dimensional curvature Rg more or less
follows the curvature Rm so we do not describe it separately
here. In order to explore further the geometry of nonzero H
we refer to Fig. 11, which records trends in Rm and Rq in
nonzero field. The values of parameters J and K are fixed at
0.1 and 0.09, respectively, in the figure. Turning our attention
first to the vicinity of the red f line we notice that starting from
small nonzero values of H onwards there is a wedge-shaped
band around the f line, bordered by blue dots on the left and
green squares on the right. Within this “ f band” it is observed
that the two curvatures Rm and Rq overlap very strongly at low

FIG. 9. Plot of the products Rmψ and Rqψ vs β on the f line. The
parameters J = 0.03, K = 0.1, H = 0.01, D = H + J + K = 0.14.

temperatures and show an excellent correspondence with the
decaying correlation length.

Further, the band is characterized by an additional high-
temperature local maximum (or a “hump”) in both the Rm vs
β and Rq vs β plots; see Fig. 10. While the hump appears as
a prominent feature in the geometry there appears to be no
such indication in the plot of the correlation length in Fig. 10.
Given the connection between the scalar curvatures and the
underlying microscopic interactions it would be interesting to
see if there really is any hidden microscopic physics that such
a feature seems to be shining a light on. A possible clue to the
analytical origins of the hump feature is that the numerically
obtained boundaries of the f band are always straight lines as
can be seen in the figure. We observe that at smaller values
of H (about 0.05 in the figure), the f band shrinks to zero
so that the “hump” feature is altogether absent close enough
to the pseudotricritical point. Therefore, geometry seems to
suggest that the neighbourhood of the pseudotricritical point
is qualitatively different, and establishing the correctness, or
otherwise, of this geometric description could be an interest-
ing future investigation. While the overlap is excellent within
the f band the two curvatures begin to separate on moving
leftwards but still maintain a somewhat constant separation
till the boundary marked by green “tilde”-shaped symbols is

FIG. 10. Representative plot of Rm, Rq, and ξ1 in the f band, with
parameter values J = 0.1, K = 0.09, D = 0.45, and H = 0.25. The
hump in the curvatures and their substantial overlap is noticeable.
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FIG. 11. Diagram showing trends in the curvatures Rm and Rq in
the H -D plane with J = 0.1, K = 0.09.

reached; see Fig. 11. Rq diverges to negative infinity from this
point leftwards up to the boundary marked by the blue “caret”
symbols, beyond which it diverges towards positive infinity.
Similarly, moving leftwards from f band the curvature Rm

shows a positive divergence in the region bordered by the
purple “plus” symbols and red “asterisk” symbols, beyond
which it shows a negative divergence. Moving to the right of
the f band, it is seen that Rm, Rq and the correlation length
have a good match till the boundary marked by pink “open
circles,” beyond which both curvatures diverge to negative
infinity. We recall that everywhere in the non-zero-field region
except on the f line the correlation length always decays to
zero. The three-dimensional curvature Rg more or less follows
the curvature Rm, so we do not describe it separately here.

Admittedly, we do not understand the physics behind the
several sign changes of the curvatures here, but given that
the sign of the scalar curvature is commonly associated with
the nature of underlying statistical interactions, it is important
to record patterns in its variation. We hope to return to this
issue in the future.

VI. J = 0 CASE, THE ONE-DIMENSIONAL GRIFFITHS
MODEL

We now obtain the free energy scaling and the scalar
curvatures for the Griffiths model, namely, the J = 0 limit
of the BEG model. The zero temperature phase diagram for
the one-dimensional Griffiths model was described earlier in
Sec. II and represented in Fig. 2. The absence of the spin
coupling strength changes the phase structure of the general
BEG model qualitatively so that now the whole of the x
axis is noncritical and the point at D = K in zero field is no
longer (pseudo)tricritical but just a triple point. The f line
(D = H + K) continues to remain (pseudo)critical, but here
too, as we show, for H < K/4 the rate of correlation length
divergence decays to zero as H tends to zero at the triple point.

A. Scaling behavior near the pseudocritical line

The absence of the spin coupling strength J simplifies
the transfer matrix in Eq. (5) enough to render closed-form
expressions for two eigenvalues, with the third eigenvalue
identically zero:

λ± = 1
2 e−(D+H )β(

e(D+H )β + e(2H+K )β + eβK ±
√

W
)
, (54)

where

W = (
e(D+H )β + e(2H+K )β + eKβ

)2 + 4
(
e(D+H )β

+ e(D+3H )β − e(D+H+K )β − e(D+3H+K )β
)
.

From the above equation we can calculate the free energy
ψ as log (λ+) and the correlation length ξ as 1/ log (λ+/λ−).
Starting with the free energy closed-form expressions can be
obtained for Rm, Rq, and Rg. We note that while the numerical
values of the curvatures in this section can be obtained from
those of the previous section on setting J = 0, closed-form
expressions were not available earlier for nonzero H . All
the same, the closed-form expressions are too large to be
presented here.

We can obtain the scaling form for the free energy on the f
line by obtaining its approximate expression for large values
of β:

ψ →
β→∞

1
2 e−2 H β + 1

2

√
4e2βH + 4e4βH + eβK . (55)

The leading singular term of the free energy and its relation
to the correlation length on the f line with D = H + K can
now be obtained as

ψs = ξ−1 = e−2 H β (H < K/4)

= 1 + √
5

2
√

5
ξ−1 = 1 + √

5

2
e−Kβ/2 (H = K/4)

= 1

2
ξ−1 = 2 e−Kβ/2 (H > K/4). (56)

We already see a noticeable difference in the scaling behavior
on the f line of the Griffiths model, Eq. (56), as compared
to that in the BEG model, Eq. (40), in that for H < K/4 the
singular free energy in the Griffiths model weakens until it
disappears at the triple point at H = 0. In fact, this is the only
instance in the report where the scaling of the singular free
energy depends directly on the magnetic field. Satisfyingly,
in the following we shall see that the geometrical description
does encode the unique features of scaling in the Griffiths
model.

In view of their bearing upon the subsequent geometric
analysis we also report fluctuations in magnetization and
quadrupole moment on the f line D = K + H for different
ranges of H . For the quadrupole fluctuations we have

〈(
Q)2〉 = 2 e(6H−K )β (H < K/4)

= 2

5
√

5
eKβ/2 (H = K/4)

= 1

4
eKβ/2 (H > K/4). (57)

It is evident from the above equation that for K/6 <

H < K/4 the divergence of quadrupole fluctuations becomes
progressively weaker than that of the correlation length and
eventually flattens at H = K/6. For H < K/6 the quadrupole
fluctuation decays to zero on approaching zero temperature.
The magnetization fluctuations follow the same pattern as the
quadrupole fluctuations above except when H < K/8,

〈(
M )2〉 ∼ 〈(
Q)2〉 (H > K/8)

= 4 e−2 H β (H � K/8). (58)
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(a) (b) (c)

FIG. 12. Temperature plots of curvatures and correlation length for the pseudocritical f line in the Griffiths model. (a) H = 0.12, D =
0.42, K = 0.30, (b) H = 0.06, K = 0.30, D = 0.36, and (c) H = 0.04, K = 0.30, D = 0.34.

B. Geometry of the Griffiths model

We now survey the geometry of the Griffiths model start-
ing with the f line. For H > K/4 both Rm and Rq show a
negative divergence and overlap with each other at low tem-
peratures. They follow the Ruppeiner equation with κ = 1.
On the other hand the three-dimensional curvature Rg fol-
lows the Ruppeiner equation with κ = 3/2. The relation with
the correlation length can be worked out from Eq. (56) and
is obtained as Rm, Rq ∼ 2ξ , and Rg ∼ 3ξ . This is shown is
Fig. 12(a) where Rm and Rq are seen to completely overlap
with each other. For K/6 < H < K/4 Rm and Rq still show a
negative divergence at the same rate as the correlation length
(or ψ−1); however, the proportionality constant κ in the Rup-
peiner equation is less than unity and steadily decreases to
zero as H approaches K/6. For the grand curvature Rg, κ = 4
in this range. This is shown in Fig. 12(b) where the correlation
length is now seen to lead the curvatures Rm and Rq, which
again overlap with each other. We could say that the sectional
curvatures Rm and Rq are sensitive to the same mesoscopic
interactions which cause the spin and quadrupolar fluctuations
to flatten as H decreases from K/4 to K/6. On the other
hand the grand curvature Rg does not seem to process this
information and appears to mostly respond to the magnitude
of the correlation length.

Finally, for the range H < K/6 wherein the spin and
quadrupole fluctuations decay at zero temperature, Eqs. (57)
and (58), the curvatures Rm and Rq now turn positive and
diverge at the same rate as the correlation length. The two
curvatures, though reasonably parallel, are not as close to each

other as the previous cases. The magnitude of the proportion-
ality constant κ now ranges from less than unity to much
larger values as H approaches zero. On the other hand Rg

continues to diverge to negative infinity with κ still equal to 4.
This is shown in Fig. 12(c) and is favorably compared with an
analogous behavior of Rq in Fig. 8 in Sec. V B. In both cases
some sectional curvatures show a positive divergence at the
same rate as the correlation length. While it is unusual for the
state space scalar curvature to undergo a positive divergence
at criticality, we believe that the same mesoscopic interaction
which causes the quadratic fluctuations to decay near critical-
ity also causes a sign change in the curvatures here.

The H = 0 axis does not become critical for the Griffiths
model as mentioned earlier. This is reflected very well by the
respective curvatures. Figure 13(a) is a representative zero-
field plot with D < K . The curvature Rm quickly converges to
a value of −1, while Rq converges to −2 and Rg to −3.5, with
the correlation length decaying to zero. At the triple point D =
K the curvatures asymptote to Rg → −7.5, Rq → −4, Rm →
−1, and the correlation length now does not decay to zero but
converges to 1/ log 2.

For D > K on the H = 0 axis we report a minor but inter-
esting feature which is ably captured by the geometry of the
model. As shown in Fig. 13(b) the quadratic fluctuation after
initially decaying to zero undergoes a spike in fluctuation. Ex-
actly in the middle of this spike the magnetization fluctuation
sharply drops from 1 to 0. The curvature Rq remains exactly
twice the correlation length as can be seen from Fig. 13(c).
The curvature Rm and Rg on the other hand register their
response to the correlations in magnetization by jumping to

(a) (b) (c)

FIG. 13. (a) Scalar curvatures and correlation length for the Griifiths model with H = 0, K = 0.30, D = 0.31. Plots of (b) spin and
quadrupole fluctuation moments and (c) 2ξ and −Rq for the same parameter values as (a).
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(a) (b) (c)

FIG. 14. Temperature plots of scalar curvatures and the correlation length for the Griffiths model. In all subfigures, H = 0.12, K = 0.30,
and D values are less than but progressively closer to the f line at D = K + H . (a) D = 0.36, (b) D = 0.41, and (c) D = 0.419.

large positive values at the temperature at which the magneti-
zation fluctuation drops to near-zero values (not shown in the
figure).

We turn now to nonzero H values in regions away from
the f line. In Fig. 14 we take a representative selection of
plots for a fixed value of H and different values of D moving
right towards the f line. In all the subfigures the curvatures
Rm and Rq display a pattern reminiscent of the non-zero-field
behavior in the BEG case as depicted in Fig. 11 above, per-
haps reflecting a shifting nature of underlying mesoscopics, a
question we hope to address in a future investigation. On the
other hand the grand curvature Rg always appears to nicely
track the noncritical correlation length, even if it maintains a
relatively large separation with it. This again fits well with our
earlier observation that for the J = 0 case Rg responds rather
faithfully to the magnitude of the correlation length in both
the critical as well as the noncritical cases.

VII. CONCLUSIONS

In this work we have undertaken a detailed analysis
of the thermodynamic geometry associated with the one-
dimensional BEG model and its limiting cases of the BC
model and the Griffiths model. The BEG model, which is
extensively used to model interacting systems with two order
parameters, preserves much of the richness of its phase struc-
ture in the one-dimensional case. In addition, being exactly
solvable in one dimension and with tractable expressions for
the free energy and the correlation lengths, it offers an excel-
lent opportunity to comprehensively probe its geometry.

The three-dimensional state space of the BEG model has
been systematically sectioned into two relevant codimension
one geometries. The associated intrinsic scalar curvatures Rq

and Rm are found to be relevant to the correlations in the
quadrupole and the magnetic moment, respectively. For H =
0 the spin and quadrupolar order parameters have separate cor-
relation lengths ξ1 and ξ2, and, remarkably, it is seen that Rq

and Rm encode these separately. The two sectional curvatures
are seen to always follow the Ruppeiner equation near the
pseudocritical lines and the pseudotricritical point, with the
proportionality constant κ = 1. Making use of the Ruppeiner
equation we are able to ascertain thermodynamically the full
scaling forms of the singular free energy of the BEG model,
thus bypassing the technically more challenging approaches
employing RG analysis. The proportionality constant of the
grand curvature Rg to the inverse of singular free energy,

though always of order unity, is seen to vary depending on
the parameter range.

The curvatures Rg, Rm, and Rq obey the weak form of
Ruppeiner’s conjecture in that the trends in their variation are
analogous to that of the correlation lengths even in regions
far away from criticality. In much of the noncritical parameter
space the decaying correlation length obtained via the transfer
matrix is seen to be “enveloped” by the relevant scalar cur-
vature. Moreover, on several occasions it has been possible
to connect, albeit in a preliminary way, the sign changes or
some sharp shift in the sectional curvatures to the change in
the nature of M or Q fluctuations, thus suggesting a deeper
connection of geometry with the nature of underlying statisti-
cal interactions.

In the Griffiths model limit, it is seen that Rg remains
sensitive only to the magnitude of the correlation length in
noncritical regions, while the sectional curvatures respond via
changes in signature or the rate of divergence to the changing
nature of statistical fluctuations. Admittedly, there are a few
patches of the parameter space where we are not able explain
the behavior of one or more scalar curvatures via the underly-
ing thermodynamics.

One of the key messages in our work vis-à-vis thermo-
dynamic geometry is that for higher dimensional parameter
spaces the relevant sectional curvatures contain essential
mesoscopic information not found in the full scalar curvature.
Significantly, we have been able to establish that judiciously
chosen sectional curvatures can encode the correlations in
respective order parameters. To the best of our knowledge this
is the first application to ordinary thermodynamic systems of
sectional geometry induced from higher dimensional phase
space, a project initiated in [35] for Kerr-Newman anti–de Sit-
ter black holes. We hope that the approach taken here shall be
gainfully employed in the study of a range of thermodynamic
systems with multiple order parameters.
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APPENDIX

The appendix contains detailed expressions for the scalar curvatures mentioned symbolically in subsection V A.

N1 = −2e−J β
[
37e2βJ + 4e16βJ + 5WeβJ + (6W + 24)e15βJ

+ (24W + 334)e14βJ + (37W + 74)e3βJ + (54W + 106)e4βJ

+ (106W + 464)e5βJ + (274W + 980)e13βJ + (304W + 1100)e7βJ

+ (316W + 480)e6βJ + (396W + 1702)e12βJ + (676W + 1671)e8βJ

+ (703W + 1684)e9βJ + (733W + 1868)e11βJ

+ (740W + 2589)e10βJ + 5
]
,

D1 = W [6e2βJ + 2e7βJ + 2WeβJ + We6βJ

+ (4W + 27)e5βJ + (5W + 4)e4βJ + (6W + 13)e3βJ + 2]2,

W =
√

e−2βJ + 8eβJ ; (A1)

N2 = AB,

A = −2e−βJ
[
e3βD + (W + 6)eβ(D+2J ) + 3(W + 2)eβD

+ (W + 6)e2βD + e6βJ + (W + 3)e4βJ + (2W + 3)e2βJ + W + 1
]
,

B = 6eβ(5D+J ) + eβ(D+9J ) + 4e4βD+3βJ + e3βD+5βJ

+ 3e2βD+7βJ + 14(W + 2)eβ(D+3J ) + 10(W + 3)eβ(D+5J )

+ 5(W + 5)e2βD+5βJ + 2(W + 6)eβ(D+7J ) + (6W + 9)eβ(D+J )

+ (6W + 28)eβ(4D+J )(6W + 34)e3β(D+J ) + (13W + 27)eβ(2D+J )

+ (14W + 41)eβ(3D+J ) + (18W + 49)e2βD+3βJ + e11βJ

+ (W + 1)eβJ + (W + 5)e9βJ + 2(2W + 5)e7βJ + 2(3W + 5)e5βJ

+ (4W + 5)e3βJ ,

D2 = W
(
eβD + e2βJ + W + 1

)[
2e3βD + e2β(D+J ) + (W + 6)eβ(D+2J )

+ 3(W + 2)eβD + (2W + 7)e2βD + e6βJ + (W + 3)e4βJ

+ (2W + 3)e2βJ + W + 1
]2

,

W =
√

6eβD + e2βD − 2eβ(D+2J ) + 2e2βJ + e4βJ + 1. (A2)
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